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Thermodynamics of Blackbody Radiation Via
Classical Physics for Arbitrarily Shaped Cavities
with Perfectly Conducting Walls
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An analysis is carried out involving reversible thermodynamic operations on
arbitrarily shaped small cavities in perfectly conducting material. These operations
consist of quasistatic deformations and displacements of cavity walls and objects
within the cavity. This analysis necessarily involves the consideration of Casimir-
like forces. Typically, even for the simplest of geometrical structures, such calcula-
tions become quite complex, as they need to take into account changes in singular
quantities. Much of this complexity is reduced significantly here by working
directly with the change in electromagnetic fields as a result of the deformation
and displacement changes. A key result of this work is the derivation that for such
cavity structures, classical electromagnetic zero-point radiation is the appropriate
spectrum at a temperature of absolute zero to ensure that the reversible deformation
operations obey both isothermal and adiabatic conditions. In addition, a generalized
Wien displacement law is obtained from the demand that the change in entropy of
the radiation in these arbitrarily shaped structures must be a state function of tem-
perature and frequency.

1. INTRODUCTION

A thermodynamic analysis is carried out in the present article that involves
reversible thermodynamic operations performed on electromagnetic radia-
tion contained within closed cavity structures with perfectly conducting
walls, but of arbitrary shape. Each cavity may contain an arbitrary number
of perfectly conducting objects within it, such as wires, contacts, or indeed
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any arbitrarily shaped object. At the end of this article, comments are given
on how the perfectly conducting restriction might be removed.

. The analysis described here is carried out entirely within the realm of
‘classical physics. Nevertheless, as will be discussed more shortly, the main
points of this work hold in quantum electrodynamics (QED) as well, due
to direct connections that can be made between this work and QED.

The analysis in the present article can be motivated from several view-
points. First, it has strong connections with early classical thermodynamic
analyses of blackbody radiation carried out around 1900, and illustrates
how these classical physical analyses can be significantly extended in their
physical applicability to describing nature accurately by simply not assum-
ing that radiation needs to vanish at 7'=0. Second, this approach has the
same physical description that scientists are used to in the macroscopic
world, as opposed to the quantum mechanical description of microscopic
systems, yet, a close connection exists between both descriptions. Third,
since Casimir force calculations of anything but the simplest structures, and
possibly related phenomena like somnoluminescence, are sufficiently complex,
then related perspectives on alternative calculational methods should be
welcome.

Briefly reviewing previous related work, a reinvestigation of the ther-
modynamics of blackbody radiation from the point of view of classical
physics was carried out in 1992 in Ref. 1. This work involved the analysis
of the appropriate spectrum of classical electromagnetic radiation existing
between two perfectly conducting parallel plates, as deduced by imposing
minimal thermodynamic demands on the system. The appendix in Ref. 1
extended this work to the consideration of the radiation within rectilinear
parallel-pipeds with walls made of perfect conductors. Much of this work
involved reexamining the problem of a movable piston sliding in a cylinder
containing classical electromagnetic thermal radiation. This problem had
initially been analyzed in the late 1800s and early 1900s by researchers such
as Wien, Stéfan, Boltzmann, and Planck. The key difference between the
early work on this problem and the analysis in Ref. 1 was that the latter
did not make the implicit assumption that the thermal radiation spectrum
reduces to zero at the temperature of 7= 0. As pointed out in Ref. 1 (ie.,
see Sec. IX), this subtle, but very critical assumption, was implicitly buried
in the much earlier work by researchers on blackbody radiation.

Imposing this assumption helped to contribute to a number of related
problems regarding the deduced thermal radiation spectrum, such as the
ultraviolet catastrophe for Rayleigh-Jeans (RJ) radiation, the infinite
specific heat of RJ radiation, and the failure to satisfy the third law of ther-
modynamics. Sections V, VI, and VIII in Ref. 2 discussed these problems
in some detail. Generalizing the classical analysis to avoid imposing this
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assumption was shown in Refs. 1-3 to enable these problems to be avoided.
Indeed, as shown in Ref. 1, the only radiation spectrum that will yield no
heat flow during isothermal quasistatic displacements of perfectly conduct-
ing parallel plates, is a spectrum with the same functional form as the
classical electromagnetic ZP radiation spectrum, p,p(w) = A3/272¢>. This
condition of no heat flow during reversible isothermal operations is
precisely the one that must be satisfied in thermodynamics at temperature
T= 0. Moreover, the resulting Casimir force between the plates is exactly
the same result as obtained in QED.™

