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Abstract

The present study examines the behavior of a classical charged point particle in near-elliptic

orbits about an infinitely massive and oppositely charged nucleus, while acted upon by applied

electromagnetic radiation. As recently shown for near-circular orbits, and now extended here to

the elliptical case, rather surprising nonlinear dynamical effects are readily produced for this simple

system. A broad range of stability-like conditions can be achieved by applying radiation to this

classical atom. A perfect balance condition is examined, which requires an infinite number of plane

waves representing harmonics of the orbital motion. By applying a scale factor to this radiation,

stability-like conditions are produced where periodic variations in semimajor and semiminor axes

occur for extended periods of time, before orbital decay eventually takes over due to the effects of

radiation reaction. This work is expected to lead to both practical suggestions on experimental

ideas involving controlling ionization and stabilization conditions, as well as hopefully aiding in

theoretical explorations of stochastic electrodynamics.
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I. INTRODUCTION

The research described in the present article is a natural continuation of research reported

in Ref. [1]. There, the behavior of a classical model of the hydrogen atom was examined

consisting of a classical charged particle representing an electron, with charge −e and mass
m, orbited an infinitely massive nucleus, with charge +e. The specific situation was ex-

amined where only near-circular orbits were considered, with classical radiation reaction

taken into account. Circularly polarized (CP) plane waves acted upon the system, with

the direction of the CP waves traveling along the direction perpendicular to the orbit of the

classical electron.

Probably most readers’ initial reaction would be to question, both physically and math-

ematically, the interest in such an apparently archaic and limited physical system. At first

glance, clearly it does not correspond to what is observed in nature. With no radiation

or other forces acting, except the effect of radiation reaction due to the natural accelerated

motion of the classical electron as it orbits the classical nucleus, the electron’s orbit contin-

ually spirals inward. The result is the collapse of the orbit, which was discussed extensively

by physicists in the early 1900s, and which Bohr’s early quantized model first attempted to

rectify. Moreover, the restriction to circular orbits in Ref. [1] might make one suspect that

besides being of limited physical interest, there seems little of mathematical interest as well.

However, as discussed in Sec. I of Ref. [1], there are at least three reasons why this

system is physically of interest and worth investigating. Moreover, as shown throughout

the remainder of Ref. [1], this simple circular system has a surprising number of fasci-

nating nonlinear behaviors that apparently have not been noticed nor studied by previous

researchers.

In quick summary, three physical reasons for probing on this system are: (1) such

a system is the first-order description for excited Rydberg atoms in high energy states,

which have received considerable attention both theoretically and experimentally in recent

years [2],[3],[4],[5],[6],[7]; (2) new applications may be possible by studying this simplest

of atomic systems, with applied radiation, ranging from ionization considerations for use

in ion implantation and plasma etching, to the study of controlling simple chemical reac-

tions [8],[9],[10],[11],[12]; and (3) this system, when considered in conjunction with classical

electromagnetic zero-point radiation, may well aid in understanding better what is either
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lacking, and/or appropriate, in the classical electromagnetic theory of nature often called

stochastic electrodynamics (SED) [13],[14],[15],[16].

Moreover, another reason why this system is not so outlandish to study is the following,

as quoted from Ref. [17]: “Classical and semiclassical methods are unrivaled in providing

an intuitive and computationally tractable approach to the study of atomic, molecular, and

nuclear dynamics. An important advantage of such methods is their ability to uncover in a

single picture underlying structures that may be hard to extract from the profusion of data

supplied by detailed quantum calculations.”

As for the interesting nonlinear results demonstrated in Ref. [1], near-circular orbits were

studied for a classical charged particle described by the classical Lorentz-Dirac equation,

where the speed of the charged particle was much less than that of the speed of light, so

that a nonrelativistic approximation could be safely made. By sending a CP plane wave,

normal to the plane of the orbit, as shown in Fig. 1, with a frequency precisely equal to the

circular orbit, then the amplitude of the electric field can be chosen to precisely balance the

classical radiation reaction, thereby resulting in a perfectly circular orbit. Such a situation

is probably not too surprising, although it is clearly a very hypothetical situation requiring

perfect balance. However, what was shown to be surprising, is that beside this very precise

balance point, there is a large range of stability-like conditions that exist for amplitudes of

the electric field greater than this balance point. For larger amplitudes, the radius undergoes

a gradual increase, as it spirals out due to the increased force, then it spirals back in, due

to the Lorentz force from the plane wave becoming out of phase with the velocity of the

orbiting particle. This pattern continues over and over, with eventual decay sharply setting

in at a clear transition point, when the phases can no longer be properly matched. As shown

in Figs. (3a) and (4) in Ref. [1], the larger the amplitude of the applied electric field, the

faster this behavior repeats itself and the larger the deviation becomes for the radius from

the initial radius. To our knowledge, this behavior has not been investigated nor reported

elsewhere.

In the present article, this study will now be carried over to more general orbits, namely,

near elliptic ones. We will again restrict our attention to nonrelativistic conditions, as we

intend to report on relativistic conditions in separate, future work. In Sec. II, the equations

of motion and a quick summary of unperturbed Keplerian (elliptical) motion are provided.

Section III turns to the situation where first only radiation reaction acts for the orbiting

3



classical electron in an initial elliptical orbit. Finding the right set of applied radiation

conditions to balance the radiation reaction is clearly more complicated than in the circular

case. Instead of a single set of plane waves with a single frequency matching the orbit, now

an infinite number of plane waves, with each being an increasing harmonic of this frequency,

are required to establish perfect balance. As with the circular case, perhaps this result is

not too surprising, although the spectrum necessary to accomplish this task certainly strikes

us as intriguing. However, as shown in Sec. IV, where the numerical results are explored

for different elliptical and applied radiation conditions, one can see that even when perfect

balance is not established, there is a very large range of stability-like conditions that exist,

particularly for radiation of larger scaled amplitudes than that required for perfect balance.

