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"All beginnings are obscure."
Hermann Weyl, Space-Time-Matter
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Based on the Rutherford model of the atom, it is reasonable to think that the structure of atoms is just 
a miniature solar system. Indeed, this was the what was thought to be the case in the early part of this 
century. However, this is not at all the case. When we descend into the interior of individual atoms, 
we enter a truly bizarre world where all of the ideas we are familiar with from our everyday 
experience simply don't apply. 

It is natural for us to interpret the atomic world in terms of our own world—natural, but wrong. You 
will probably find it very difficult to accept the atomic world for what it evidently is. That has 
certainly been my experience. 

The branch of knowledge dealing with atoms is called quantum mechanics. The quantum aspect of 
the physical world dawned on human consciousness as the culmination of efforts to understand four 
key phenomena: first, the how the brightness of light that is in thermal equilibrium with matter 



(sunlight, light from the hot coils of a toaster, the "light" from a warm hand are some 
examples)—so-called blackbody radiation—changes with the frequency ("color") of the light; 
second, how the speed of electrons ejected from the surface of a metal depends only on the frequency 
of the light but not on its brightness, the so-called photoelectric effect; third, how it can be that 
electrons in atoms give off light of only certain frequencies, rather than a continuous range of 
frequencies, the so-called spectra of atoms; and, fourth, why atoms with different numbers of 
electrons have different chemical properties as embodied in the periodic table, the so-called shell 
structure of atoms.

There are many other phenomena that illustrate the quantum nature of physical reality, but these 
four—blackbody radiation, photoelectric effect, the colors in atomic spectra, and the shell structure 
of many-electron atoms—contain all of the essential aspect of the quantum world.

Properties of waves

To understand the quantum world, we are going to need to use the mathematics of waves, and so let's 
begin there.

A wave is the oscillatory variation of some property with time at a given, fixed point in space. 
Examples are 

Wave Property
water height of water
sound density of air
light electric field
chemical concentration

à Representing wave properties mathematically

Waves can be expressed mathematically in terms of sine curves. To keep things as simple as 
possible, let's assume we have a wave only along one direction, which we call x . Now, unless we are 
dealing with a standing wave, waves move. If we look at the wave at a particular instant in time, it is 
a sine curve. If we look at it a moment „ t  later in time, it is still a sine curve, but the whole curve has 
shifted by an amount „ x . 

It is probably not immediately obvious, but the way such a sine wave changes with position and time 
can be expressed as 

y = a sin 82 pHx ê l - n tL<

The numerical value of this expression—the value of the physical property, such as the height of the 
water in a water wave—is called the amplitude (often represented by the Greek letter y). 

To understand this expression, let's first set the time t equal to zero, so we have

y = a sinH2 p x ê lL

We know that the value of a sine function is the same every time its argument (which is called its 
phase) changes by 2 p . The phase changes because x  changes. If x  changes by the amount l, the 
phase changes by 2 p . Therefore, l is called the wavelength (represented by the Greek letter l). The 
wavelength is the distance between two similar points, such as two successive peaks.
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Next, we can understand the effect of time by instead setting the position x  equal to zero, which 
corresponds to looking at the wave as its moves by a fixed position. Then we have

y = a sinH2 p n tL

This shows that when time changes by the amount 1 ê n , the phase again changes by 2 p ; that is, one 
wave cycle moves past a fixed point in time 1 ê n . The number of cycles (of spatial length l) which 
pass by per second which is the reciprocal of the time required for one cycle to pass by. This is called 
the frequency

n = 1 ê H1 ê nL

of the wave (represented by the Greek letter n. The frequency is commonly measured in Hertz 
(abbreviated Hz), which are inverse seconds, s-1 .

Finally, we can see the effect of changing both x  and . The way we follow the motion of a wave is to 
identify a point on the wave, say a particular crest, and then to see how far it moves in a certain time. 
Mathematically, choosing a point on the wave means choosing a value for the phase, 

2 pHx ê l - n tL .

This is so because the value of the phase determines the value of the amplitude of the wave at a 
particular place x  and time t . This means that if a point on the wave at position x1  and time t1  moves 
to the position x2  at time t2 , then the corresponding phases are equal 

2 pHx1 ê l - n t1L = 2 pHx2 ê l - n t2L .

This important equality is called the stationary phase condition. We can rearrange this equation to 
find the relation 

Hx2 - x1L ê Ht2 - t1L = n l .

This ratio of the distance moved,

„ x = x2 - x1 .

divided by the time required

„ t = t2 - t1 .

is the speed that the wave moves. This speed is called the phase velocity of the wave. 

vf = „ x ê „ t = n l .

Here is an illustration of these ideas. The figure shows the movement of a sine wave that takes place 
in 0.025 s.

Harbingers of the quantum world 3

Copyright © 2003 Dan Dill (dan@bu.edu). All rights reserved



0.2 0.4 0.6 0.8 1 1.2
x HMetersL

-1

-0.5

0.5

1

y

Movement of a wave. The thin curve is the wave at an initial time, t1.  The thick curve is at a later time, t2 . The length of the arrow 
is the distance, „ x = x2 - x1 ,  the wave has moved in the elapsed time, „ t = t2 - t1 = 0.025 s. The point chosen to track the 
movement of the wave is arbitrary. The value of the phase, 2 pHx1 ê l - n t1L,  at the starting point is equal to the value of the phase, 
2 pHx2 ê l - n t2L,  at the ending point. The equality of these phases—the stationary phase condition—determines the phase velocity 
of the wave, „ x ê „ t = Hx2 - x1L ê Ht2 - t1L = n l.

See if you can determine from the information in the figure the values of the distance traveled, 
wavelength, phase velocity, and frequency of this wave. You may want to start by using a ruler to 
measure the distance traveled. The answers are

90.29 Meter, 1.2 Meter,
12. Meter
ccccccccccccccccccccccccccSecond ,

10.
cccccccccccccccccccSecond =

à Calculations with waves

Phase velocity is a characteristic of each kind of wave. We are going to be concerned especially with 
light waves. The velocity of light is a universal constant of Nature and is given the special symbol 
c. For light traveling in a vacuum, its speed (phase velocity) is

vφlight = c ;

299792458 Meter
cccccccccccccccccccccccccccccccccccccccccccc

Second

This means that for electromagnetic radiation of any frequency the product of its frequency and 
wavelength is always equal to vflight .

A nice example of this relation is to calculate the wavelength of the radio waves from the Boston 
University FM radio station WBUR, which transmits on a frequency of 90.9 MHz (1 Megahertz = 
106  Hz): 

λWBUR = cêH90.0 106 êSecondL;

3.33 Meter

or

10.9 Feet

Compare this value to red light, which has a wavelength of 

λred = 7.0 10−7 Meter;
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—ten million times smaller. This means that the frequency of red light is about ten million times 
higher. 

νred = cêλred ;

4.3×1014
ccccccccccccccccccccccccc
Second

What about light with wavelength about the size of an atom? 

λatomSize = 1.0 10−10 Meter;

The corresponding frequency is

νatomSize = cêλatomSize;

3.×1018
cccccccccccccccccccccc
Second

This corresponds to X-rays, and in fact we will see that X-rays are generated by events on the atomic 
scale. 