The analysis in Ref. 1 for perfectly conducting parallel plates and rec-
tilinear parallel-pipeds will be extended in the present article to cavities of
perfectly conducting materials, where now no restriction is placed on the
shape of the cavity or on objects within the cavity. Quasistatic displace-
ment and deformation operations on the cavity structure will be examined.
More specifically, we will consider the following physical operations, all
performed very slowly (no hard impacts): (1) physically deforming the
walls of the cavity or the shapes of the objects in the cavity; (2) displacing
the objects within the cavity; or (3) any combination of (1) and (2). To
accomplish these tasks, external work must be performed on the system to
deform the structures, or to separate objects from each other and from the
walls in the cavity. In particular, Casimir-like forces must be taken into
account when evaluating the work required to deform and displace objects
from one other. These operations will result in changes in the internal
energy of the electrodynamic system. Both of these quantities, namely,
(1) average work, { W), done during these quasistatic displacement and
deformation operations, and (2) average changes in internal energy, AU,
will be calculated in Sec. 3.

Section 4 then ties this analysis together, by examining the average
heat flow (@) into the cavity that is given by

Q> =AU (W) (h

Consideration of this quantity will enable us to show that the deduction
of the classical electromagnetic ZP spectrum in Ref. 1 for very specific
geometry conditions (parallel plates and rectilinear parallel-pipeds), also
holds here for arbitrarily shaped cavities. This result agrees with the
findings in Refs. 1-5, and with the expectation that this spectral form is the
correct one to be in thermodynamic equilibrium with physically realizable
electrodynamic systems at 7= 0.7 Perhaps the most surprising aspect
of this work is that this deduction can be obtained entirely from within
classical physical considerations. The present article provides yet another



1852 Cole

example of an electrodynamic system, along with Refs. 1, 3, 4, and 8, where
this result is obtained.?

In Sec. 5, an analysis is carried out showing that the thermal radiation
spectrum in these arbitrarily shaped cavities must obey a generalized
Wien’s displacement relationship in order for the entropy of the radiation
to be a state function of temperature and frequency. Section 6 then ends
with some concluding remarks and ideas for future directions.

The present analysis makes use of a mathematical framework that may
be helpful for future work involving the thermodynamic and electro-
dynamic analysis of small structures with cavities, movable walls and struc-
tures, and changes in carrier concentration on the walls of these structures.
Considerable attention has been paid in recent years to micro-electro-
mechanical structures (MEMS).? Subsets of MEMS devices, such as the
atomic force microscope and related measurement tools,®® involve changes
in van der Waals and Casimir-like energies. Moreover, another somewhat
related field in physics, namely, cavity QED, involves the behavior of par-
ticles and radiation interacting within cavities.(*¢!¥

For such systems, calculations involving Casimir-like forces are
notorious'*™*® for needing to deal with changes in infinite quantities to
obtain finite measurable results, like forces and changes in energy. To
emphasize this point, it is well known that calculating Casimir forces for
simple structures like a spherical shell’”) of perfectly conducting material
or conducting rectangular parallel-pipeds,>'® are all treatable by nearly
fully analytical methods. However, analyzing even these simple structures
are far from trivial, as evidenced by the time delay between 1953, when
Casimir published the suggestion of computing the spherical conducting
shell situation,*® and 1968, when Boyer solved the proposed problem.(?)
Treatment of unusual geometries are even more difficult. Nevertheless, the
present treatment applies for arbitrary geometries of cavities with conduct-
ing walls. The treatment works because it relies on a perturbation method
that directly deals with the changes in the electromagnetic fields that arise
due to the changes in the physical constraints of the system, namely, the
deformations and displacements in the cavity structure. The method makes
direct use of an approach well known in the area of resonant cavities in
microwave electronics®- 2! for describing classical electromagnetic field
behavior. The analysis in Sec. 2 introduces this approach.