The results correspond nicely with the circular case, with spiraling motion occurring in and

out for long periods of time before decay eventually sets in.

Section V contains some concluding remarks and plans for future explorations.

II. EQUATIONS OF MOTION AND ELLIPTICAL SUMMARY

The starting point of the present study is again making nonrelativistic approximations

to the Lorentz-Dirac equation, as discussed in Ref. [1]. The numerical solution is again

implemented by treating it as six first-order differential equations, with

ż =
p

m
, (1)

and

ṗ = − e
2z

|z|3 + Rreac + (−e)
½

E [z (t) , t] +
ż

c
×B [z (t) , t]

¾
, (2)

where the right sides of the above two equations are expressed in terms of z (t) and p (t), the

applied radiation electric and magnetic fields are given by E and B, and where the radiation

reaction term of Rreac is approximated by

Rreac ≈
2

3

e2

c3
d3z

dt3
≈

2

3

e2

c3
d

dt

·
1

m

µ
− e

2z

|z|3 − e
½

E [z (t) , t] +
ż

c
×B [z (t) , t]

¾¶¸
. (3)

Using Cartesian coordinates, with u1 = z1 = x, u2 = z2 = y, u3 = z3 = z, u4 = p1 = px,

u5 = p2 = py, u6 = p3 = pz, then u̇i for i = 1, 2, 3 is given by Eq. (1) and u̇i for i = 4, 5, 6

is given by Eq. (2). For the amplitudes of applied radiation considered in the present
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study, the term of −e ¡E + ż
c
×B

¢
could be safely ignored in Eq. (3) in comparison with

the −e2z/ |z|3 term, resulting in:

Rreac ≈ −2

3

e4

m2c3

·
p

|z|3 −
3z(z · p)

|z|5
¸
. (4)

(We estimate that the term ignored here is about a factor of sα3, or smaller, than the term

retained, for the different radiation and orbit conditions considered in this article; here, s is

a scaling factor we used that will be discussed more later, with its largest value used being

20, and α ≈ 1/137 is the fine structure constant. Hence, sα3 . 10−5.)

In Ref. [1], we initially investigated a simple condition where a CP plane wave could

precisely balance the radiation reaction of Rreac, for the situation where the orbiting charged

particle followed a circular orbit. We now want to examine the analogous case where the

charged particle follows a general elliptical orbit, which is the solution of the Keplerian

equation of motion

mz̈ = − e
2z

|z|3 , (5)

if no radiation reaction and no applied radiation reaction was present. As solved in standard

classical mechanics textbooks (see, for example, Refs. [18] or [19]), the solution to Eq. (5)

is such that the particle stays in a single plane, and follows an elliptical orbit (see Fig. 2),

with the radius described by:

r =
εP

1− ε cos (θ)
. (6)

Here, θ is the polar angle, ε the eccentricity, and P is the distance from the focus to the

directrix [20]. These parameters are related to the semimajor and semiminor axes, a and

b, by

ε =

r
1− b2

a2
, (7)

P =
b2√
a2 − b2 . (8)

The reverse relationships are: a = εP/ (1− ε2) and b = εP/
√

1− ε2. For an ellipse, ε

ranges between 0 ≤ ε < 1, with ε = 0 being the circular case, and ε → 1 becoming

extremely eccentric. In the circular limit of a fixed radius a = b, then ε→ 0 and P →∞ in

such a way that εP → a, so r→ a in Eq. (6).

The period for an elliptical orbit resulting from Eq. (5) is given by [18],[19]:

T =
2πm1/2a3/2

e
, (9)
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which only depends on the semi-major axis a of the elliptical orbit.

For this nonrelativistic central force problem of Eq. (5), without radiation reaction and

external electromagnetic forces acting, angular momentum is conserved, so mr2θ̇ ≡ J is a
constant. Moreover, by comparing the geometrical elliptical expression in Eq. (6) to the

solution of Eq. (5), one can prove [18] that

J = mr2θ̇ = e
√
mεP . (10)

From Eqs. (10) and (6):
dθ

dt
=
e
√
mεP

m

[1− ε cos (θ)]2

(εP )2 . (11)

This can be integrated to obtain t as a function of θ (see integrals #2.5543 and #2.5533 on

p. 148 in Ref. [21]):

t =
m (εP )2

e
√
mεP

θZ
0

dθ0
µ

1

1− ε cos θ0

¶2

(12)

=
m1/2 (εP )3/2

e (1− ε2)

(
ε sin θ

(1− ε cos θ)
+

2

(1− ε2)1/2
arctan

"
(1− ε2)

1/2
tan

¡
θ
2

¢
(1− ε)

#)
.

When ε → 0 and εP → a for circular motion, then the above reduces to t = θ/ω, with

ω = 2π/T = e/ (ma3)
1/2. Moreover, one can show that when θ = 2π in Eq. (12), then one

obtains that

t (2π) = T =
m1/2 (εP )3/2

e (1− ε2)

"
2π

(1− ε2)1/2

#
, (13)

which agrees with Eq. (9) via Eqs. (7) and (8).

Figure 3 shows numerical evaluations of t/T as a function of θ [Eq. (12)] for various

values of ε, for the region 0 ≤ t/T ≤ 1 and 0 ≤ θ/π ≤ 2. (Since the motion is periodic,

then continuing the plot for larger values of θ, simply corresponds to taking the plot of Fig.

3 and converting θ→ θ+2πn and t→ t+nT for some integer n.) As can be seen for ε = 0,

the circular case, the relationship is a linear one (straight line). As ε increases toward unity,

the curve becomes very flat in the center region, with very steep sections at the beginning

and end. To understand this physically, for a value of ε near unity, the ellipse in Fig. 2

would be extremely eccentric (small b/a ratio); for most of the orbit, the angular change of

the orbit is extremely slow with respect to time, so a relatively long time is required for θ

to change much. However, when the classical electron approaches point B in Fig. 2, which
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is near the time t = T/2 on the y−axis in Fig. 3, then the angle changes very rapidly in a
short amount of time, which is what gives rise to the near flat curve for ε = 0.95 in Fig. 3

near t = T/2.

