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Trolley's on Friday nights in Boston's Park Street Station can be quite crowded. Worse, often few people exit,
 making it quite hard for new riders to get on. There is one occasional exception:

 Homeless men not having bathed for months rarely have trouble.The crowd on the car miraculously parts,
  allowing such people spacious access no matter how crowded the car may have seemed. 

Electrons with parallel spins are like that. The parted crowd of other electrons is known as a Fermi hole.

The extension of the quantum description of one-electron atoms to atoms containing more than one 
electron is complicated by two unrelated things. 

First, once there is more than a single electron, the combined effect of  the electrical shielding of the 
nuclear charge and interelectron electrical repulsion jumbles things up. It turns out that these effects 
of nuclear shielding and electron-electron repulsion can be taken into account to a good 
approximation as relatively simple corrections to what we would expect if each electron were in the 
atom all by itself. This is known as the orbital approximation. 

Second, and far more important, is that an amazing new property of the physical world comes into 
play, tracing to the fact that all electrons are, as far as we know, indistinguishable from one another. 
Once this indistinguishability is taken into account, through what is known as the Pauli exclusion 
principle, the result is a profound restriction on the way electrons can arrange themselves in an atom. 
It is this restriction that accounts for the periodic properties of the elements and so, ultimately, the 
structure of the physical world as we know it.

You may have learned the "rule" that no more than two electrons can be in the same orbital. If you 
have, you may also have puzzled about why such a rule is so. If you have decided, like many people 
who have been presented with just the rule without any explanation, that it has to do with electrical 
repulsion—that it reflects the electrons repelling one another due to their electrical charge—then you 
are in for a neat surprise. The "rule" instead traces to a deep algebraic property of nature that has 
nothing whatsoever to do with the charge on electrons! Perhaps you, like me, will find it fascinating 
that such a crucial aspect of the world has such a subtle origin.

The orbital approximation

In one-electron atoms, all of the energy levels for a given n have the same energy. For example, in 
He+, the electron energy depends on the principle quantum number n. For example, the levels 3s, 3p 
and 3d all have the same energy

- Er
Z2
ÅÅÅÅÅÅÅÅÅ
n2 = -Er

4
ÅÅÅÅÅ
9

Once more than one electron is present, we have to take into account a the so-called shielding 
property of charges enclosed in a volume and the repulsion of the electrons for one another.



à Electrical shielding

We have seen that for a given principle quantum number, n, the smaller the orbital momentum 
quantum number, , the greater the electron probability amplitude close to the nucleus. This means 
that the smaller the orbital momentum of the electron, the greater will be the fraction of the electron 
near the nucleus. The result will be that electrons in orbitals with the same n but larger  will 
experience a reduced nuclear charge, due to cancellation (so-called shielding) of nuclear charge by 
the enhanced amount of electronic charge close to the nucleus from electrons with lower . The 
reduced nuclear charge means that electrons with higher orbital momentum are then held slightly less 
tightly. The hierarchy of relative energies therefor changes from

1s < 2s, 2p < 3s, 3p, 3d < …

to

1s < 2s < 2p < 3s < 3p < 3d < …

The net effect if that the different amount of penetration near the nucleus according to the orbital 
momentum results in the one-electron orbital energy depending on both the principle quantum 
number n and the orbital momentum quantum number .

Here are the details. 

Penetration and shielding

We would like to understand the relative stability of many-electron subshells (fixed n but different ) 
in terms of the distribution of electron density for the different subshells. Here are the electron 
densities for the n = 3 electrons in a hydrogen atom.
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Hydrogen atom 3s (three peaks), 3p (two peaks) and 3d one peak) shell densities.  Distance is in units of the Bohr radius, a0. The 
vertical lines are the classical turning points (green for 3d, blue for 3p and black for 3s; the inner turning point for 3s is at r = 0) , 
and so bracket the classically allowed region for each  shell density.

The vertical lines mark the allowed region of each subshell. Since the allowed region for the 3d is 
bracketed by that for the 3p, which in turn is bracketed by that for the 3s, we expect the average 
distance of the 3d electron to be closest to the nucleus, followed by the average distance of the 3p 
electron, and the 3s electron to farthest from the nucleus. The actual average distances, computed as
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are

3s 13.5
3p 12.5
3d 10.5

Average distance, in a0 = 0.527 Þ, from the nucleus of hydrogen n = 3 electrons.

This ordering of average distances may seem surprising, since we know in many-electron atoms, the 
3s subshell is more stable than the 3p subshell, which is more stable than the 3d subshell, and this in 
turn might lead us to believe that in many electron atoms the 3s electron would be closest to the 
nucleus.

In fact, the origin of the greater stability of the 3s is due not to the average distance of the electron 
but instead to the relative amount of the electron density close to the nucleus in the different 
subshells. Here is a plot of the hydrogen 3s, 3p and 3d shell densities near the nucleus,
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Hydrogen atom 3s (peak), 3p (quadratic rise from r = 0) and 3d (cubic rise from zero) shell densities near the nucleus. Distance is 
in units of the Bohr radius, a0.

and here is the fraction of electron density in each subshell within 1 a0  of the nucleus.