2 See Ref. 8, Sec. 2, for a simplified proof of the classical electromagnetic ZP spectrum via con-
sidering a single harmonic electric dipole oscillator displaced within an electrostatic field.
3 See, for example, articles published in IEEE Journal of Microelectromechanical Systems.
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The treatment in this article makes use of the classical electrodynamic
theory often called stochastic electrodynamics (SED).(15225.4 SED
describes nature via Maxwell’s equations, with the relativistic version of
Newton’s second law of motion for the trajectory of classical charged par-
ticles. The key difference of this theory versus conventional classical elec-
trodynamics is that the restriction is not made that radiation must vanish
at a temperature 7= 0. The relaxation of this subtle restriction enables the
deduction to be made that classical electromagnetic ZP radiation must be
present to satisfy a number of thermodynamic conditions.*~>) The result is
a more accurate description of our physical world, including a number of
properties normally only attributed to quantization effects, while still
retaining a classical view (229

However, a cautionary comment should certainly be made here, that
is undoubtedly not a surprise to most physicists: namely, research to date
has concluded that agreement between QED and SED, only holds for the
situation involving linear equations of motion for the modeled atomic
systems and linear equations governing the electromagnetic fields for the
modeled macroscopic systems.”>'> Thus, if one treats the macroscopic
materials as being composed of a set of electric dipole oscillators, or as
macroscopic bodies with linear dielectric properties, then we can have
confidence in the agreement.

Of course, this situation is quite limiting in many critically important
ways, but what is interesting is that even in QED, handling the general
situation of nonhomogeneous, dispersive, and absorbing material has not
been successfully tackled yet. The problem is far from trivial, both from the
physical description point of view (i.e., appropriate quantization method
for this complicated many-particle system, and relation to measurable
physical quantities), as well as the mathematical complication of solving
the resulting governing equations. Reference 25 summarizes much of the
difficulties involved with dealing with more general nonlinear, nonhomoge-
neous, dispersive, and dissipative mediums. Consequently, a number of
articles have appeared in the QED literature that model the medium by
treating it as being composed of quantum mechanical electric dipole har-
monic oscillators. These oscillators model the actual atoms existing in real
materials. By placing them in varying density arrangements, and of course
coupling all their interactions appropriately, one can treat the case of a
nonhomogencous material, as well as one that is dispersive and dissipative.
Renne made the connection®® between this more microscopic approach of
treating a medium to the more familiar macroscopic electrodynamic treat-
ment originally developed by Lifshitz.?7

4See Ref. 23 for a brief review regarding Ref. 15.
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Hence, much of the research in this area still relies on solving the
problem in QED by precisely the model where QED and SED are known
to agree,*” namely, where atomic systems are treated as being composed
of simple harmonic electric dipole oscillators. Fortunately, Renne’s basic
approach® involving full retarded van der Waals forces between such oscil-
lator systems, was shown to yield identical results to those of SED®@ for the
case of two oscillators, and later for an arbitrary number of oscillators.*®
Indeed, Kupiszewska’s treatment of this problem in QED can be cast
entirely within the description of SED, as described in Sec. 6.1 of Ref. 15.

Before beginning our analysis, a few subtle points need to be mentioned.
First, no radiation can flow through the cavity walls, since the perfect
conductors result in the electromagnetic fields within the walls being equal
to zero. Moreover, since we are not treating the walls as possessing a
specific heat themselves, but are rather treating them here as idealistic
mathematical boundaries that ensure zero fields within the walls, then
neither will heat flow through the conducting walls by conduction. Thus,
when cavity walls are moved in and out, the work done on the walls must
be exactly compensated by changes in internal electromagnetic energy
within the cavity. Hence, no heat will flow, resulting in us dealing with
adiabatic reversible processes.

In most cases, such adiabatic processes will result in changes in the
temperature of the radiation as the walls are moved or deformed. Only in
one case will the temperature not change during such an adiabatic process,
namely, at absolute zero temperature.>* Section 4 covers this analysis.