III. CONDITION AND REALIZATION OF STABILITY

One of our main aims in the present article is to examine whether similar behavior occurs

for elliptical orbits as did for the circular orbits in Ref. [1]. As expected, for the charged

particle starting in an elliptic orbit, the orbit decays when no external radiation is applied,

since the accelerated motion of the particle results in electromagnetic energy constantly

being radiated away. Figures 4(a) and 4(b) show what happens to the classical charged

particle, starting in an elliptical orbit with initial semimajor axis a = 0.5 Å, for a range

of initial semiminor axis values and corresponding eccentricity values. As can be seen, we

obtain the somewhat surprising result that these curves all become more circular (ε → 0)

as the orbit decays inward. Since all trajectories have the same initial value of a, then the

initial periods of all these orbits are the same, namely, 1.396×10−16 sec, as given by Eq. (9).

However, the rate of decay clearly increases as the initial eccentricity increases; nevertheless,

all orbits tend to a circle.

We now turn to trying to find a condition where radiation can be directed at the elliptically

orbiting charged particle to attempt to balance the radiation reaction. As will be shown,

this can indeed be achieved, in principal, just as it was for the circular case. However,

instead of one CP plane wave with a single frequency, now an infinite number of plane

waves are required, of different amplitudes and phase relations, and of different harmonics

associated with the main period of the orbit. The scheme we will take for doing this is

exactly analogous to the situation in Fig. 1, but now with an infinite number of plane waves

oriented in the −ẑ direction; our eventual task will be to find the appropriate distribution of

amplitudes, phases, and frequencies, to accomplish this task. (Of course, a similar scenario

can just as easily be worked out for radiation oriented along the +ẑ direction, provided

appropriate changes in phase and polarization directions of the plane waves are also made.)

For Eqs. (1), (2), and (4) to reduce to Eq. (5), which is what yields an elliptical solution

of the form of Eq. (6), we must have that the net Lorentz force from the applied radiation,

which we will call FLor, must be equal and opposite to the radiation reaction ofRreac. Hence,
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to find FLor as a function of the position of the charged particle in its orbit, then we need

to use Eqs. (4), (1), (2), (6), and (11), to obtain that

(FLor)x = − (Rreac)x = − 1

24

e5

m3/2c3 (εP )7/2


(16 + 48ε2 + 6ε4) sin (θ)

− (48ε+ 40ε3) sin (2θ)

+ (48ε2 + 9ε4) sin (3θ)

−20ε3 sin (4θ) + 3ε4 sin (5θ)

 , (14)

(FLor)y = − (Rreac)y = − 1

24

e5

m3/2c3 (εP )7/2



(16ε+ 12ε3)

− (16 + 48ε2 + 6ε4) cos (θ)

+ (48ε+ 32ε3) cos (2θ)

− (48ε2 + 7ε4) cos (3θ)

+ (20ε3) cos (4θ)− (3ε4) cos (5θ)


, (15)

where here it was assumed that the particle started on the semimajor axis at point A in Fig.

2, and traveled in the counterclockwise direction. As a check on the above expressions, we

note that in the limit of a circular orbit, with εP → a and ε→ 0, the above two expressions

reduce to

(FLor)x = − 2e5

3m3/2c3a7/2
sin (θ) , (16)

and

(FLor)y = +
2

3

e5

m3/2c3a7/2
cos (θ) , (17)

which agrees with Eqs. (8) and (9) in Ref. [1]. Thus, for circular motion, there is one

harmonic, with θ = ωt, and ω = e/ (mr3)
1/2, so one CP plane wave can provide the necessary

force to balance the radiation reaction (in our nonrelativistic approximation). For elliptic

motion, the necessary force in Eqs. (14) and (15) to accomplish this balancing requires

trigonometric terms up through an order of five times θ; moreover, as seen in Eq. (12), for

elliptical orbits, there no longer exists a linear relationship between t and θ, which brings in

the need for an infinite number of harmonics in the radiation, which we turn to next.

Having obtained the correct condition required to balance the radiation reaction, we now

turn to the harder task of finding the required radiation characteristics acting on the orbiting

particle, to achieve this result. Undoubtedly there is more than one way to do this, at least

in an approximate sense. We will choose the situation that most closely represents the case

discussed for the circular case, as illustrated in Fig. 1. By having plane waves only traveling
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in the −k̂ direction, then since B must be in the x − y plane, the magnetic component of
the Lorentz force, (−e) ¡ ż

c
×B

¢
, will act only in the ẑ direction when the particle orbits in

the x− y plane. Moreover, by running different simulation tests on the range of time and
the conditions examined here, we found that ignoring this term had very little effect on the

results we report here. Hence, we will ignore this term and treat it as a small secondary-

order effect that may be important in some cases, but not for the situations reported here.

(I.e., for very long simulations in time, the (−e) ¡ ż
c
×B

¢
term would force the particle’s

orbit to change from a purely x − y orientation, thereby changing the dynamics with the
applied radiation considerably.)