3s 0.0099
3p 0.0013

3d 6.5×10−6

Fraction of hydrogen n = 3 electron density within 1 a0 of the nucleus.

The results show that within 1 a0 of the nucleus the 3p shell density is only 13% of the 3s shell 
density, and the 3d shell density is essentially zero.

This means that both 3 s and 3p electrons are present, a 3p electron will see less nuclear charge than 
a 3s electron, due to the shielding of the nucleus by the fraction of the 3s electron that is closer to the 
nucleus that the 3p electron. Similarly, a 3d electron  will be shielded by both 3s and 3p electrons and 
so will see still less nuclear charge than a 3p electron. Since a 3d electron is shielded most, it will see 
the least nuclear charge and so be the least tightly bound. In this way we can understand why in 
many-electron atoms that within a shell, subshells fill in the order s, p, d, ….

Here is the fraction of electron density all of the subshells through n = 4 within 1 a0  of the nucleus.
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1s 0.32
2s 0.034
3s 0.0099
4s 0.0041
2p 0.0037
3p 0.0013
4p 0.00056

3d 6.5×10−6

4d 3.9×10−6

4f 3.4×10−9

Fraction of hydrogen  electron density within 1 a0 of the nucleus for the n = 1, 2, 3, and 4 subshells.

See if you use these fractional electron densities to understand the filling order 1s Ø 2s Ø 
2p Ø 3s Ø 3p.

à Electrical repulsion

We can take account of the electrical repulsion of the electrons by a two step process. First, we 
assume each electron is described by an one-electron orbital, with energy modified by orbital 
momentum dependent shielding. Then, we use Coulomb's law to evaluate the additional energy 
contribution due to the repulsion of the electron distributions.

à Two electrons

For example, He has two electrons. If we assume each electron is in a 1s orbital, then, ignoring 
interelectron repulsion, each electron contributes energy
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for a total of -8 Er. When the mutual repulsion of the two 1s charge distributions is taken into 
account, as described in the following subsection, there is an additional contribution of about 
+5 ê 2 Er . The combined effect of the attractions of each electron to the nucleus and the repulsion of 
the two electrons for one another is then

2 H- 4 ErL + 5 ê2 Er = -11 ê 2 Er

To get a feeling for how this value compares with the actual value, we can use it to predict the first 
ionization energy of He. The energy balance in the ionization reaction

HeH1 s2L + IE1 öHe+ H1 sL + e-

is

EHHe 1 s2L + IE1 ö EHHe+ 1 sL

since by definition of ionization energy, the ejected electron has zero kinetic energy. The predicted 
ionization energy is 

IE1 = EHHe+ 1 sL - EHHe 1 s2L = -4 Er - H-11 ê 2 ErL = +3 ê 2 Er = 20.4 eV.

where we have used the one-electron energy of He+. The measurd value is 24.6 eV and so the first 
order approximation is quite good.
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Compare the percentage error in the zero order and first order approximations to the 
ionization energy of He.

To summarize, the idea of the orbital approximation is estimate the energy of a many-electron atom 
as the energies of the corresponding one-electron orbitals, taking into account electrical shielding, 
plus an additional amount due to electron-electron repulsion.

Evaluation of the 1s1s one-electron-orbital repulsion

The details of how to evaluate electrical repulsion between one-electron orbitals are described here, 
for the example of He 1s1s repulsion. The method work for any two one-electron orbitals, but it is 
easiest to use for repulsions between s orbitals.

The first order approximation to the ground state of helium atom in the one-electron-orbital 
approximation as to the zero order energy the expectation value of the repulsion e2 ê H4 p e0 » r - r ' »L 
of the two 1s electron charge distributions,
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where

r1 s HrL = -e » y1 s HrL »2 = -
e
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4 p r2  P1 sHrL2

is the charge density corresponding to the helium II ion 1s orbital. We can simplify the expectation 
value by transforming to rydberg units of energy and bohr units of length, 
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To proceed further we need to express 1 ê » r - r ' » in terms the spherical polar coordinates of each 
electron. The expression is

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» r - r ' » = 4 p „

=0
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r>
+1  Y mHq ' f 'L* Y mHq fL,

where r< and r> denote the lesser and greater of the two radial coordinates, respectively. Since the 1s 
charge densities are spherically symmetric, when this expression is substituted into the expectation 
value, the angular part of the integrations will be the two factors

1
ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 ‡ Y mHq fL sinHqL „ q „ f

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!4 p
 ‡ Y0 0Hq fL* Y mHq fL sinHqL „ q „ f =

è!!!!!!!4 p  d 0 dm 0,

and

1
ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 ‡ Y mHq ' f 'L* sinHq 'L „ q ' „ f '