Here is an example using sound waves . The speed of sound in dry air at 20°C is 

νφsound = 343.5 MeterêSecond;

and the frequency of the sound from the middle C note on a piano is 

νmiddleC = 261.6êSecond;

Calculate the wavelength of the sound and the time it will take to travel 

Åx = 30.0 Meter;

across a concert hall. (Oxtoby and Nachtrieb, 2e, problem 13.7.)

From the phase velocity expression, the wavelength is

λmiddleC = νφsound êνmiddleC

1.31307 Meter

This sound wave travels the specified distance in

t = Åxêνφsound;

0.0873 Second

Blackbody radiation

A blackbody is any object which is in thermal equilibrium with light. The reason it is called "black'' 
is because the object must not have any intrinsic color, for if it did, then the equilibrium would be 
distorted. 

We can learn about blackbody radiation by studying its spectrum, how much light there is as a 
function of frequency. We can express the amount of light in terms of what is called its energy 
density, Un , the energy of the light in a small range of frequencies near a particular frequency n and 
in a small volume. The energy density has several characteristics. 
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   †  continuity: There is light at all frequencies, from the very lowest to the very 
highest. 

   †  shape: At low frequencies the energy density increases with the square of the 
frequency, UnHlow nL Ø n2.  At high frequencies the energy density decreases 
exponentially, UnHhigh nL Ø ‰-a n, so that at very high frequencies there is 
negligible light energy. These limiting behaviors determine the overall shape of the 
spectrum, as shown in the plot of n2 ‰-n.
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n
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Qualitative shape,  n2  ‰-n,  of the energy density of light in thermal equilibrium with matter—blackbody radiation.

The rise at low frequencies and the fall at high frequencies leads to a maximum at a 
particular frequency, nmax.

   †  The maximum frequency increases linearly with temperature, nmax ∂ T .  This is 
why, for example, the color of a toaster coil, which is approximately a blackbody, 
changes from dull red, to red, to yellowish red as the coil gets hotter. This relation 
is known as the Wien displacement law. It means that if we know the maximum 
frequency at one temperature, T1,  we can compute the maximum at any other 
temperature,  T2,  as n2 = v1HT2 êT1L.

   †  total energy: The total energy in a given volume of the light at all frequencies 
increases with the fourth power of the temperature, Utotal ∂ T4.

All of this was well known at the end of the last century. The problem was that scientists were unable 
to explain why the spectrum had a maximum. 

à Rayleigh-Jeans law

Rayleigh and Jeans were able to understand the low-frequency part of the spectrum. They expressed 
the energy density as the product 

Un = Nn Eavg

of the number Nn  of different ways a light wave at frequency nu could be constructed in a small 
volume and the average energy Eavg  of each of those oscillation modes. Rayleigh and Jeans derived 
that Nn = 8 p n2 ê c3,  that is, that Nn  is proportional to n2.They then assumed that each oscillation 
mode had an average energy kB T  (kB,  known as Boltzmann's constant, is the gas constant R  divided 
by Avogadro's number, N0 ), so that 
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Un ∂ n2 T  (Rayleigh-Jeans law)

This result accounted exactly for the low frequency part of the spectrum, including its change with 
temperature. However, it says that the intensity will rise without limit as frequency increases. This 
means that there will be no maximum, and therefore that the total energy will be infinite, and result 
known as the ultraviolet catastrophe. Both of these problems were solved by Planck. 

à Thermal equilibrium

To understand Planck's approach, we need to understand what is meant by the thermal equilibrium 
between light and matter that is the key feature of blackbody radiation. At a given temperature, the 
total energy per unit volume (that is, the energy per unit volume summed up over all frequencies) is 
constant. Now, this energy must be apportioned among the different frequencies of light that make 
up the blackbody spectrum. It turns out that this apportionment always takes the same form, known 
as the Boltzmann distribution. This distribution is such that the fraction of the total energy above a 
particular energy E  is proportional to ‰-EêkB  T . In other words, a thermal distribution of energies 
decreases exponentially with energy. 

à The quantum hypothesis

Planck reasoned that the source of the problems with the Rayleigh-Jeans theory was its assumption 
that each oscillation mode could store the same average energy, Eavg = kB T ,  at a given temperature 
independently of its frequency n . Rayleigh and Jeans derived this average energy by assuming that a 
given mode could have any energy at all, independently of its frequency, and then averaging over the 
Boltzmann distribution of energies. 

Planck instead introduced the idea that energy is stored in light irreducible units of size hn, 
proportional to the frequency of the light, n. That is, Planck proposed that each mode could store 
energy only in multiples of an amount proportional to its frequency, En = j h n , where j = 0, 1, 2, ….

The units today are called quanta of energy or, more commonly,  photons. It is important to 
understand that Planck's quanta are units of energy, and not physical, particle-like entities. In a 
classical (the term used to mean non-quantum) picture, the energy of light is determined by the 
magnitude of the oscillating electric field that is light. Changes in the energy of the light amount to 
changes in the magnitude of the oscillating electric field. What Planck discovered is that these 
changes cannot be made in arbitrary increments. Rather, they can only be made in multiples of the 
quantum hn. The constant of proportionality, h, known today as Planck's constant is so small,

6.62607×10−34 Joule Second

that the discontinuous amounts by which the energy of light can be changed are typically so small as 
to go undetected. For example, visible light has frequency of about

and the Planck quantum ("photon") is

visiblePhoton = PlanckConstant νvisible;

H7.×10−20L Joule

By comparison, the amount of energy a 60 Watt light bulb gives off as visible light each second is

60 Joule
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so that the Planck quantum is truly tiny.

At everyday frequencies, Planck quanta are such a tiny amount of energy that it is hard to imagine 
that the restriction that the energy of light may change only in such discrete chunks could make any 
difference at all. Nonetheless, the presence of these chunks of energy turns out to be the key to 
understanding light in equilibrium with matter. In particular, for very much higher frequencies, in the 
far-UV, X-ray, and g-ray regions of the spectrum, the quantum becomes very much larger. It was in 
just these high frequency regions that Planck's quantum hypothesis was essential to account for 
experimental observations.

Here is why Planck proposed these chunks. He reasoned that by making the energy stored in each 
oscillation mode be proportional to the frequency, then there would only be a very small number of 
high-frequency modes present at thermal equilibrium. That is, he used the exponential, high-energy 
drop-off of the Boltzmann distribution to overcome the quadratic rise of the Rayleigh-Jeans number 
density. 

According to Planck's hypothesis, at a particular frequency, the energy is always in chunks h n . The 
total energy at a particular frequency (strictly, within a small range of frequencies near a particular 
frequency) is determined by how many chunks h n  there are. Now, as n  becomes very large, each 
single chunk becomes very large. Since the total energy, taking into account the total number of 
chunks at each frequency is fixed, this means only a very few, very large chunks can occur, for 
otherwise there wouldn't be enough energy left over to occur as the smaller chunks. 

A money analogy might help us understand the apportioning of numbers of chunks at different 
frequencies. Assume we have a number of people with different annual incomes, that the total annual 
income (total energy) is fixed, and that the distribution of those incomes mirrors the Planck energy 
density distribution. This means that only a very small fraction of people can have very high 
incomes, for otherwise there would not be enough money left over for everyone else. Planck's 
hypothesis, that light energy comes in chunks that increase in size with frequency, together with the 
idea that at a given temperature there is only so much energy to go around (this is the thermal 
equilibrium bit), is what leads to the exponential fall off at high frequency—not enough energy to 
excite (fund) the high frequencies (high incomes).

