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The application of scalar diffraction theory to a pro

jection optics system is examined here for somewhat higher

numerical aperture conditions upon removing the paraxial, or small angle, approximation that is typically made. A de-
tailed derivation is given that notes the key physical assumptions originally contained in work by others on vector imag-
ing theory. The asymptotic limit of large lenses and focal length sizes to object and image sizes is explicitly carried out,
while keeping numerical apertures and magnification fixed. Numerical results of the resulting equations are presented for
a variety of imaging conditions, including phase shift masks and modified iHumination.

KEYWORDS: optics, aerial, image, numerical aperture, microlithography

§1. Introduction

The aerial image of a mask, or the light intensity in a
plane of an optical projection system’s image space, is a
critically important quantity in microlithography for
governing how well a developed photoresist structure
replicates a mask design. The aerial image represents, not
fully, but to a large extent, the optical information about
the mask that enters into the photoresist structure.
Provided that resist development technologies strive to
achieve an energy threshold development model,” then
examining only the aerial image can yield reasonable
predictions on mask printability.

Of course, a full detailed calculation of the resist struc-
ture certainly needs to take into account other factors
than the aerial image, such as the propagation of the pro-
jected light within the resist, the exposure of the resist,
any subsequent thermal or other such processes, plus the
dissolution of the resist. Indeed, much of the past and
present work by some of us has aimed precisely at
developing the detailed simulation capability for pre-
dicting two- and three-dimensional resist structures.>?
Nevertheless, despite this important qualification, and
excluding the very high numerical aperture regime, we
emphasize that the aerial image is still usually the single
most important predictor for mask printability.

Besides being important in microlithography, the
aerial image is also of theoretical interest in optics
because it dictates how the intensity of light is distributed
in the image space of a projection lens system. We shall
concentrate here on using scalar diffraction theory to
deduce the aerial image, as is usually done,”® but where
the paraxial approximation will not be imposed. The
paraxial approximation assumes that the angles of the
light rays to the optic axis are sufficiently small that small
angle approximations can be made.*” By not imposing
this approximation, the full limits of the capabilities of
scalar diffraction theory can be examined and contrasted
to the more accurate physical description of vector
diffraction theory.*® We believe that this extension to

scalar diffraction theory is not merely an academic exer-
cise, since it should do a reasonably good job of extend-
ing the range of applicability of scalar diffraction theory
to the next generation of microlithography projection
systems.'®

Our other aim for extending the limits of scalar diffrac-
tion theory is that many of the same methods and
physical assumptions employed here also apply to vector
diffraction theory."""” Nevertheless, the mathematics is
sufficiently simpler here that key areas are more clearly
revealed where important physical assumptions enter the
theory, and where future refinements and investigations
might be made. In particular, we have used the scalar
aerial image formulation presented here as a test vehicle
for improving the algorithm for computing an aerial im-
age, while recognizing that most of these algorithmic im-
provements can immediately be carried over to vector
aerial image computations. The result has been a very
significant speed-up in computation over traditional
methods.

The applicable range of our nonparaxial scalar results
should adequately extend the range of scalar diffraction
theory for numerical apertures (NAs) up to about 0.6,
and perhaps somewhat higher with some anticipated
decrease in accuracy. Above this range, vector diffraction
theory is clearly needed to account for polarization
effects and the inherent coupling between the vector com-
ponents of the electromagnetic fields.'*'®

The present analysis accounts for typical differences up
to 5%-15%, or so, from paraxial scalar aerial image
calculations at NAs of about 0.6. These differences
decrease as NA decreases. The effects of magnification
are clearly revealed in our final scalar imaging equation.
In terms of the complexity in numerical computation of
our final nonparaxial equation, it is of the same order as
the paraxial equation. This result provides incentive to
researchers to use the nonparaxial formulation when
NA <0.6, particularly when examining images out of
focus.

As for the outline of this article, §2 contains our deriva-
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tion of the scalar aerial image for an aplanatic lens projec-
tion system. Section 2 is divided into several parts that
contain the main derivation, as well as discussions on the
optics of the condenser, the normalization constant, and
the paraxial limit for low NAs. In §3 we discuss several
numerical results, while §4 contains concluding remarks.