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!4 p
 ‡ Y mHq fL* Y0 0Hq fL sinHqL „ q „ f =

è!!!!!!!4 p  d ' 0 dm' 0.
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In these expressions we have used the relations » Y0 0 »2 = 1 ê H4 pL and Y0 0 = 1 ëè!!!!!!!4 p . Each of these 
factors evaluates to zero except for = m = 0 and ' = m ' = 0, in which they are equal to 1 ëè!!!!!!!4 p . 
Using these results, the expression for the expectation value of the 1s1s repulsion becomes

[ e2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0 » r - r ' » _

= 2 Er ‡ ‡
r1 s HrL r1 s Hr'L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» r - r ' »  „ r „ r '

= 2 Er ‡
0

¶

‡
0

¶

P1 sHrL2 
1

ÅÅÅÅÅÅÅÅ
r>

 P1 sHr 'L2 „ r „ r '

= 2 Er ‡
0

¶ 1
ÅÅÅÅÅÅÅ
r '

 P1 sHr 'L2 
i
k
jjj‡

0

r'
P1 sHrL2 „ r

y
{
zzz „ r '

+‡
0

¶

P1 sHrL2 
1
ÅÅÅÅÅ
r

 ik
jj‡

0

r
P1 sHr 'L2 „ r ' y{

zz „ r

= 4 Er ‡
0

¶ 1
ÅÅÅÅÅÅÅ
r '

 P1 sHr 'L2 
i
k
jjj‡

0

r'
P1 sHrL2 „ r

y
{
zzz „ r '

This final expression is an example of Gauss' law, that a charge outside another charge distribution 
experience the charge distribution as a point charge at the center of the distribution. The final 
expression evaluates to 5 Er ê 2.

à Three electrons

Let's see what we get if we apply the orbital approximation to Li. We now have three electrons. What 
one-electron orbitals should we use for the electrons? Well, since we presumably want the ground 
state energy, I would propose that we use the lowest energy atomic orbitals. That is, let's assign each 
electron to a 1s orbital. Each electron would then contribute energy

- h c Ry
Z2
ÅÅÅÅÅÅÅÅÅ
n2 = -h c Ry

9
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= - 9 h c Ry

The electron-electron repulsion would be larger than in He, since the 1s charge distribution is more 
compact in Li; let's estimate the repulsion contribution to be twice as great, say + 4 h c Ry. Also, now 
there would be two such contributions, since there are two different pairs of electrons repelling one 
another. In this way, we predict the total energy of Li to be

3 H- 9 h c RyL + 2 H4 h c RyL = -19 h c Ry

We could proceed in this way for all of the atoms in the periodic table. The approach is systematic 
and straightforward.

The problem is, however, that it cannot be correct! The reason is that this approach fails to predict 
the observed periodic variation in the properties of the atoms that is the basis of the periodic table. It 
predicts instead that the properties of atoms should vary in a continuous, non-periodic way, as more 
and more electrons are added as 1s orbitals. 
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The Pauli principle

That failure of our approach based on the orbital approximation tells us that there is something more 
to the structure of many-electron atoms than the effects of electron shielding and electron-electron 
repulsion. What could it be?

We had to decide how to assign electrons to one-electron orbitals. Since we want to determine the 
lowest energy state, we assigned each electron to the lowest energy, 1s orbital. This is the source of 
the problem. While it makes sense to put each electron in the lowest energy orbital. extraordinarily, 
this turns out not to be possible! What is observed instead is this:

A maximum of two electrons can occupy an orbital with the same n,  and m.

Here is what is going on.

à Electron intrinsic magnetic moment

The story begins with the following fact about electrons. All electrons have an intrinsic  magnetic 
moment—they behave like a bar magnet. One way to produce a magnetic moment is to create an 
electrical current in a loop of wire. Since electrons have a charge, when their magnetic moment was 
discovered it was thought that it was due to the electron spinning on its own axis, since this would 
produce a current. It was subsequently understood that the electron is not actually spinning, that its 
magnetic moment is an intrinsic property of the electron. Nonetheless, the magnetic moment is 
commonly referred to as the spin of the electron. 

You may have played with bar magnets, and noticed that when they are parallel to one another (north 
pole next to north pole, south pole next to south pole), they repel each other, but when they are 
oppositely directed (anti-parallel), they attract each other. Other relative orientations produce 
corresponding repulsion or attraction intermediate in strength. Electrons behave similarly, but with 
an extraordinary difference.

Electron magnetic moments can only have two relative orientations.

This restriction to only two relative orientations is called space quantization, since the  orientation of 
the spin can only take distinct values relative to an external axis (or to another spin). We have 
already seen that an electron with orbital momentum  can take 2 + 1different orientations with 
respect to an external axis (or to another angular momentum), corresponding to the 2 + 1 different 
values of the quantum number m. Since the electron magnetic moment can only take 2 s + 1 = 2 
orientations, we can interpret this to mean that the electron has a spin momentum quantum number s 
equal to 1/2, and the two possible orientations correspond to the two possible projection quantum 
numbers ms = +1 ê 2 and ms = -1 ê 2. The two orientations of the electron spin are sometimes 
referred to as "up" and "down" and conventionally represented by arrows, Æ and ∞, respectively. All 
that is important is that the spin magnetic moments may either be parallel or antiparallel, that no 
other relative orientations are possible.