à Planck law

 Here are some details of Planck's analysis. When he averaged i h n  over the Boltzmann distribution, 
he obtained 

Eavg = h n ë I‰ h nÅÅÅÅÅÅÅÅÅÅÅÅÅkB  T - 1M

At low frequencies, when h n ` kB T ,  that is, when the size of the Planck quantum (another name for 
the photon) is small compared to the classical average energy, this expression becomes 

EavgHlow nL = h n ê H1 + h n ê kB T + … - 1L > kB T ,

that is, just the Rayleigh-Jeans result. But at high frequencies, when h n p kB T ,  that is, when the 
size of the Planck quantum is large compared to the classical average energy , the average energy 
becomes

EavgHlow nL = h n ë ‰
h nÅÅÅÅÅÅÅÅÅÅÅÅÅkB  T > h n ‰

h nÅÅÅÅÅÅÅÅÅÅÅÅÅkB  T ,

This is just the observed high-frequency drop-off. In this way Planck was able to exactly reproduce 
the observed blackbody spectrum. The Planck energy density is
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Un = Nn Eavg =
8 p n2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c3  h n ë I‰ h nÅÅÅÅÅÅÅÅÅÅÅÅÅkB  T - 1M

Planck's discovery of this formula was the very start of our understanding of the quantum world.

à Blackbody examples

To see how the blackbody spectrum looks and how it changes with temperature, let's explore it for 
four different temperatures, the temperature of freezing water, the temperature of our hands, of 
boiling water, of the coils of a toaster, and of the star Betelgeuse, and the Sun.

273 K Ice
310 K Human
373 K Boiling Water
873 K Toaster
3000 K The star Betelgeuse
5700 K The Sun

We'll do this in terms of an alternative way of representing the energy stored in thermally 
equilibrated light, namely in terms of its intensity per unit range of frequency, and its total intensity.

Intensity is the amount of energy flowing perpendicular to a square area in a given amount of time. A 
common unit of energy per unit time is the Watt, defined as one Joule per second per square meter. 
The conversion factor from energy density to intensity is the speed of light divided by 4, c ê 4. (The 
speed of light, c , is the rate at which the energy flows; the factor of 4 takes account of the fact that 
the energy is flowing in all directions and so only a portion of it is flowing in a particular direction.) 
The Planck intensity is therefore

In = Un c ê 4 =
2 p n2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c2  h n ë I‰ h nÅÅÅÅÅÅÅÅÅÅÅÅÅkB  T - 1M

The temperature of stars is determined in just this way, by matching its intensity as a function of 
frequency to the blackbody intensity formula.

The sum of the intensity over all possible frequencies, for 0 to ¶, is

2 π5 T4 kB4cccccccccccccccccccccccc
15 c2 h3

Substituting the values for the various constants, this intensity is

5.6704×10−8 T4 Watt
cccccccccccccccccccccccccccccccccccccccccccccccccccccc

Kelvin4 Meter2

where temperature is in units of Kelvin. The dependence on the fourth power of temperature means 
that a doubling of temperature of the blackbody results in sixteen times as much total intensity being 
radiated.

The frequency at which the intensity is greatest is

5.87893×1010 T
ccccccccccccccccccccccccccccccccccccccccc
Kelvin Second

This result shows that the position of the maximum is proportional to the temperature (the Wien 
displacement law). To help in analyzing results for specific temperatures, here are what frequencies 
and wavelengths correspond to the different regions of the spectrum.
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Spectral
Region

Typical ν

HSecond−1L
Typical λ

8MeterL
γ−rays 1.×1019 3.×10−11

X−rays 1.×1017 3.×10−9

UV 1.×1015 3.×10−7

Violet 7.5×1014 4.×10−7

Blue 6.7×1014 4.5×10−7

Green 6.×1014 5.×10−7

Yellow 5.×1014 6.×10−7

Red 4.3×1014 7.×10−7

IR 1.×1014 3.×10−6

Microwave 1.×1010 0.03
FM Radio 1.×108 3.
Short Wave 1.×107 30.
AM Radio 500000. 600.
Long radio waves 10000. 30000.

Here is what the intensity frequency distribution looks like for the temperature of freezing water, the 
human body, and boiling water.

1 µ 1013 2 µ 1013 3 µ 1013 4 µ 1013 5 µ 1013 6 µ 1013
n

5 µ 10-12

1 µ 10-11

1.5 µ 10-11

2 µ 10-11

2.5 µ 10-11

3 µ 10-11

I

Intensity per unit range of frequency (Watts Meter-2  Second-1 ) for temperatures 273 K (thin line, freezing water), 310 K (thick gray 
line, human body), and 373 K (thick black line, boiling water). The vertical lines mark nmax.

Here is what the intensity frequency distribution looks like for the coils of a toaster..

5 µ 1013 1 µ 1014 1.5 µ 1014 2 µ 1014
n

1 µ 10-10

2 µ 10-10

3 µ 10-10

4 µ 10-10

I

Intensity per unit range of frequency (Watts Meter-2  Second-1 ) for temperature 873 K (toaster coils). The vertical line marks nmax.

Here is what the intensity frequency distribution looks like for Betelgeuse and the Sun.
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2 µ 1014 4 µ 1014 6 µ 1014 8 µ 1014 1 µ 1015
n

2 µ 10-8

4 µ 10-8

6 µ 10-8

8 µ 10-8

1 µ 10-7

I

Intensity per unit range of frequency (Watts Meter-2  Second-1 ) for temperatures 3000 K ( thin line, the star Betelgeuse) and 5700 
K (thick line, the Sun). The vertical lines mark nmax.

The temperature of stars is determined in just this way, by matching its intensity as a function of 
frequency to the blackbody intensity formula.

The vertical lines on each of the plots mark nmax.

Here are the numerical values along with the total intensity for each of the example temperatures.

T HKL νmax H1014 s−1L total intensity
HKWêm2L region

273 0.16 0.315 Far IR
310 0.182 0.524 Far IR
373 0.219 1.1 Far IR
873 0.513 32.9 IR
3000 1.76 4590. Visible
5700 3.35 59900. Visible

Blackbody frequency at intensity maxima,and total intensities

The warmth we feel when we place our hands close to our face is their blackbody radiation in the Far 
IR region of the spectrum; I find it quite surprising that we give off thermal radiation at the total rate 
of 500 watts ê meter2.  Toaster coils have their maximum intensity in the IR region of the spectrum; 
the red color we see is due to the higher frequency tail of the Planck distribution that extends into the 
red-orange region of the visible spectrum. The Sun has its maximum intensity in the middle of the 
visible region of the spectrum. Note that the total intensity in the Sun's blackbody radiation is nearly 
60 megawatts per meter2;  this intensity falls of as the reciprocal of the squared distance so that at the 
surface of the Earth it is (thankfully for our existence) much, much less.