§2. Nonparaxial Scalar Aerial Image

2.1 General
"Let V(x;t) be one polarization component of the
electric field associated with a quasi monochromatic op-
tical disturbance at position x and at time ¢. Following
the usual approach of scalar theory, we assume that each
component can be treated independently, so that the
coupling can be ignored between the electromagnetic
field components resulting from a rigorous solution of
Maxwell’s equations.® For a sufficiently high numerical
aperture, such as NA greater than about 0.6, this assump-
tion is expected to break down.

Let V)(x; ¢t)=Re [V (x, t)]. Assuming the light to
have a narrow band in frequency, let A(x, ¢) represent
the complex envelope of V(x, t), where

Vix, t)=A(x, ) e” ™, M

and v is the center frequency of the wave. Hence, A(x, ¢)
will be a slowly varying function of time that manifests
itself in the coherence properties of the projection
system.

Consider Fig. 1. We will assume that the object to be
imaged is a planar reticle, sufficiently thin that its effect
on the incident field can be approximated by a complex
transmission function T (xg). Points with subscript o
(i.e. xo, x4, etc.) will be assumed to lie in a plane immedi-
ately to the left of this mask in Fig. 1. Likewise, points
with subscripts E and X will be assumed to lie in the in-
dicated entrance and exit pupil planes, respectively, while
points with subscript I lie within the image space to the
right of the exit pupil plane.
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Assuming the optical system to be linear, as occurs
with the Huygens-Fresnel principle, then we can write
that

o

AQx; t)=H dxo dyoK (x1; X0) T (X0)A(x0; i~3), ()

— 0

where K (x1; Xo) is an amplitude transmission function
from the mask to the image (i.e., an amplitude spread
function or impulse response function), and J is a time
delay that depends on x; and xo. (See ref. 7, pp. 287-305,
for a more detailed understanding of 4.)
st «e ““LQ\ roCH’* Lo }o IE3 ‘{0 an'l\j

2.2 Dgrivation of the amplitude transmission function

Here |we introduce a detailed derivation of our main
result far the function K (x;; xo). Assuming an aplanatic
lens, s-tow-Stretd=ratio, and conservation of energy, we
obtain an expression that does not scale with magnifica-
tion. It is fundamentally different than the paraxial result
which remains invariant under magnification scaling.

Consider the case where the object and image sizes are
assumed to be small, while the dimensions of the optical
system are taken to be enormously larger than the
wavelength of the light and of the object and image sizes.
Thus, we will be interested here in the asymptotic limit
where the size of the lenses, their focal lengths, and the
distances between the lenses become quite large, while
maintaining the required NAs and magnification of the
optical projection system.

If T(xo) vanishes in the object plane outside a small
area & around xo, where it equals unity, then eq. (2) may
be estimated by

K (x1; X0)= A(x15 1)/ [A(x0; t =)D ). ©)]

We can deduce K by considering the special case where
the complex amplitude A is independent of time.
Moreover, let us assume that the normal to the wave
front at the object is also approximately normal to the ob-
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ject plane, which will be a very good approximation if
the numerical aperture of the condenser lens is small.
(We comment on this point more later.) When 4 is in-
dependent of time, it satisfies the Helmholtz wave equa-
tion, since V' (x, t) satisfies the wave equation. Conse-
quently, we can use the integral theorem of Helmholtz
and Kirchoff to deduce A at a point, knowing 4 and its
normal derivative on a surrounding surface.

We will use three steps to deduce A(x;) in eq. (3) in
terms of A(xo)?, thereby enabling X (x;;xo) to be
found. First, knowing A4 on the object plane, then 4 can
be obtained in the plane of the entrance pupil. Assuming
do in Fig. 1 to be large compared to the wavelength, and
assuming the Rayleigh-Sommerfeld form of the diffrac-
tion formula due to an aperture (see, for example, ref. 6,
pp-. 44-45, and note that in the asymptotic regime, ref. 9,
p- 249, indicates that this form of the diffraction formula
yields essentially equivalent results to the usual applica-
tion of Kirchoff boundary conditions), then

-}

1 ikrbg
A(xe)=7 H dx6 dyoT (x6)A(x6) —— cos (@ 6k)
17) roE
1 eikrOE
=—PA(x0) cos (Bog). 4
iA ToE

Here, k=2n/2, and r{g and rop are the distances be-
tween the object points x4 and xo, and the point xg in the
entrance pupil plane, respectively, while ®4: and @or
represent the angles between these rays and the optic
axis.