à Indistinguishability of electrons

Now, what does electron spin have to do with putting electrons into orbitals? The answer starts with 
the observation that electrons are all identical (as far as we know). In order to account for this, we 
have to be sure that no electrons are treated preferentially. In particular, this means that when we 
label electrons in wavefunctions, we have to make sure that we do so in such a way that all physical 
properties we calculate do not depend on which electron we call 1, which we call 2, and so on. This 
non-preferential labelling is called symmetrization.
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One way to ensure that numbering of electrons doesn't matter is to arrnge things so that if we 
renumber electrons, then the wavefunction does not change. This requirement is actually too rigid. If 
we allow that the sign of the wavefunction might change, that would still be OK, since it is the 
square of the wavefunction that determines electron density, and when we square the wavefunction, 
any sign change disappears. 

So, there are two ways to symmetrize many-electron wavefunctions. Many-electron wavefunctions 
that have been adjusted so that the sign of the wavefunction does not change on relabelling any two 
electrons are said to be symmetric. Many-electron wavefunctions that have been adjusted so that the 
sign of the wavefunction does change on relabelling any two electrons are said to be antisymmetric.

Be careful to distinguish the meaning of the terms symmetrization, symmetric, and 
antisymmetric.

 In considering the symmetry of many-electron wavefunctions with respect to exchange of electron 
labels, we have to consider both the spatial and spin parts of the wavefunction. In the examples 
below we will see just what this means, but one procedure is to write the wavefunction as a product 
of space and spin parts, and to consider the symmetry of each part separately.

With this background, we can state one of the most profound aspects of quantum mechanics for the 
material world. It is known as the Pauli principle:

The overall wavefunction—spatial and spin parts—must change sign if any two 
electrons are relabeled. 

That is, many-electron wavefunctions must be antisymmetric.

More generally, the wave function of any quantum system composed of entities with half-odd 
intrinsic angular momentum (spin quantum number 1/2, 3/2, 5/2, …) must be antisymmetric. The 
wave function of any quantum system composed of entities with integer intrinsic angular momentum 
(spin quantum number 0, 1, 2, …) must be symmetric. An example is photons, the packets of light 
energy. Photons have intrinsic spin 1, and so the wavefunction of a collection of photons must be 
symmetric with respect to the relabelling of any two photons.

Electronic configurations in atoms

The Pauli principle requires that the total electronic wavefunction is antisymmetric with respect to 
exchange on labels on any two electrons. Let's see what consequences this has as we add electrons to 
one-electron orbitals.

 The configuration of an atom consists of 

   †  the set of orbitals (specified by n, , and m) occupied by electrons, and
   †  the number of electrons in each orbital.

The ground-state configuration has all of the electrons in the lowest energy orbitals possible. 

à Hydrogen

For hydrogen the ground-state configuration is 

H 1s

Since there is only one electron, the Pauli principle doesn't apply. 
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à Helium

For helium, we can write

He 1s2

Now, because we more than one electron, we have to take the Pauli principle into account; the 
overall wavefunction must be antisymmetric. To see the symmetry of the wavefunction, we need to 
write it in terms of the space and spin parts of each electron's wavefunction. For example, if we have 
both electrons with spin up, then the wavefunction would be

1s(1)1s(2) × Æ(1)Æ(2)

 Exchanging the electron labels this becomes 

1s(2)1s(1) × Æ(2)Æ(1)

This is just the same as the original function, except that the parts are written in different order. This 
means that this function is symmetric and so does not satisfy the Pauli principle. The same thing 
would be true if both electrons had spin down, 

1s(1)1s(2) × ∞(1)∞(2)

If we want both electrons to be in 1s spatial orbitals, then the spatial part of these wavefunction is 
necessarily symmetric. This means that to satisfy the Pauli principle we need to make the spin part 
antisymmetric. If we choose one spin up and one spin down, say 

ÆH1L∞H2L
then on exchanging labels we get 

ÆH2L∞H1L
This is neither the same nor the negative of the starting function. This means that this spin part does 
not have any exchange symmetry. This is actually progress, however, for we can convert the function 
into one that does have exchange symmetry by combining the original spin part of the wavefunction 
and its exchanged form, as 