Thus, to approximately achieve the desired stability condition, then (−e) E needs to

equal Eqs. (14) and (15). The desired criteria, for points x in the x − y plane, is that
E (x, t+mT ) = E (x, t), where m is an integer; this way each orbit of the charged particle

will experience the same repeated action, in precisely the same way. We know from Fourier

analysis that to satisfy this condition, E can be expressed in the form (for x in the x − y
plane)

E (x, t) =
X
n

Ẽn (x) e−iωnt , (18)

where ωnmT = N2π, and m and N are integers. This condition is satisfied if

ωn = n
2π

T
, (19)

where n is an integer and ranges in Eq. (18) from −∞ to ∞. Fourier analysis yields:

Ẽn (x) =
1

T

TZ
0

dtE (x, t) exp

·
2πint

T

¸
, (20)

where here E (x, t), for x in the x − y plane, would be set equal to 1
(−e)FLor in Eqs. (14)

and (15). Now, FLor has been expressed in terms of θ, which in turn is related to t via Eq.

(12). It should be noted that E (x, t) only depends on z and t, and not on x and y, since

E (x, t) is composed here of plane waves moving in the −ẑ direction. Hence, for x in the

x− y plane:

Ẽn (x) = − 1

eT

2πZ
0

dθ0
dt

dθ0
FLor (θ0) exp

·
2πint (θ0)

T

¸
. (21)

By making use of Eqs. (14), (15), (12), and (13), then Eq. (21) can be numerically obtained,

for specified values of a and ε.
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Several properties can be analytically proven for Ẽn. Since E (x, t) must be real, then

Ẽ−n = Ẽ∗
n. Also, based on the following property that θ (−t) = −θ (t) (assuming θ (t) = 0),

and recognizing from Eqs. (14) and (15) that Fx (−θ) = −Fx (θ) and Fy (−θ) = +Fy (θ),

then one can show that Ẽx,−n = −Ẽx,n and Ẽy,−n = +Ẽy,n. Consequently, Ẽ∗x,n = −Ẽx,n,
so Ẽx,n is an imaginary quantity, and Ẽ∗y,n = Ẽy,n, so Ẽy,n is a real quantity.

Figures 5(a) through 5(f) show plots of numerical values calculated for Ex,n and Ey,n for

three values of ε, namely, 0.1, 0.5, and 0.9, with a = 0.5 Å. As expected, for a low value of

ε, namely ε = 0.1 in Figs. 5(a) and (b), then only the first few values of Ẽn are appreciable.

As ε → 0, the stability condition should reduce to the circular case discussed in Ref. [1],

where only the n = 1 and n = −1 coefficients are nonzero. As can be seen in Figs. 5(a)

and 5(b), where ε = 0.1, the n = 1 coefficient, times two (to convert to sine and cosine

amplitudes), is indeed close in value to the circular orbital value, with a = 0.5 Å, of 5.419

statvolt value discussed in Ref. [1]. As ε increases toward unity, more and more harmonics

become necessary to enable the incident radiation to balance the radiation reaction. For

the ε = 0.9 case shown in Figs. 5(e) and (f), harmonics through order n ≈ 200 are clearly

appreciable.

It’s hard not to notice the intriguing shape of the envelope of the spectral coefficient

histograms shown in Fig. 5, as it looks so much like the character of a blackbody radiation

spectral curve. More will be said about this suggestive, but totally speculative observation,

in the concluding section of this article. For now, we simply note that as ε increases toward

unity, the maximum of this envelope curve steadily moves to the right, just as the peak

of a blackbody radiation curve moves to the right as temperature increases. Even at the

value of ε = 0.5 in Figs. 5(c) and (d), the peak value has moved significantly from the

first harmonic position to the positions of n = 3 and 4; for ε = 0.9, the peak has moved

to n = 48. Moreover, as seen in the plots, besides the peak position moving to the right

to higher harmonic values as ε increases, so also the maxima of |En,x| and |En,y| in these
plots increases as ε → 1, just as happens for the peak of the Planckian spectrum (without

zero-point) as the temperature increases.

As should be expected, when the condition of Eq. (21) is satisfied for all n, then the

radiation reaction becomes balanced and the elliptic orbit will be maintained without decay.

We have carried out numerical simulation experiments that show this works fairly well if

not all the harmonics are retained, but rather a cutoff is introduced, so that the very high
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frequency, but low amplitude, components are ignored. A variation is then introduced in

the simulations, that becomes smaller as more harmonics are included, as one might expect.

Figures 5(g), 5(h), and 5(i) show what happens as more and more harmonics are included

in the simulation for the situation where the orbiting particle’s initial orbit is characterized

by a = 0.5 Åand ε = 0.5. The notation in these figures means, for example, when n = 10,

then harmonics up to order n = 10 are included in the simulation, where the values of

the amplitudes of the plane waves are as found in Figs. 5(c) and 5(d). As expected, the

more harmonics, the closer the curves come to the perfect balance situation where a, b, and

ε remain constant. It is interesting to observe in the present situation, that for a finite

number of harmonics included, one still observes an initial near-stable condition, with the

decay point moving farther and farther out in time as n increases.

The remainder of this article does not use this plane wave representation, but approaches

the analysis from a different point of view that will be discussed next. We note, however,

that the simulations described in the next section have in many cases also been checked by

the plane wave analysis just mentioned. In general, there seems to be good agreement, with

the agreement improving as more harmonics are included.

IV. NUMERICAL STUDY INVOLVING MORE COMPLEX STABILITY CONDI-

TIONS

The question of achieving perfect balance between the effects of applied radiation and

radiation reaction on the orbiting particle is of course interesting, but, seemingly rather

contrived and very specific. A more interesting question concerns the orbital behavior if the

radiation is scaled either above or below this specific balance condition. As shown in Ref.

[1], when the CP wave amplitude was increased above this critical value, then a stability was

still obtained, but with a very pronounced periodic variation in the radius versus time plot;

the variation amplitude increased as the CP amplitude increased, while the period of this

radial variation decreased. A very large range of amplitudes above this critical-balancing

amplitude of the CP wave resulted in this stability-like behavior.

