CPS Questions: Nernst equation

Notes on General Chemistry

http://quantum.bu.edu/notes/GeneralChemistry/CPSNernstEquation.pdf Last updated Thursday, April 10, 2008 19:03:55-05:00

Copyright © 2008 Dan Dill (dan@bu.edu) Department of Chemistry, Boston University, Boston MA 02215

1. We have derived that $\mathcal{E} = \mathcal{E}^{\circ} - (\text{mol } RT)/(n_e \mathcal{F}) \ln(Q)$. What is the value of ${\mathcal E}$ when everything is in standard
states?	

 $\infty = 3$

 $\theta = 3$

 $\mathcal{E} = \mathcal{E}^{\circ}$

None of these

2. We have derived that $\mathcal{E} = \mathcal{E}^{\circ} - (\text{mol } RT)/(n_e \mathcal{F}) \ln(Q)$. What is the value of \mathcal{E} when everything is at equilibrium?

 $\infty = 3$

0 = 3

 $\mathcal{E} = \mathcal{E}^{\circ}$

None of these

3. We have derived that $\mathcal{E} = \mathcal{E}^{\circ} - (\text{mol } RT)/(n_e \mathcal{F}) \ln(Q)$. What is the value of \mathcal{E} when there are no products present?

 $\infty = 3$

0 = 3

 $\mathcal{E} = \mathcal{E}^{\circ}$

None of these

4. We have derived that $\mathcal{E} = \mathcal{E}^{\circ} - (\text{mol } RT)/(n_e \mathcal{F}) \ln(Q)$. What is the value of \mathcal{E} when there are *only products* present?

 $\infty = 3$

0 = 3

 $\mathcal{E} = \mathcal{E}^{\circ}$

None of these

5. At 25 °C, $\mathcal{E} = \mathcal{E}^{\circ} - (0.06/n_e) \text{ V log}(Q)$. What is the expression for \mathcal{E}° at 25 °C?

 $\mathcal{E}^{\circ} = (0.06/n_e) \,\mathrm{V} \,\mathrm{log}(Q)$

 $\mathcal{E}^{\circ} = (0.06/n_e) \operatorname{V} \log(K)$

 $\mathcal{S}^{\circ} = \mathcal{E}$

None of these

6. For A + B \rightleftharpoons C + D, $\Delta G^{\circ} = -\text{mol } R T \ln(Q)$. What is the value of ΔG° for 2 A + 2 B \rightleftharpoons 2 C + 2 D?

 $2\Delta G^{\circ}$

 ΔG°

 $\Delta G^{\circ}/2$

None of these

7. For A + B \rightleftharpoons C + D, $\mathcal{E}^{\circ} = (0.06/n_e) \text{ V log}(K)$. What is the value of \mathcal{E}° for 2 A + 2 B \rightleftharpoons 2 C + 2 D?

 $2\mathcal{E}^{\circ}$

 \mathcal{E}°

 $\mathcal{E}^{\circ}/2$

None of these

8. For A + B \rightleftharpoons C + D, $\mathcal{E}^{\circ} = (0.06/n_e) \text{ V} \log(K)$. What is the value of \mathcal{E}° when all of the concentrations are doubled?

 $2\mathcal{E}^{\circ}$

 \mathcal{E}°

 $\mathcal{E}^{\circ}/2$

None of these

9. For A + B \rightleftharpoons C + D, \mathcal{E}° = 1.50 V and n_{e} = 2. What is the value K for the process?

 $K = 10^{-3}$

 $K = 10^{50}$

 $K = 10^3$

None of these

10. For $2 A + 2 B \rightleftharpoons 2 C + 2 D$, $\mathcal{E}^{\circ} = 1.50 V$ and $n_{e} = 4$. What is the value K for the process?

 $K = 10^{100}$

 $K = 10^{50}$ $K = 2 \times 10^3$

None of these

11. For A + B \rightleftharpoons C + D, $n_e = 3$. At 25 °C, $\mathcal{E}^\circ = 1.50$ V and when $Q = Q_1$, $\mathcal{E} = \mathcal{E}_1 = 2.00$ V. This means ...

 $Q_1 > K$

 $Q_1 = K$

 $Q_1 = 1$

 $Q_1 < 1$

12. For A + B \rightleftharpoons C + D, n_e = 3. At 25 °C, \mathcal{E}° = 1.50 V and when $Q = Q_1$, $\mathcal{E} = \mathcal{E}_1 = 2.00$ V. When the concentrations of C and D are each tripled, Q is now ...

 $3Q_{1}$

 $9Q_1$

 $(Q_1)^3$

 $(3 Q_1)^3$

13. For A + B \rightleftharpoons C + D, n_e = 3. At 25 °C, \mathcal{E}° = 1.50 V and when $Q = Q_1$, $\mathcal{E} = \mathcal{E}_1 = 2.00$ V. When the concentrations of C and D are each tripled, \mathcal{E} will be ...

> 2.00 V

= 2.00 V

< 2.00 V

Not enough information

14. For A + B \rightleftharpoons C + D, n_e = 3. At 25 °C, \mathcal{E}° = 1.50 V and when $Q = Q_1$, $\mathcal{E} = \mathcal{E}_1 = 2.00$ V. When the concentrations of C and D are each tripled, \mathcal{E} will be ...

1.98 V

1.52 V

1.48 V

None of these