The second step expresses the amplitude A4 near the
Gaussian image plane in terms of its value in the plane of
the exit pupil:

@

1
A(x1)=a SS dxx dyxA(xx)

—m

ikrx:

cos (Ox), 3)

rxi

where rx; is the distance between xx and x;, and Ox; is the
angle between this ray and the optic axis.

Now comes the critical third step of this derivation.
We need to determine A(xx) in the exit pupil plane given
A(xg) in the entrance pupil. Once this relationship is
established, then K (xi, xo) can be deduced in eq. (3).
Here is where key approximations are made that evident-
ly cannot be improved upon (i.e., either further validated
or falsified) without going through a detailed simulation
of a specific optical system, such as by integrating over
the individual surfaces of lenses within the objective lens
system. For typical projection systems, this task would
be an extremely impractical computational task.

The first key assumption was used by Wolf in the im-
portant work of ref. 11. Let us assume that

k(P ~rxo-)
Al(xx)=a(xx) ——, (6)
rxo
where ryo is the distance from xx to the Gaussian image
point xq- of xo (see Fig. 1), a(xx) is an amplitude that
needs to be determined, and @ is an aberration function
due to a wave front converging on xo that is not
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spherical. Of course, if no assumptions are imposed on
a(xx) and @ other than that they are real quantities with
a(xx)=0, then eq. (6) is perfectly general. However, once
we identify @ as an “‘aberration function,’’ the implica-
tion is that for a *“‘well corrected lens,’’ then ®=0. The
result of this assumption is that the complex amplitude
A(xx) due to a point source at xo is such as to give rise to
a “‘spherical’’ wave front converging on the Gaussian im-
age point Xxo, but modified in amplitude due to the
presence of a(xx). The physical assumption introduced
in eq. (6) then consists of the assumption about the mean-
ing of a “‘well corrected lens’’: namely, that ®=0.

The second key assumption enters upon deducing
a(xx) in eq. (6). Here, we will assume that the lens system
is sufficiently corrected that the surfaces of the lenses
obey the aplanatic condition. More specifically, we
assume that if a ray trace is carried out through the
system, starting along the ray at angle @; from the optic
axis, as indicated in Fig. 1, and ending along the ray at
angle Oy in Fig. 1, then the surfaces of the lenses yield
the following, due only to Snell’s law dictating the direc-
tions of the lines traced through the surface interfaces:

Msin (Og)=M sin (@x). ™

Here, M is the ‘“‘magnification’’, or more precisely, the
reduction given by M= (object height)/(image height).

Finally, to deduce a(xx) we follow the assumption of
Richards and Wolf in ref. 12, which was later used by
Yeung in ref. 13: namely, that the intensity law of
geometrical optics (§3.1.2 in ref. 8) holds for rays con-
necting the entrance and exit pupils. Thus, the assump-
tion will be made that reflections from optical surfaces
can be neglected. Again, only by a detailed calculation of
a specific lens system can this factor be taken into ac-
count. The closer the ‘‘Strehl ratio”” of a lens system is to
unity, the more accurate this assumption will be in prac-
tice.

Consequently,
| A(xe)!|%rbg sin (Oog) dOos= | A(xx) 1% sin (Ox) dOxi.
@®)
Hence,
1 rxor
a(xx)=7 D1 A(x0)] -;;; cos (Oog)
sin (@or) dOog |*/? ©
sin (Ox;) dBx;

Equations (9) and (6) enable A(xx) in eq. (5) to be deter-
mined. Substituting into eq. (3) then yields, aside from
an unimportant constant phase factor,

1 1
K(xl; xo)=—28\5 dxx dyx —5 €08 (@og)
A rx
Sx
sin (@OE) d@o}g
sin (@x]) dOx;

1/2
eik(‘p_’x0'+’x1) cos (@Xl)>

(10)

where Sx is the area in the geometric optical opening of
the exit pupil plane.
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We can now substitute in the following asymptotic ex-
pansion (see Fig. 1):
rxo =[(Xo = xx)’ + (yo ~yx ) +d 11'"?
XxXo  YxYo
4 d
[+ (rx/di)}?’
Xo=—Xo/M and

=di[l+(rx/d)?]*+ (11)
where, from Gaussian optics,
Yor=—Yo/M. Similarly,

ra=[(a—=xx)’ +(y—yx) +{d +z)]"?
XxX1  Yxh

d d;
[1+(rx/d) V2’

where z; is the displacement from the best focus position
according to Gaussian optics. Hence,