The natural question arises as to whether this same scenario might hold for elliptical

orbits. Let us again consider the situation in Fig. 1, with radiation directed in the −ẑ

direction from a source of light at the point Rẑ. If the distance R is much larger than
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the aperture of the light source, then the light source can be nicely represented as a sum of

spherical waves, of different wavelengths. The wavelengths required to achieve the radiation

reaction balance condition are given by λn = cT/n, n = 1, 2, ..., where T is the period of

the orbiting particle. For R À cT = λ1, the effect of the spherical waves on the orbiting

particle will be indistinguishable from the effect of plane waves acting. Moving the source

closer or farther away from the z = 0 plane results in the amplitudes of these effective plane

waves changing in accordance with the factor of 1/R, which governs the magnitude of the

spherical wave amplitudes in the long distance, radiation zone.

Hence, it seems reasonable to examine the condition where all the effective plane wave

amplitudes are increased or decreased by the same corresponding factor. Our physical

picture to achieve this condition consists of simply moving the source of light closer or

farther from the classical hydrogen-like system.

To simulate these conditions, however, there are two steps we found important to make.

First, although the use of a sum of plane waves certainly does work, still, for very long

simulation runs, not knowing whether the deviations in curves are due to predicted physical

effects, or due to not accurately representing the applied radiation via a finite number of

plane waves, seemed an important step to overcome. Hence, we decided to use E =

s
¡

1
−e
¢

FLor, with FLor given by Eqs. (14) and (15), and s is a positive scaling factor (s = 1

is the balance condition for the radiation reaction) as a more compact way of representing

the electric field of the applied radiation acting on the orbiting (−e) particle in the x − y
plane. To make use of this relationship, FLor needs to be expressed in terms of t, rather in

terms of θ. But, except for the trivial case of ε = 0, we do not have an analytic means of

expressing θ in terms of t; rather, we only seem to be able to express t in terms of θ via Eq.

(12), but not the inverse.

We should note that for s = 1, the particle will be forced to remain in a perfectly elliptical

orbit (at least in the present nonrelativistic treatment). For this specific case, then θ in

Eqs. (14) and (15) represents the angular position of the particle in the elliptical orbit. For

s 6= 1, the particle will not stay in an elliptical path, but will deviate from it; eventually

the orbit will decay, thereby changing significantly from the initial elliptical orbit. Hence,

for s 6= 1, the parameter θ in Eqs. (14) and (15) will not be the true angular position of

the particle; instead, it represents the angular position of a particle if it was to maintain the

initial elliptical orbit. This distinction is somewhat subtle, but quite critical.
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Thus, we can simulate different radiation conditions that scale the balanced radiation by

a factor s, by using the following relationship, for points x in the x− y plane (z = 0):

E (x, t) = s

µ
1

−e
¶

FLor [θs=1 (t)] , (22)

where we use as the argument of FLor not the true angular position of the particle (for

s 6= 1), but rather the angular position that would have been the situation in the constant

elliptical case of s = 1, with θs=1 (t) being the inverse of Eq. (12). [To better clarify what

we mean in Eq. (22), the quantity FLor [θs=1 (t)] is precisely the force exerted by the plane

waves if perfect orbital balance could be maintained, and
¡

1
−e
¢
times this quantity is the net

electric field of the plane waves, at time t in the x− y plane, to achieve this perfect balance.
If we consider another radiation condition that has a scaled value of this electric field, by a

fixed factor s, then we obtain the expression of Eq. (22). Again, there are many physical

ways that one might achieve this radiation condition, but, a very natural way would be by

simply moving the source of light farther from or closer to the atom, along the ẑ direction.]

We can find θs=1 (t) numerically. A very convenient and accurate way of doing so that

managed to fit in nicely with our specific numerical implementation using the Bulirsch-Stoer

method with an adaptive step control [22], was is to add another variable, u7 ≡ θs=1 (t) to

the six variables solved for in our scheme. Specifically, we used u1 = x (t), u2 = y (t),

u3 = z (t), u4 = px (t), u5 = py (t), u6 = pz (t), with u̇i for i = 1, 2, 3 given by Eq. (1), u̇i for

i = 4, 5, 6 given by Eq. (2), and with εP = a (1− ε2) in Eq. (11),

u̇7 =
e√

ma3/2 (1− ε2)3/2
{1− ε cos [θs=1 (t)]}2 . (23)

In turn, the u̇4, u̇5, and u̇6 first-order differential equations from Eq. (2) became:

ṗ = − e
2z

|z|3 + Rreac + sFLor [θs=1 (t)] , (24)

where p, z, and θs=1 should be replaced by the associated ui quantities for i = 1, 2, ..., 7, and

where Rreac was expressed by Eq. (4). For our nonrelativistic treatment, and ignorance of

the magnetic component of the Lorentz force for the time lengths we simulated, the above

scheme can be simplified by substituting u̇3 = ż = 0, and u̇6 = ṗz = 0, thereby forcing the

particle’s orbit to remain in the x − y plane of z = 0. However, without this restriction,

the above scheme clearly can hold in general for the full 3-D motion; we anticipate such
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effects will be important in future work, particularly when longer time durations involving

relativistic speeds may become critically important.

