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We have seen that the three-dimensional wave function for a one-electron atom can be expressed as 

y j m Hr, q, fL = R j Z  HrL Y  (q, f ) =
1
ÅÅÅÅÅ
r

 P j Z  HrL Y  (q, f) ,

where the radial variation of the wave function is given by radial wave functions, R j Z , or 
alternatively by the shell amplitude P j Z , and the angular variation of the amplitude is given by the 
spherical harmonics, Y m . These three-dimensional wave functions are called one-electron orbitals.

The spatial distribution of orbitals are the foundation of not only the periodic properties of the 
elements but also of chemical bonding. For this reason it is very useful to understand the distribution 
in three dimensions of the orbtials of an electron in a one-electron atom. The first step in doing this is 
to become familiar with the qualitative features of the radial wave functions, shell amplitudes, and 
shell densities.

à Shell amplitudes

The shell amplitudes are determined by the Schrödinger equation

„2 P j Z  (r)
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ r2 = curvature of P j Z at r = -tZ HrL µ P j Z HrL  

where the kinetic energy

t Z HrL = e - veff , ,  HrL  

is defined in terms of the effective potential energy

veff ,Z  HrL =
 H + 1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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Here length is in bohr and energy is in rydbergs. Recall that because of the relation n = j + , the 
shell amplitude P j Z  and radial wave function R j Z  are usually written instead in terms of the 
principal quantum number, as Pn  and Rn , with the additional understanding that the atomic number 
Z  is not written explicitly. We'll use this notation here.



A general property of the shell amplitude  Pn  (r)  is that for r ` 1, it is proportional to r +1  (and so 
the radial wave function, Rn = Pn ê r , is proportional to r ). This means that for = 0 the shell 
amplitude leaves the origin as r and so with zero curvature; for all other values or , the shell 
amplitude leaves the origin with curving away from the zero line. This different behavior is due to 
the fact that for = 0 there is no forbidden region near the nucleus, where as for all other values of  
there is a forbidden region near the nucleus and so the shell amplitude must curve away from the zero 
line there.

Using the behavior of the shell amplitudes Pn  (r)  for r ` 1, we can sketch the qualitative features 
of each possible shell amplitude in the potential energy curve for each value of the orbital momentum 
quantum number, .

Analytic expressions are available for the shell amplitudes Pn  (r) . It is very instructive to compare 
such sketches with the exact shell amplitudes. The exact shell amplitudes given by the following 
Mathematica function.
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The leading factor shows the r +1  dependence at small values of r. The exponential decay in the 
outer forbidden region is shown explicitly. Finally, the Mathematica function LaguerreL, known 
as the Laguerre polynomial, gives the oscillating part of the shell amplitude.

à Classical turning points

We have learned that wave functions have an inflection point at each classical turning point—the 
boundary between allowed and forbidden regions—since the curvature vanishes there. In sketching 
and analyzing shell amplitudes Pn  (r)  the locations of the classical turning points are important 
guides. Here is how to determine these locations.

At classical turning points the kinetic energy vanishes and so the total energy is entirely potential 
energy. We can use this condition to get general expressions for the positions of the classical turning 
points.

Show that the inner and outer classical turning points are given by the following 
expressions.

9 n In −
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!n2 − H1 + L M

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Z

,
n In +

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!n2 − H1 + L M
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Z
=

For example, here are the classical turning points for an electron in the hydrogen atom, with n = 4 
and = 0, 1, 2, and 3.

n ρinner ρouter

4 0 0. 32.
4 1 1.03337 30.9666
4 2 3.35089 28.6491
4 3 8. 24.