à Intensity versus wavelength

Sometimes the blackbody spectrum is studied as a function of wavelength, instead of frequency. The 
determination of the energy density and intensity versus wavelength from the corresponding 
quantities versus frequency is a little subtle. In particular, we cannot simply replace n everywhere 
with c ê l.  The reason is that the energy density per unit range of wavelength, Ul,  is related to the 
energy density per unit range of frequency by

Ul „ l = -Un „ n

and so, 
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Ul = -Un 
„ n
ÅÅÅÅÅÅÅÅÅÅÅ
„ l

The minus sign takes account of the fact that increasing wavelength („ l > 0) corresponds to 
decreasing frequency („ n < 0). The factor „ n ê „ l is the change on the frequency corresponding to a 
change in wavelength, in the limit that the wavelength change is tiny, divided by the tiny wavelength 
change, „l. Here is how to evaluate it.

„ n
ÅÅÅÅÅÅÅÅÅÅÅ
„ l

= 8nHat l + „ lL - nHat lL< ê „ l

= J c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l + „ l

-
c
ÅÅÅÅÅ
l

N í „ l

= J c l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHl + „ lL l -

cHl + „ lL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
lHl + „ lL N í „ l

= J c l - c l - c „ l
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2 - l „ l
N í „ l

= J -c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l2 - l „ l

N

= -
c

ÅÅÅÅÅÅÅÅ
l2

In the last step, we use the fact that we are interested in values „l that are tiny ("infinitesimally 
small") and so that the term l „ l  is negligible compared to l2 .  (This procedure illustrates a key idea 
of calculus, in which slopes—rise over run—are computed in the limit that the run is tiny.)

Using the expression for „ n ê „ l , we see that the two energy densities are related in a nonlinear way.

Ul = -Un 
„ n
ÅÅÅÅÅÅÅÅÅÅÅ
„ l

= Un 
c

ÅÅÅÅÅÅÅÅ
l2

A consequence is that they are not simply proportional, and in particular their maxima occur at 
different positions, that is, lmax ∫ c ê nmax.  The energy density versus wavelength is

Ul =
8 c h p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I‰ c hÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅkB  T l - 1M l5

 

The intensity wavelength distribution is

Il =
2 c2 h p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I‰ c hÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅkB  T l - 1M l5

 

The wavelength of the maximum energy density and intensity is

lmax =
0.00289777 Kelvin Meter
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T

Here is what the intensity wavelength distribution looks like for the temperature of freezing water, a 
human being, and boiling water.
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0.00001 0.00002 0.00003 0.00004
l

2 µ 107

4 µ 107

6 µ 107

8 µ 107

I

Intensity per unit range of wavelength HWatt Meter-2  Meter-1L  for temperatures 273 K (thin line, freezing water), 310 K (thick gray 
line, human body), and 373 K (thick black line, boiling water). The vertical lines mark lmax.

It is instructive to compare this plot to the earlier plot of the intensity frequency distributions for the 
same temperatures. Note that small wavelengths correspond to high frequencies in the earlier plots of 
the intensity frequency distributions, and that as temperature increases the wavelength of the 
maximum intensity decreases. The negligible intensity at very small wavelengths (compared to 
c h ê kB T ) traces to Planck's quanta becoming very large at these wavelengths.

Photoelectric effect

In the photoelectric effect electrons are ejected from a metal surface—a current is caused to 
flow—by shining light on the metal. Based on the wave properties of light, what might we expect to 
be the dependence of the ejection on the intensity and frequency of the light? 

First, we might expect that no matter how low the frequency of the light, if it is intense (bright) 
enough, electrons will be ejected. Second, no matter how high the frequency of the light, we might 
expect that if the light is not intense enough, then no electrons will be ejected. Finally, we might 
expect that, at a given frequency, the more intense the light, the faster the ejected electrons will be 
moving after they leave the metal. It turns out that all three of these expectations are wrong. Here is 
what is observed.

   †  If the frequency of the light is below a threshold value n0 , then no electrons are 
ejected, no matter how bright the light. 

   †  If the frequency of the light is above the threshold value, then electrons are always 
ejected, no matter how faint the light. Making the light weaker decreases the 
current, but there is always some current, no matter how weak the light.

   †  The kinetic energy of the ejected electrons, m v2 ê2,  is proportional to the amount 
n - n0  by which the frequency of the light exceeds the threshold frequency. 

These features of the photoelectric effect make no sense in terms of the wave picture of light. 

We can illustrate the photoelectric effect by using light to discharge the plates of a zinc electroscope. 
The plates of the electroscope are charged by first creating a negative charge (excess electrons) on an 
amber rod, by rubbing it with fur, and then transferring the excess electrons to the zinc metal by 
touching the amber rod to the electroscope. The plates of the electroscope move away from one 
another because of the repulsion of the electrons on the movable plates. 
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When visible light is shone on the zinc plate, there is not loss of charge. However, when ultraviolet 
light is shown on the zinc plate, the charge quickly disappears, as shown by the plates of the 
electroscope coming together. 

Evidently the threshold frequency if zinc is in the ultraviolet region of the spectrum.

à Einstein's theory of the photoelectric effect

Planck was able to understand the blackbody spectrum by assuming that energy is stored in light in 
packets (photons) h n . Einstein was able to understand the photoelectric effect by extending Planck's 
idea to assume that energy is exchanged between the light and matter in this same amount. 

Einstein proposed that when light is absorbed by the metal it increases the energy of an electron by 
the Planck quantum, h n , and that h n0  of this energy is necessary to free the electron from the metal. 
The energy h n0  is known as the work function F of the metal. The numerical value of the work 
function is different for each metal and is determined by measuring the threshold frequency n0 . The 
difference, h n - F = hHn - n0L,  appears as kinetic energy of the electron, 

KEmax =
m v2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
= h n - F

If n < n0,  then there is not enough energy to remove the electron. Making the light brighter means 
that more electrons absorb light, but each one can absorb only h nu units of energy. The confirmation 
of Einstein's proposal is that the slope of the variation of kinetic energy with frequency turns out to 
be precisely Planck's constant h . 

This is good point to note a common misconception, namely that the energy is transferred to the 
photoelectron by a "particle" of light. There is no such particle of light. What is being transferred to 
the electron is an amount of energy. The energy is transferred by the effect on the electron of the 
oscillating electric field of the light.

à Photoelectric effect example

Light having a wavelength of 

λlight = 2.50 10−7 Meter;

falls upon the surface of a piece of chromium in an evacuated glass tube. If the work function of the 
chromium is 

ΦCr = 7.21 10−19 Joule;

determine (a) the maximum kinetic energy of the emitted photoelectrons and (b) the speed of the 
photoelectrons having this maximum kinetic energy. (Oxtoby and Nachtrieb, 2e, problem 13.13.)

The kinetic energy of the photoelectrons is the amount by which the energy of the light ,

Elight = h cêλlight;

H7.95×10−19L Joule

exceeds the work function of the metal.

KEelectron = Elight − ΦCr;
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H7.36×10−20L Joule

The kinetic energy is mv2 ê2,  and so velocity is given in terms of kinetic energy by 
v =

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2 KEelectron ê m . Therefore the velocity of the photoelectrons is 

H4.02×105L Meter
cccccccccccccccccccccccccccccccccccccccccccccccc

Second

This velocity is so large it is difficult to have a feel for it. One way to do so is to compare it to the 
speed of light. 

ratio = vêc;

0.00134

This shows that the photoelectrons are moving no faster than about a one tenth of a percent of the 
speed of light. 

Another way to assess the photoelectron velocity is to see how long it would take an electron moving 
at this maximum velocity to travel from Boston to Chicago, a distance of about 1000 miles.

time = 1000 Mile × 5280
Feet
ccccccccccccc
Mile

× 0.3048
Meter
cccccccccccccccc
Feet

í v ;

4. Second

—just four seconds! That is fast indeed. 