The second step we found important to make, to be able to report accurate numerical

results, was to find a reasonable approach for extracting elliptical parameters of a, b, and

ε (of course, only two of these three parameters are required, but all three are interesting

to examine) from the classical electron’s motion. As in Fig. 4, we anticipate the orbiting

motion to be approximately elliptical at any moment, but the approximate semimajor and

semiminor axes will slowly change with time. We found a convenient way to represent this

was to generalize Eq. (6) slightly, to

r (θ) =
a (1− ε2)

1− ε cos [θ − θ0]
, (25)

where again a (1− ε2) = εP , and where θ0 is a parameter that represents the initial starting

angle of an elliptical orbit. The relationships of x = r cos (θ) and y = r cos (θ) still hold of

course. The effect of θ0 is to tilt the ellipse shown in Fig. 2, so that the semimajor axis

becomes tilted at an angle θ0 with respect to the x−axis. By keeping track of r and θ values
of the orbiting particle, for N points, where we would make N large enough to encompass

at least one or more orbits, then the parameters a, ε, and θ0 could be adjusted to curve-fit

the simulated data for every few orbits. Specifically, the way we did this was to re-express

Eq. (25) via

1

r
=

1

a (1− ε2)
−
·
ε cos (θ0)

a (1− ε2)

¸
cos (θ)−

·
ε sin (θ0)

a (1− ε2)

¸
sin (θ) . (26)

By making a table of 1/r, cos (θ), and sin (θ) for N points, then the parameters 1
a(1−ε2)

,

−ε cos(θ0)
a(1−ε2)

, and −ε sin(θ0)
a(1−ε2)

can be obtained by conventional least-squares methods, since these

parameters appear linearly in the above relationship. From these three extracted para-

meters, a, ε, and θ0 were obtained; b and P could then be easily obtained from a and ε.

Although not mentioned earlier, in fact Figs. 4a and 4b, for the s = 0 case, were obtained

precisely in this way.

Figures 6(a) through 6(d) show some of our simulation results using this strategy. Figure

6(a) superimposes plots of a and b versus time, for orbits all beginning with the same initial

value of a = 0.5 Å and the same eccentricity of ε = 0.5, or b = a
√

1− ε2 ≈ 0.433 Å.

Radiation corresponding to Eqs. (18) and (21), but as multiplied by different scale factors,

s, is assumed to be present that influences the motion of the orbiting particle. Situations
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for scale factors of s = 0, 1, 2, 5, 10, 15, and 20 are shown. [These factors were chosen to

help correspond with the interesting results found for the circular case in Ref. [1] of Fig.

3(a). In that figure, the A = 5.419 statvolt case corresponds to the s = 1 case analyzed

here, and the A = 100 statvolt case roughly corresponds to the s = 20 case here.] The s = 0

case is simply the base case with no radiation present, while the s = 1 case is where the

radiation reaction is perfectly balanced. Nothing new exists for these two situations than

what has already been described so far. However, for s =2, 5, 10, 15, and 20, we obtain

the intriguing results of extended stability, but with eventual decay. Decay always results

in the orbits tending to a circular one, as indicated by the corresponding plots of ε versus

time in Fig. 6(b) (all orbits, after starting the decay trend, asymptotically reach ε = 0).

Somewhat surprisingly, the semimajor axis tends to be far more stable than the semiminor.

As seen in Fig. 6(a), for s = 2, 5, and 10, b increases at first, as though tending toward a,

before eventually decaying.

Figure 6(c) zooms in on the early behavior of a vs. t. The behavior seen here corresponds

closely to the behavior seen in the circular case, as shown in Fig. 3(a) in Ref. [1]. As the

radiation is scaled in magnitude above the balance condition of s = 1, a different sort of

stability arises, consisting of a periodic pattern of spiraling outward and inward motion of

the orbiting particle. As with the circular case, as the scale of the radiation increases, the

amplitude of the periodic ripples in a and b in Figs. 6(c) and 6(d) increase, while the period

of these ripples decreases. It should again be emphasized that in each of the periodic ripples

shown in Fig. 6(c), the classical electron is executing a huge number of orbits. Since the

period of each orbit is about 1.4 × 10−16 sec, then about 3600 orbits are contained in the

plots of Figs. 6(c) and 6(d). The very stable behavior of a in Fig. 6(c) looks very much

like the circular case. The zoomed-in view of b vs. t in Fig. 6(d) shows that the semiminor

axis is certainly far more stable than the “no-radiation” case (s = 0), but, the center of the

envelope curve is not flat, as in the semimajor axis situation. This result came as a surprise

to us.

Figure 7(a) zooms in on Fig. 6(a) to more clearly show that decay sets in at the same

time for every pair of a and b versus t curves; the centers of the envelopes of the a vs. t

curves are clearly very flat until decay occurs, while the centers of the envelopes of the b

vs. t curves have a curve to them. Figures 7(b) and 7(c) zoom in even more on the a vs.

t and b vs. t curves to show that the envelope curves continue to widen, until decay finally
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sets in. The larger the value of s, the faster the envelope curves widen. This fact is easy

to notice in Fig. 7(b), but, a close examination of Fig. 7(c) shows that it holds true for the

semiminor axes as well. Figure 7(b) is similar to Fig. 6(b) for the circular case in Ref. [1].

Figures 7(d) and 7(e) zoom in on the transition point for the s = 20 curves for the a and b

axes, respectively; the widening of the envelope curves can be seen slightly here as well.

Perhaps one of the most surprising aspects of the s > 1 situations, is that the semimajor

and semiminor axes slowly rotate with respect to their initial position. This is revealed by

Fig. 8(a). For s > 1, a net torque results in the counterclockwise direction that acts on

the orbiting particle; this torque occurs because the applied radiation exerts a greater force

than does the radiation reaction. Interestingly, once decay sets in, and the orbit begins to

decrease, then θ0 stays essentially constant. We attribute this effect to the fact that once

the orbit begins to decrease, then the period of the orbit decreases, and the resonance like

effect of the applied radiation at the initial period of the orbit diminishes enormously. We

placed a small circular point on each of the curves in Fig. 8(a) to indicate where transitions

to orbital decay began; as can be seen, to the right of each such point, the θ0 vs. t curve

is essentially flat. It is very interesting to see how the pattern of marked transition points

proceeds as s increases in size. To help aid this view, arrows from each transition marked

point to another are shown.