XxXo _yxyo _,_\}_)ﬁ _yXYx
__aM dM di___d
[+0x/d) 1?2 [1+(x/d)?’

which enters the argument of the exponential in eq. (10).
As for the other quantities in eq. (10), we note that, for
example,

c0s (Oor)=do/[dd+ (re—Ro)*]'/?
~do/[db+re]'/*=cos (Og), (14)

in the limit where do and rg in Fig. 1 are scaled to oo,
while Ro is held fixed. Consequently, in Fig. 1 the angle
O between the line connecting the point of intersection
of the horizontal axis and the object plane to the point xg
is equivalent, in the indicated limit of do— 0, to the
angle @o of the ray from xo to xs. Similarly, angles G
and O are equivalent in the limit of d;— o, where dy
and d; are scaled proportionately. Having noted this
equivalence, the aplanatic condition of eq. (7) can be
used to express quantities in eq. (10) in terms of sin (6;).

Letting rx/di=p, xx/di=pcos(@), and yx/di=
psin (@), and restricting @g and ), to lie between — /2
and /2, we obtain that:

Isin (&) =p/[1+p*]"2,
1
A+p?) 2

2

zd{[l‘l‘(f’x/d[)z]”z"' (12)

<1

(13)

—rxo +7x

s)
(16)
1/2_—(1 +p2__p2/M2)1/2

cos (@)=

1
cos (@)= [1 ~—sin? (@1)}

MZ (1+p2)1/2 ’
an
[sin(@o)d@o}”z_l 1—sin® (@) V4
sin(@)de; | M 1
n (1) d6; 1=~ sin® (O)
1
(18)

TP M

Let N, and N, represent the NA on the right- and left-
hand sides of the objective lens in Fig. 1, respectively,
and similarly let N, and Ny be the corresponding NAs
for the condenser lens. Hence, N,,=sin &,,, N,;=sin @,
and similarly for N, and N,. Thus,
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Nor/ (1 = N3 )2 27
K(ai %)= pap| ao
0 0
. —Xop c0s (@) —yop sin (O)
X exp [zk (¢+ M40
zi—X1p cos (@) —yip sin (@)> <F, (19
(1+p5?
where
1 2 1 o o sin (@OE) d@og]”z
F—-P di r—§q cos (Bog) cos (Ox;) sin (Ox) dOx
2__ 52 2\1/4
zii(1+p pM? 20)
MM 1+

The above result is exact in the asymptotic limit of
di— 0, Finally, we can express this result in a form more
familiar to optical researchers by the following change of
variables to direction cosines. Here, § is a unit vector that
points in the direction from the point in the Gaussian im-
age plane on the optic axis to a point on the exit pupil
plane:

pcos @ psin @ _ ;
SXEW s Syzm , s;=—( "‘Si—S},)l 2,
21
We finally obtain our main result as,
K (x1; x0)= SS ds, ds,
s3+si=Ng
xexp |ik | 62+
exp | i o X1 ) Sx
Y
~ (A‘;'FJ’I) Sy'—ZISz)]
1 11— —-syH/ M2*
D A, )
= M[ 5 : @2)

thereby converting our result into the form of the Debye
integral (ref. 8, p. 436). This result was obtained here by
explicitly taking the limit of d;~ %, while holding the
magnification and N, fixed. The lens objective system
was assumed to satisfy the aplanatic condition of eq. (7)
and the condition of negligible light reflections off lens
surfaces. Equation (22) takes into account image reversal
and the reduction of the object size, since the substitu-
tion xo=—xo/M and yo=~ys/M converts eq. (22)
into a form involving the difference of the image and scal-
ed object coordinates.

Ignoring polarization effects, the observable intensity
will be proportional to the time average of [V (x, )]
Hence, we may substitute our result of eq. (22) into the
classical Hopkins formula®?

0

1
I(xl)=l~mgdxo dyo dxb dybK (x1; xo)
F

X K *(x1; x0)T (x0)T*(x6)J (X035 x5),  (23)

where [ is the intensity, J(xo; x$) is the mutual intensity
distribution,”® and Ir is a normalization factor. The use
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of this formula implies that a quasi monochromatic
assumption holds for all nonzero transmission points on
the mask (see ref. 7, §7.2.2). Upon specifying the mutual
intensity distribution J(xo0; x6), then eqs. (22) and (23)
enable one to compute the aerial image of a mask.

