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Abstract: One of the major issues in predicting state failure is the relatively rare occurrence of 

event onset. This class skew problem can cause difficulties in both estimating a model and 

selecting a decision boundary. Since the publication of King and Zeng’s (2001) study, scholars 

have utilized case-control methods to address this issue. This paper re-analyzes the landmark 

research of the Political Instability Task Force (Goldstone et al. 2010), comparing the case-

control approach to several other methods from the machine learning field and some original to 

this study. Case-control methods are outperformed by almost all of the alternatives. A multilevel 

model on the raw data performs best. The article also introduces cost sensitive methods for 

determining a decision boundary. This explication reveals problems in the Task Force’s 

formulation of a decision boundary and suggests methods for making useful predictions for 

policy. 
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 Jacqueline Stevens (2012) caused a firestorm of controversy when she labeled political 

scientists “lousy forecasters” in the New York Times, and included an illustration suggesting that 

political scientists were comparable to monkeys throwing darts. In response, scholars argued that 

she had misinterpreted several of the key studies cited in the article, and that the preeminent goal 

of political science is understanding, and not prediction per se (e.g. Farrell 2012; Johnson 2012).  

Both Stevens and her critics missed several remarkable, if rare, successful quantitative 

forecasting enterprises in political science. In American politics, Martin et al. (2004) were able to 

construct a simple model of Supreme Court decisions that predicted case outcomes better than 

legal experts. Models to predict US elections are a consistent subject of inquiry, often perform as 

well as or better than pre-election polls, and are frequently used by news and financial 

organizations (e.g. Campbell 2012; Lewis-Beck and Tien 2012; Klarner 2012). 

In international relations, the US government has invested heavily in early detection of 

political crises. Andriole and Young’s (1977) crisis detection system was reportedly part of 

Ronald Reagan’s daily brief. Bueno de Mesquita’s (1981) expected utility model (called Policon 

and later updated to Senturion) has been utilized by the CIA and private companies to predict 

numerous events.1 More recently, the Political Instability Task Force (PITF, Goldstone et al. 

2010) and Integrated Crisis Early Warning System (ICEWS, O’Brien 2010) have received 

generous support from the CIA and Department of Defense, reporting impressive results. PITF, 

which was initiated in 1994 by then Vice President Al Gore, recently reported successful 

prediction in nearly 86% of out-of-sample state failures (Goldstone et al. 2010: 201). A more 

                                                           
1 Feder (2002) reports that the CIA found the Policon model was correct in 90% of the real-world applications for 

which the CIA used it, but, as Bueno de Mesquita acknowledges, the process for arriving at these accuracy estimates 

are unclear. 
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recent attempt at predicting incidences of genocide reports success in predicting 90.9% of 

genocide onsets correctly (Goldsmith et al. 2013). 

Moreover, some influential scholars have made the case that prediction should play a 

more important role in political science than either Stevens or her critics allow. Ward et al. 

(2010), in their re-analysis of two influential studies on civil conflict (Fearon and Laitin 2003; 

Collier and Hoeffler 2004), persuasively argue that the traditional focus on statistical 

significance may emphasize variables that have little substantive significance. In addition, they 

point out that substantive interpretations of probabilistic models are, in fact, predictions. Schrodt 

(Forthcoming: 4) uses stronger words: “[E]xplanation in the absence of prediction is not 

scientifically superior to predictive analysis, it isn’t scientific at all! It is, instead, ‘pre-

scientific’.” In response, several ambitious efforts at predicting have begun to appear in major 

international relations journals (e.g. Hegre et al. 2013; Goldsmith et al. 2013; Gleditsch and 

Ward 2013). Yet, prediction remains under-emphasized in political science, and many of the 

basic lessons from more prediction-oriented fields, like machine learning, are rarely addressed. 

