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Abstract

The present study examines the behavior of a classical charged point particle orbiting an infinitely

massive and oppositely charged nucleus, while acted upon by circularly polarized electromagnetic

plane waves. This system is intended to represent a classical model of a hydrogen atom interacting

with radiation. Despite the simplicity of the system, very nonlinear behavior result, making a

numerical study of the system nearly essential. The results should be of interest to researchers

studying the classical behavior of Rydberg-like atoms. The numerical results naturally suggest a

number of experiments that could be done involving the novel control of chemical reactions and of

excited atomic states. Moreover, and perhaps more immediately, the present article has close ties

and implications regarding the behavior of the classical hydrogen atomic model within the domain

of the theory called stochastic electrodynamics.
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I. INTRODUCTION

Here we will examine the behavior of a classical physical model of hydrogen consisting

of a −e charged point particle orbiting an infinitely massive nucleus, consisting of a +e
point charge. The system is in many ways certainly very simple, but, as is well known to

researchers pursuing the simulation of planetary orbits over long time periods, the subtle

aspects of its very nonlinear behavior is far from trivial. Here we will examine in depth the

behavior of the orbiting −e charge in near circular orbit about the +e charge, while under
the influence of a selected set of electromagnetic plane waves. We will assume that the

trajectory of the −e charge is described by the classical Lorentz-Dirac (LD) equation.
Why are we interested in such a system? There are three main reasons. First, such

a system is often considered for understanding the behavior of atoms placed into excited

Rydberg states, so that the outer electron makes a relatively large orbit from the nucleus

and other electrons, which can then be approximated as a hydrogen-like atom. In rela-

tively recent years, a number of researchers have shown considerable interest in studying

Rydberg-like atoms, with many of their advances involving fascinating experimental results.

“Even today, research into perturbative long-range interactions continues to push into new

territory, driven largely by the experimental capabilities of Rydberg state spectroscopy to

detect effects of extremely weak interactions. ... The astonishing precision of high resolution

Rydberg state spectroscopy provides a revealing probe of small and large perturbations.”

[1] Complex, subtle, and non-intuitive behavior of these simple systems is being revealed

by a wide variety of experimental probes, including the now heavily-examined splitting of

Rydberg atomic energy levels due to applied electric and magnetic fields [2], the ionization

of electrons in Rydberg states due to applied circularly and elliptically polarized microwave

fields [3], investigations of stabilization of Rydberg states in intense laser fields [4], more

recent investigations of fast and slow electromagnetic pulsing of Rydberg atoms [5],[6], a

probing of anisotropic induced electric dipole ionic behavior due to a relatively slow Ryd-

berg electron motion behavior [1], and recent ionization analysis for full 3D Rydberg atoms

[7]. Much of our present physical insight into these experimental results comes from a

classical physical examination of the situation [8],[1],[5],[9], which has since been contrasted

in numerous studies with quantum mechanical predictions [8],[5]. The present study should

be of aid in such considerations, not so much with regard to ionization, but rather with
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regard to stabilization in intense electromagnetic fields [4],[10].

These investigations clearly illustrate a wide range of abilities for controlling various

atomic system behaviors. Indeed, the richness of the phenomena being experimentally

revealed, by applying fairly simple time varying electromagnetic fields on equally very simple

atomic systems, is really quite staggering. By varying frequencies and amplitudes of applied

electromagnetic radiation, and possibly adding in fast “kicked” pulses, the ionization rates

and even stabilization domains are being profoundly affected. Without doubt, atoms more

complicated than hydrogen and Rydberg atoms, also display extremely rich phenomena,

when electromagnetic laser and other electromagnetic sources of radiation are applied to

probe the dynamics of inner shell electron behavior.

Most physicist’s intuition of what should take place for atoms irradiated with electromag-

netic radiation, undoubtedly lie with the early classic experiments of the photoelectric effect,

where if the frequency of the radiation is below some threshold value, then no ionization

takes places, regardless of the intensity of the radiation. Moreover, the maximum kinetic

energy of ejected electrons from metals irradiated with light, increase linearly in proportion

to the frequency of the light beyond this minimum frequency threshold value. Yet, the

phenomena being revealed in the more recent experiments discussed in Refs. [1]-[10], go

well beyond these early photoelectric effects that puzzled physicists so deeply around the

1900 time period. Advanced radiation sources, particularly involving the laser, are now

enabling detailed control of atomic systems that were nearly impossible to anticipate in the

early 1900s. Yet, these more recent experiments still only involve relatively simple atomic

systems with relatively simple radiation controls. Undoubtedly the richness of phenomena

for more complex systems, will be deep. The likely reason scientists have concentrated

on these relatively simple atomic situations, is that the phenomena are quite rich, but the

situation is analyzable by present techniques and ideas, including semiclassical approaches.

Our second main reason for studying the classical atomic system described here, is the

following. By controlling the behavior of atomic systems with electromagnetic radiation, in

ways previously either not considered and/or simply not examined in any detail, a plethora

of new applications become possible. Chemical reactions should be controllable to perhaps

great extents by appropriately applied radiation and electromagnetic fields. Instrumen-

tations and fabrication techniques, such as in etching, deposition, ion implantation, and

sputtering, might well be controllable in far greater degree than presently available, if the
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right ideas can be arrived at for making use of applied radiation signals, as a function of

time, while such interactions are taking place. Indeed, to some extend these ideas are

already implemented, such as in rapid laser annealing in semiconductor technology, plasma

controlled etching techniques, isotope separation methods, and improved ion source gener-

ators. However, there are undoubtedly far more instances of control yet to be developed,

provided scientists and technologists can make use of the right ideas. To support such

speculations, we note that a number of patents have been issued in the past 25 years or so,

that pertain to manipulating Rydberg atomic states for various application purposes (see,

for example, Refs. [11],[12],[13],[14],[15]).

The third main reason for our present study, which in truth is our main motivation, has to

do with pushing further on the ideas of stochastic electrodynamics (SED) [16],[17],[18],[19].