Here is a question for you. Will some photoelectrons have velocity less than the maximum 
velocity? If so, what could cause them to have a correspondingly lowered kinetic energy? 

Bohr model of one-electron atoms

The one-electron atom is the simplest quantum mechanical system is chemistry. Its properties, 
summarized at the end of these notes, provide the intuition for how more complicated, many-electron 
atoms behave.

The classical picture of the atom, first articulated by Rutherford, is a "planetary" model, consisting of 
a negatively charged electron held in orbit at a radius of about 10-8  cm from a positively charge 
nucleus that itself is only about 10-12  cm across.

The problem with this picture, which Rutherford immediately appreciated, is that since the electron 
has a charge, its motion should do work on other charges, by causing them to move in response to its 
changing distance from them as it moves in its orbit. That is, the atom should give off light 
(remember, light is an oscillating electric field) of frequency equal to the number of times a second 
the electron orbits the nucleus. Such light emission—such work on other charges—takes energy, and 
the result is the electron must lose energy, "fall" closer to the nucleus, lose more energy as light of 
ever increasing frequency as the electron orbits faster and faster, fall still closer, and so on until it 
collapses into the nucleus. That is, the Rutherford model predicts that electrons in atoms should give 
off a burst of light with a rainbow of frequencies as the atom annihilates itself, and this process 
should take no longer than about a second.

Now, atoms do give off light, but only at precisely defined frequencies, and they certainly do not 
collapse with a burst of light. So, the planetary model of the atom seemingly implied by Rutherford's 
experiments presents us with a conundrum. The resolution of the conundrum is a crucial signpost on 
the way to the quantum theory of matter.
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à Rydberg formula

The frequency, n, of light emitted or absorbed from one-electron atoms is given by the Rydberg 
formula,

c J 1
cccccccccc
n12

−
1

cccccccccc
n22

N Ry Z2

The numbers n1 and n2 can have any positive integer values, with the restriction that n1 < n2. The 
constant Ry  is known as the Rydberg constant; its value is

1.09737×107
cccccccccccccccccccccccccccccccccccMeter

Z  is the charge on the nucleus; for example, H  has Z = 1, He+  has Z = 2, and Li2+  has Z = 3. The 
frequencies for n1 = 1and n2 = 2, 3, … are known as the Lyman series, and the frequencies for 
n1 = 2 and n2 = 3, 4, … are known as the Balmer series.The wavelengths of the first several lines of 
the Balmer series for hydrogen are

656. NanoMeter
486. NanoMeter
434. NanoMeter
410. NanoMeter
397. NanoMeter

The longest wavelength seen in the Balmer series (for n2 = 3) is in the red region of the spectrum 
and the shortest wavelength (for n2 = ¶) is just on the edge of the boundary between the visible and 
UV regions of the spectrum.

What are the first five lines of the Lyman series? What region of the spectrum do the occur 
in? 

Why do you think the Balmer series was the first to be discovered?

In what region of the spectrum do the lines of the series with n1 = 3 occur?

à Bohr's approach

Bohr, working as a post doctoral student with Rutherford, took on the task of reconciling the 
planetary, orbital picture of the atom with the frequencies of light that one-electron atoms emit and 
absorb, and with the fact that atoms do not collapse.

Bohr began by interpreting the Rydberg formula in terms of an energy change of the atom. That is, 
he knew from Planck's analysis of thermal (blackbody) radiation, that if the atom gives off (or 
absorbs) light of frequency n, then, by energy conservation, there must be a corresponding change in 
the energy of the atom equal to hn . Using the Rydberg formula, this energy change of the atom is 
equal to

c h J 1
cccccccccc
n12

−
1

cccccccccc
n22

N Ry Z2

Bohr interpreted this expression as the difference of two possible energies of the electron in the atom. 
That is, he wrote the general expression for the energy of an electron in a one-electron atom as

Equantal@Z_, n_D := − h c Ry Z2 
1

ccccccc
n2

;
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We call this energy Equantal  to remind us that it can have only discontinuous values, since the 
quantum number n  can only have positive integer values. Bohr then interpreted the Rydberg formula 
as the difference of two quantal energies,

∆Eatom@Z, ninitial, nfinalD m Equantal@Z, nfinalD − Equantal@Z, ninitialD êê Simplify

True

To emphasize the change in energy, here the quantum numbers are relabeled as ninitial  and nfinal .

c h Ry Z2 J− 1
ccccccccccccccc
nfinal2 +

1
ccccccccccccccccccc
ninitial2 N

One aspect of these formulas that can be confusing is determining whether the positive integer ninitial  
is greater or smaller than the positive integer nfinal . If the atom gives off light, then it has lost energy. 
This means that DEatom  is negative and so that ninitial > nfinal . If the atom absorbs light, then it has 
gained energy. This means that DEatom  is positive, and so that  ninitial < nfinal .

Another aspect of these formulas that can be confusing is that they are defined so that Eatrom  is 
always negative. More stable energies correspond to more negative values, that is, lower values of 
the positive integer n . The lowest (most negative) energy value is for n = 1,

Elowest = Equantal@Z, 1D

−c h Ry Z2

Less stable energies correspond to less negative values, that is, higher values of the positive integer 
n . The highest possible energy value is for n = ¶ ,

Ehighest = Equantal@Z, ∞D

0

This shows that the zero of energy is defined to correspond to n = ¶ . The amount of energy required 
to ionize an electron from the lowest energy level is therefore

Ehighest − Elowest

c h Ry Z2

We can generalize this expression to get an expression for the ionization energy, the energy required 
to ionize an electron, for the level with quantum number n ,

Eionization@Z_, n_D := Ehighest − Equantal@Z, nD;
Eionization@Z, nD

c h Ry Z2
cccccccccccccccccccccc

n2

This expression shows that the ionization energy is inversely proportional to the square of the 
quantum number n  and proportional to the nuclear charge Z . Thus, for example, the ionization of 
H(n = 1) is four times greater than that of H(n = 2), while the ionization of He(n = 1) is four times 
greater than that of H(n = 1).
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What happens if light of energy less than the ionization energy is shown an atom, if the 
energy of the light does not equal to one of the possible values of DEatom ?

What happens if light of energy more than the ionization energy is shown an atom?

Assume an electrical discharge is passed through a container of hydrogen gas, so that the 
molecules are dissociated into hydrogen atoms in different states of excitation. When light 
of fixed frequency n = 2 c Ry is shown on the gas of atoms, electrons are ejected from the 
atoms. Predict, in the form of a sketch, how the number of ejected electrons depends on 
their kinetic energy. Your sketch will be an example of what is known as a photoelectron 
spectrum, and the general procedure is called photoelectron spectroscopy.