This study looks at one of the major issues in political science prediction, the relatively 

rare occurrence of certain important phenomena, within the context of a re-analysis of PITF’s 

global model for forecasting state failure (Esty et al. 1995; Esty et al. 1998; Esty et al. 1999; 

Goldstone et al. 2000; King and Zeng 2001b; Bates et al. 2003; Goldstone et al. 2010). In the 

machine learning field, this issue of rare events is referred to as the skewed class problem. The 

social sciences face this problem in studies of everything from incidence of warfare to changes in 

electoral systems. Skewed classes can produce two inter-related maladies. First, models can have 

low overall error rates while still not producing useful or interesting results. For example, a naïve 

model that always predicts state failure will not take place will be correct about 95 percent of the 
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time. Yet, a policy-maker would likely prefer a model that has more overall error if it could 

correctly predict the onset of state failure in some cases. We demonstrate that the formulation of 

decision boundaries – the probability above which we predict the event will occur – is 

inseparable from expected utility analysis (Elkan 2001; Abu-Mostafa et al. 2012: 28-30). Cost-

sensitive learning – using the cost of outcomes to formulate an optimum decision boundary – is 

explained and demonstrated in PITF’s out-of-sample estimates. We find that PITF’s decision to 

use quartiles to form a decision boundary would only be preferred to a higher threshold, which 

predicts fewer state failure cases correctly, if false positives were only about 2.5 percent the cost 

of true positives. Moreover, this threshold would only be preferred to a completely naïve 

threshold, which always predicts state failure will not occur, if false positives were only about 12 

percent of the cost of true positives. This exhibits how the class skew problem can produce very 

impressive prediction accuracy, while still falling short of policy-maker needs and masking the 

need for further work. The results are not just relevant for PITF’s results, but demonstrate that 

traditional methods for drawing decision boundaries in political science, which are often 

arbitrary, are heavily affected by class skew and should be informed by their policy implications. 

Second, when certain events are particularly rare and there is substantial mixing between 

outcomes, formulating a generalizable decision boundary can be difficult. Case-control methods, 

a specialized version of random under-sampling, can be useful and are the default in some 

applications, but, as King and Zeng (2001: 707) note, the decision of how to deal with class skew 

“depends on the goals of the particular application.” Which of these methods are best for 

generating out-of-sample predictions is an open question, and depends on the characteristics of 

the data being analyzed (Kubat and Matwin 1997; Batista et al. 2004; Japkovicz 2000; Weiss and 

Provost 2001). Our analysis of a reconstructed version of PITF’s data demonstrates that case-
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control methods are sub-optimal in this case. The case-control method is outperformed by almost 

all the alternative machine learning algorithms and is substantially worse than using the full 

dataset for out-of-sample prediction. In fact, the best model uses a simple multilevel logit on the 

full dataset. This study introduces new methods for handling skewed classes in political science 

data and demonstrates that scholars should not default to any one particular method. Indeed, in 

this application, the leverage from using the full data trumps the more methodologically 

sophisticated and difficult to implement methods of data cleaning, producing better decision 

boundaries. Our application also impacts the machine learning literature, since the performance 

of these methods in large-scale machine learning problems like spam detection and character 

recognition is likely quite different from performance in the relatively small-N and time-series 

cross-section (TSCS) data common in political science. 

 

What is Our Goal? 

 Political scientists usually assign low priority to prediction, preferring to focus on the 

statistical significance of particular variables. Yet, to analyze the substantive importance of 

variables, we often utilize the language of prediction. Whenever a study states that a certain 

increase/decrease in one variable leads to an increase/decrease in another variable within 

particular bounds, it makes a prediction about the likely effect on an out-of-sample subject (i.e. 

the universe of cases).  

 When model predictions are analyzed, scholars usually utilize the same sample to 

formulate and test the model’s predictions (via R2 statistics). This leads to several maladies, 

including over-fitting the model to the particular data or using time-lagged dependent variables, 

producing well-fitted but substantively uninteresting results. As O’Brien (2010: 98) argues, 
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“Though such a naïve model may retrospectively achieve acceptable levels of overall 

performance, it is useless for real world applications.”  

