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à Time-dependent Schrödinger equation

We have learned that the Schrödinger equation

H y j HxL = E j y j HxL

allows us to determine the physically acceptable wavefunctions, y jHxL , and their energy, E j , in terms 
of the number of loops in the wavefunction. The wavefunctions tell us the spatial distribution of the 
probability density,

r j HxL = y j HxL* y j HxL.

To learn about the temporal variation of wavefunctions and so of probability density, we need a more 
general time-dependent Schrödinger equation. (The equation we have been using until now is called 
the time-independent Schrödinger equation.) There are several such equations, but the one most 
helpful in applications to chemistry is

Â Ñ
∑

ÅÅÅÅÅÅÅÅ
∑ t

Y j Hx, tL = H Y j Hx, tL.

In this equation we use an upper case symbol, Y jHx, tL , for the time dependent wavefunction, to 
distinguish it from the spatial-only wavefunction, y jHxL .

A way to make sense out of the time-dependent Schrödinger equation is to take advantage of the very 
common circumstance that the hamiltonian operator, H , does not depend on time. This will be true 
provided the potential energy part of H  does not depend on time, and this is true for any isolated 
atom or molecule. 

The most important situation in which this is not the case is when light interacts with 
matter, since the oscillating electric (and magnetic) fields of light contribute a 
time-dependent part to the potential energy experienced by the atom or molecule, but we 
will see that this can be handled in terms of the solutions to the time-dependent 
Schrödinger equation that ignore this time-varying contribution.

Assuming, then, that the hamiltonian operator does not depend on time, we can separate the time and 
spatial variation of the wavefunction. The way we do this is to express the time-dependent 
wavefunction as a product of spatial and temporal parts,

Y j Hx, tL = y j HxL q j HtL.

When we substitute this into the time-dependent Schrödinger equation we can rearrange the equation 
as



Â Ñ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q j HtL

 
„ q j HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= E j.

Fill in the steps of this rearrangement.

This equation can be further rearranged to read

„ q j HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q j HtL
= -

Â E j
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

„ t,

In this form it is easy to integrate both sides from t = 0 to t  to get

ln 
lom
no

q j HtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q j H0L

|o}
~o

= -
Â E j
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ

 Ht - 0L.

and then exponentiating both sides, we get

q j HtL = q j H0L ‰-Â E j  têÑ .

This result means that, for a time-independent hamiltonian operator, the time-dependent 
wavefunction is

Y j Hx, tL = y j HxL q j H0L ‰-Â E j  têÑ.

The factor q jH0L  is usually assumed to have been absorbed into the wavefunction, so that we can 
write finally 

Y j Hx, tL = y j HxL ‰-Â E j  têÑ.

Show that if the spatial part of the time-dependent wavefunction, y jHxL , is normalized, 
then  the time-dependent wavefunction, Y jHx, tL , is normalized.

Show that the time-dependent wavefunction 

YHx, tL =
è!!!!!.4  y1HxL ‰-Â E1  têÑ +

è!!!!!.6  y2HxL ‰-Â E2  têÑ , 

expressed in terms of a combination if time-dependent normalized spatial eigenfunctions, 
y jHxL , is normalized.

This form of the time-dependent wavefunction is a very important result, for it means we can add 
time dependence to any eigenfunction of a time-independent hamiltonian operator simply by 
multiplying it by the factor ‰-Â E j  têÑ . 

Sign of the time phase factor

The negative sign in the time exponential traces to the stationary phase condition of wave motion, in 
the following sense. A mathematical wave of wavelength l and frequency n,

y = a sin 82 pHx ê l - n tL<,

 moves toward positive value of x  for increasing values of t .
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Show that this is true. Hint: Recall the stationary phase condition for determining the 
phase velocity of a wave.

Now, consider a "matter wave"

y = a ‰Â k x ‰-Â E têÑ = a ‰HÂêÑL Hp x-E tL,

where in the second equality we have used the fact that the wave has momentum eigenvalue p = Ñ k . 

Verify that this is so.

For positive values of momentum (particles moving toward positive x ), the phase factor p x - E t  is 
stationary for increasing x  when t  increases. That is, the negative sign in the time phase factor 
insures the correspondence between positive momentum and rightward motion.

Show that if the value of momentum is negative, than motion is toward negative x .

Effect of time phase factor on normalization

Because this factor has a squared modulus of 1,

‰-Â E j  têÑ ‰Â E j  têÑ = ‰-Â E j  têÑ+Â E j  têÑ = ‰0 = 1,

the presence of the time factor has no effect on the probability amplitude of any eigenfunction of H !

Show that this statement is true.