For s = 0 and s = 1, the semimajor and semiminor axes in Fig. 8(a) clearly remain

oriented along the x and y axes, respectively. Moreover, for 0 < s < 1, θ0 remains nearly

zero, with a very slight noisy variation that can only be observed when zooming in on the

region. (We believe the origin of the noise to simply be the least square procedure of a

finite number of data points, fit to an orbit with θ0 nearly equal to zero.) For increasing

values of s, for 0 ≤ s ≤ 1, the end points of the θ0 vs. t curves in Fig. 8(a) move farther

and farther to the right of the point indicated as “s = 0 ends;” for s → 1 this “end” point

should go to infinity.

Figures 8(b), 8(c), and 8(d) show, respectively, ε vs. t, a vs. t, and b vs. t, for a wide

range of values of s. A brief amount of studying of these plots enables one to deduce the

patterns of these orbital parameters as s increases in value. Again, we placed small circular

points to indicate where the orbits changed to ones of a decaying pattern.

Figures 9(a), 9(b), and 9(c) show what happens when s is slightly less than unity. The

a vs. t, b vs. t, and ε vs. t curves all have a very similar character. The closer s is to
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unity, the longer the curves hug the related s = 1 curve, before eventually decaying; thus,

the decay point in time increases toward infinity as s approaches unity.

V. CONCLUDING REMARKS

Here we reported simulation results for a classical charged-point particle, with charge −e,
in near-elliptical orbits around a classical +e charged, infinitely massive nucleus. This work

naturally extends the analysis on this same system for near-circular orbits in Ref. [1]. The

present elliptical study involves some interesting new complexities, but, many of the same

patterns seen in the near-circular case are again revealed here. In particular, a balancing-

radiation condition can be established that essentially negates the effects of the radiation

reaction. However, whereas in the circular case only one CP plane wave was required to

accomplish this task, in the elliptical case an infinite number of plane waves are required,

consisting of all the harmonics of the period of the orbit. The larger the ellipticity of the

orbit, the more significant becomes the contribution of the higher frequency components in

the applied radiation to assure a near stability condition. Figure 5 shows the interesting

behavior of the required radiation spectrum needed to achieve a balance, for several values

of eccentricity, ε.

The key nonlinear effects that are similar to those in the near-circular case, occur when

the radiation required for balancing the orbit, is scaled by a factor greater than unity. A

stability-like behavior results, where the semimajor and semiminor axes, a and b, spiral in

and out in magnitude, before eventually falling into a decaying situation where the radiation

reaction becomes completely dominate. The behavior of a is very similar to the radius in

the near circular case, as seen in Figs. 6(a) and 6(c); as the scaling factor, s, becomes larger,

the amplitude of the periodic spiraling in and out motion becomes larger, while the period

of the spiraling behavior becomes smaller. The behavior of b is somewhat analogous, but it

is also quite different. Although b spirals in and out, with an amplitude that increases and

a period that decreases the larger the value of s, the center of the envelope of this spiraling

behavior does not remain flat, as it does for the semimajor axis. Instead, significant changes

in the center occur, that are dependent on the value of s. Figures 6(a) and 6(d) show these

points. Moreover, the envelopes of these curves become wider with time, until decay sets

in. At this point, the phases of the motion of the orbiting particle and the radiation become
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too different for balancing to occur; radiation reaction then results in a swift change to a

decaying orbit. Figure 7 shows these effects.

Besides the unexpected behavior of the envelope of the semiminor axis, there are several

other effects that should be emphasized. First, as noticed in the very beginning of the

study without the effects of applied radiation acting, an initially eccentric orbit decays, with

ε→ 0. Thus, initial elliptical orbits become more and more circular as the decay progresses.

Figure 4 shows this effect. Moreover, eccentric orbits that have been maintained in stability

due to applied radiation, as shown in Figs. 6a and 6b, still have the orbits eventually decay

toward a circular orbital shape as r → 0. It will be interesting to fully investigate what

sort of effect relativistic corrections have on this behavior.

Another somewhat unexpected result is that the orientation of a and b with respect to

the x− and y−axes, begins to rotate when s > 1. Figure 8 shows this effect. We attribute

this effect to the net torque exerted on the orbiting particle that is larger than the opposing

one due to the radiation reaction.

As shown in Figs. 5(a)-(f), the Fourier plane wave contributions required to maintain

stability for elliptical orbits have a shape and behavior, as ε → 1, that is reminiscent of

the properties of a blackbody radiation spectra as temperature increases. Moreover, an

interesting idea arises if one combines this observation with the earlier observation that the

radiation reaction term in the Lorentz-Dirac equation acts to make elliptical orbits tend

toward circular ones. Now, a key original aim of SED was to show that a full accounting

for the dynamic interaction of zero-point plus Planckian radiation, together with a classical

charged particle in a Coulombic binding potential, would yield a thermodynamically stable

system [13],[14],[15],[16]. To date, research on SED has not successfully shown this to be

the case. If it did, however, then the following idea might be plausible, namely: the higher

the temperature, the more likely the probability of finding elliptic-like orbits; conversely, the

lower the temperature, the greater the likelihood for finding distributions of more circular-

like orbits. Such statements are in some ways quite naive, since any sort of “orbit” must be

extremely ragged as more and more high frequency components of zero-point plus Planckian

radiation are taken into account; however, perhaps the probability distribution of “central”

paths of the ragged motion may have a character that behaves in the way just described.

As for future work, we believe that are a number of interesting effects that should be

examined that potentially have theoretical interest for SED and for classical and semiclassical
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physics. Moreover, we believe that there are practical applications of the present study.

By tailoring the time variation of applied electromagnetic radiation on Rydberg-like atoms,

then some very unusual behaviors should be realizable, that have only moderately been

examined in the past by experimentalists.

The present treatment has been a nonrelativistic approximation. Clearly, as the radius

becomes smaller, and the speed becomes higher, then a relativistic treatment should become

critical. Consequently, most of the present work focused on the orbiting behavior at radii

large enough to not require this treatment. However, when the orbit decays sufficiently,

then our work should be corrected and plots like Fig. 4(a), where r → 0, will need to be

altered for r . 0.1 Å, particularly when one zooms in on these regions in such plots. For

the scale of the plots we have shown, we have not seen much of an effect, but, clearly if one

examines applied radiation that corresponds to the frequency of an orbiting particle with

a . 0.1 Å, then a relativistic treatment will become critical. Our present article has not

considered such cases.