SED is a classical theory of electrodynamics that involves the use of Maxwell’s equations

for describing the electromagnetic fields, combined with the relativistic version of Newton’s

second law of motion for describing the trajectory of classical electrodynamic particles, and

supplemented by the idea that most experimental tests necessarily involve the critically

important presence of incident radiation fields influencing the particle trajectories, present

even at a temperature T = 0 [18],[20]. The key physical ideas and important initial

calculations were introduced quite clearly by Marshall [21],[22] and Boyer [23],[24] in the

1960s, although a number of other researchers certainly had earlier ideas that tie in with

this work in various ways, as nicely described in Ref. [17] (see Ref. [25]).

The present status of SED seems to be that many scientists find the SED ideas of some

interest, for a number of reasons [17],[19], but not promising in terms of much deeper agree-

ment with nature than what has already been established. Consequently, SED seems to

have been abandoned by most researchers, and there has not been much progress in recent

years to offset any of the original core criticisms. A quick, but reasonably accurate summary

of the status might be the following: SED works well for linear systems, such as for a fairly

wide variety of systems of electric dipole simple harmonic oscillators (SHOs) [16], as well

as for electromagnetic fields interacting linearly with macroscopic media boundaries, like

conducting walls and dielectric plates, that occur in most experiments to date with Casimir

and van der Waals forces [26],[27]. In addition, there are a wide range of quantum optical

experiments that have interesting explanations from within the SED related branch called

stochastic optics, as has largely been led by Marshall, Santos, and their collaborators, as
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reviewed in Ref. [17]. Other SED-related physics areas of interest also exist, such as having

to do with quantum cavity electrodynamics [28],[26] and the thermal effects of acceleration

of simple electrodynamic systems through the vacuum [29],[30],[31],[32], as well as a host of

other SED articles on topics as diverse as diamagnetism, paramagnetism, blackbody radia-

tion, and excited states (see Sec. 1 in Ref. [16] for a quick summary of this work). However,

aside from these often surprising insights between the differences of classical and quantum

physics [17], the full direction of SED as originally envisioned [18],[33], has to date not been

realized.

Indeed, for electrodynamic system governed by nonlinear equations of motion, there has

in general not been agreement between SED and quantum electrodynamics (QED). Refer-

ence [16] provides a concise summary of the status of these discrepancies, with major work

here being provided by [34],[35],[36],[37],[38],[39],[40],[41]. The main consensus by most re-

searchers is that SED has shown some interesting connections between classical and quantum

physics, by including a classical concept involving the single idea of not imposing that motion

and fields must equal zero at temperature T = 0; indeed, strong arguments, based on equi-

librium ideas between charges and fields provide incentive for why motion and fields should

not equal zero at T = 0 [20],[42]. However, most researchers seem to have concluded that

this idea is not sufficient to bridge the gap for classical physical ideas to adequately describe

nature. Indeed, there largely seems to be only two published arguments, not yet disproved

[43],[44], that still provide hope that the original views of SED may yet be successful, if

the theory is limited to strictly physical systems that really occur in nature. For atomic

physics, this means full electrodynamic systems based on Maxwell’s equations, without ad

hoc considerations of nonlinear oscillator systems that in reality do not exist in full detail

for atomic systems.

Returning to the thrust of the present article, we are examining a simple electrodynamic

system, namely, a classical model of hydrogen. Other than the practical aspects of simply

investigating a Rydberg atom, by solving this Keplerian classical system for a large number of

orbits, and thereby contributing to the literature on understanding such a system classically,

we also want to return to some of the original ideas motivating SED and examine this

simple system as carefully as possible. However, the present work can certainly not claim

to make too close a connection to SED, as we will not include classical electromagnetic

zero-point (ZP) radiation in our present treatment. One of us some time ago attacked
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this system with a rough, but very computationally intensive, description of the stochastic

nature of ZP electromagnetic radiation. The problem is clearly a difficult one, due to

the inherent difficulty of representing the stochastic electromagnetic fields adequately via

simulation methods, without becoming too computationally intensive, but at the same time

not leaving out key, important effects. Although interesting results have been found, clear

directions are far from being established. Nevertheless, other insights will be discussed here,

that show some of the richness of the nonlinear aspects of this simplest of atomic systems.

Our hope is that some of the ideas suggested in the present article, plus other planned work,

will help to improve on this rough description, without incurring impossibly computational

situations due to the near infinite frequency range that is presumed to be present.

As we believe first described, Boyer in Ref. [18] discussed qualitatively how stability for

a hydrogen atom might arise if the SED basic theoretical idea is correct. If we consider the

atom in equilibrium with radiation at absolute zero temperature, then when the electron is

far from the proton, the period of its orbit is large, so the electron should tend to interact

most strongly with frequencies in the ZP radiation spectrum corresponding with this large

period (i.e., small frequency). The energy of the ZP radiation in the small frequency region

is not enough to offset the energy that will be lost, on average, due to radiation reaction.

Hence, on average, the electron should tend to spiral in toward the nucleus. As it spirals

in, the period (frequency) if its orbit will decrease (increase), thereby making the electron

interact more strongly with ZP radiation in a higher frequency regime. The average energy

of ZP radiation, per frequency interval, increases as the frequency increases. Hence, on

average, as the electron spirals in toward the nucleus, the ZP radiation will tend to impart

energy to the electron, tending to make it start spiraling back out. The SED picture is then

one of stochastic fluctuation, where the electron tends to spiral in and out, in just such a

way as to fulfill the probability density distribution predicted by the ground state solution

of Schrödinger’s equation. The analysis of Ref. [18] shows that the average radius for this

scenario is indeed roughly given by the Bohr radius of aB = ~2/me2.

