
Molecular structure: Separating electronic and 
nuclear motion
Notes on Quantum Mechanics

http://quantum.bu.edu/notes/QuantumMechanics/MolecularStructure.pdf
Last updated Tuesday, November 22, 2005 13:03:05-05:00

Copyright © 2005 Dan Dill (dan@bu.edu)
Department of Chemistry, Boston University, Boston MA 02215

While electrons are very much lighter than nuclei, both experience comparable (Coulombic) potential 
energies. 

Calculate the potential energy, in eV, of two protons separated by 1 Þ.

Calculate the potential energy, in eV, of an electron and a proton separated by 1 Þ.

The result is that electrons move much faster than nuclei. This in turn means that the characteristic 
frequencies of electronic motion are much higher than those of nuclear (vibrational and rotational) 
motion, and so electronic spectroscopic transitions occur in more energetic regions of the spectrum 
(visible, UV, and X-ray) than do vibrational (IR) and rotational (microwave) spectroscopic 
transitions.

The way to develop this idea quantitatively is to use the large mass difference between electrons and 
nuclei to try to treat their motion separately. It turns out that this can be done using two key ideas, 
known as the adiabatic approximation and the Born-Oppenheimer approximation. The result is 
separate Schrödinger equations for the electronic and the nuclear motion.

à Adiabatic approximation

The mathematical implementation of the separation of electronic and nuclear motion proceeds in two 
steps. The first step is known as the adiabatic approximation.

We start with the full molecular hamiltonian, which we can write schematically as 
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In this expression n labels the nuclei and e labels the electrons; r and R denote the collection of 
electronic and nuclear coordinates, respectively; the operators “2 are the sums of second derivatives 
of the corresponding coordinates; and V HR, rL is the potential energy function for the attraction of 
each electron to each nucleus, the repulsion of each electron by all of the other electrons, and the 
repulsion of each nucleus by all of the other nuclei.

Write down the expression for H  for hydrogen molecule. Label the nuclei a and b and 
label the electrons 1 and 2.

In the limit that the nuclei in a molecule are far heavier than the electrons, that is, when m ê Mn º 0, 
the nuclear kinetic energy is negligible compared to the electronic kinetic energy and the potential 
energy,
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This infinite nuclear mass hamiltonian, H¶, describes electronic motion with respect to a fixed 
nuclear framework. Such a description of electronic motion will be the more exact the closer the 
value of  m ê Mn is to zero.

For each possible set of nuclear positions, R, we can solve the infinite mass Schrödinger equation,

H¶ yiHR, rL = EiHRL yiHR, rL.

In this equation the eigenfunctions yiHR, rL and eigenvalues EiHRL of H¶ will depend on the nuclear 
coordinates R parametrically. The reason is that the potential energy V HR, rL is different for different 
sets R of nuclear positions. This parametric dependence amounts to saying that the nuclei remain at 
fixed positions R and that the electronic motion takes place in the potential V HR, rL corresponding to 
this fixed nuclear framework. For a given R we obtain the set of eigenvalues E1HRL, E2HRL, …, where 
the subscripts 1, 2, …, denotes the set of electronic quantum numbers. For a particular eigenvalue, 
say EkHRL, we can vary the nuclear framework and thereby obtain a potential energy surface Ek on 
which the nuclear motion takes place. 

To see this, we express a solution Y HR, rL to the full molecular Schrödinger equation

H Y HR, rL = Y HR, rL,

with total energy , in terms of the electronic eigenfunctions as

Y HR, rL = ‚
i

yiHR, rL fiHRL.

It is crucial to appreciate that in this expansion the expansion coefficients are functions of the nuclear 
coordinates,

fiHRL = ‡ yiHR, rL* Y HR, rL „ r.

The reason this is so is that the electronic eigenfunctions form a complete set,

dHr - r 'L = ‚
j

y jHR, rL y j
*HR, r 'L.

for each nuclear geometry R.

Because of the completeness of the electronic eigenfunctions yiHR, rL for each nuclear geometry and 
dependence of the expansion coefficients fiHRL on nuclear geometry, the expansion of the full 
molecular wave function Y HR, rL is exact. We can generate a linear system for the expansion 
coefficients fiHRL using the method we have learned. The result will be a linear system for each 
nuclear geometry R. 

The zeroth order approximation to the full molecular wave function is to replace the sum over 
electronic wave functions by a single term, 

Y HR, rL º yiHR, rL fiHRL.

This is called the adiabatic approximation. It amounts to neglecting the coupling between electronic 
states caused by nuclear motion.
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à Born-Oppenheimer approximation

Using the adiabatic approximation, we can approximate the full molecular Schrödinger equation

H Y HR, rL = Y HR, rL

as
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By multiplying both sides of the approximate full molecular Schrödinger equation by the complex 
conjugate of the electronic wave functions, we get a new Schrödinger equation for the coefficients, 
fiHRL, of the expansion of the full molecular wave function,
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Carry out the steps that result in this equation.

This Schrödinger equation is the analogue of the linear systems we have derived previously. It is a 
single equation, diagonal in i, because of the adiabatic approximation, which, by including only a 
single term in the expansion of the full molecular wave function, Y HR, rL, disregards all off-diagonal 
couplings. 

This new Schrödinger equation is not algebraic, however, since the first term in brackets is a 
differential operator, “n

2, in the coordinates R. The difficulty with this operator is that it has a 
different form at every position R of the nuclear framework, because of the dependence of the 
electronic wave function yiHR, rL on the nuclear coordinates.

Since the nuclei are so much more massive than the electrons, it is reasonable to assume that the 
electronic wave function changes only very slowly as R changes. This assumption is the basis of the 
Born-Oppenheimer approximation which assumes this dependence on R is so weak that first and 
second derivatives of the electronic wave function with respect to R are negligibly small. With this 
assumption we can approximate the effect of the differential operator on the coefficients fiHRL as

J‡ yiHR, rL* “n
2 yiHR, rL „ rN fiHRL º J‡ yiHR, rL* yiHR, rL „ rN “n

2 fiHRL = “n
2 fiHRL.

Explain why the last step in this expression is justified.

Then the Schrödinger equation for the expansion coefficients fiHRL becomes
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This equation means that the expansion coefficients can be interpreted as the wave functions of 
nuclear motion taking place on the potential surface EiHRL.
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à Summary of the foundation equations of molecular structure

The net result of this analysis is that we determine electronic motion with respect to a fixed nuclear 
framework, by solving the electronic Schrödinger equation

H¶ yiHR, rL = EiHRL yiHR, rL,

using the infinite nuclear mass hamiltonian
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Then we use the adiabatic approximation (that nuclear motion does not couple different electronic 
states) to express the full molecular wave function as 

Y HR, rL º yiHR, rL fiHRL.

Using the Born-Oppenheimer approximation (that the electronic part of this wave function changes 
only very slowly as the nuclei move) the wave function of nuclear motion is determined by solving 
the nuclear Schrödinger equation
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The key feature of this equation is the dependence of the electronic eigenvalue, EiHRL, on nuclear 
coordinates provide a potential energy for motion of the nuclei.

These four equations form the foundation of the quantum aspects of molecular structure and 
spectroscopy.
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