A key restriction on the present analysis is that the cavity walls and
the objects inside are treated as being composed of continuous medium.
Thus, if comparisons were to be made with experiment, we would expect
the analysis to break down when trying to compare with real structures
with dimensions approaching molecular and atomic sizes for the cavity,
objects, and distances between cavity walls. The continuous medium
approach would be suspect then, and the restriction to perfectly conducting
material would not hold. These restrictions on the present analysis are then
very similar to the ones holding for analyzing Casimir-like forces between
plates or other similarly shaped structures. To move beyond this restriction,
one would need to deal with individual sets of atoms and molecules, along the
lines of Refs. 2-5, and examine the transition as one increased the number
N of particles and their density.®

2. FIELD DESCRIPTION

We will investigate some of the statistical properties of the radiation in
the cavity described in Sec. 1 that must hold to satisfy certain conditions
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of thermodynamic equilibrium. Only a single cavity will be considered,
where all regions of the cavity are topologically connected. We will not
consider the situation where the walls might be deformed such that two or
more adjoining cavities may merge together, or one cavity may split into
two or more cavities,

We will express the fields as a summation over normal modes. For
the present article, attention will be restricted to the situation where the
current density, J(x, ¢), and charge density, p(x, ), equals zero within
the free space of the cavity. Let us work in the Coulomb gauge, so that the
vector potential A(x, ¢) satisfies V- A =0. Within the empty cavity, A(x, )
satisfies the wave equation. The transverse electric field E 1(x )=
—(1/c)(0/0t) A(x, t) and the magnetic field B(x, #) = V x A(x, ) can be con-
veniently represented by expanding the vector potential in the following
way

A(x, ) =) [AX, @,) e ™™ + AX(X, w,) ™" ] (2)

where
V2A, 4+ k2R, =0 (3)
V-A,=0 (4)

and ¢’k = 2. Requiring that i x A(x, @,) = 0 for all points x on the sur-
face S of the cavity, ensures that the tangential components of the trans-
verse electric field E; and the normal component of the magnetic field
equals zero on these surfaces, as must be satisfied for a perfect conductor.
The Helmholtz equation satisfied by A, and the boundary conditions
jointly define a Hermitian eigenvalue problem. The modes corresponding
to different eigenvalues are orthogonal. Reference 15, Sec. 3.1.2, summarizes
these points, and Ref. 20, Chapter 4, explains them in much more detail.
Following Ref. 15, we can work with a family of orthonormal functions
G.(x, w,),> where

A%, 0,) = b, Go(x, w,) (5)

L A% G*.Gy=4,, (6)
and the integral is taken over the volume V of the cavity. In addition, any
two functions G, and G, or G* and G}, integrate to zero. We obtain that

* We can relate G, to the orthonormal functions E, and H, in Ref. 20 in the following way,
namely, that E, =G,(x, w,) and H, = (1/k,) V x G (X, w,).
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E (x,1)=iY -“2— [G(x, 0,) bye™ ™ — GX(x, w,) b* e (7)
B(x, 1) =Y [VX G (x, ®,) be "+ Vx GXX, w,) b}e™"] (8)

The present analysis can be extended to include the situation where
charges exist inside the cavity and where the conducting walls may be
charged, via the representation discussed in Ref 20, Chap. 4, involving a
normal mode expansion of the irrotational electric field. However, here we
will just note this point and restrict ourselves to the situation of uncharged
conductors and no free charges, so that Eq. (7) represents the total electric
field within the cavity.

The properties of the radiation that will be investigated here are those
due to changes in thermodynamic equilibrium conditions. For a particular
temperature T, we may imagine an ensemble of cavities, each cavity with
an identical shape and size; hence, each cavity in the ensemble will have the
same set of normal modes, and the same set of frequencies w,. However,
each cavity will have a somewhat different set of electromagnetic mode
amplitudes b,, where the temperature T describes the distribution of this
set of mode amplitudes across the ensemble. As the cavity shape is quasi-
statically changed, then the normal modes will change in the same way for
each cavity in the ensemble. Moreover, for any one cavity in this hypothetical
ensemble, the electromagnetic mode amplitudes b, will change in a well
defined way, which will enable us to determine the change in the distribution
of the electromagnetic mode amplitudes b, for the entire ensemble.

Any of the quasistatic deformation and displacement operations on the
walls and inner objects will change the internal clectromagnetic energy
within the cavity. As the cavity boundaries are displaced, the rapidly fluc-
tuating surface currents on the boundaries must also change to ensure zero
field conditions within the perfectly conducting walls and interior objects.
Changes in these currents will change the electromagnetic fields within the
cavity interior.