In the present article, Sec. II will be devoted to discussing the equation of motion of

the orbiting electron, and its numerical solution. Section III will then provide a range of

numerical results, starting from the numerical demonstration of the classical atomic collapse

problem due to radiation reaction, followed by a discussion and demonstration on how the

application of carefully selected applied radiation on the spiraling electron can stabilize
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the orbit. Sections IV and V then turn to less obvious situations that reveal interesting

nonlinear behavior that seem difficult to anticipate for this otherwise simple system. As

will be shown, as the amplitude of the applied radiation is increased, stability still results for

the orbiting electron, although it continuously spirals in and out toward the nucleus, within

a small range. We then show numerical experiments for what happens if an electron is

allowed to spiral in from a large radius toward the nucleus, when an intermediate resonant

plane wave is present. As will be shown, the electron reacts strongly as the orbiting period

of the electron crosses the frequency domain of the applied radiation. Section VI then ends

with some concluding remarks and comments on where we expect this work to continue.

II. EQUATION OF MOTION

The equation of motion for the −e charged classical electron, orbiting about the classical
infinitely massive +e charge at the nucleus, is assumed here to be the Lorentz-Dirac equation

of motion [45],[46],[47]:

m
d2zµ

dτ 2
=
2e2

3c3

·
d3zµ

dτ 3
− 1

c2

µ
d2zλ

dτ 2
d2zλ
dτ 2

¶
dzµ

dτ

¸
+ F µ , (1)

where τ is the proper time, and F µ is the four-force representing the sum of the effects due

to the binding force of the nucleus, plus any other applied forces. Rewriting this in terms of

three-vector notation [see Eqs. (5.25)-(5.27) in Ref. [48]], with the proper time expressed in

terms of the coordinate time, with γdτ = dt, ż ≡dz
dt
, z̈ ≡d2z

dt2
, and with γ ≡ £1− (ż/c)2¤−1/2,

then
d

dt
(γmż) = − e2z

|z|3 +Rreac + (−e)
½
E [z (t) , t] +

ż

c
×B [z (t) , t]

¾
, (2)

where

Rreac=
2e2

3c3

(
d

dt

·
γ2z̈+ γ4

µ
ż

c
· z̈
¶
ż

c

¸
− 1

c

"
γ4z̈2 + γ6

µ
ż

c
· z̈
¶2#

ż

c

)
(3)

is the radiation reaction term. We will follow the ideas described in Sec. 10 in Ref. [47]

(see Sec. 10.3 in particular) for treating the radiation reaction term, and considering it a

perturbation term to the full equation of motion. Moreover, for most of the simulations

reported here, where generally |ż| /c ¿ 1, we will follow the conventional nonrelativistic

approximation of Rreac ≈ 2
3
e2

c3
d3z
dt3
. Using a perturbative treatment, then

Rreac ≈
2

3

e2

c3
d3z

dt3
≈
2

3

e2

c3
d

dt

·
1

m

µ
− e2z

|z|3 − e

½
E [z (t) , t] +

ż

c
×B [z (t) , t]

¾¶¸
. (4)
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A number of numerical approaches were examined, including a “leapfrog scheme,” as

described in Chap. 4 in Ref. [49], an adaptive stepsize fifth-order Runge-Kutta routine [50],

and the Bulirsch-Stoer (BS) method with an adaptive step control [50]. The last approach

has been found to be particularly robust compared with the other routines, with typically

substantially smaller CPU times, and much larger step sizes for the same numerical accuracy

conditions, under a wide variety of different applied electromagnetic radiation situations.

The numerical solution of Eq. (2) was implemented by treating it as six first order

differential equations, with p =mγż inverted to

ż =
p

m
h
1 +

¡
p
mc

¢2i1/2 , (5)

and

ṗ = − e2z

|z|3 +Rreac + (−e)
½
E [z (t) , t] +

ż

c
×B [z (t) , t]

¾
, (6)

where the right sides of the above two equations were expressed in terms of z (t) and p (t),

including Rreac in Eq. (4). Using Cartesian coordinates, with u1 = z1 = x, u2 = z2 = y,

u3 = z3 = z, u4 = p1 = px, u5 = p2 = py, u6 = p3 = pz, then u̇i for i = 1, 2, 3 is given by Eq.

(5) and u̇i for i = 4, 5, 6 is given by Eq. (6).

For most results that will be reported in the present article, which largely involve condi-

tions with |ż| /c¿ 1, the nonrelativistic approximation of p = mγż ≈ mż in the simulations

make fairly little difference. Of course the appropriate use of relativistic dynamics is im-

portant if sufficiently high speeds are examined; however, we also found that if orbits are

observed for sufficiently long times periods, the character of the trajectories can change quite

differently when the dynamics is treated relativistically versus nonrelativistically. Our plan

is to emphasize these differences in a later publication. For the present article, nearly all

results shown in figures would be altered only very slightly if relativistic rather than non-

relativistic dynamics were used, largely because speeds considered here were generally not

so large, nor times so long, that these effects became important. Hence, for the present

article, we will stick with nonrelativistic analysis, and will plan to analyze situations in later

publications where this distinction becomes important to make. Hence, here we can treat

Eq. (5) as ż = p/m.
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III. INITIAL NUMERICAL STUDY ON STABILITY

We begin by showing numerical results for the collapse of a classical electron’s orbit. This

result was viewed by physicists around 1900 as being a serious problem for classical physics

being able to properly account for the stability of a atom consisting of electrons orbiting

more massive and oppositely charged nuclei. Maxwell’s equations require that as charges

accelerate or deaccelerate, electromagnetic energy must be radiated; an orbiting electron

must then spiral into the nucleus in order for the total sum of kinetic energy, the potential

energy between the nucleus and the electron, and the radiated electromagnetic energy, to

be conserved. The LD equation predicts this result nicely.

Figure 1 shows what the LD equation predicts for a classical electron initially in a circular

orbit of radius r ≡ |z| = 0.5 Å about an infinitely massive nuclei of charge +e. As can be
seen, the time of collapse of the electron in this classical hydrogen model is somewhat larger

than 1.3× 10−11 sec. Since the Bohr radius of aB ≡ ~2/ (me2) = 0.52917 Å is the average

radius of hydrogen in its ground state, as predicted by quantum mechanics (QM), then this

numerical result clearly shows the huge discrepancy of this simple classical model versus the

obvious physical result of stable hydrogen atoms in nature.