 There are, of course, subtle distinctions in the role that prediction plays in different fields. 

This study draws significant insight from the field of machine learning – broadly defined as the 

study of how machines can be programmed to draw conclusions about unobserved data from 

observed data (Abu-Mustafa et al. 2012: 14-15). This concentration on application to out-of-

sample data in machine learning stands in contrast to econometrics, which generally views 

prediction as separate from and subsequent to model estimation (Gujarati and Porter 2009: 3); 

statistics, which makes more restrictive assumptions and deals with less general models; and data 

mining, which focuses on finding patterns in large relational databases (Abu-Mustafa et al. 2012: 

14-15). This does not mean that machine learning tools cannot be used for studies which do not 

explicitly involve out-of-sample prediction. Indeed, some specific methods from machine 

learning have even found their way into the canonical experimental literature in political science 

(see e.g. Gerber and Green 2012: 310; Green and Kern 2012). Political science, however, has 

only recently begun to appreciate the importance of techniques specifically designed for 

prediction on unobserved data. 

 For prediction to be useful, it must be done on a different sample from the one used to 

formulate the model (Alpaydin 2010: 38-39; Abu-Mostafa et al. 2012: 59-60). There must be a 

division between the “training” data – used to build the model – and the “testing” data, used to 

evaluate the model. Intuitively, the practice of using the same data to both formulate and test a 

model is somewhat akin to giving the answer key to a student along with the test.  

Out-of-sample prediction also addresses a more fundamental issue. Political scientists 

usually distinguish between internal and external validity based on Campbell’s (1957) 
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dichotomy. Internal validity deals with how accurate the results are in the target population, 

while external validity refers to how generalizable the results are for observations outside the 

target population. Often, however, external validity is conflated with what Cook and Campbell 

(1979) later described as statistical validity, a part of internal validity dealing with whether the 

results are sizable and statistically significant in the population of interest. External validity, in 

contrast, deals with whether the results developed in one set of data can be applied to new data 

drawn from other circumstances, times, or places. While internal validity is necessary for 

generalization (see e.g. Morton and Williams 2010), conflating it with statistical validity leads 

analysts to assume, when their samples are drawn randomly from or include the full population 

of cases, their results are also externally valid. Ward et al. (2010) demonstrate this is incorrect – 

statistically significant variables in census datasets may add little to in-sample or out-of-sample 

prediction, and, in some cases, make prediction worse. These problems are likely to be especially 

severe in areas where the sample includes data from a set of non-randomly selected cases or 

where we are technically analyzing “census” data. This situation is common in the fields of 

comparative politics and international relations, where “samples” are actually census data of, for 

example, all interstate wars (Sarkees and Wayman 2010), all competitive elections (Hyde and 

Marinov 2012), all independent country-years (Ross 2006), or a subset of all cases for which 

there is data (King et al. 2001). In these cases, there is no true “sample” from a larger 

“population,” rendering our traditional explanations of statistical significance quite awkward 

(Jackman 2009: xxxii). A p-value of 0.01 indicates that we would get non-zero results in 99 

percent of new samples from the population, but there is no larger population from which to 

draw more samples. This leads to discussions of hypothetical alternative realities, which have 

little philosophical or statistical foundation (see e.g. Fair 2011). From this perspective, out-of-
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sample prediction is not a luxury for those primarily interested in forecasting, it is a fundamental 

aspect of external validity in large, non-sample based comparative politics and international 

relations data sets. 

 Once we have out-of-sample predictions, how do we evaluate the accuracy of the model? 

For prediction on a binary dependent variable, the four possible outcomes are displayed in a 

“confusion matrix.” Table 1 shows the confusion matrix with the different types of errors and 

accuracy measures labeled. 