Classical electron energy

So far, the analysis of the possible energies of the electron in a one-electron atom has been based on 
the experimentally determined Rydberg formula for the light frequencies, interpreted according to 
Planck's quantum hypothesis. A different way to get an expression for the energy of an electron in a 
one-electron atom is to treat it in a planetary model, namely to balance the Coulomb attraction 
between the electron and the nucleus,

FCoulomb = −
Z e2

cccccccccccccccccccccc
4 π ε0 r2

;

by the centrifugal repulsion of experienced by the electron due to its motion around the nucleus,

Fcentrifugal =
m v2

ccccccccccc
r

;

The sum of these forces must be zero, and using this requirement, we can solve for the squared 
velocity of the electron in terms of its distance from the nucleus. The result is

vRule

9v → e è!!!!Z
ccccccccccccccccccccccccccccccccccccccccccccc
2 è!!!!m è!!!!π è!!!!r è!!!!!!ε0

=

vSquared = v2 ê. vRule

e2 Z
cccccccccccccccccccccccc
4 m π r ε0

Next, we can write the total energy of the electron as the sum of the kinetic energy of its motion 
around the nucleus and the potential energy of the electron-nucleus attraction.

Eclassical =
m v2

ccccccccccc
2

−
Z e2

ccccccccccccccccccc
4 π ε0 r

;

Finally we can use the expression for the squared velocity to rewrite the total energy as

−
e2 Z

ccccccccccccccccccc
8 π r ε0

Comparing the classical and quantal electron energies

We now have two alternative expressions for the electron energy, the classical expression,

−
e2 Z

ccccccccccccccccccc
8 π r ε0

18 Harbingers of the quantum world

Copyright © 2003 Dan Dill (dan@bu.edu). All rights reserved



and the quantal expression

−
c h Ry Z2
cccccccccccccccccccccc

n2

By setting these equal, we get an expression for the Rydberg constant.

e2 n2
cccccccccccccccccccccccccccccccc
8 c h π r Z ε0

Now, let's look at this result closely. It is an expression for a quantity that is a constant (the Rydberg 
constant), and yet it contains three variable quantities: the square of the quantum number n , and the 
distance r  of the electron from the nucleus, and the nuclear charge Z . The only way this expression 
can evaluate to a constant is if the ratio n2 ê r Z  itself is a constant. The constant has the units of 
reciprocal length (since n  and Z  are unitless), so let's write it as the reciprocal of a length, a0 . That is, 
the distance of the electron from the nucleus must satisfy

n2 a0ccccccccccccc
Z

The as yet undetermined constant of proportionality, a0 , is known as the Bohr radius. It is the 
smallest distance and electron can be from the nucleus in a hydrogen atom (n = 1, Z = 1).

Determining the Bohr radius and so the Rydberg constant

If we can determine the value of the Bohr radius, a0 , we will be able to calculate the possible values 
of the distance of the electron from the nucleus, or, equivalently, we will be able to calculate the 
value of the Rydberg constant without having to use experimental data.

At this point, however, Bohr did not have enough information to proceed. What he had was a relation 
between the classical energy and the quantal energy, but this relation depends on two unknown 
constants, the Rydberg constant and the Bohr radius. To solve for these two quantities, Bohr needed 
a second, independent relation between them.

Bohr got the needed second relation between the Rydberg constant and the Bohr radius by an 
profoundly inspired assumption. Since classical physics works for ordinary objects that we can see 
and manipulate in the laboratory, Bohr assumed that all of the strangeness of the one-electron atom 
would disappear in the limit that the atom were very large. Bohr applied this assumption, known 
today as the Bohr correspondence principle, in the following way: Bohr assumed that the frequency 
of light emitted when the electron changes quantum number by one unit, must equal the orbital 
frequency of a classically orbiting electron in the limit that the atom becomes macroscopic in size, 
that is, in the limit that the quantum number n  becomes very large.

The classical orbital frequency is the reciprocal of the time required for an electron to make one orbit 
of the nucleus,

nclassical =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tclassical

=
orbital velocity
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
circumference

Using the expression for the squared velocity and the expression for the allowed electron-nucleus 
distances, we can evaluate this expression to be

6.57968×1015 Z2
cccccccccccccccccccccccccccccccccccccccccccc

n3 Second

The key point is that this frequency does not correspond to the observed frequency for low values of 
n , that is, when the atoms is small, but it does converge to the observed frequency for transitions 
between adjacent orbits (adjacent values of n) as n  becomes very large. Here is an illustration of this, 
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for five orders of magnitude of the quantum number n , for Z = 1 (the classical and quantal 
frequencies are each proportional to Z2  and this factor has been divided out in the results),

n ν classical HHzL ν quantalHHzL
1 6.57968×1015 2.46738×1015

10 6.57968×1012 5.70964×1012

100 6.57968×109 6.48229×109

1000 6.57968×106 6.56983×106

10000 6579.68 6578.7

For n = 100, the results agree to two significant figures, and by n = 1000 the results agree to five 
significant figures.

Having established this correspondence between the quantal and classical frequencies in the limit of 
large n , Bohr next expressed it algebraically to get the second relation between the  two unknown 
constants, the Rydberg constant and the Bohr radius. Here are the details.

We begin by first constructing the frequency equality. The expression for the Rydberg frequency for 
the n Ø n + 1 transition in the limit of large n . The Rydberg frequency expression for the n Ø n + 1 
transition is

c H1 + 2 nL Ry Z2
cccccccccccccccccccccccccccccccccccccccc
n2 + 2 n3 + n4

For n p 1, the factor 1 + 2 n  in the numerator is approximately 2 n , and the denominator is 
approximately n4 . This means that for n p 1, the Rydberg frequency for the n Ø n + 1 is 
approximately

2 c Ry Z2
cccccccccccccccccccccc

n3

Bohr's hypothesis is that this expression must be equal to the classical frequency for large n . The 
analytical expression for the classical frequency

e è!!!!Z
ccccccccccccccccccccccccccccccccccccccccccccccc
4 è!!!!m π3ê2 r3ê2 è!!!!!!ε0

Equating this classical frequency expression to the large-n  quantal frequency expression, and using 
our earlier expression for the Rydberg constant, we can solve for the relation between the 
electron-nucleus distance and the quantum number n .

9r → h2 n2 ε0cccccccccccccccccccc
e2 m π Z

=

From our earlier comparison of the classical and quantal energies, we also have the independent, 
alternative relation between n  and the Bohr radius,

9r → n2 a0ccccccccccccc
Z

=

Using these together, we can solve for the Bohr radius,

9a0 → h2 ε0ccccccccccccccc
e2 m π

=

Numerical values of Bohr radius and Rydberg constant

We have obtained the expression
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h2 ε0ccccccccccccccc
e2 m π

The value of the Bohr radius is

5.29177×10−11 Meter

This is a key quantity in chemistry, the minimum size of the hydrogen atom.

We can now also get an expression for the Rydberg constant in terms of only fundamental constants,

RyExpression = RyExpression ê. n →
è!!!!!!!!!!!!!!!!

r Zêa0 ê. a0RuleBohr

e4 m
cccccccccccccccccccccc
8 c h3 ε02

The value of the Rydberg constant

1.09737×107
ccccccccccccccccccccccccccccccccccc

Meter

agrees exactly with the value determined from experiment.

à Summary of one-electron atom properties

Here is the summary of the results for one electron atoms.