Finally, we should note a regime in which the above
results break down and need to be modified. In par-
ticular, if Nay=(1/M)N, is not small and if o=1 [eq.
(26)], then N.,=0oN, will not be small either. The effect
of the mask upon the light from the condenser will then
not be well approximated by a transmission function ac-
ting upon a wavefront that lies approximately in the same
plane as the mask. In this case, the precise field at the
mask critically depends on how the imaging in the con-
denser lens is done. We note, however, that for con-
denser lens systems presently used in microlithography
manufacturing, N, is typically small, so that the above
concern should not be a problem.

2.3 Condenser

The mutual intensity distribution J(xo;x4) arises
from the properties of the light source and condenser
lens system in Fig. 1. Usually the source is constructed so
as to provide incoherent light over some aperture open-
ing. More specifically, for two points xs and x§ within the
plane of this aperture, the mutual intensity distribution
J(xs; x§) is approximated by being proportional to
T (x5)0{xs—x4)0(ys—y4), where I(xs) is the intensity at
xs. Computing J{(xo; x5) then entails imaging this in-
coherent illumination onto the object plane of the objec-
tive lens.

A few research groups recently reported improved im-
aging of small mask shapes by altering aspects of the con-
denser illumination system involving light sources that lie
off the optical axis.!”? In addition, spatial filters have
also been found to be helpful in improving resolution.?
Provided that N, and N, are still small, however, as has
been reported to date, then the basic paraxial approxima-
tions will still be valid for this part of the optical projec-
tion system. From a simulation point of view, the com-
plication lies in accurately computing J(xo; x5) by
numerically integrating over the aperture opening of the
incoherent light source, while using the appropriate
amplitude transmission function of the condenser lens
system. In general, analytic solutions do not exist and
numerical computations are necessary.

However, a special case does exist that is often used in
practice. Under relatively relaxed conditions for Kohler il-
lumination and under more special conditions for critical
illumination (ref. 8, §10.5.1-10.5.2), J(xo; x6) reduces
to, aside from a proportionality constant,

2J:(v
J(x0; x6)= ;(),

@9

where Ji(v) is the first order Bessel function of the first
kind,

_ZnaNo,
VEOM

[(Xo—x5) +(yo—26)1'", 2%

and
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aENcr/Nol (26)

is defined to be the partial coherence parameter for this
type of condenser system. A circular aperture for the
light source was assumed. Noting that oN,/M=N,,
then eq. (24) depends only on the condenser imaging
properties, as should be expected.

2.4 Normalization

The intensity I(x;) in eq. (23) can be calculated for
different points x; to within the normalization factor I,
which we now address. A convenient normalization for
I(x;) is when I=1 for the case of ‘‘flood exposure’’,
where the mask is removed, or alternatively and
equivalently, when x; lies well within the Gaussian image
region of a very wide mask opening. For different con-
denser illumination systems, fr will vary, as it depends di-
rectly on the choice for J(xo; x4). In general Iz needs to
be computed numerically, although in the special case of
eq. (24), an analytic result can be calculated as follows.

Welet I(x1)=1 when T(xo)in eq. (23) equals unity for
all xo in the object plane. When the condenser optics is
specified by eq. (24), one can use the identity

10)_1

" oy SS dé dnexp [—i(&v cos ¢+nvsin ¢)].

E+nist (27)
The integrations over Xo, Yo, X6, and y5 in eq. (23) can
then be explicitly carried out, yielding four Dirac delta
functions. The four integrations over s, $,, 5, and sy
due to the presence of K (x;; xo) and K *(x;; x6) in eq.
(23), and due to the form of eq. (22), can then be readily
evaluated. The remaining integrations are over £ and
from eq. (27):

0'7'[\/%r 5 5 1/2
Tg=— S déd
T on ¢ dn 1—-a’Ni(&+n?)

& +n2=min(l, 1/0?) (28)
This integration can be carried out by (1) converting to
polar coordinates r and d, (2) integrating over 4, (3)
changing variables to u=r?, and (4) finally using in-
tegrals #144 and #151 in ref. 23. We obtain:

2
Ir= 1=(1=1)"2- (1~ 12/ M?)'?
F (aNo,)z([ (=) (117 M*)"7]
M>—1 M(l—tz/Mz)”z—(l——tz)”z)
, (29
=37 log[ M1 29
where
oN, if o=l
t={ _ } (30)
N, if o>1

The above normalization factor does not depend on zi,
where z;<« di, as is the usual case for projection systems in
microlithography.