 

Table 1: Confusion Matrix 

 

 Actual Positive Actual Negative  

 

Predict Positive 

 

True Positive 

 

False Positive 

Precision (Positive 

Predictive Value) = 
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

Predict Negative 

 

False Negative 

 

True Negative 

Negative Predictive 

Value = 
∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 Sensitivity (Recall) = 
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Specificity = 
∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

 

 

 

The accuracy of predictions can be evaluated by the ratios in the margins. Political scientists, 

however, are rarely trained in evaluating them. Goldstone et al. (2010), for example, only 

evaluate the sensitivity and specificity of their out-of-sample predictions – implicitly ignoring the 

relative cost of false positives to true positives. As demonstrated below, highly skewed classes 

can give us very high values of sensitivity and specificity, but still make dramatic assumptions 

about the relative costs of true and false positives. 
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 In sum, we argue that the choice of modeling strategy is inseparable from the evaluation 

of predictive success. This study deals with both ends of this equation, evaluating data cleaning 

techniques used in estimation and the methods by which scholars draw the boundaries for their 

predictions to evaluate their success. 

 

The Problem of Skewed Classes, Part 1: Evaluating Success 

 In many fields, we encounter data where the event of interest is relatively rare. Credit 

card fraud, loan defaults, exotic illness, onset of civil war, and incidence of warfare are but a few 

examples. These rare events are often important and their prediction valuable. The machine 

learning literature calls this the problem of “skewed classes” – when one category has many 

more examples of occurrence than another in the training and test data. 

 Skewed classes pose several problems. Most basically, researchers are forced to modify 

their definition of successful prediction. If we have bivariate data where 98 percent of the data 

have a value of 0 and 2 percent a value of 1, a model which predicts P(Y=0|X) = 1 will be correct 

98 percent of the time. Even worse, changing the decision boundary to correctly predict some of 

the true positives will often perform worse than the naïve model. 

 Still more problematic, occurrences of the rarer class are often especially costly. Cases of 

securities fraud or particular illnesses may be costly enough that we are willing to accept a lot of 

false positives to correctly predict their onset. Similarly, to predict the occurrence of war or state 

failure, policy-makers will likely tolerate some false positives to allow preventative action in 

risky cases. How tolerant the consumer of a predictive finding will be depends on the utility 

associated with true positives and false positives. As demonstrated further below, when classes 

are severely skewed, we can have very high sensitivity and specificity, while still having a very 
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large proportion of false positives. Getting a high percentage of cases correctly classified is not a 

sufficient condition for evaluating model success in skewed classes. Indeed, it is a relatively 

weak criterion, and models can be highly accurate but still not be useful for policy-making. 

Generally speaking, there are two ways to address the issue of rare but important 

outcomes. The first is related to the data pre-processing methods we explore below. Essentially, 

a researcher can under-sample from the majority case or use synthetic cases to over-sample the 

minority case, making the two classes more equal or reflecting their relative costs (Elkan 2001; 

Leetaru 2012; Witten et al. 2011: 167-168). While this method is often utilized, we demonstrate 

below that such pre-processing can significantly reduce the performance of the model. It is also 

heuristically less useful than the alternative. We leave it aside for this article and point the 

interested reader to the above-cited sources. 

 The other option is to change the level of probability at which we predict the minority 

case event will occur. Several prominent studies have bemoaned the fact that no empirical model 

has produced a predicted probability of about 0.5 for certain types of conflict (e.g. Beck et al. 

2000; O’Brien 2010). Others have argued that requiring a 0.5 decision boundary is arbitrary and 

the low predicted probabilities are an accurate reflection of events that are quite rare (e.g. De 

Marchi et al. 2004; Ward et al. 2010). This study sides with the latter group, arguing, for 

example, that a 30 percent chance of state failure onset would likely be enough that a policy-

maker would take some type of action. A common illustration of such decision-making is as 

follows: if you found out that you had a 1 percent chance of dying today, it would likely be 

enough to change your behavior, given the loss of utility associated with death and the degree to 

which 1 percent exceeds the standard probability of death on any particular date. 
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 These examples illustrate that the choice of where to draw the decision boundary should 

not be determined by arbitrary standards, but should be determined by the utility of that decision 

boundary. Table 2 changes the confusion matrix into a cost matrix by inserting the costs for each 

outcome in the associated cell. 