Quantity Expression Value

a0 h2 ε0cccccccccccce2 m π 5.29177×10−11 Meter

r n2 a0cccccccccccZ
5.29177×10−11 Meter n2cccccccccccccccccccccccccccccccccccccccccccccZ

Ry e4 mccccccccccccccccc
8 c h3 ε0

2
1.09737×107ccccccccccccccccccccccccMeter

E − c h Ry Z2cccccccccccccccccn2 − 2.17987×10−18 Joule Z2cccccccccccccccccccccccccccccccccccccccccccccn2

de Broglie model of one-electron atoms

Bohr's analysis of one-electron atoms requires that the electron can be only at certain distances from 
the nucleus, given by

r =
n2 a0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Z

where the Bohr radius is

5.29177×10−11 Meter

Z  is the atomic number of the nucleus and n  is a positive integer. This restriction to only certain 
distances is key not only to accounting for the observed spectrum of one-electron atoms, but also for 
the fact that the electron does not spiral into the nucleus and so that the atom does not collapse.
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Bohr was not able to give a physical basis for the restriction of the electron-nucleus distance to only 
certain values. The first step in understanding the origin of this key restriction was provided by de 
Broglie. de Broglie's extraordinary idea was that the electron has an associated wavelength, and that 
the Bohr restriction was just what is required so that the electron "wave" (leaving aside for now what 
on earth about the electron, a particle, could be waving) does not destructively interfere with itself. 

de Broglie was guided to the idea that matter has an associated wavelength (which we know today to 
be the wavelength of the oscillations in the probability amplitude, or wavefunction), by combining 
Planck's hypothesis, that energy is stored in light in packets of size h n , with Einstein's adaptation of 
the Planck energy quantum to the photoelectric effect and the result from Einstein's theory of special 
relativity, that matter and energy are equivalent.

à Particles of light, waves of matter

What de Broglie achieved was the synthesis of the energy quantum h n  and special relativity. Here 
are some details on de Broglie's approach.

Planck proposed that energy is stored in light in increments, h n , proportional to the frequency of the 
light. Einstein showed that energy from the light is exchanged with matter in these increments, then 
the photoelectric effect can be understood.

At about the same time Einstein also proposed his special theory of relativity, based on the 
experimental finding that light always has the same speed, independently of the speed of the source 
of the light. This does not seem to have much to do with the quantum nature of matter, but in fact de 
Broglie was able to combine Planck's quantum with Einstein's special theory of relativity to make the 
extraordinary prediction that matter has wave properties. This prediction, soon confirmed 
experimentally, was the watershed of our understanding of the wave nature of the quantum world. 

To understand de Broglie's idea, we need some background on Einstein's theory of special relativity. 
Einstein developed his theory as an exploration of how it could be that light always has the same 
speed, whether the light source is moving or not.

To see how strange this behavior of light is, let's imagine instead that we fire a bullet from a gun just 
as Superman flies by at the speed of the bullet (being Superman, he could go faster, of course!). 
Since Superman has matched his speed to that of the bullet, to him the speeding bullet appears to be 
standing still. Now, if instead of firing a bullet, we set of a flash bulb just as Superman flies by, 
Superman being Superman, he'll naturally speed up to catch the light. The most amazing thing, 
however, is that no matter how fast Superman goes, the light recedes from him at exactly the same 
speed as it recedes from us. From Superman's point of view of the light from the flash bulb, it as if he 
is standing still, no matter how fast he is going! For some reason, light seems to disobey the rules 
about the speed of a projectile being relative to its source! 

Perhaps the finest introduction to these ideas is Edwin F. Taylor and John Archibald 
Wheeler, Spacetime Physics: Introduction to Special Relativity, 2nd edition (1992) W H 
Freeman & Co.; ISBN: 0716723271. The extension by Einstein to reference frames 
accelerating with respect to one another is called general relativity, and a very accessible 
treatment of the key consequences of general relativity is Edwin F. Taylor and John 
Archibald Wheeler, Exploring Black Holes: Introduction to General Relativity, 1st edition 
(2000), Benjamin/Cummings; ISBN: 020138423X

The essence of Einstein's theory to account for this very strange behavior of light is the remarkable 
prediction that time proceeds at different rates in a stationary frame of reference (us) and a moving 
frame of reference (Superman) in just the right amount so that light is always measured to travel the 
same distance in a given time. There is more to the story (a very nice exposition is Space and time in 
the modern universe, by P. C. W. Davies), and the incredible end result is Einstein's famous relation, 
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E = m c2,

between mass and energy. The mass, m , is not the ordinary mass of an object, which we denote as 
m0  but instead it is related to it as 

m = m0 ì$%%%%%%%%%%%%%%%%%%%%1 - J v
ÅÅÅÅÅ
c

N
2

 .

A crucial feature of the relation is that the mass m becomes infinite as its speed v approaches the 
speed of light. This means that it would require an infinite amount of energy to accelerate a mass to 
the speed of light. This is why anything with mass may only move slower than the speed of light. On 
the other hand, since light itself does move at speed c , we must conclude that the rest mass of light is 
0! 

In the limit that the speed of a mass is very much smaller than the speed of light, then we can 
approximate the mass as 

m = m0 :1 +
1
ÅÅÅÅÅ
2

 J v
ÅÅÅÅÅ
c

N
2

- …>

and so approximate the energy of matter as 

Ematter = m0 c2 +
1
ÅÅÅÅÅ
2

 m0 v2 - … .

That is, the energy is just the ordinary kinetic energy, m0 v2 ê 2, plus an additional so-called rest mass 
energy m0 c2 . It is this rest mass energy that all matter has that is released in nuclear fusion, in which 
two masses combine to form a new mass smaller than the sum, with the difference released as energy.

You may be surprised at how large you own rest mass energy is!  I weigh about

77. Kilogram

This corresponds to the rest mass energy

H7.×1018L Joule

This is a huge amount of energy, by everyday measures.

It turns out that light also has a mass, and so energy, even though light has no rest mass. To see this, 
we need to rewrite the Einstein mass-energy equation in a form that makes clear the distinction 
between particles with a rest mass, and light, which has no rest mass. We do this by using the relation 
between m  and m0 , squaring both sides of Einstein's equation and then rearranging to get 

E2 :1 - J v
ÅÅÅÅÅ
c

N
2
> = m0

2 c4

or 

E2 = m2 c2 v2 + m0
2 c4.

We can simplify this expression a little by using the symbol p  for the (relativistic) momentum m v  
(not m0 v), and then taking the square root. The result is 

E =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!p2 c2 + m02 c4 .
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Now, since light has no rest mass, we can write its energy as 

Elight = p c .

This is the relation that de Broglie used. First he noted that Planck's quantum was an alternative 
expression for the energy of light, 

Elight = h n = h c ê l

and so evidently light of wavelength lambda has a "momentum" 

plight = Elight ê c = h ê l.

This relation says that light has a particle property momentum. de Broglie's extraordinary hypothesis 
was that this relation can be turned around and applied to matter! That is, matter with momentum p  
has an associated "wavelength" 

lmatter = h ê p .

It is this relation that is the origin of the idea that matter has the wave property wavelength. 

Since the momentum of light is p = m c , we can interpret the mass of a photon to be 
mlight = h ê Hc lL . Calculate the "mass" of a photon of red light (l = 700 nm) and of x-ray 
light (l = 0.1 nm). Answer: 3 µ 10-36 kg, 2 µ 10-32 kg.

What wavelength light would has a photon mass equal to the electron mass? Answer: 
0.002 nm

It is important to understand that the relations E = p c  is true only for light, that is, only when the rest 
mass, m0 , is zero. That is, it is not true for matter, for which the rest mass is not equal to zero.