Figure 2 shows a set of plots of I/ M versus =0 Nor,
when ¢ < 1. For a fixed value of ¢> 1, then Ir/M?* versus
N, can be deduced from Fig. 2 by dividing Ir/M? by
1/ @, and replacing ¢ in the x-axis by No;. Some interesting
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Fig. 2. Normalization factor of I/ M? versus t=oN,,;, when g< 1.

special cases of eqgs. (29) and (30) are that (a) Jr=min (1,
1/6*) when M=1, (b) Iz/M?*—>1 when -0, (c)
I:/M*->min (1, 1/ %) when N,,—0, and (d)

2
(ON,)?

Is/M?*~ {1—=[1—(aNu)'1"?},

when M— o and o=<1.

(31

We also note from Fig. 2 that Jr/M? lies quite close to
case (d) for M= 4,

2.5 Reduction to paraxial result
In ref. 10, we briefly described how the above formulae
reduced to the paraxial results when N, « 1, resulting in:

K (x1;x0)= H ds. ds,

si+sh=Ng

. Xo y
X exp |:lk (di— (A_4+x1) Sx=— (A—;'*'J’I) Sy

+2 (1+%(s3+si)))}%;—4, (32)
and
IFz{MZ if asl]. (33)
M?/c* if o>1
Except for the transformation xo =—xo/M and
Yo =—Yyo/M, which one expects based solely on Gaus-

sian optics, the image 7 (x;) is then independent of M. We
note that for 4 <M, the nonparaxial result is also essen-
tially independent of M. However, for 1 <M =<4, the non-
paraxial formulae predict a noticeable dependence on M.

The familiar transformation to lithographers of the im-
age being invariant under changes of wavelength, NA,
and defocus, such that the scaled product of the mask
coordinates times N,/ A remains fixed, as well as the scal-
ed product of defocus times N2,/ A remains fixed, can be
shown to hold only in the case of the paraxial approxima-
tion. When N, = 0.5, this invariance breaks down and is
most noticeable for larger values of defocus.
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§3. Numerical Results

Turning to some specific simulation results, Fig. 3
shows the aerial image due to a 0.5 gum X 0.5 ym contact
hole, with A=0.365 um, N,,=0.6, and 6=0.2, and with
a circular aperture for the light source in the condenser.
As with all the results shown here, the intensity is normal-
ized to the intensity of flood exposure. Figure 4 compares
the results for the paraxial [egs. (32) and (33)] versus non-
paraxial formulae [eqs. (22) and (29)] for a vertical slice
taken across the center of the square contact imaged in
Fig. 3. Here, the peak differences are 8% and 14% for
the z;=0 um and z;=1 um cases, respectively.

As discussed in ref. 10, for small values of N,;, such as
N 0.4, the difference between the paraxial and non-
paraxial scalar results is negligibly small. The difference
becomes noticeable for N, >0.4, particularly when
Ny;:=0.6 and the image is viewed from out of focus.
Magnification effects are noticeable for 1sM=s4.
However, for 4 <M, the scalar aerial image becomes
nearly independent of M, aside from the expected scaling
of the mask to object dimensions. For N, = 0.7, scalar
aerial image predictions are unreliable and vector theory
calculations should be used. Indeed, for 0.6 <N, 0.7,
then scalar aerial images will undoubtedly only be ap-
proximately valid.

Figure 5 shows the differences at the center of contact
holes between the paraxial and nonparaxial formulae
when imaging different sized contacts holes, as defocus is
varied. Figures 5(a) and 5(b) illustrate this difference for
A=0.365 ym and A=0.248 um, respectively. As can be
seen, in general the numerical differences computed from
these formulae is difficult to anticipate, particularly when
z:#0. When z; is large, the relative differences in intensity
can become quite large. For example, when z;=1.5 um,

0.5 micron Contact Hole

Fig. 3. Surface plot of intensity versus position over a 1.0 um x 1.0
um region in the plane of best focus in image space, due to an
isolated, nonrepeating, M X0.5um square contact hole, with
A=0.365 um, N,,=0.6, d=0.2, and M=5. The peak intensity is
1.52.
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™ . T T ™ —