 

Table 2: Prediction Cost Matrix 

 

 Actual 

Positive 

Actual 

Negative 

Predict 

Positive 
𝑐11 𝑐10 

Predict 

Negative 
𝑐01 𝑐00 

 

 

 From the cost matrix in Table 2, a decision boundary for predicting a positive outcome, 

will be optimal if and only if 

𝑝(𝑐11) + (1 − 𝑝)(𝑐10) ≤ 𝑝(𝑐01) + (1 − 𝑝)(𝑐00)  (1) 

where p is the probability of an actual positive, given the set of predictor variables, 𝑃(𝑌 = 1|𝑋). 

The right-hand side of this equation is the expected cost of predicting a positive outcome and the 

left-hand side is the expected cost of predicting a negative outcome. From this, the optimal 

decision boundary, p*, is calculated as 

𝑝∗ =
𝑐10−𝑐00

𝑐10−𝑐00+𝑐01−𝑐11
.  (2) 

 Traditionally, bivariate models in political science usually draw a boundary at p* = 0.5, 

which predicts a positive outcome when it is more likely than a negative outcome. This is the 

result we get if all incorrect predictions are equal in cost (𝑐10 = 𝑐01) and all correct predictions 

are equal in cost (𝑐11 = 𝑐00).  The reader can verify that, in these circumstances, the denominator 

will always be twice the numerator. 
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 This is rarely the case. If, for example, the cost of a false positive is especially high, we 

would want to choose a higher value of p*, as reflected in equation 2. For example, in many 

legal systems, where a guilty verdict in a criminal case can deprive a person of their liberty, the 

standard for guilt is “beyond a reasonable doubt” (i.e. p* approaches 1). In contrast, the civil 

system, where imprisonment is not a potential outcome, the standard for guilt is “the 

preponderance of the evidence” (i.e. p* > 0.5).  

 Of course, there are some instances where p* may not be directly calculable, as when we 

doubt the estimates of p produced by our estimator, 𝑝̂, are accurate reflections of the true 

probabilities.2 As long as the predicted values of 𝑝̂ are consistent (ie. where 𝑝̂ is still generally 

higher for positive outcomes than for negative outcomes), p* can be computed by following the 

algorithm below. A proposed threshold, 𝑝̅, will distribute cases into the cells of the cost matrix at 

a particular rate: 𝑛11, 𝑛10, 𝑛01, and 𝑛00. A value of 𝑝̅ will equal p* if and only if it satisfies the 

following criterion 

𝑝∗ =  argmin
𝑝̅→{𝑛11,𝑛10,𝑛01,𝑛00}

𝑓(𝑛, 𝑐) = 𝑛11(𝑐11) + 𝑛10(𝑐10) + 𝑛01(𝑐01) + 𝑛00(𝑐00).  (3) 

 The link between decision boundaries and the utility calculations of the intended policy-

makers should now be clear. There are, however, additional factors that might be important in 

the study of conflict that are not well developed in the machine learning literature. The cost of 

credit defaults, fraud, and spam messages tend to be relatively homogenous or are a direct 

function of the size of the outcome (e.g. the size of a loan). The cost of state failures, however, is 

likely to vary considerably depending on the state that is failing. For example, the impact on the 

international system of state failure in Fiji may be different from the impact of state failure in 

                                                           
2 This is a common problem when using certain types of estimators. See, for example, Domingos and Pazzani (1996) 

on naïve Bayes estimators and Mease and Wyner (2008) on adaptive boosting. Both methods, however, produce 

very good, and often better, classification results than alternatives. 
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Russia. Additionally, the cost of intervention depends on how difficult intervention would be. If 

a state has a probability of failure much higher than our decision boundary, intervention may be 

futile. Policy-makers may prefer to intervene in cases close to the decision boundary, where a 

small change in the probability of the adverse event would be more effective. 