The linear additive nature of the electrodynamic system considered
here leads to the demand that each electromagnetic radiation mode should
fluctuate independently of each other. Consequently, we will assume, as is
usually done in SED,* that

(boubgy ={b3bg> =0 (%)
(bobpd = plw,, T) oy (10)

where the angle brackets represent an ensemble average. Equation (10)
states that the mode amplitudes are uncorrelated for a#pf, and that
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{b,b¥> depends on temperature and frequency w,. This equation really
incorporates a number of underlying assumptions. The dependence of p on
a,, without any directional dependence in space, assumes that radiation of
a single frequency is able to mix in the cavity for all spatial directions. As
discussed in Ref. 31, and further in Ref. 1, for specular surfaces, this mixing
condition naturally holds. For highly idealized polished surfaces, then
one could construct a nonmixing condition that might violate Eq. (10),
necessitating that a directional dependence also be included. The situation
is analogous to an idealistic chamber with smooth walls and classical par-
ticles that interact via elastic collisions with the walls. If the initial set of
particles are set in motion in the chamber in selected ways, they may
always follow the same trajectories over and over within the chamber, and
never fill the entire chamber. Even a slight degree of rough, specular walls,
would change this condition enormously, as is more to be expected in
realistic experimental conditions.

Moreover, as discussed in some detail in Ref. 31, and further in Ref. 1,
one can certainly consider a situation where different radiation rays have
different effective temperatures, rather than the condition in Eq. (10) where
the same temperature holds for the entire radiation system. For a linear
electrodynamic system, where radiation of different frequencies do not
effectively mix, then different temperatures could be maintained indefinitely.
However, a linear electrodynamic system is highly idealistic, and does not
really occur in nature, so mixing is expected for realistic systems in nature.
This condition was treated in Ref. 31 and followed in Ref. 1 via the concept
of a hypothetical small “carbon particle” that effectively mixed the radiation
sufficiently, to enable a single temperature to define the system of radiation.

These points are further commented on at the end of this article in
Sec. 6. In particular, it is interesting to contemplate the experimentation
of cavity structures where nonequilibrium conditions involving smooth
planar surfaces and the imposition of forced oscillations, and their return
to equilibrium, might be examined. Here we just note these interesting
directions, and continue with the analysis involving the conditions set by
Egs. (9) and (10).

3. CHANGE IN INTERNAL ENERGY AND WORK DONE

The internal energy associated with our system, which just consists of
a cavity of volume ¥ filled with radiation, is expressed by

w|b,)?
2rc?

1 2 2
Us—gfyd:’x(El%—B):; (11)
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This quantity is a constant, independent of time, despite that the electro-
magnetic fields are rapidly fluctuating in time. The reason it is a constant
is that we have made the idealistic assumption that the walls are perfect
conductors, so that no energy flows through them (perfect adiabatic
barriers).

We will be assuming that the ensemble of cavities has a distribution of
b, values that conform to thermodynamic equilibrium conditions. From
Eq. (11), an infinitesimal change in the ensemble average of this internal
electromagnetic energy can be expressed by

1

27c?

KUy =

2 [@.C[be]?) S, + @, 8(0,541%))] (12)

Thus, we will need to deduce how the change in the boundaries of a
cavity results in changing each of the normal mode frequencies. The follow-
ing relationship will prove to be very helpful here:®

do) =5 [ dx(H - B, (13)

where E, = G,(x, w,) and H, = (1/k,) Vx G (x, w,). As stated by Casimir
in Ref. 21, Eq. (13) “... is a very useful formula for calculating the influence
of small errors in manufacture, accidental deformations or intentional dis-
placements of pistons or membranes on the resonance frequencies.” Here
the volume integral is taken over the region §¥ in space that is defined by
the boundaries of the old and new surfaces making up the cavity. If an
infinitesimal portion of one of the walls of the cavity is pushed into the
cavity, so an inward dent is made, or if one of the walls of the objects of
the cavity is deformed so that the object protrudes more into the cavity
(ie., the cavity becomes smaller), then §V is simply the region in space
composed of this displaced volume. If over this region, the original