We intend to report on some of these relativistic effects, as well as examine numerical

simulation experiments to attempt to make rapid jump-like effects occur in average orbital

parameters. Finally, future work will begin to study the effects of multiple frequencies of

applied radiation that are off-resonance from the orbit, with the goal being to better take

into account, or at least better understand, the effects of a continuous spectrum of radiation

acting on a classical orbiting charged point particle in a Coulombic binding potential.
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Figure Captions

Figure 1: Sketch of situation examined in Ref. [1], with a CP plane wave directed in the

−ẑ direction on a classical charged particle, with charge −e, orbiting in a circular motion in
the x− y plane. The same sketch holds for the present article, but with the orbit now an
ellipse as in Fig. 2, and the radiation similarly directed, but consisting of an infinite number

of plane waves of different frequencies.

Figure 2: Diagram of ellipse. a is the semimajor axis, b is the semiminor, θ the polar

angle, and ε the eccentricity. For the simulations presented here, the orbits all begin with

the classical electron at point A, traveling in the counterclockwise direction. The classical

nucleus resides at point C. At point A (B), the classical electron is at the farthest (closest)

point to the classical nucleus.

Figure 3: Numerical evaluations of t (θ) in Eq. (12), normalized by the period T in Eq.

(9) for various values of ε.

Figure 4: (a) Plots of a and b (semimajor and semiminor) axes as a function of time,

for the situation where the orbiting charged particle starts in an initial elliptical orbit, with

a (t = 0) = 0.5 Å, for various values of eccentricity ε, as indicated next to each set of two

curves. Only radiation reaction is assumed to be acting here. The semiminor axes are

dotted lines. For ε = 0, then a = b. For ε = 0.1, a and b are still nearly on top of each

other at this scale, so the two curves appear as a single one in this figure. For all other

values of ε shown, the pair of two curves is clearly discernible. (b) ε plotted a function of

time, under the same conditions. The starting values of ε used for the five curves shown

were ε = 0.1, 0.3, 0.5, 0.7, and 0.9. For each curve, ε→ 0, then circular case.

Figure 5: (a) through (f) are histograms of Ẽx,n/i (Ẽx,n is pure imaginary) and Ẽy,n

(real quantity), as numerically calculated using Eq. (21) for various values of ε, all with

a = 0.5 Å. (a) Ẽx,n/i for ε = 0.1; (b) Ẽy,n for ε = 0.1; (c) Ẽx,n/i for ε = 0.5; (d) Ẽy,n for

ε = 0.5; (e) Ẽx,n/i for ε = 0.9; (d) Ẽy,n for ε = 0.9. Figures (g), (h), and (i) examine the

initial ε = 0.5, a = 0.5 Åcase, as more and more harmonic are included in the simulation.

Specifically, plots of (g) a vs. t, (h) b vs. t, and (i) ε vs. t, are shown, where in each plot first

the “no plane wave case” is shown (n = 0 curve), then subsequent curves where harmonics

up to order n are included. As expected, with more harmonics, the closer the curves come

to the predicted perfect balance situation.
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Figure 6: (a) Semimajor (solid curves), a, and semiminor (dashed curves), b, axes vs. t,

for radiation scaling conditions of s = 0 (no radiation), s = 1 (precise radiation reaction

balancing condition), and s = 2, 5, 10, and 20 ; (b) eccentricity, ε, vs. t for the same

conditions as in (a); (c) zoom-in view of a vs. t in the early quasi-stable region, with only

the s = 0, 1, 2, 20 curves shown here, to improve clarity. The trend for the other values of

s is analogous. (d) zoom-in view of b vs. t in the early quasi-stable region. In addition to

s = 0, 1, 2, 20, s = 10 is also displayed to help show the trend. As s increases above unity,

the b vs. t curves tend to rise (s = 2, 10), but when s becomes too large (s = 20) then the

curve falls.

Figure 7: These figures examine more about the decay points of the quasi-elliptical orbits.

(a) zoom-in view of 6(a) to show that decay occurs at the same point for every pair of a

vs. t and b vs. t curves; (b) zoom-in view of a vs. t for the regions where the curves are

quasistable, before leading into decay. The large black regions exist because of the large

number of fluctuations of a vs. t. At the scale shown here, the envelopes of the curves are

clearing discernible, each increasing in width until decay finally occurs. Several figures here

show various blown-up examinations of the blackened regions, such as the early time region

in Fig. 6(c). (c) zoom-in view of b vs. t for the regions where the curves are quasistable,

before decaying; (d) zoom-in view of a vs. t for the s = 20 case, near the point where decay

occurs; (e) zoom-in view of b vs. t for the s = 20 case, near the point where decay occurs.

Figure 8: These plots show how the patterns evolve as s increases from 0 to 20 for the

following quantities: (a) θ0 vs. t, in Eq. (25); (b) ε vs. t; (c) a vs. t; and (d) b vs. t.

Small circular points were place to help indicate where transitions to orbital decay began.

The arrows from one circular point to another proceed from s = 0 to s = 20. The pattern

for the a vs. t curves, as s increases, is fairly easy to identify, so additional markers were

not placed in Fig. 8(c). The initial starting point for all orbits indicated in these plots was

a = 0.5 Åand ε = 0.5.

Figure 9: These figures examine the situation as s approaches s = 1.0. (a) a vs. t; (b)

b vs. t; (c) ε vs. t. The closer s is to 1.0, the longer stability lasts before decay sets in.

After decay sets in, the curves parallel the slope of the s = 0 (no radiation) curve.
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