Of course, if we were to treat the nucleus as a finite mass, with a mass of about 1836

times that of the orbiting electron, then we would have a somewhat more accurate model of

hydrogen, and we would then want to treat the problem using a center of mass coordinate

system. However, for the purposes of this article, and for the results that will be displayed,

such considerations are really quite secondary, so, we will not enter into them here.

We now turn to examining what might happen to this simple atomic system when ra-

diation acts on the system. One of us (Cole) has, some time ago, done lengthy numerical

experiments attempting to simulate the effects of classical electromagnetic ZP radiation.

The difficulties arise from a number of perspectives, including the need to simulate for long

periods of time (millions of orbits) without incurring undue numerical errors, while at the

same time attempting to adequately capture the physical effects of this singular radiation

field, whose spectrum increases monotonically in magnitude with frequency.

However, despite these complications, we have made progress on a much simpler front

involving what happens to a classical electron in a near circular orbit when in interaction

with a single, or a set, of circularly polarized (CP) electromagnetic plane waves. Despite
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the simplicity of this consideration, the nonlinear results are in many ways quite surprising.

Moreover, we think the following considerations may reveal at least a partial insight into

some of the more important aspects of the dynamics of a classical hydrogen atom acted

upon by a more complicated radiation field, and should also shed insight into controlling

the excitation, ionization, and stabilization of electrons in Rydberg atomic states.

To begin, we consider the simple idea of designing an incident radiation state on the

orbiting electron in a circular orbit to balance the effect of radiation reaction, so that the

only net force acting on the orbiting electron is the Coulombic attractive force of the nucleus.

Here we will not try to make a perfect balance, as we do not expect to be able to balance

the (−e) ż×B/c part of the Lorentz force, nor the second order effects that occur in the
radiation reaction term. However, we can achieve a near balance in the following way. In

a circular orbit, with radial and tangential unit vectors r̂ and θ̂, then z (t) = rr̂ (t), with r

a constant, and then d
dt
r̂ = dθ

dt
θ̂, and d

dt
θ̂ = −r̂dθ

dt
. From Eq. (4), and approximating d3z

dt3
as

in the nonrelativistic case as d
dt

³
− e2z

m|z|3
´
, since the dominate force on the orbiting electron

is in this case the Coulombic attractive force, then

d

dt

µ
− 1
m

e2z

|z|3
¶
= −e

2

m

"
dz
dt

|z|3 −
3z(z·dz

dt
)

|z|5
#

. (7)

For circular motion, z·dz
dt
= 0, so:

Rreac ≈ −2
3

e4ω

mc3r2
θ̂ , (8)

where ω ≡ dθ/dt is a constant. Thus, for circular motion the radiation reaction force acts

in the direction opposite to the velocity of the electron, like a simple drag force. By design-

ing a radiation state acting on the orbiting electron to counteract the radiation reaction,

then circular motion will be maintained by satisfying conventional Newtonian mechanics.

Specifically, by equating the Coulombic attraction of −e2r̂/ |z|2 to mz̈ = − mrω2r̂ in the

nonrelativistic case, one obtains that

ω =

µ
e2

mr3

¶1/2
. (9)

For relativistic motion, where d
dt
(γmż) = −e2z/ |z|3, then to maintain circular motion, the

angular frequency needs to be given by

ω =

µ
e2

mr3

¶1/2
"
1 +

µ
e2

2c2mr

¶2#1/2
− e2

2c2mr


1/2

. (10)
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A very simple way of satisfying this condition of balancing the radiation reaction for a

circular orbit is to have a CP plane wave propagate in the direction perpendicular to the

plane of the electron orbit, with an angular frequency given by Eq. (10), or approximately

by Eq. (9) in the nonrelativistic case, such that −e times the electric field is opposite to
Rreac in Eq. (8), or

A =
2

3

e3ω

mc3r2
, (11)

where A is the amplitude of this circular polarized plane wave.

Such a CP electromagnetic plane wave will negate the major component of the radiation

reaction and will then provide a stable circular orbit, until second order effects accumulate

sufficiently that the plane wave and orbiting electron fall far enough out of phase with

respect to each other. Using our simple method, we cannot expect a perfectly balanced

orbit, even when the relativistic frequency effect in Eq. (10) is taken into account, because

of three reasons: (1) We balanced the radiation reaction by considering the Lorentz force

contribution of −eE [z (t) , t], where E [z (t) , t] is the electric field of the CP plane wave.
We did not take into account the other Lorentz force component of the plane wave, namely,

−e ż
c
× B [z (t) , t]. For nonrelativistic motion, this effect is small, however. Moreover,

since B will be directed along the radial direction, and ż is along θ̂, then this Lorentz force

component is normal to the plane of the orbit, thereby acting to accelerate the electron in

this direction and in this way acting to eventually put the electron out of phase with respect

to the incident plane wave. (2) We only attempted to balance the radiation reaction

contribution of −e2z/ |z|3 in Eq. (4), rather than also the second order effect of the plane
wave −e©E [z (t) , t] + ż

c
×B [z (t) , t]ª in Eq. (4). This should be, under most situations, a

very small effect. (3) We used the nonrelativistic approximation for the radiation reaction

force of Rreac ≈ 2
3
e2

c3
...
z in Eq. (3), rather than taking into account other relativistic effects

in this term. For the speeds considered in the present study, this approximation should be

quite good.