¢See Eq. (7.1) on p. 81 in Ref. 20, namely,
swd=w? [ x(H B,
14

or Eq. (7.1) in Ref. 21, namely,

é]fzjév(|Ho|2*|Eo|2) d’x
k fy({H0[2+]E0|2) d’x
In Ref. 20, as in the present article, H, and E, are normalized. Hence, substituting

{v Hol?d*x={, |Eo|>d’x =1 into the second equation above, and noting that dk/k =
(dw)/w = (1/2w?) 5(w?), then one sees that the above two formulae agree.
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magnetic field for the « mode, prior to displacement, is larger than the
corresponding electric field, then w, will increase by the amount above. If
instead a wall of the cavity or a surface of one of the objects is deformed
so that the cavity is made larger, then the above volume integral must be
interpreted as contributing a negative amount, with the fields being those
after deformation. For a simple displacement of an object in the cavity,
then the integral should be over the positive region of space that has been
taken up by the displacement, minus an integral over the new region
available in the cavity.

Now let us turn to the work done by external forces when this opera-
tion of deformation and/or displacement is carried out. The external forces
in question here are the constraining forces that hold all the walls and inte-
rior objects in place. As deformations and displacements occur, these forces
perform work on the electromagnetic cavity system. These constraining
forces must just balance the force due to the radiation pressure acting on the
walls, in order for the displacement/deformation operations to be reversible
ones. The force due to the radiation pressure is readily calculated in the
following way.

Let us consider a small Gaussian pillbox enclosing a small volume 6V’
of a surface area 45’ of one of the metal walls. We can relate the Lorentz
force due to the radiation to the Maxwell stress tensor 7, in the following
way: 32 3%

1 1 0 3 0
_[ d3x[pE+—(J><B)] =——2f x —S;+ ) f d’x —T;
v c i s ot j=1 Y8V’ Ox; (14)

We will reduce this expression in the following ways. For a radiation
field fluctuating in time, but whose stochastic properties are stationary in
time, the first term on the right will equal zero if we take either a time or
ensemble average of this equation. Second, the term on the far right can be
converted to a surface integral. Third, for a perfect conductor, the ficlds
within the conductor equal zero. Consequently, for a small area d4 on the
surface, one can deduce that the average of the ith component of the
Lorentz electromagnetic force on this patch can be expressed as

dA Y (8),{Ty>
Jj=1

where the angle brackets indicate an ensemble average and

1
Ty=4- [(EiEj+BiBj) —5

1

ijz(E‘E—i—B-B)] (15)
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is the Maxwell stress tensor in the interior part of the cavity, right next to
the surface. The external force must be equal and opposite to this quantity
to enable the boundary to be constrained.

The work done by the constraining forces to displace this region by an
infinitesimal amount Jz is obtained by the dot product of these two quan-
tities. By assuming that the displacements dz are made quasistatically, so
that the rapidly fluctuating fields are essentially uncorrelated with the slow
change in displacement, then

3
Wy=~| & T (@),<T,> 6%

L j=1

: 1
= _Z;L d?x <(ﬁ.E)(5z.E)+(ﬁ.B)(az.B)_(ﬁ,(gz)z(E2+B2)>

I

1 2. 1A 1 2 2
—Z‘;Jsdx(n-éz)5<E — B (16)

since E is parallel to fi and B is perpendicular to # at the conductor surface.
Now, d?x(fi-dz) is the infinitesimal volume carved out by displacing the
patch of surface area by an infinitesimal amount dz, where this volume is
taken to be positive if 9z has a positive component along ii. Remembering
that # points inward to the cavity, then this change in volume is positive
if a dent is made inward to the cavity, or the cavity becomes smaller, as
was the convention taken in Eq. (13). Consequently,

1
(Wy= = LV d*x{ E*— B?) (17)

where d¥ is the same infinitesimal volume as in Eq. (13) that is defined by
the region between the changes in the boundaries of the cavity and the
boundaries of its interior objects.