L A —— (a)

1.6 — Nonparaxial

----- Paraxial

Ny — 0.7 um Conta

1.2p

Relative 1 (
Intensnty0 sb 0.5 um Contact <
0.3 um Contact
0.6

0.4

o.2p

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Defocus (um)

0

25 ™ T ™ T ™ T —

— Nonparaxial
----- Paraxial

0.7 um Contact

15T
Relative
Intensity  |...... > 0.5 um Contact
Ll g
os5F 03um Contact ~ ™.
o - A A i e i ey |
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Defocus (um)
Fig. 5. Intensity at the center of different sized contact holes as

defocus is varied. Here, 0=0.2, N,,=0.6, and M=3 for the non-
paraxial case. () A=0.365 pm; (b) 1=0.248 pm.

the relative differences for the 0.7 ym, 0.5 pm, and 0.3
um sized contact holes in Fig. 5(a) are 7%, 26%, and
46%, respectively.

Nevertheless, there does exist a general pattern in Figs.
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S5(a) and 5(b) at z;=0.0 pm that can be understood
roughly as follows. As the contact hole size goes to zero,
the relative intensity will decrease to zero. As the contact
hole size increases, the intensity will increase until it
reaches a maximum value, then it will lower and oscillate
around 7=1.0, eventually reaching 7=1.0 for the center
of very large contact holes. Although the 0.7 um contact
hole curves in Fig. 5(b) undoubtedly seems surprising,
they actually follow a general trend; indeed, a larger con-
tact hole than 0.7 ym in Fig. 5(a) with A =0.365 pm, will
yield a similar behavior. What is happening in the 0.7 yum
case is that the relatively large ‘‘ringing’’, or overshoots
in intensity at 0 =0.2, that occurs at the edges of the con-
tact hole when in focus, merge to the middle of the image
when going out of focus, thereby producing a surprising-
Iy high intensity at the center of the hole. At the same
time, the intensity at the edges of the hole dimenishes
below unity as z; increases. At yet higher out of focus con-
ditions, the center intensity will also fall well below uni-
ty.

Due to the differences noted above between the parax-
ial versus nonparaxial results, clearly there is a need to
pin down when these differences are important for mak-
ing judgments about imaging in microlithography.
Hence, we now turn to the exposure-defocus (E-D)
measure for judging the printability of masks, as dis-
cussed in ref. 1, and as elaborated upon subsequently in
the work of Lin (e.g., ref. 24). Here, exposure is taken
to be equal to 1/intensity, where the intensity is
calculated at plus and minus some tolerance of the
desired feature width, over a range of defocus values.

The curves on the right in Fig. 6 represent the E-D
plots for the 0.5 um x 0.5 pm contact hole, calculated us-
ing the paraxial and nonparaxial formulae. A =10%
tolerance was assumed in the contact hole width, as well
as a +10% width in exposure. The depth of focus (DOF)
computed using the two formulae differed by 6%. Hence,
even though larger relative differences than this result ex-
isted in intensity at most points for this contact hole, still
the computed DOF was only moderately different for the
paraxial versus nonparaxial formulae.

The curves on the left in Fig. 6 were computed for a
contact hole designed using phase shifted elements to
print a 0.5 um square contact hole. As expected for well
designed phase shifted structures,®?® the DOF is
dramatically improved for this contact hole structure;
here, DOF is improved by nearly a factor of two. The
computed DOF now varies by 9% between the paraxial
and nonparaxial results. This increased relative difference
is due to sampling of regions farther out in focus, where
differences generally increase between the two formulae.
Other contact hole sizes simulated at N,=0.6 and
6=0.2, yielded similar results, with maximum
differences ranging typically between 5%-15% when
phase shifting was included.

When properly used, advanced lithography methods
such as (1) phase shifts in the mask,*** (2) modified il-
lumination in the condenser,'”*? (3) spatial filters in the
entrance and exit pupil planes of the objective lens
system,”” and (4) averaging over different defocus
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planes,”?® can resolve significantly smaller feature sizes at
larger DOFs. These techniques generally result in larger
differences between the paraxial and nonparaxial for-
mulae than when the techniques are not applied, simply
because of the gain in DOF.