Show that the time-dependent wavefunction 

YHx, tL =
è!!!!!.4  y1HxL ‰-Â E1  têÑ +

è!!!!!.6  y2HxL ‰-Â E2  têÑ , 

expressed in terms of a combination of time-dependent normalized spatial eigenfunctions, 
y jHxL , is not an eigenfunction of H  unless E1 = E2 .

In our derivation of the time factor e-Â E têÑ  we assumed that the wavefunction was an eigenfunction 
of H , that is, an energy eigenstate. If this is not the case, namely, if the wavefunction is a 
superposition of wavefunctions of different energy, then we cannot assign a single overall time 
factor, since there is not a single value of E  to use; instead, we must assign time factors separately to 
each of the components of the superposition.

Show that the probability density is not independent of time for any wavefunction 
expressed as a linear combination of normalized eigenfunctions that have different 
eigenvalues. Hint: Use as example 

YHx, tL =
è!!!!!.4  y1HxL ‰-Â E1  têÑ +

è!!!!!.6  y2HxL ‰-Â E2  têÑ , 

and assume the spatial functions y jHxL  are normalized and that their eigenvalues are 
different. We will see that this behavior is the origin of  quantum motion, and so of all 
change.

This last question shows that unless a wavepacket is formed only from degenerate states (that is, ones 
with the same energy), the resulting probability density will oscillate in time. The frequency of the 
oscillations will be HE j - EkL ê h , that is, proportional to the energy differences of the states that 
compose the wavepacket.

Show that the total probability is independent of time for any wavefunction expressed as a 
linear combination of normalized eigenfunctions that have different eigenvalues. Hint: Use 
as example 
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YHx, tL =
è!!!!!.4  y1HxL ‰-Â E1  têÑ +

è!!!!!.6  y2HxL ‰-Â E2  têÑ , 

and assume the spatial functions y jHxL  are normalized and that their eigenvalues are 
different. 

This question shows that while a system evolves in time, it does so in a way that conserves its total 
probability.

Understanding the Planck-Einstein-Bohr analysis of spectra

Now, we know from the Planck-Einstein-Bohr analysis of spectra that the frequency of light that 
interacts with matter undergoing a change between states of energy E j  and Ek  is precisely this same 
value, HE j - EkL êh . We have mentioned that this dependence on energy differences is nonsensical 
from a classical point of view, that is, that it does not at all correspond to the classical picture of 
matter an electron in an atom, say, orbiting the nucleus with a particlar frequency.

Now, we can at last understand why light frequency should be related to matter energy differences: 
The matter energy differences tell us the freqencies at which the probability density of the matter is 
able to oscillate, and light-matter interaction occurs when the frequency of the oscillations of the 
electric field of the light match up with the frequencies of the oscillation of the probability density of 
the matter!

Time evolution and the Heisenberg uncertainty principle

Now that we know the way time evolution works, we can understand why large uncertainty in 
momentum means that a short time later we will not know where the particle will be.

In the analysis of wavepackets we have seen that to represent a localized particle, many different 
wavelengths—and so, many different momenta—need to be combined. That is, there is an inverse 
relationship,

dx d p ¥ Ñ ê 2.

between the rms deviation is position, dx , and the rms deviation in momentum, d p . This so-called 
Heisenberg uncertainty principle means that there is a fundamental limitation on how precisely we 
can localize a particle. If we are very precise in the localization, then there is a very large uncertainty 
in the momentum of the particle. 

If many different momenta contribute, then correspondingly many different energies contribute. This 
means that in turn many different energy differences will contribute to the probability density. Since 
the time evolution of probability density is proportional to the size of the energy differences in the 
time factors, a large range of energy differences means a correspondingly large range of time 
evolutions contributing to the probability density. The larger this range, the more rapidly the 
probability density will spread out, that is, the more rapidly the particle will be delocalized away 
from its point of initial localization.

Here we have considered the Heisenberg uncertainty principle as a consequence of wavepacket 
composition and evolution. In fact, it is more general, in that ultimately it is a consequence of the 
position-momentum commutation relation, x p - p x = Â h . This means that even for a single 
eigenstate of energy, the uncertainty product dx d p  must always be no smaller than Ñ ê 2.
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Why does it not make sense to apply this time-evolution analysis of the Heisenberg 
uncertainty principle to a wavepacket composed of degenerate states?

Why does it not make sense to apply this time-evolution analysis of  the Heisenberg 
uncertainty principle to a single eigenstate of energy?