Figure 2 contains plots of radius (r) versus time (t) for situations of CP plane waves

with different amplitudes, where the electron starts in a circular orbit of radius 0.5 Å. In

these plots, the Lorentz force component of the plane wave, namely, −e ż
c
× B [z (t) , t],

is taken into account in deducing the trajectory of the orbiting electron. Moreover, the

Lorentz force part due to the applied CP wave acting on the orbiting electron, namely,

−e©E [z (t) , t] + ż
c
×B [z (t) , t]ª in Eq. (4), was taken into account in the radiation reaction.
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The bottom curve in Fig. 2 is just a subsection of the curve in Fig. 1. As can be seen,

when the amplitude of the CP plane wave meets the condition of Eq. (11), then stability is

achieved. Figure 2 also shows how the stability condition is approached as the amplitude

of the applied electric field is increased. It should be noted that the period of the orbiting

electron is approximately T = 2π
ω
≈ 2π

³
e2

mr3

´1/2
≈ 1.4 × 10−16 sec, so approximately 3600

orbits are contained in Fig. 2.

IV. NUMERICAL STUDY INVOLVING MORE COMPLEX STABILITY CONDI-

TIONS

The previous section simply confirmed the idea that an incident radiation state could be

chosen to provide reasonable stability to the orbit of a classical charged particle in a Coulom-

bic binding potential. Without doubt, the situation chosen was highly idealized. Changes

to the direction of propagation of the incident radiation, to the plane of the orbit, and/or

changes in the phase or of the frequency of the incident radiation would have devastating

effects for achieving the stability shown in Fig. 2. Moreover, only an idealized circular orbit

was examined here. In later work, we will examine the more general situation of elliptic

orbits. As will be shown there, much more complicated radiation states are required, but

stability effects can still be observed.

What we now want to turn to is an examination of what happens if the amplitude of

the electric field of the CP plane wave is increased above the value of Eq. (11). This

situation now becomes significantly more difficult to predict what will happen; indeed, now

a numerical study seems essential to fully analyze this problem. Figure 3 shows our results.

When the amplitude of the electric field exceeds the critical value in Eq. (11), a stability

condition still exists, although in a much different form, as oscillations in the r versus t curve

become very prominent. As the amplitude of the electric field increases, the amplitude of

the radial “oscillations” increase, as does their frequency. It should be noted, though, that

in each period of radial “oscillation,” there are still many revolutions of the charged particle

about the nucleus, at least for the cases examined here. When A = 10 statvolts, then

about 960 revolutions occur per radial oscillation period. When A = 100, there are about

570 such revolutions, or about a 60% decrease in radial oscillation period from the A = 10

statvolt case, while the amplitude of the radial oscillations increases by a factor of about
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5.5 from the A = 10 statvolt situation. Clearly some very nonlinear results are occurring.

Figure 4 summarizes this aspect of this nonlinear reaction to the electric field amplitude A

of the CP incident plane wave.

What is most significant, however, is that stability does exist when A > 2
3

e3ω
mc3r2

. This

interesting observation opens up a number of possibilities, both for a slightly deeper insight

into the possible theoretical underpinnings of SED, as well as for practical applications of

manipulating Rydberg atomic systems with applied radiation fields, in situations where a

classical or semiclassical analysis will likely hold. Hence, a deeper understanding of what

is going on in Fig. 3 seems essential. We now proceed with that analysis.

When the electric vector of the CP plane wave is oriented along the opposite direction

of the −e charged orbiting electron, then positive work is done by the CP plane wave on
the −e charge. The sum of the kinetic plus potential energy of the orbiting particle must

then increase, resulting in r becoming larger by having the particle slowly spiral outward.

The particle still follows a nearly circular orbit, but the radius of the circle slowly increases.

As this happens, the period of the orbit increases. This change in period of the orbiting

particle, as opposed to the fixed frequency of the applied CP plane wave, causes the E

vector and the velocity ż to become out of phase, so that they eventually begin to oppose

one another. At this point the CP plane wave begins to do negative work on the orbiting

particle and r begins to slowly decrease by having the particle being to spiral inward toward

the nucleus. As r decreases, the period of each revolution of the electron around the nucleus

decreases; eventually the E field and the velocity come back into phase. When this happens,

positive work can again be done on the orbiting particle to again increase r. This pattern

of increasing and decreasing spirals can continue for a significantly long time, well beyond

the time of 5× 10−13 sec in Fig. 3, before the E field and the velocity are no longer able to
come back into phase. (This effect will be illustrated in the next section.) At this point, r

will simply continue to decrease, and stability is no longer possible.

This simple explanation can also be used to qualitatively understand a number of other

features. For example, the period of the oscillations of r versus t becomes smaller as A is

increased (see Fig. 4), since the maximum rate of work by the CP plane wave increases as

A increases, so the average radius will increase and decrease faster when A is larger. Also,

the larger the amplitude A is, the larger will be the amplitude of the oscillations in radius

versus time, as more work can be done on the spiraling electron before it revolves enough
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times to become out of phase with the CP wave. Figure 4 shows these effects.

Figure 5 provides more quantitative information, using the A = 100 statvolt situation as

a vehicle for explanation. Two curves are shown, superimposed on top of each other; they

both have the same time scale on the x−axis, namely, the beginning of the A = 100 statvolt
curve in Fig. 3. One curve shows r versus t, just as in Fig. 3. The other displays the

following quantity as a function of time, namely,

Fv ≡ (−e)
½
E [z (t) , t] +

ż

c
×B [z (t) , t]

¾
· ż|ż| ,

which is the component of the force of the CP plane wave acting along the particle’s velocity

direction, or, it is also the rate of work done by the CP plane wave on the orbiting particle,

normalized by the velocity.