2607 T T =

—— Nonparaxial

2200 /S s Paraxial

1.801

1.40

Defocus -
(um) ]

00

0.60~
0.40

0.00 i

[
0.00 0.20 0.40

LS 1 1
0.60 0.80 1.00

Normal
Contact

?/vo/?!tii::t Log4q (Exposure)
Fig. 6. Exposure-defocus (E-D) plots taken from the vertical center
slice across contact holes. Here, A=0.365 um, ¢=0.2, and N,,=0.6.
For the nonparaxial case, M=5. Plots are shown for a normal square
hole with width 0.5 yum, and for a contact hole with an inner clear
region 0.3 pm X 0.3 pm, with a 0.2 yum opaque border, and a 0.2 pm
clear outside border shifted in phase by z from the inner clear region.
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Finally, we conclude this section on numerical results
by illustrating the aerial images calculated for situations
involving these advanced lithography methods. Figures 7
and 8 illustrate the use of an alternating phase shifting
method to improve the aerial image resolution of
periodic, rectangular mask shapes. Figures 9 and 10 il-
lustrate modified illumination methods to image contact
hole structures with and without phase shifting methods.
Images using modified illumination methods can also be
computed for fairly large mask regions, as shown in Fig.
11. (This mask design was illustrated in ref. 20.) Recent
advances in computational methods by some of us have
significantly sped up the computation of aerial images to
enable images, such as in Fig. 11, to be computed in well
under 1 minute on an IBM RS/ 6000, model 540 worksta-
tion.

§4. Concluding Remarks

A detailed derivation was given for extending scalar
diffraction theory for imaging in a projection lens
systems to the case where the paraxial, or small angle, ap-
proximation is not invoked. This derivation was carried
out in the asymptotic limit of large lens and focal length
sizes, while keeping NAs and magnification fixed.
Physical assumptions used here, that were originally con-
tained in work by others on vector imaging theory,''""®
were highlighted.

The differences between the paraxial and nonparaxial
formulae are highly dependent on spatial coherence,
wavelength, NA, and defocus. For N, <0.4, the
differences are negligible, but become more significant
for N, =0.6. For N, = 0.6, relative differences vary up to

Array Of Rectangles Without Phase Shifts

Fig. 7.

Aerial image of a periodic pattern of clear rectangles with dimensions 0.3 pm x 1.3 um, separated by 0.3 ym and 0.2 ym

in the width and length directions, respectively. Here, A=0.365 um, N,,=0.6, and 0=0.2. The acrial image poorly resolves
the rectangular mask pattern. A 1.8 yum X 1.5 ym region is shown. The peak intensity in the paraxial case is 0.68.
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Array Of Rectangles With Phase Shifts

Fig. 8. Aerial image of the same periodic array of rectangles as in Fig. 7, but here every rectangle is shifted in phase by 7 from
its neighbors. Phase shifting the features improves the replication of the rectangular mask pattern by the aerial image.

Contact Holes With And Without Phase Shifters
For Ditferent Hluminator Shapes: No Defocus

Circle: Sigma = 0.6

Contact Holes With And Without Phase Shifters
For Different Mluminator Shapes: 1 microa Defocus

Circle

Annulus: Sigma = 0.4-0.6

Circle: Sigma ~ 0.25 Circle: Sigma = 0

Fig. 9. Aerial images of two contact holes with dimensions 0.4  Fig. 10. Aerial images of the same contact holes as in the previous
pm X 0.4 gm, for three different illuminator shapes. The left contact figure, but at a defocus of 1.0 um.
hole is normal, while the right one has outrigger phase shifters at a
phase of n. Here, 1=0.365 ym, N, =0.6, M=5. The images are com-
puted at the best focus plane.
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Fig. 11. Contour plot of the aerial image of a relatively large mask
region (10.0 ym % 14.5 ym) for the mask reported at the end of ref.
20. Here, 1=0.365 pm, N,,=0.55, M=4, 0;y,,=0.4, and Oourer = 0.6
(annular illumination). The dark contour level is chosen at a normal-
ized intensity of 0.3, where unity represents the intensity at the center
of a large open mask region,

about a 10% effect, although stronger differences up to
about 15% can be found if the DOF is increased
significantly via advanced imaging methods.

We note that the numerical complexity of our for-
mulae is essentially the same as that for the paraxial case.
Hence, we recommend the use of the scalar nonparaxial
result for imaging, provided of course that the NA of the
objective lens is not made so large that polarization
effects demand that a full vector diffraction theory ap-
proach be used.
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