The inner forbidden regions grows with , since the centrifugal repulsion is increasing; for = 0, 
however, there is no inner forbidden region, since there is no repulsive term in the potential energy. 
The outer forbidden region starts at smaller distances as  increases, since for a given n  the total 
energy is fixed, and so the residual effect of centrifugal repulsion raises the potential energy curve in 
the outer region.
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As another example, here are the classical turning points for an electron in the hydrogen atom, with 
= 1 and n = 2, 3 and 4.

n ρinner ρouter

2 1 1.17157 6.82843
3 1 1.06275 16.9373
4 1 1.03337 30.9666

Now, since  is fixed but the energy is increasing, for increased total energy the inner forbidden 
region decreases in size and the start of the outer forbidden region occurs at larger distances.

In the shell amplitude plots to follow, these effects on the classical turning points are seen in changes 
in the location of the inflection point in the first and last loops of the shell amplitudes. To help see 
the details of the plots, we'll use the following colors to distinguish different functions in the same 
plot.

à Lowest energy hydrogen shell amplitudes and shell densities for 
different 

Here are the classical turning points for the lowest energy shell amplitudes for = 0, 1, 2, and 3.

n ρinner ρouter

1 0 0. 2.
2 1 1.17157 6.82843
3 2 3.80385 14.1962
4 3 8. 24.

Here are the lowest energy shell amplitudes for = 0 HblackL, 1 HredL, 2 HgreenL, and 3 HblueL .

5 10 15 20 25 30
r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pn

Since each shell amplitude is the lowest energy solution for the corresponding potential curve, each 
shell amplitude has a single loop. The vertical line extending downward from each shell amplitude 
marks the corresponding outer classical turning point. The total energy of these lowest energy 
solutions increases with .

n ε
1 0 −1.
2 1 −0.25
3 2 −0.111111
4 3 −0.0625

This means that in the outer forbidden region the negative kinetic energy is getting smaller, since 
each potential energy converges to the same value, 0, at very large distances from the nucleus. The 
lowered negative kinetic energy means that the shell amplitude in the forbidden region decays to zero 
over a larger and larger distance. The combined effect of the outer classical turning points moving 
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outward, due to increasing total energy, and the decay requiring greater distance in the outer 
forbidden region, due to decreased negative kinetic energy there, means that an electron in the lowest 
energy state for a given orbital momentum extends farther out into the space surrounding the nucleus 
for increased total energy and orbital momentum.

Here are the same shell amplitudes near the nucleus.
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The vertical line extending downward from each shell amplitude (except for = 0) marks the 
corresponding inner classical turning point; there is no inner forbidden region and so no inner 
classical turning point for = 0. The inner forbidden region grows with increasing , due to the 
increasing centrifugal repulsion, with the result that as  increases the shell amplitude is smaller and 
smaller near the nucleus; its centrifugal motion keeps the electron away from the nucleus. Only an s  
( = 0) electron has appreciable amplitude near the nucleus, since only an s  electron experiences no 
centrifugal repulsion.

Here are the corresponding shell densities, » Pn HrL »2 .
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The vertical lines extending downward from each shell density mark the maximum shell density. 
These maximum correspond to the radii predicted by the Bohr model,

n Bohr ρ
1 1
2 4
3 9
4 16

In the Bohr model, the electron is assumed to be only at the single distance for a given total energy. 
We see now that instead, for each total energy, the electron may be found over a range of distances 
from the nucleus to the outer reaches of the atom.

Further, in the Bohr model, the allowed energies corresponded to circular orbits at distance from the 
nucleus such that the orbit circumference could fit an integer number of de Broglie waves. We see 
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now that instead the allowed energies correspond to those values that give radial probability 
amplitudes (rather than the circular probability amplitudes implied by the Bohr model) that converge 
to zero in the forbidden regions.

It is very important, now that we see this more accurate picture, to no longer think in terms of the 
Bohr-de Broglie circular orbits. The Bohr-de Broglie approach was helpful in getting us to the more 
accurate picture, but now that we have this more accurate picture, we can leave the Bohr–de Broglie 
picture behind.

à Lowest energy = 0 shell amplitudes for different Z

Here are the classical turning points for the lowest energy shell amplitudes for = 0 for H, He+ , and 
Li2+ .