 To some extent, these problems can be addresses by recalibrating equation (2) and 

calculating a separate p* for each of the i involved cases 

𝑝∗𝑖 =
𝑐10

𝑖 −𝑐00
𝑖

𝑐10
𝑖 −𝑐00

𝑖 +𝑐01
𝑖 −𝑐11

𝑖 . 

This obviously becomes more complex if, as is the case with some estimators, 𝑝̂ does not reflect 

actual probabilities. However, the evidence from these estimators suggests that their tendency is 

to inflate 𝑝̂ for cases where the event occurs and deflate 𝑝̂ in cases where the event does not 

occur (Mease and Wyner 2008), meaning that the threshold will still be valid. There have also 

been some proposals for post-estimation correction of probability estimates that obviate these 

problems (Witten et. al. 2011: 343-346). 

 The main point is that none of the major projects on the prediction of state failure and 

conflict, insofar as it is reflected in the public record, have dealt with the issue of drawing useful 

decision boundaries. Policy-maker input has been limited to setting pre-estimation goals, when it 

should also be incorporated in post-estimation evaluation. Further, as we demonstrate in the 

PITF data below, this can result in overly optimistic evaluations of model success. 

 

The Problem of Skewed Classes, Part 2: Generalizability and Noise 

 Before we can evaluate the success of our models, we must have models producing the 

results. Skewed classes can also hinder the development of effective classification models. 

Figure 1 shows a classic illustration from the machine learning literature (see e.g. Kubat and 



13 
 

Matwin 1997; Batista et al. 2004), where there are two independent variables, 𝑥1 and 𝑥2, and a 

bivariate dependent variable with the two classes represented by x and o. Where one class, the 

majority class (in this case o), has many more examples than the other, the minority class (in this 

case x), and where there is significant mixing between the classes (left-hand graph), it becomes 

difficult to draw a decision boundary. As the reader can see in the left-hand graph, the majority 

class has a number of examples that fall in the space primarily associated with the minority class. 

If the mixing is due to systematic issues, our results will be misleading. If it is due to noisy 

measurement, the decision boundary may be less efficient. Similarly, focusing on in-sample 

results in heavily skewed data increases the temptation to over-fit the training data in a way that 

is not generalizable. For most political science studies to date, the issue of over-fitting has been 

mitigated by the assumptions of linearity and additivity in most of our estimation techniques and 

the relatively rare usage of interaction terms or higher-order polynomials in our specifications. 

As scholars begin adding more characteristics to their regression models and adapt more flexible 

estimation techniques, these problems are likely to become severe.3 With a flexible enough 

model, a curved decision boundary that correctly classifies nearly all the cases on the left-hand 

graph could be formulated, but it would likely not be generalizable to new data. John von 

Neumann famously warned of this danger: “With four parameters I can fit an elephant, and with 

five I can make him wiggle his trunk” (Dyson 2004: 297). 

 

 

 

 

 

                                                           
3 Several top scholars have emphasized the advantages to more flexible estimation techniques and adapted them to 

the needs of political scientists – for example:  kernel regularized least squares (Hainmueller and Hazlet 2013), 

LASSO (Kenkel and Signorino 2013), and spline techniques (Keele 2008). This has led some to speculate that 

political science has a distinctly “non-linear future” (Box-Steffensmeier et al. Forthcoming). It will also be a future, 

however, in which the danger of over-fitting will loom much larger. 
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Figure 1: Decision Boundaries in Skewed Classes 

 
 

 

 There are a number of ways to deal with this problem. The first is simply to ignore the 

issue and use the full data with our traditional models. While some may be suspicious of doing 

this, experimental results indicate this is the best option in some cases (e.g. Weiss and Provost 

2001). 

 We can also pre-process the data to make the classes more equal. Pre-processing 

alternatives fall into two categories: 

 Under-sampling – where cases in the majority class are eliminated under a particular 

criterion; and 

 Over-sampling – where cases in the minority class are duplicated or new examples of the 

minority class are produced through simulation. 