à  de Broglie matter waves account for one-electron atoms

The end point of Bohr's analysis of one-electron atoms, arrived at by means of the assumed 
equivalence of classical frequencies  and the Rydberg frequencies for transitions between adjacent 
values of n  in the limit of large n  (macroscopic atom dimension), is the explicit expressions for the 
Bohr radius and the Rydberg constant.

de Broglie was able to use the relation between particle momentum and "wavelength" to derive the 
same results, without recourse to the correspondence principle. Specifically, de Broglie postulated 
that an integer number of wavelengths of the electron wave are required for the electron to be at a 
given distance from the nucleus; non-integer multiples of the  wavelength would lead instead to 
destructive interference and so a vanishing of the electronic amplitude.

de Broglie's hypothesis, then, is that the circumference of an orbit, 2 p r , must be equal to an integer 
number of de Broglie wavelengths, n l = n h ê p = n h ê m v . We can express this result in terms of the 
orbital angular momentum of the electron, = r m v = r p , as

= n
h

ÅÅÅÅÅÅÅÅÅÅÅ
2 p

.

This expression says that the angular momentum of the electron may not have just any values but 
only  integer multiples of Planck's constant divided by 2 p . 
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This result is equivalent to the requirement that the electron may not be at just any distance from the 
nucleus but only distance proportional to the square of the same integer. Here is how we can see this. 
At every distance of the electron from the nucleus, the Coulomb and centrifugal forces, 

FCoulomb = -
Z e2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0 r2

and

Fcentrifugal =
m v2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
,

must balance one another. This means that the electron's velocity depends on its distance from the 
nucleus as

v ∂
1

ÅÅÅÅÅÅÅÅÅÅÅÅè!!!r
.

That is, if the electron velocity increases by a factor of 100, its orbital velocity decreases by a factor 
of 10. From de Broglie's analysis, since the orbital angular momentum is proportional to the product 
of the distance from the nucleus and the orbital velocity, r v , the velocity also is proportional to

v ∂
n
ÅÅÅÅÅ
r

.

Comparing these two proportionalities, we have the new proportionality between the number of de 
Broglie wavelengths and the distance of the electron from the nucleus,

n
ÅÅÅÅÅ
r

∂
1

ÅÅÅÅÅÅÅÅÅÅÅÅè!!!r
Ø n ∂

è!!!r Ø n2 ∂ r.

That is, the orbital radius—the atom size—grows quadratically with the number, n , of de Broglie 
wavelengths. The constant of proportionality turns out, as we show below, to be just the Bohr radius 
divided by the nuclear charge, a0 ê Z .

Quantitative application of de Broglie's hypothesis to one electron atoms

Here are the details of the how we use de Broglie's hypothesis to establish the quantitative relation 
between the quantum number n  and the distance r  of the electron from the nucleus. Using the 
expression for electron velocity as it orbits a nucleus of charge +Z e  and a distance r ,

9v → e è!!!!Z
ccccccccccccccccccccccccccccccccccccccccccccc
2 è!!!!m è!!!!π è!!!!r è!!!!!!ε0

=

we can solve the de Broglie condition, 2 p r = n l = n h ê Hm vL , for the number of wavelengths that 
can fit on the circumference of a circular orbit of radius r . The result is

9n → e è!!!!m è!!!!π è!!!!r è!!!!Z
ccccccccccccccccccccccccccccccccccccccccccc

h è!!!!!!ε0
=

Use the relation 2 p r = n h ê Hm vL  to show that this expression is correct.

We can apply this expression for n  to our earlier relations for the Bohr radius,

9a0 → r Z
ccccccccc
n2

=
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to get an expression in terms of only fundamental constants,

9a0 → h2 ε0ccccccccccccccc
e2 m π

=

This is exactly the result Bohr got using his correspondence principle.

In this way de Broglie's approach also accounts for the stability of the atom. The lowest (smallest) 
orbit corresponds to just one wavelength on the circumference. No lower (smaller) orbit would be 
able to "fit" the electron wave.

Classical and quantal pictures of the spectra of one-electron atoms

The beauty of de Broglie's analysis is that it gives key features of the atom in a simple way. These are 
that the electron may only be at certain distances from the nucleus, proportional to the square on an 
integer, 

r =
a0ÅÅÅÅÅÅÅÅ
Z

 n2,

and, since the energy of the electron in the atom,

E = -
Z e2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 p e0 r

,

is inversely proportional to the electron-nucleus distance, that the energy of the electron in the atom 
is inversely proportional to the square of an integer,

E = -h c Z2 Ry 
1

ÅÅÅÅÅÅÅÅ
n2 .

Now, we know that one-electron atoms absorb and emit light of only certain frequencies. We also 
know that classically we can view an electron orbiting a nucleus as a charge oscillating with a 
frequency equal to the number of times a second its travels the circumference of its orbit. Since the 
orbital velocity is proportional to 1 ëè!!!r ∂ 1 ên , this means the time to make one orbit is proportional 
to

tclassical ∂
2 p r
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

v
∂

n2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 ê n

∂ n3,

and so the orbital frequency is proportional to

nclassical ∂
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
tclassical

∂
1

ÅÅÅÅÅÅÅÅ
n3

Taking all of this together, it is tempting to understand that there are only certain frequencies of light 
absorbed and emitted by one-electron atoms as being due to there being only certain orbital 
frequencies, since n  can take only positive integer values.

In fact, while this interpretation has qualitative aspects of what is going on, Bohr showed that it does 
not account quantitatively for the observed frequencies. The problem is that observed frequencies do 
not correspond to classical orbital frequencies, except in the special case of very large orbits, say of n  
equal to 1000 or more. 
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For small values of n , the observed frequencies are computed in a very different way, by equating 
the energy difference of corresponding to two different values of n  to the Planck formula for the 
energy of a light quantum. For emission of a photon of frequency n, for example, this equation gives

Elight = h n = DEatom = En1 - En2 = h c Z2 Ry : 1
ÅÅÅÅÅÅÅÅ
n2

-
1

ÅÅÅÅÅÅÅÅ
n1

>,

where n1 > n2 . 

While this expression gives the correct frequencies, it does so at the cost that we must abandon the 
classical picture of the frequencies of light emitted and absorbed by an atom as corresponding to the 
frequency of an orbiting electron. It is very important to understand this evident requirement of the 
quantal picture.

Show that the expression for the orbital frequency of an electron in the field of a nucleus 
of charge+Z e  is 6.57968 µ 1015  Z2 ê n3  Hz.

Evaluate the orbital frequencies of an electron in a hydrogen atom for n = 1, 2,  and 1000. 
Answer: 6.57968 µ 1015 , 8.2246 µ 1014 , and 6.57968 µ 106  Hz.

Compare the orbital frequency of an electron in the lowest energy orbit of a hydrogen 
atom with the minimum frequency light that this electron can absorb. Answer: 
nclassical = 6.57968 µ 1015  Hz, nquantal = 2.46738 µ 1015 .

As we have discussed earlier, Bohr showed that the two pictures correspond only when comparing 
classical orbital frequencies for very large orbits with quantal frequencies for transitions between 
adjacent, large quantum numbers.

Compare the orbital frequency of an electron in the n = 1000 orbit of a hydrogen atom 
with the frequency light that this electron can absorb in the transition to n = 1001. Answer: 
nclassical = 6.57968 µ 106  Hz, nquantal = 6.56983 µ 106  Hz.
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