As can be seen from Fig. 5, when Fv is positive, r increases, since positive work is being

done on the particle. As the radius increases initially, Fv becomes smaller, since eE becomes

mismatched with ż. During this period, r continues to increase, although its rate of increase

slows as Fv becomes smaller. At slightly past 1 × 10−14 sec, Fv changes sign, becoming

negative, causing r to begin decreasing. This decrease now starts making the orbital period

decrease, eventually bringing the electric field and velocity back into phase. Fv then becomes

positive (around 3× 10−14 sec), at which point r again begins to increase.
It is interesting to note, however, that the average of Fv is not zero; instead, it is positive,

as can be seen by comparing the areas of the two regions with hatched marks in Fig. 5

(the left region is wider). Consequently, the average of (−e)E · ż = Fv |ż|, is positive, since
|ż| is nearly constant. Hence, despite successive periods of positive rates of work, followed
sequentially by negative rates of work, the net average work done by the applied field on

the particle per every cycle in Fig. 5 (about 4× 10−14 sec), is positive. This result is as it
should be, since in order for this classical orbiting electron to maintain, on average, a “stable”

orbit, then it must continually radiate energy. Via the laws of classical electrodynamics, an

accelerating charge must radiate electromagnetic energy, which is what we see happening

here. Indeed, if one calculates the average radiated energy by the orbiting electron, per

cycle, it precisely equals the average positive work done by the applied field on the particle.

Hence, of course, energy is indeed conserved; the radiated energy is precisely compensated

by the work of the applied field.

Figure 6(a) shows the A = 100 statvolts case of r versus t taken out much farther in
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time, to 5 × 10−12 sec, which includes about 36000 orbits. The orbit remains remarkably

stable, particularly in comparison to the dramatic difference with the A = 0 statvolts curve

also shown in Fig. 6(a). However, as can be seen in Fig. 6(b), which zooms in on Fig. 6(a)

around r = 0.5 Å on the y−axis, the envelope of this curve slowly increases in width. This
seems to be a common feature of the r versus t curves for different values of A, as well as in

numerical experiments we have carried out for a large number of other situations, where in

some cases a huge family of applied CP plane waves act on the orbiting particle, with some

at near resonance with the orbiting particle. The orbiting particle gradually spirals inward

to smaller radii values, and outer to larger radii values, until the orbiting electron versus the

fixed frequency CP plane wave are not able to come back into phase with each other again.

In the case of a single CP plane wave, the particle’s orbit will eventually decay. If the

orbiting particle and the E field of the CP wave are initially in phase, however, the length

of time before decay occurs can be extremely long. For example, for the A = 100 statvolt

case, our simulations reveal a time of nearly 1.5 × 10−11 sec before decay begins, which is
a longer time than the total decay shown in Fig. 1. When one varies the conditions A,

the initial phase, and a family of CP wave, then a wide variety of interesting results can be

obtained. We intend to present more of these results in future work. For now, though,

perhaps the key point to be made is that by varying the initial phase of the E field of the

CP wave, we can move the point at which decay begins closer in to the origin, to enable

easier examination of the interesting behavior that occurs when decay does begin. Indeed,

the subsequent example and discussion appears to apply fairly generically to a range of

conditions where an initial stable-like condition is created, but which eventually changes in

character to a decaying behavior.

In Fig. 6, (−e)E and ż were pointing in the same direction at time t = 0. If one chooses
them to be perpendicular to each other initially, or π/2 out of phase with respect to each

other, so that the electric field cannot help to counteract the dissipative force Rreac, then

the orbit will decay almost immediately. For phases chosen between these two extremes of

φ = 0 (Fig. 6) and φ = π/2, stability will be maintained, but for progressively shorter times

for increasing values of φ, thereby mimicking the eventual decaying behavior that occurs for

φ = 0, but at much smaller values of time.

For example, in Fig. 7, the initial phase difference was chosen to be π/4. In this plot, we

see the trajectory of the orbiting particle starts out in the usual cycle of radially spiraling
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in and out, but then at a time of about 3.2 × 10−12 sec, the orbit in Fig. 7(a) suddenly
changes to one of decay, where it then closely parallels the other curve shown in Fig. 7(a),

where only the radiation reaction force acts. Figure 7(b) blows up the region around r = 0.5

Å. As can be seen, the same pattern we saw in Fig. 6(b) occurs, where the envelope of

the r versus t curve grows in width. Indeed, Fig. 7(b) is very similar to Fig. 6(b), but

simply farther out to the right in time than what is shown in Fig. 6(b). In Fig. 7(b), as

in Fig. 6(b), the envelope curve again increases in size, starting at a wider width than in

Fig. 6(b), and continuing until the trajectory reaches a point where stability can no longer

be enforced; an abrupt change in the orbit then occurs. Figure 7(c) zooms into the region

where this transition point occurs. If one was to watch an x − y “movie” of the orbiting

particle, corresponding to Fig. 7, as a function of time, one would see the particle spiral

out, then in, then out, etc., about a nearly circular orbit of radius 0.5 Å, until finally the

particle only spirals out up to the r = 0.5 Å point at t = 3.227 sec. After that point of

t & 3.227 sec [see Fig. 7(c)], the electron continues to spirals in and out, but on average it
only spirals inward.

Figure 8 analyzes this behavior in more detail. In Fig. 8(a), the corresponding time

regime to Fig. 7(c) is shown, but now Fv vs. t is shown. To the left of the transition-decay

point at t = 3.2 × 10−12 sec, each positive region of Fv has two humps and one minima,

while each negative region of Fv looks like an inverted, but smaller, corresponding section

of the positive region. To the right of the decay point, this Fv vs. t changes dramatically,

as the positive and negative regions of Fv all have single sequential maxima and minima.

Figure 8(b) zooms in on the transition point in Fig. 8(a). Two curves are superimposed

here, namely, r vs. t, and Fv vs. t. Also, vertical lines are drawn that separate the Fv < 0

regions from the Fv > 0 regions. As can be seen, whenever Fv < 0, then the radius decreases,

as the orbiting classical electron spirals inward; when Fv > 0, just the opposite happens.