Let's verify the Heisenberg uncertainty principle for the eigenstates of a particle of mass m  in a 
one-dimensional infinite potential well of dimension L . Recall that the rms deviation can be 
computed as 

dx =
"######################Xx2\ - Xx\2 ,

where X…\  denotes the mean of the enclosed quantity, that is, as the square root of difference 
between the mean of the squared scores and the square of the mean of the scores. Here are the 
expectation values for in terms of the number of loops in the wavefunction:

Xx\ = ‡
0

L
y jHxL x y jHxL „ x =

L
ÅÅÅÅÅÅ
2

,

Xx2\ = ‡
0

L
y jHxL x2 y jHxL „ x =

L2
ÅÅÅÅÅÅÅÅÅ
6

 ik
jj2 -

3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
j2 p2

y
{
zz,

Xp\ = ‡
0

L
y jHxL p y jHxL „ x = 0,

Xp2\ = ‡
0

L
y jHxL p2 y jHxL „ x =

j2 p2 Ñ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

L2 .

The general expression for the infinite well uncertainty product, in units of h , is

dx d p ê h =
è!!!!!!!!!!!!!!!!!!j2 p2 - 6
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4 p 
è!!!3

.

The Heisenberg uncertainty principle requires that this be no less than 1 ê H4 pL = 0.0796. The value 
for j = 1 is 0.0904 and the values for higher j  grow linearly. This shows that the Heisenberg 
uncertainty principle is satisfied.

Where there is life there is inevitable change

Perhaps the most profound consequence of the role of time in quantum mechanics is that in order for 
anything to happen, that is, in order for there to be any change, then that change must be ceaseless. 
The reason is that in order for a quantum system to change with time, it must correspond to a 
superposition of parts with different energies so that the probability density of the system evolves 
with time. But once a system is formed that has a any time evolution, this evolution must continue 
forever.

The only way to have a system that does not change is for all of its components to have the same 
energy. The only way this is possible is for the components to be degenerate. But since degenerate 
states have identical wave properties, any superposition of degenerate components will have 
constructive or destructive interference and so no localization.

Now, if by life we mean at the very least localized matter interacting with its environment, then 
quantum mechanics tell us that life requires superposition of non-degenerate (due to interactions with 
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the world) components and so ceaseless change. Thus, change is an inevitable consequence of life 
itself.

à   Time evolution of expectation values and conservation laws

The presence of the time-dependent component of the wavefunction also does not affect expectation 
values, provided the operator does not depend on time. This is the origin of energy conservation in 
isolated quantum systems experiencing only time-independent interactions.

Show that the expectation value of H  for the time-dependent wavefunction y jHxL ‰-Â E j  têÑ  
is the same as that for its normalized spatial component y jHxL .

Show that the expectation value of H  for the time-dependent wavefunction 

YHx, tL =
è!!!!!.4  y1HxL ‰-Â E1  têÑ +

è!!!!!.6  y2HxL ‰-Â E2  têÑ , 

expressed in terms of a combination if time-dependent normalized spatial eigenfunctions, 
y jHxL , is the same as that for the corresponding time-independent wavefunction 

YHx, 0L =
è!!!!!.4  y1HxL +

è!!!!!.6  y2HxL .

The time independence of the energy of an isolated system (one whose hamiltonian operator is 
independent of time) is the origin of energy conservation in quantum mechanics. More generally, 
expectation values of operators other than the hamiltonian may change with time. It turns out that 
whether an expectation value of an operator Q  depends on time is determined by the value of its 
commutator with the hamiltonian operator. The general expression is

„ XQ\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= -Â X@Q, HD\ êÑ.

where we have used the commutator abbreviation

@Q, HD = Q H - H Q.

You can confirm this relation by writing XQ\ = Ÿ YHx, tL* Q YHx, tL „ x , etc., carrying out the 
time differentiation, using the assumed time independence of H , and using the 
time-dependent Schrödinger equation.

The simplest example is

„ XH\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= Â X@H , HD\ êÑ = 0

since H  commutes with itself,

@H , HD = H H - H H .

A more interesting example is that the time dependence of the expectation value of momentum is

„ Xp\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= Â X@p, HD\ êÑ = -X„ V ê „ x\

Confirm this relation by evaluating the commutator @p, HD  for the hamiltonian operator 
H = -HÑ2 ê 2 mL „2 ê „ x2 + V HxL

In classical physics the negative of the gradient of the potential is the force experienced by a particle, 
and force in turn is equal to the time variation of momentum, 
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-
„ V
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ x

= F = m a = m 
„ v
ÅÅÅÅÅÅÅÅÅÅ
„ t

=
„ Hm vL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
=

„ p
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

.

The time-dependence of the expectation value of momentum, 

„ Xp\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= XF\ = -X„ V ê „ x\.

mirrors the classical result, provided we interpret classical quantities as corresponding to quantal 
expectation values (that is, as values averaged over the probability distribution of the quantum 
system).
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