Z ρinner ρouter

1 0. 2.
2 0. 1.
3 0. 0.666667

The effective potential,

Veff ,Z  HrL =
 H + 1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 -

2 Z
ÅÅÅÅÅÅÅÅÅÅÅ

r
   

becomes deeper and narrower for increased nuclear charge, Z , because of the increased nuclear 
attraction. Since = 0, there is no centrifugal repulsion and so no inner classical turning point. 

Here are the lowest energy = 0shell amplitudes for H (black), He+  (red), and Li2+  (green).

1 2 3 4 5
r

0.2

0.4

0.6

0.8

1

1.2

Pn

The vertical line extending downward from each shell amplitude marks the corresponding outer 
allowed-forbidden region boundary. The increased nuclear attraction shifts the turning point to 
smaller distances for larger nuclear charge. The increased nuclear attraction also lowers the total 
energy,

Z ε
1 −1
2 −4
3 −9

This means that as nuclear charge increases the potential energy rises more steeply at the outer 
classical turning point. This in turn means the shell amplitude must decay more rapidly in the 
forbidden region as nuclear charge increases.

Here are the corresponding shell densities, » Pn HrL »2 .
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The vertical lines extending downward from each shell density mark the maximum shell density. 
These maximum correspond to the radii predicted by the Bohr model,

Z Bohr ρ
1 1

2 1cccc2
3 1cccc3

We see that the lowest energy state of a one-electron atom shrinks as nuclear charge increases. We 
see also, once again, that the Bohr picture of an electron being at only the one distance from the 
nucleus is replaced by the electron distributed throughout space around the nucleus.

à Hydrogen = 0 shell amplitudes and shell densities for different 
levels of excitation

Here are the classical turning points for the four lowest energy hydrogen shell amplitudes for = 0.

n ρinner ρouter

1 0 0. 2.
2 0 0. 8.
3 0 0. 18.
4 0 0. 32.

As we have seen, there is no inner turning point, since = 0 and so there is no centrifugal repulsion. 
The outer turning point is increasing since the total energy is increasing.

n ε
1 0 −1.
2 0 −0.25
3 0 −0.111111
4 0 −0.0625

Here are the lowest energy shell amplitudes for n = 1 HblackL, 2 HredL, 24 HgreenL, and 4 HblueL .
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The lowest energy shell amplitude has one loop, the next lowest has two loops, etc. The vertical line 
extending downward from each shell amplitude marks the corresponding outer classical turning 
point. 

n ε
1 0 −1.
2 0 −0.25
3 0 −0.111111
4 0 −0.0625

As the total energy increases, in the outer forbidden region the negative kinetic energy is getting 
smaller. The lowered negative kinetic energy means that the shell amplitude in the forbidden region 
decays to zero over a larger and larger distance. The combined effect of the outer classical turning 
points moving outward, due to increasing total energy, and the decay requiring greater distance in the 
outer forbidden region, due to decreased negative kinetic energy there, means that an electron in 
successively higher energy states for a given orbital momentum extends farther out into the space 
surrounding the nucleus.

Here are the same shell amplitudes near the nucleus.
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Since there is no inner turning point, the shell amplitude leave the nucleus with non-positive 
curvature. Because near the nucleus the kinetic energy is so large, all of the functions have their first 
maximum at about the same place and, except for the lowest energy state, the first loops are all of 
nearly the same length. What is different, however, is the relative size of the loops: the higher the 
energy, the smaller the maximum of the initial loop.

Here are the corresponding shell densities, » Pn HrL »2 .
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The vertical lines extending downward from each shell density mark the radii predicted by the Bohr 
model,
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n Bohr ρ

1 1
2 4
3 9
4 16

We see that only for the lowest energy solution does the maximum in the shell density agree with the 
predicted radius of the Bohr model. It is a general result that the Bohr model predictions only work 
for the lowest energy shell amplitude for a given orbital momentum.