ÆH1L∞H2L +Æ H2L∞H1L
or

ÆH1L∞H2L -Æ H2L∞H1L
On exchange, the first form becomes 

ÆH1L∞H2L +Æ H2L∞H1L  Øøøøøøø
1V 2

ÆH2L∞H1L +Æ H1L∞H2L = +[Æ(1)∞(2) + Æ(2)∞(1)]

and so is symmetric. The second form becomes 

ÆH1L∞H2L -Æ H2L∞H1L  Øøøøøøø
1V 2

ÆH2L∞H1L -Æ H1L∞H2L = -[Æ(1)∞(2) - Æ(2)∞(1)]

and so is antisymmetric. Since we want the spin part to be antisymmetric, we use the second form 
and so write the configuration of He as 

1s(1)1s(2) × [Æ(1)∞(2) - Æ(2)∞(1)]
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à Lithium

For lithium we can try, as we did before,

Li 1s3

This means the spatial part of the wavefunction would be 

1s(1)1s(2)1s(3)

which is symmetric. This in turn means that, to satisfy the Pauli principle, the spin part would again 
have to be antisymmetric. Since there are only two possibilities for each spin, up or down, the third 
spin must be the same as one of the other two, and so the spin part would be symmetric with respect 
to exchange of those two spin. Therefore, we come to the key consequence of the Pauli principle for 
many-electron atoms:

If more than two electrons are in the same orbital (n, , and m the same), the spin 
function cannot be made antisymmetric and so the overall wavefunction cannot 
satisfy the Pauli principle. 

If we try instead to construct an antisymmetric spatial orbital, the spatial part of the wavefunction 
will always vanish!

The only solution is to add the third electron to a different spatial orbital. From the analysis of the 
effects of shielding, the next lowest energy orbital is the 2s orbital, and so we try instead the 
configuration

Li 1s22s

If we do this, we can make the overall wavefunction—spatial and spin parts—antisymmetric. It was 
easy to write down the antisymmetric wavefunction for two electrons, in helium. For more than two 
electrons there are techniques to make the process more systematic. We don't need to learn these 
now, but here is the result for Li 1s22s, assuming the electron in the 2s orbital has spin up.

Li 1s22s =

+ 1sÆ(1) × [1s∞(2)2sÆ(3) - 2sÆ(2)1s∞(3)]

- 1s∞(1) × [1sÆ(2)2sÆ(3) - 2sÆ(2)1sÆ(3)]

+ 2sÆ(1) × [1sÆ(2)1s∞(3) - 1s∞(2)1sÆ(3)]

The notation 1sÆ(1) means electron 1 is in a 1s orbital with spin up, that is, 1s(1)Æ(1), etc. It is easy 
to see that each term in the square brackets is antisymmetric in exchange of labels 2 and 3. For 
example,

1s∞(2)2sÆ(3) - 2sÆ(2)1s∞(3)  Øøøøøøø
2V 3

 

1s∞(3)2sÆ(2) - 2sÆ(3)1s∞(2) = -[1s∞(2)2sÆ(3) - 2sÆ(2)1s∞(3)]

It is only a little harder to show that this wavefunction is also antisymmetric in exchange of labels 1 
and 2, and of labels 1 and 3. See if you can do this as a study problem.
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Pauli exclusion principle

We can summarize all of this by saying that no more than two electrons can be in the same orbital, 
and then their spins must be oppositely directed. This is usually expressed as the Pauli exclusion 
principle: 

No two electrons can have the same set of four quantum numbers n, , m and ms.

It is helpful to understand that the Pauli exclusion principle is thus a special case of the Pauli 
principle when applied to many-electron atoms. Systematic application of the Pauli principle to the 
atoms of each of the elements is the key  to why atoms show the periodic properties that they do.

à Relative stability of 1s2p configurations—Fermi holes and Fermi 
heaps

A striking example of the consequences of the Pauli principle is the lowest excited configuration of 
He that is produced by absorption of light energy. The oscillating electric filed of the light distorts 
the excited electron from its original spherical shape (as 1s) to a two-lobed shape (as 2p) and so the 
resulting electronic configuration is

He 1s2p

The question arises, what is the relative orientation of the spins of the two electrons? It turns out that 
the arrangement with both spins in the same direction, say

1s(1)2p(2) × Æ(1)Æ(2),

is much more stable (lower in energy) than the arrangement with the spins oppositely directed, say

1s(1)2p(2) × Æ(1)∞(2).

This is a very surprising result if we think just in terms of the interaction energy of bar magnets. That 
is, we would expect the arrangement Æ(1)Æ(2), in which the magnetic poles are north to north, would 
be less stable than the arrangement Æ(1)∞(2), in which the magnetic poles are north to south. In fact, 
it was just this surprising behavior that led Pauli to his principle in the first place.

The origin of the surprising stability of the Æ(1)Æ(2) arrangement is that thereby the two electrons 
stay out of each other's way, forming what is called a Fermi hole, and so their electrical repulsion is 
reduced. Just the opposite happens when the spins are arranged as Æ(1)∞(2): When the spins are 
oppositely directed, the electrons actually clump together, forming what is called a Fermi heap, with 
the result that the electrical repulsion between the electrons is enhanced.

