Any object that cannot be superimposed on its mirror image is chiral. Chiral objects can be as big as spiral galaxies or as small as a double-helix DNA. There are also chiral biomolecules that have two handedness with similar chemical composition. Accurate detection of these biomolecules is essential in pharmaceutical industry. Enhancing chiral light-matter interactions through resonance effects has been at the center of my research [1]. In this regard, we proposed plasmonic Split Ring Resonators as 2D class of structures that could be sued to obtain much enhanced chiral optical signals in plasmonically enhanced circular dichroism (CD) experiments without introducing structure-induced CD signals [2]. In a subsequent work, we demonstrated that surface plasmon polaritons are capable of enhancing near-field optical chirality, if they are excited by a chiral near-field source [3]. This work was featured on the cover of ACS Photonics. Later, we demonstrated that chiral surface plasmon polaritons can exert opposite optical forces on chiral objects. This means that under the presence of such forces, two handedness of chiral entities will be pushed to opposite directions [4]. This can act as a work principle of purification of chiral biomolecules based on chiral optical forces. In a recent work, we extended the idea of chiral optical forces to photonic components such as silicon nanowires [5,6,7]. This is a significant step toward possible commercialization of chiral detection and purification schemes, as silicon structures are readily available and they are CMOS compatible.