To the left of the transition point at t = 3.2× 10−12 sec, the average work by work done by
the CP wave in the spiraling-out regions, versus the average work done by the CP wave in

the spiraling-in regions, are enough to compensate for the radiation that is continually given

off by the orbiting classical electron (qualitatively, the width of the Fv > 0 region is much

wider than the Fv < 0 region to the left of 3.26 × 10−12 sec, while the heights are nearly
equal). More specifically, to the left of the transition point, there are sequential regions

where the CP wave does not provide enough work to prevent radial-spiraling inward (the
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Fv < 0 regions), followed by regions (the Fv > 0 regions) where the CP wave provides too

much work on the electron, so a radial spiraling outward behavior follows; the net result is

an average net amount of positive work per cycle, just enough to compensate for the energy

that is continually being radiated by the orbiting electron. However, to the right of about

t = 3.26× 10−12 sec, this is not the case, as one can see qualitatively from Fig. 8(b), as the
positive areas of the Fv curve to the right of the transition point are nearly equal in area

to the negative regions. Hence, in this region, the phase of the orbiting classical electron

versus the applied electric field have become sufficiently out of phase, that E cannot do

adequate work on the orbiting charge to prevent its radial collapse due to its energy loss

from electromagnetic radiated energy.

To further illustrate, Fig. 8(c) shows a superposition of r vs. t and Fv vs. t, for the

same trajectory of this A = 100 statvolt, φ = π/4 case, but as occurs near t = 0. As can

be seen, early on, well away from when the inward spiraling-transition occurs, very regular,

periodic regions of double humped periods occur, which are well explained by the sign of

the corresponding Fv regions. At the transition point in Fig. 8(b), the change in shape is

very dramatic.

V. SUGGESTIVE SITUATIONS

Many other numerical experiments can be carried out to examine the detailed nonlinear

behavior of this physically very simple, yet dynamically very complicated, classical elec-

trodynamic system. Here we show two more situations. First, in Fig. 9(a), we have

superimposed four r vs. t curves, one with A = 0, and three involving a single CP plane

wave of A = 100 statvolts acting on the orbiting particle. The latter three curves have

different initial phases between the orbiting electron and the electric field. As can be seen,

when the initial phase difference is 1
2
π, the electron immediately begins a spiraling, decaying

orbit, that is centered just to the left of the curve that would be followed in the A = 0

situation [see Fig. 9(b)]. Hence in this situation, from the very beginning, the electric field

is not able to significantly aid the classical electron, although, as shown in Fig. 9(b), there

still exist subsequent regions where positive and negative work is done by the CP wave to

both aid and hinder the decaying orbit, resulting in an orbit oscillating about a trajectory

that parallels the purely decaying one of A = 0.
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In the other two curves in Fig. 9(a), where φ = 3
8
π and φ = 1

4
π, a very similar scenario

results, but, the trajectory simply looks like it has been displaced to the right. Indeed,

what is particularly interesting is what is shown in Fig. 9(c), where the φ = 3
8
π curve is

superimposed right over the φ = 1
2
π curve, such that the transition points line up. What is

particularly interesting here is the nearly identical behavior at this transition point, despite

a huge difference in time displacement. In rough terms, clearly the transitory difference in

behavior between the curves has died out, and only the forced motion due to the applied

CP wave is what dictates the observed, nearly identical behavior.

Figure 10(a) shows yet another interesting observation, where the electron is started in a

circular orbit from three different radii, and allowed to decay in its orbit. In each case, the

same identical CP plane wave, withA = 100 statvolt, φ = 0, is acting on the orbiting classical

electron, from the very beginning of its trajectory. The frequency of this wave corresponds

to the orbital frequency of the electron at the radius of 0.5 Å. Also superimposed, is the

corresponding A = 0 curve. As can be seen, in each of the three A = 100 statvolt curves, the

CP wave has progressively more and more influence on the decaying orbit, as the electron

approaches the r = 0.5 Å point. Of course, this is precisely what one would expect from

the study of forced, damped, simple harmonic motion: when the forcing term (in this case,

the CP wave) is at the same frequency as the “natural harmonic frequency” of a resonator,

the response will be the largest.

However, what is interesting here, is the degree of response, and the degree that the

response tapers off as the two become out of resonance with each other. Without detailed

simulation, it seems that such insight and knowledge about this highly nonlinear system

would be difficult to predict. Figure 10(b) zooms in on the middle trajectory near the

transition point, where a resonant-like behavior is seen to occur. This plot gives one some

idea of the “bandwidth” of the effect of a CP plane wave with one frequency, that acts

upon a particle orbiting at another frequency. Possibly by judiciously choosing the phase

and amplitude of E at t = 0, one could actually “catch” the classical electron at 0.5 Å and

“hold” it before it’s orbit again falls into the characteristic decay pattern shown.

Thus, even with this simple nonlinear system, involving only one CP plane wave, the

variables of initial phase, amplitude, and starting radii, all have key effects. This study

doesn’t even touch on the far more complicated behavior of superimposing the effects of other

CP waves, of different amplitudes and phases, nor of examining the dynamic responses of
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the orbiting electron corresponding to noncircular initial orbits. To date, we have made a

number of such investigations and have found very interesting and suggestive results. We

hope to report on these results in the future.

VI. CONCLUDING REMARKS

Our simulation study here of a classical electron starting in near-circular orbits around a

classical +e charged, infinitely massive nucleus, reveals a number of interesting nonlinear dy-

namical effects. In all cases, we have examined orbits following the Lorentz-Dirac equation,

treating the orbiting particle with the usual numerical approximation for radiation reaction

(see Sec. 10.3 in Ref. [47]). We believe our results will be helpful for future developments

involving studies and applications entailing the use of Rydberg-like atomic systems, as well

as of interest for more theoretical studies, such as in the area of SED.

Much of the work we presented in the present article is important for understanding the

basics of much more complicated situations involving the same classical hydrogen system,

but where families of CP planes waves are applied, with distributions of varying amplitude,

phase, and propagation direction, and where the initial orbit of the classical electron is

noncircular. Indeed, we have examined situations of families of thousands of CP waves si-

multaneously acting on the orbiting electron. One feature of such studies, in common with

the work reported in this article, is that, without question, near stability-like conditions can

be achieved for classical electrons in orbits about a classical nucleus, by having electromag-

netic radiation act on the orbiting charge to counterbalance the effects of radiation reaction.