à Hydrogen shell amplitudes and shell densities at fixed total energy

Here are the classical turning points for hydrogen radial shell amplitudes and shell densities at fixed 
total energy e = -1 ê 16, for = 0, 1, 2, and 3.

n ρinner ρouter

4 0 0. 32.
4 1 1.03337 30.9666
4 2 3.35089 28.6491
4 3 8. 24.

Here are the shell amplitudes for = 0 HblackL, 1 HredL, 2 HgreenL, and 3 HblueLat total energy 
e = -1 ê 16.
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The vertical line extending downward from each shell amplitude marks the corresponding outer 
classical tuning point.

Here are the same shell amplitudes near the nucleus.
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The vertical line extending downward from each shell amplitude (except for = 0) marks the 
corresponding inner classical turning point; there is no inner forbidden region for = 0. We see that 
the inner forbidden region grows with increasing orbital momentum. This makes sense since the 
effect of increased centrifugal repulsion is greatest at close to the nucleus.

Here is the plot of the shell densities, » Pn »2 , for = 0 HblackL, 1 HredL, 2 HgreenL, and 3 HblueLat total 
energy e = -1 ê 16.
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Even though the total energy is the same for all four shell densities, the electron distribution is quite 
different. The higher the orbital momentum, the smaller the allowed region, since the fixed total 
energy means that the total energy is closer to the bottom of the corresponding potential curve, 
where the allowed region is smallest.

Here are the shell densities close to the nucleus.
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What is important to note is that the penetration of the electron into region near the nucleus is 
inversely proportional to the orbital momentum; the penetration is greatest for = 0 (black) and least 
for = 3 (blue). As orbital momentum increases, the increased centrifugal repulsion pushes the 
electron out from the center of the atom. We will see that this behavior, through its consequences for 
electrical shielding of the nuclear charge, will have profound effects on the structure of many 
electron atoms. Indeed, this behavior, together with the consequences of the antisymmetry 
requirement of many-electron shell amplitudes, accounts for the entire structure of the periodic table.

à Radial loops

Here is a table of eigenvalues and number of loops for different values of the orbital momentum 
quantum number.
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n = j − ε s loops p loops d loops f loops
6 −Z2ê36 6 5 4 3
5 −Z2ê25 5 4 3 2
4 −Z2ê16 4 3 2 1
3 −Z2ê9 3 2 1
2 −Z2ê4 2 1
1 −Z2ê1 1

Eigenvalues, e, and number of loops, j , for different values of the orbital momentum quantum number, . The unit of energy is 
rydbergs and Z  is the atomic number of the one-electron atom.

The table shows that, as we have learned from the study of the curvature form of the Schrödinger 
equation, the lowest energy solution for each orbital momentum always has one loop, the next lowest 
has two loops, etc. It also shows, however, that the energy of the lowest solution is different for 
different orbital momenta. In particular the lowest energy state with orbital momentum quantum 
number  has energy quantum number n = + 1 and so energy -Z2 ê H + 1L2 .

à Study questions

Here are some questions to test your understanding. Keeping the effective potential energy curves in 
mind will be helpful in answering them.

Sketch the lowest energy hydrogen shell amplitude that has = 2. How many loops does it 
have? What is its energy, in units h c Ry?

Sketch the third lowest energy hydrogen shell amplitude that has = 0. How many loops 
does it have? What is its energy, in units of h c Ry?

Which hydrogen shell amplitude has the largest outer classical turning point: 
3 s, 3 p, or 3 d ?

Which hydrogen shell amplitude has the greatest amplitude near the nucleus: 
4 s, 4 p, 4 d, or 4 f ?

Which shell amplitude has the largest outer classical turning point: H(1 s), He+ (1 s), or 
Li2+ (1 s)?

A hydrogen wave function has two loops and it has energy - 1 ê 16. What is the value of 
the orbital momentum quantum number?
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