Fermi holes and Fermi heaps are consequences of the symmetry with respect to relabelling of pairs of 
electrons—the exchange symmetry—of the spatial part of the many-electron wavefunction. To see 
this, let's construct the symmetrized wavefunctions corresponding to the alternative arrangements of 
the spins.

If the spins are parallel, then the spin part of the wavefunction is symmetric. This means that, for the 
overall wavefunction will be antisymmetric, the spatial part must be antisymmetric.

yÆÆ = [1s(1)2p(2) -1s(2)2p(1)] × Æ(1)Æ(2).

If instead the spin are antiparallel, then the spin part of the wavefunction is antisymmetric. This 
means that the spatial part must be symmetric so that the overall wavefunction will be antisymmetric.

yÆ∞ = [1s(1)2p(2) +1s(2)2p(1)] × [Æ(1)∞(2) - Æ(2)∞(1)].
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Now, let's look carefully at the spatial parts of these alternative wavefunctions. For yÆÆ, the spatial 
part vanishes when the coordinates of the two electrons are the same, that is, when the two electrons 
are in the same place, say x, y, z. The reason is that then the numerical value of the spatial functions 
1s(1) and 1s(2) will be the same and the numerical value of the spatial functions 2p(1) and 2p(2) will 
be the same,. The result is that the two terms in the spatial part of the wavefunction will exactly 
cancel.

1s(x1, y1, z1)2p(x2, y2, z2) -1s(x2, y2, z2)2p(x1, y1, z1)  Øøøøøøøøøøøøøøøøøøøøøøøøø
x1,y1,z1=x2,y2,z2=x,y,z

1s(x, y, z)2p(x, y, z) -1s(x, y, z)2p(x, y, z) = 0

This means that there is zero probability of the two electrons being in the same place in physical 
space. The Pauli principle causes electrons with parallel spins to stay out of one another's way. It is 
as if each electron is surrounded by an exclusion zone into which the other electron may not 
penetrate. The result is  a correspondingly decreased electron-electron repulsion, and so a more 
stable arrangement that would be the case had we not taken the Pauli principle into account.

One the other hand, for yÆ∞, the spatial part doubles when the two electrons are in the same place. 
The reason is now there is two terms in the spatial part of the wavefunction add rather than subtract.

1s(x1, y1, z1)2p(x2, y2, z2) +1s(x2, y2, z2)2p(x1, y1, z1)  Øøøøøøøøøøøøøøøøøøøøøøøøø
x1,y1,z1=x2,y2,z2=x,y,z

1s(x, y, z)2p(x, y, z) +1s(x, y, z)2p(x, y, z) = 2 1s(x, y, z)2p(x, y, z)

This means that the probability of the two electrons being in the same place in physical space is 
double what it would be if we did no take the Pauli principle into account. Said differently, the Pauli 
principle causes electrons with antiparallel spins to clump together, forming a heap of electrical 
charge. This clumping results in a correspondingly increased electron-electron repulsion, and so a 
less stable arrangement that would be the case had the electron spins been parallel.

It is important to understand that the Fermi hole and Fermi clump do not come about because of 
electron-electron repulsion. Rather, they come about because of the algebraic consequences of the 
exchange symmetry of the spatial part of the many-electron wavefunction. The subsequent energetic 
consequences do arise because of the changes in electron-electron repulsion, of course, but Fermi 
holes and Fermi heaps would arise independently of the electron charge.

à Visualization of 1s2p Fermi holes and Fermi heaps

Here is a way to visualize the He 1s2p Fermi hole and Fermi heap. We can construct the spatial part 
of the wavefunctions, and then look at how the probability density of one electron varies about the 
location of the other electron.

Let's assume that the electric field of the light is polarized along the y direction. This means that the 
electron will be excited from the 1s orbital to a 2py orbital. We will need, therefor, He one-electron 
wavefunctions for 1s and 2py. The radial parts of these wavefunctions are

n Pn

1 0 2 Æ−ρ ρ

2 1 Æ−ρê2 ρ2
cccccccccccccccc

2 è!!!!6

The angular parts of the wavefunction are

label function

s 1ccccccccccc
2 è!!!!π

py 1cccc2
"######3cccc

π
Sin@θD Sin@φD
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The full 1s and 2py wavefunctions are therefor

label full wavefunction

1s Æ−ρ ρcccccccccccè!!!!π

2py
Æ−ρê2 ρ2 Sin@θD Sin@φDccccccccccccccccccccccccccccccccccccccccccc

4 è!!!!!!!!2 π

Here is how the visualization looks, for one electron at y = -2 a0 in the xy plane.
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He 1 s2py  Fermi heap (left) and Fermi hole (right). The post marks the position of one electron, at y = -2 a0 in the xy plane. The 
height of the surface is the probability density of the other electron. The Fermi heap shows the clumping of the two electrons, while 
the Fermi hole shows that the two electrons are never found in the same place.