This result should not come as a surprise, since the idea is very clear, and probably has been

recognized by many physicists, many times over throughout the years. Section III went

over this basic idea. However, what will undoubtedly come as a surprise to most physicists,

is that there exists a huge range of additional near-stability conditions, aside from this very

precise point described by Eq. (11). Even when considering just a single CP wave, we have

seen in the present study where the amplitude of the CP wave may be much larger than

the value in Eq. (11), and where the initial phase can be varied considerably, yet dynamic

stabilities can still result [see Figs. 3, 6, and 9(a)]. Such situations can also occur when

large families of CP plane waves are applied.

A second common feature of the work presented here, and the work we intend to report
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on in the future, is that CP plane waves certainly have their greatest influence on an orbiting

electron when the frequency of the wave, and the frequencies describing the orbit (as in an

elliptical orbit), most closely correspond. Again, this should not come as a surprise, but, the

precise magnitude of the effect, under various conditions, is certainly nontrivial to determine.

Further study here should be helpful for applications in scientific and technological advances

[1]-[15], under situations where classical and semiclassical dynamics may be applied, as well

as for deeper insight into the fully classical theory of SED [43],[44].

Third, when an orbiting electron is in some form of stable resonance, then the radial

range of the orbiting electron tends to broaden out with time, as seen for example in Figs.

6(b) and 7(b). We find this same behavior to occur in much more complicated scenarios

with large families of applied CP waves. Moreover, additional interesting situations can

be achieved in such cases, including the “catching” of a decaying electron, in a similar, but

much more dramatic behavior than shown in Fig. 10(a), as well as making an electron’s

average radial orbit increase in a jump-like step.

Thus, we believe our present study to be the beginning of interesting investigations,

guided by simulation, on this very nonlinear, yet simple, classical electrodynamic system.
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Figure Captions

Figure 1: Radius vs. time (r vs. t) for a classical model of an electron (m = 9.1091 ×
10−28 gm, charge −e, e = 4.80298 · 10−10 esu) initially in a circular orbit of radius 0.5 Å
about an infinitely massive nuclei with charge +e.

Figure 2: r vs. t for the same system as in Fig. 1, but with a CP plane wave acting on

the electron, beginning in phase with the orbit of the electron, and with periodicity equal

to the initial period of the orbiting electron. Each curve shows the situation for a different

electric field amplitude acting, with the numerical values of A in units of statvolts. From

Eq. (11), when A = 2
3

e3ω
mc3r2

= 5.419 statvolt, then the radius remains constant over the time

period simulated.

Figure 3: (a) r vs. t for the orbiting particle, but with the amplitude of the applied

CP plane wave increased beyond the critical point of Eq. (11). For A above this point

(A = 10 and 100 statvolts are shown here), the electron periodically first spirals out, then

in, over and over again. A is in units of statvolts. As A increases, the radial range

of the spirals increases, and the period of each spiral cycle decreases. (b) r vs. t, for

A = 500 statvolts. The radial range, and period of the spirals, increases significantly for

this case, versus those in 3(a).

Figure 4: Two curves are shown in this plot, namely, (1) amplitude of the radial spiral

(i.e., r (t) minus r = 0.5 Å ) versus A, the amplitude of the electric field of the incident CP

electromagnetic plane wave, and (2) the period of the radial spiral behavior versus A.

Figure 5: Two curves are superimposed here, both for the A = 100 statvolt applied CP

plane wave case. One curve shows r vs. t; the other shows Fv versus time. When Fv > 0,

it can be seen that the radius increases; when Fv < 0, the radius decreases.

Figure 6: (a) r vs. t for the A = 100 statvolt CP plane wave case; also shown is the r

vs. t curve when A = 0. (b) Zoomed-in view of the A = 100 statvolt curve in 6(a), around

the 0.5 Å radial position. The envelope of this curve slowly increases in width.

Figure 7: r vs. t for the A = 100 statvolt CP plane wave case, but with the initial phase

between E and ż being π/4, rather than 0 as in Fig. 6. Also shown is the A = 0 curve.

(a) the r vs. t simulations are carried out to t = 5× 10−12 sec. (b) Zoomed-in view of 7(a),
near the decay-transition point. (c) The transition point is zoomed-in yet more to show the

details of the behavior.
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Figure 8: (a) Fv vs. t for the same case of the A = 100 statvolt, φ = π/4 CP wave acting

on the spiraling classical electron, as occurs in Fig. 7. This plot corresponds with the same

time period as shown for the r vs. t curve in Fig. 7(c). (b) r vs. t and Fv vs. t, zoomed in

to the point near t = 3.2× 10−12 sec, where the transition of spiraling decay sets in. (c) r
vs. t and Fv vs. t, for the same trajectory of this A = 100 statvolt, φ = π/4 case, but near

t = 0.

Figure 9: (a) Four curves of r vs. t are shown, one with A = 0, and three involving a

single CP plane wave of A = 100 statvolts acting on the orbiting particle, but with phases

φ = 1
4
π, 3

8
π, and 1

2
π between E and the initial velocity ż. (b) The initial region of Fig. 9(a),

near t = 0, is zoomed in on here, to shown how the A = 0 and A = 100 statvolt, φ = π/2

curves correspond. (c) Here the φ = 1
4
π curve in Fig. 9(a) is superimposed over the φ = 3

8
π

curve, by translating the two curves in time (not changing shapes, just displacing in time)

so that the first hump on the right to the transition point line up. As can be seen, after

this displacement, the two curves are nearly indistinguishable.

Figure 10: (a) r vs. t, where the electron is started in a circular orbit from three different

radii (r = 0.515 Å, 0.525 Å, and 0.535 Å), and where in each case the same CP plane wave

acts, with A = 100 statvolt, φ = 0, and with a frequency equal to the orbital frequency of

the electron in a circular orbit of radius 0.5 Å. Also shown are three other curves, with the

same orbital starting conditions, but with A = 0. (b) Here the center curve in Fig. 10(a) is

zoomed in on to reveal the resonance-like behavior that occurs when the electron gets near

the r = 0.5 Å.
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