Substituting in Egs. (7) and (8) into 16 yields

= =g [, L 20 [ (%) 16 - 19560 0]

I

1 1 2
5w L3 [ x| (%) e ]

1
= +i;;f§(<,ba!2> w,) 0(w,) (18)
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4. ABSOLUTE ZERO TEMPERATURE SPECTRUM

We are now in position to examine a condition that must hold at
T'=0, namely, absolute zero temperature is the only temperature at which
no heat will flow for all reversible isothermal processes. From Eqgs. (1),
(12), (18), and (10), the heat flow into the cavity due to displacing or
deforming the walls or inner objects is given by

[
(0> =5 Y, 0,0[0.p(@. T)] (19)

nc?

Since we are considering adiabatic conditions, as imposed by perfectly con-
ducting walls preventing radiation from flowing through them, then we
must require that { Q) =0. This adiabatic condition will be satisfied for all
displacements and deformations if

- - U P
0=0lwp(w, T)] —{p+w aa)] (5w+waT6T (20)

Equation (20) relates how the temperature and p(w, T) must change as the
resonant frequencies in the cavity change.

Although Eq. (20) must hold at all initial temperatures for the
adiabatic cavity, there is only one situation where no temperature changes
will occur, namely, at absolute zero temperature.® Setting 67 = 0 in Eq. (20),
then yields the absolute zero temperature spectral condition, namely, that

K
p(w, T=O)=g (21)

where K is a constant. The more familiar outcome of this result is

2 bu 2 _ K -
<U>T=0=Zwu<12nlc2>T 0222;‘;2

o xX

(22)

Upon calibrating K to experiment,!”>® such as by making Casimir force-
like measurements, ®*9 then the constant K can be determined, leading to
the identification that K = nc?h.

5. GENERALIZED WIEN’S DISPLACEMENT LAW

Following the method discussed in Refs. 2 and 1, we can deduce the
generalized Wien’s displacement law involving frequency and temperature,
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but now for radiation in an arbitrarily shaped cavity with perfectly conduct-
ing walls and interior objects. We need to assume, however, that reversible
thermodynamic processes can be performed that change the temperature of
the radiation. Section IIL.B in Ref 1 discussed many of the physical con-
structs needed here, such as the hypothetical and idealistic use of pinholes,
stopcocks, and infinite collection of heat reservoirs at different tempera-
tures. These ideas will be assumed to hold here as well.
From Eq. (11),

KUY = 22[ ga’;(sn(zw aaa )5&)] (23)

Using this with Egs. (18) and (1), then the change in entropy is

2 aa >§w ] (24)

Demanding that 45 be an exact differential in accordance with the
second law of thermodynamics, then

%S o (wiop\ 01 2 Op
0T0w“—6a)a<T6T> ﬁ[?(w“”w“ 660«” (23)

which leads to the condition

P
5S—~<Q) T2 sz[ §6T5T+(

St S ptama=0 (26)

As can be readily verified, this condition is satisfied if p satisfies the follow-
ing functional form

1
po. )= 5 (%) @)
or
(Uyp=g 2L 2D (29)

These functional forms describe the generalized Wien’s displacement
theorem, with the word “generalized” meaning that their derivation is valid
even when radiation does not vanish at T'=0.>1 Thus, we have that the
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radiation spectrum in thermal equilibrium within an arbitrarily shaped
cavity with perfectly conducting walls, or with an arbitrary number of elec-
tric dipole harmonic oscillators,®” must have second moments of the fields
possessing a functional property that yield Eqs. (27) and (28) above, or
Eq. (27) in Ref. 2, namely, py(w, T) = o*fi,(0/T).

6. CONCLUDING REMARKS

A thermodynamical analysis was carried out here for arbitrarily
shaped cavities in perfectly conducting medium. The thermodynamic
operations examined involved quasistatic deformations of the walls, and
quasistatic deformations and/or displacements of perfectly conducting
objects within the cavity, and quasistatic changes in temperature of the
cavity radiation. The result was found that only one spectral distribution
would enable no heat to flow during isothermal deformation operations,
namely, the classical electromagnetic ZP spectrum. This result agrees
exactly with what one should expect to occur at 7=0, namely, that
adiabatic and isothermal reversible operations coincide. Under this condi-
tion, each normal mode of the radiation spectrum in the cavity was shown
to have an energy proportional to the angular frequency w associated with
the normal mode in question. Moreover, at any temperature, each normal
mode of the radiation spectrum in the cavity was shown to have an energy
proportional to wf(w/T). Thus, lim;_, , wf(w/T) converges to a constant
times e, in agreement with the ZP spectral finding,