An animation of the visualization, showing the variation of the probability density for locations of 
one electron on a ring of radius 2 a0 in the xy plane, is available at

http://quantum.bu.edu/notes/QuantumMechanics/FermiHolesAndHeaps/FermiHeap
Hole1s2py.gif

The figure above is taken from this animation. The directional character of the 2py orbital accounts 
for the coming and going of the Fermi heap in the animation.

à Relative stability of 2p2 configurations

When  is greater than zero, more than two electrons can be accommodated in a subshell. The 
question arises as to the relative spin directions of electrons in different orbitals, that is, with different 
m values. The answer is that the lowest energy arrangement is when the spins are in the same 
direction. This is another consequence of the Pauli principle, as we will see now.

Configurations

If we ignore for the moment the requirement of the Pauli principle, namely that the combined 
wavefunction (spatial and spin) of the two electrons be antisymmetric with respect to exchange of the 
electrons, then there are five possible configurations. 

unsym1= 2px(1)Æ(1) 2px(2)∞(2)

unsym2= 2px(1)Æ(1) 2py(2)Æ(2)

unsym3= 2px(1)Æ(1) 2py(2)∞(2)

unsym4= 2px(1)∞(1) 2py(2)Æ(2)
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unsym5= 2px(1)∞(1) 2py(2)∞(2)

We'll refer to these configurations by their numbers. Configuration unsym1 has both electrons in the 
same (2px) orbital. The other four configurations have the electrons in different orbitals (2px and 2py; 
any pair of 2p orbitals would do as well). 

None of these configurations is symmetrized, that is they are neither symmetric nor antisymmetric. 
For example, exchanging the electron labels in configuration unsym1 gives 

2px(1)Æ(1) 2px(2)∞(2)  Øøøøøøø
1V 2

2px(2)Æ(2) 2px(1)∞(1)

but this is not equal to + or - times configuration unsym1. 

To satisfy the Pauli principle, these configurations must be symmetrized to be antisymmetric, that is, 
so that they give either themselves or themselves multiplied by -1 when the two electron labels are 
exchanged. 

A convenient way to symmetrize these configurations is to symmetrize their space and spin parts 
separately and then form products of symmetrized space and spin parts so that the overall 
wavefunctions are antisymmetric. Here are the results.

sym1= 2px(1)2px(2) × [Æ(1)∞(2) - Æ(2)∞(1)]

sym2= [2px(1)2py(2) + 2px(2)2py(1)] × [Æ(1)∞(2) - Æ(2)∞(1)]

sym3= [2px(1)2py(2) - 2px(2)2py(1)] × Æ(1)Æ(2)

sym4= [2px(1)2py(2) - 2px(2)2py(1)] × [Æ(1)∞(2) + Æ(2)∞(1)]

sym5= [2px(1)2py(2) - 2px(2)2py(1)] × ∞(1)∞(2)

The spatial parts of symmetrized configurations sym1and sym2 are symmetric, their spin parts are 
antisymmetric, and so the overall wavefunctions are antisymmetric. The spatial parts of symmetrized 
configurations sym3, sym5, and sym5 are antisymmetric, their spin parts are symmetric, and so again 
the overall wavefunctions again are antisymmetric. 

Symmetrized configurations sym1and sym2 correspond to the spins pointing in opposite directions. 
The configuration sym1can be represented as 

Æ∞
2px 2py 2pz

that is, both electrons in the same orbital with opposite spins. The configuration sym2 can be 
represented as 

Æ
2px

∞
2py 2pz

that is, the electrons in different orbitals with opposite spins. 

Symmetrized configurations sym3, sym4 and sym4 correspond to both spins pointing in the same 
direction. A way to see this is first to realize that in this case the total spin is S = s1 + s2 = 1; then, 
because spin is an angular momentum (like orbital momentum ) it can have three different value of 
mS , namely 1, 0 and -1. Configuration sym3 has mS = 1, configuration sym4 has mS = 0, and 
configuration sym5 has mS = -1. These three configurations all have the same energy and form what 
is called a spin triplet. They can be collectively represented as 
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Æ
2px

Æ
2py 2pz

that is, the electrons in different orbitals with the same spins. 

Relative energies

There are two aspects to consider in deciding the relative stability of the three arrangements (both 
electrons in the same orbital with opposite spins, electrons in different orbitals with opposite spins, or 
electrons in different orbitals with the same spin), namely the magnetic interactions between the 
electrons, due to their spin, and the electrical repulsions between the electrons, due to their negative 
charge. 

The spin of the electron is due to its intrinsic magnetic moment—the electron behaves magnetically 
as a bar magnet. Now, bar magnets attract one another when they are anti-parallel to one another 
(north pole adjacent to south pole), and repel one another when they are parallel (north poles 
adjacent). This means that magnetically, electrons with the same spin are the least stable. 

The charges of the electrons repel one another according to Coulomb's law, so that the closer the 
electrons are, the more they repel. This means that electrically, electrons in the same orbital are the 
least stable, since they then occupy the same part of space. 