The thermodynamic analysis here yielding a ZP spectrum is in sharp
contrast to the usual quantization approach of arriving at the same spec-
trum in QED. Agreement between the results is satisfying, but the under-
lying physical approaches differ considerably, as discussed in the end of
Sec. VIILD in Ref. 2 (i.e., see footnote 51). Much earlier analysis near 1900
carried out a similar analysis, but restricted attention to larger cavity struc-
tures, and imposed assumptions that prevented the analysis from being
sufficiently general to hold for the case where nonzero radiation exists at
T=0. A more general analysis involves accounting for the thermo-
dynamics of Casimir-like forces acting between the walls of the cavity in
Wien’s analysis. Although such forces are generally quite weak in most
experimental situations carried out to date, in terms of calculations, they
originate from changes in infinite, or extremely large quantities. Conse-
quently, calculations of Casimir forces are notoriously difficult, except for
relatively simple geometrical configurations.

One outcome of the calculations carried out here is the clear recognition
that one may calculate Casimir forces, at T'=0, on perfectly conducting
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medium, via either of two equivalent ways. The net change in an internal
energy calculation could be carried out, where for example a sphere or
cube is made to grow or shrink slightly [ Eq. (12)], and where one makes
sure to include regions both outside and inside the object in question.(*s)
Equivalently, one could use a virtual work-like calculation via finding the
average of the Maxwell stress tensor integrated over a surface enclosing the
structure, as in Eq. (16). The two methods must agree at T=0. In the
language of SED, they agree because no heat can flow at T=0 during
reversible thermodynamic processes.

Here it should be pointed out that the present analysis did not directly
evaluate the experimentally measurable Casimir-like forces involved in the
cavity structures. The calculation of these quantities requires evaluating
the ensemble average of Eq. (14) over an entire object within the cavity, or
over an entire wall of a cavity, including both the inside and outside wall
sections. This point is explained in more detail in Ref. 1 {see the discussion
involving Figs. 1 and 2). However, the present analysis is valid for heat
flow calculations, as was the focus here. To accomplish this task, despite
the presence of singular quantities, the following quantities were calculated,
namely, perturbations in internal energy, work done, average changes in
clectromagnetic mode amplitudes, and the perturbation of normal mode
frequencies [Eq. (13)].

Much of this work should be extendable beyond perfectly conducting
materials to more general dielectric conditions. This statement can be made
in some confidence, since the derivation of the classical electromagnetic ZP
spectrum and the generalized Wien displacement law was shown to hold
for displacement operations of N electric dipole harmonic oscillators.
Since it is well known that a wide range of conditions for dielectric medium
can be modelled as being composed of “atoms” of these oscillators,® then
the means should exist to extend much of the results considered in the present
article to yet more general conditions.

A number of reasons exist to motivate extending such calculations.
Interesting experiments and calculations have now been ongoing for a
number of years in cavity QED.™*~!® An area that could be considered a
subset of this field, might be termed “cavity thermodynamics,” and would
involve reversible thermodynamic operations like those described here, but
also might be used to analyze irreversible thermodynamic operations, and
steady-state behavior. Some of this work was begun by Kirchoff, Wien,
Planck, and others. Planck’s discussion on the effective temperature of a
pencil of rays of radiation, and its incorporation into a cavity structure, "
provides ample directions for future research, given present experimentally
available techniques such as in MEMS, microelectronics, and photonics.
Modes of radiation that are prevented from interacting, at least within
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typical experimental time constraints, can provide interesting means for
exploring thermodynamic changes. Generalizing the analysis here to
include charged interior walls and objects within, general dielectric struc-
tures, and modifications of these conditions, such as by doping semi-
conductor materials and applying potentials, all provide the basis for inter-
esting device oriented physical investigations.®”> 7 Indeed, the considera-
tion of piezoelectric crystalline structures, with cavities, allows the means
for deforming cavity structures via applying potentials. Even novel mea-
surement devices, such as involved in atomic force microscopes, should be
analyzable in some detail via extending the calculations contained here.(*®
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