So, we have two competing effects, which we can tabulate as 

Arrangement Magnetic stability Electrical stability

Æ∞
2px 2py 2pz

stable
Hnorth–southL

unstable
Hsame region of spaceL

Æ
2px

∞
2py 2pz

stable
Hnorth–southL

stable
Hspatialyl separatedL

Æ
2px

Æ
2py 2pz

unstable
Hnorth–northL

stable
Hspatially separatedL

Because magnetic effects are generally much weaker than electrical effects, we can conclude that the 
arrangement with both electrons in the same orbital with opposite spins is the least stable of the three 
possible arrangements. The other two arrangements each have the electrons in different orbitals and 
so should have the same electrical interaction. Therefore we might expect that the most stable 
arrangement would be when the electrons have the opposite spins, since then they are attracted 
magnetically. What is observed is just the reverse; the arrangement with the electrons in different 
orbitals with the same spin is most stable. 

Fermi hole and Fermi heap

Since this is just the opposite of what is predicted based on magnetic interactions, the cause must be 
electrical. So to see what is going on, we need to compare the space parts of the wavefunctions for 
the electrons in different orbitals, since only the spatial distribution of the electrons can affect their 
mutual electrical repulsion. 

The space wavefunction when the two electrons have the same spin is 

2px(1)2py(2) - 2px(2)2py(1)
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This function has the remarkable property that it vanishes when both electrons are in the same place 
(that is, when their coordinates are the same, which corresponds to 1 = 2). This means that the 
probability of the two electrons being in the same place is zero. We can say that when electrons have 
an antisymmetric space wavefunction, they stay away from one another. This effect is called a Fermi 
hole. As a consequence, the electrical repulsion between the two electrons is lessened. 

Just the opposite effect occurs when the two electrons have anti-parallel spins. The space 
wavefunction in this case is 

2px(1)2py(2) + 2px(2)2py(1)

This function becomes twice as large when both electrons are in the same place (when 1 = 2). This 
means that the probability of the two electrons being in the same place is much greater than the 
probability of each electron being there separately. We can say that when electrons have a symmetric 
space wavefunction, they clump together. This effect is called a Fermi heap. As a consequence, the 
electrical repulsion between the two electrons is increased. 

The Fermi heap also occurs in the arrangement when both electrons are in the same orbital, and there 
its destabilizing effect is even greater, since the electrons are in the same orbital and thus closer 
together. 

Everything can be summarized as follows. 

Arrangement Magnetic stability Electrical stability Net effect

Æ∞
2px 2py 2pz

stable
Hnorth–southL

very unstable
Hsame region and Fermi heapL

very unstable

Æ
2px

∞
2py 2pz

stable
Hnorth–southL

unstable
Hseparated but Fermi heapL unstable

Æ
2px

Æ
2py 2pz

unstable
Hnorth–northL

very stable
Hseparated and Fermi holeL stable

The conclusion from all of this analysis is, if possible, put electrons in different spatial orbitals, with 
spins in the same direction, since this arrangement has the lowest energy. 

Visualization of 2p2p Fermi holes and Fermi heaps

Here is a way to visualize the C 2p2p Fermi hole and Fermi heap. We can construct the spatial part 
of the wavefunctions, and then look at how the probability density of one electron varies about the 
location of the other electron.

The radial part of the 2px and 2pythese wavefunctions is

n Pn

2 1 Æ−ρê2 ρ2
cccccccccccccccc

2 è!!!!6

The angular pars of the wavefunction are

label function

px 1cccc2
"######3cccc

π
Cos@φD Sin@θD

py 1cccc2
"######3cccc

π
Sin@θD Sin@φD

The full 2px and 2py wavefunctions are therefor
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label full wavefunction

2px
Æ−ρê2 ρ2 Cos@φD Sin@θDccccccccccccccccccccccccccccccccccccccccccc

4 è!!!!!!!!2 π

2py
Æ−ρê2 ρ2 Sin@θD Sin@φDccccccccccccccccccccccccccccccccccccccccccc

4 è!!!!!!!!2 π

Here is how the visualization looks, for one electron at y = -2 a0 in the xy plane.
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C 2 px  2 py  Fermi heap (left) and Fermi hole (right). The post marks the position of one electron, at Hx, yL = I-2 
è!!!!2 , 2 

è!!!!2 M a0 in the 
xy plane. The height of the surface is the probability density of the other electron. The Fermi heap shows the clumping of the two 
electrons, while the Fermi hole shows that the two electrons are never found in the same place.

An animation of the visualization, showing the variation of the probability density for locations of 
one electron on a ring of radius 4 a0 in the xy plane, is available at

http://quantum.bu.edu/notes/QuantumMechanics/FermiHolesAndHeaps/FermiHeap
Hole2px2py.gif

The figure above is taken from this animation. The directional character of the 2p orbitals accounts 
for the coming and going of the Fermi heap in the animation.
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