The goal of both is making our data more like the right-hand side of Figure 1, where the decision 

boundary is clear and noise is reduced. As mentioned above, under- and over-sampling can also 

be used to increase the weight of the minority class, better reflecting the cost of events in this 

class (Elkan 2001; Witten et al. 2011). Both approaches carry costs. Under-sampling eliminates 
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potentially useful data. Over-sampling can lead to over-fitting when cases are randomly 

duplicated or produce inconsistent new cases when simulation is used. 

 Several techniques are available for under-sampling. The first is random or block-random 

under-sampling, also known as a 1:k case-control technique (see King and Zeng 2001; Rothman 

et al. 2008). For each example of the minority class, k examples of the majority class are selected 

completely at random or separated into matching blocks on critical characteristics and randomly 

selected from within these blocks. PITF uses block-random under-sampling, where the k 

majority class cases are selected to match the minority class example on region and year, and 

they must not have experienced a state failure onset two years prior and four years after the 

particular year (Goldstone et al. 2010: 193). 

 This technique has advantages where the goal is to reduce a large dataset to a more 

manageable size for coding difficult variables (King and Zeng 2001), but it tends to be the least 

popular technique in machine learning, since it does not explicitly address the class mixing 

problem and can eliminate a large portion of the data (84 percent in our replication of PITF’s 

data). We found it also the most time-consuming and difficult to reproduce. More popular are 

techniques using the distance between minority and majority cases to determine which cases are 

likely to be problematic or due to noise. Given that PITF’s dataset does not suffer from issues of 

difficult new data collection, which would provide a-priori justification for reducing the size of 

the data set with matched cases, these techniques seem promising. 

 Wilson’s Edited Nearest Neighborhood Rule (ENN) and the Neighborhood Cleaning 

Rule (NCR) utilize k-nearest neighbor (KNN) methods to achieve better balance and remove 

cases that are problematic for the decision boundary (Wilson 1972; Japkowicz and Stephen 

2002). In a two-class problem, for each example, 𝐸𝑖, in the training set, the three nearest 
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neighbors are found. In ENN, if 𝐸𝑖 is from the majority class and at least two of its nearest 

neighbors are from the minority class, 𝐸𝑖 is removed from the dataset. ENN can be pictured as 

something like a majority rules voting system for removing majority class examples. If two of a 

majority class example’s three closes neighbors are from the minority class, we might suspect 

that this majority class case is an outlier and/or is a result of noisy measurement and it is 

removed. NCR applies the ENN rule and also adds an additional rule. If 𝐸𝑖 is from the minority 

class and more than two of its nearest neighbors are from the majority class, the examples from 

the majority class are also removed.4 NCR is more aggressive than ENN, essentially giving 

minority class examples the ability to unilaterally remove majority class cases that are its nearest 

neighbors. 

 Political science data, however, often exhibits structures that are not present in common 

machine learning problems. Namely, machine learning experimentation is usually conducted on 

the data available from UCI machine learning repository, which has relatively independent 

observations in one-time interactions (iris classification, English pronunciation, spam detection, 

etc.). This has given rise to concerns that experimental results on well-studied UCI datasets may 

not be generalizable (see e.g. Salzberg 1997). In political science, our datasets tend to be much 

smaller and have a time-series cross-sectional (TSCS) structure. This entails that our data will 

tend to cluster by units (e.g. countries), meaning that the k-nearest neighbors for any unit i at 

time t will likely be the same unit at time t-1, t+1, etc.  

                                                           
4 Another popular algorithm, Tomek links, was also tried, but, because of the TSCS structure of the data, did not 

produce any links in this data. We utilize the “Fast Nearest Neighbor Search Algorithms and Applications (FNN)” 

package in R (Beygelzimer et al. 2013) to calculate nearest neighbors. No substantive difference in outcomes was 

observed using various search algorithms. Replication code for all author-composed R functions available on 

author’s website. 
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 We experiment with two methods for addressing this. The first method we label the 

aggressive edited nearest neighbor rule (AENN), where the number of k nearest neighbors found 

by the algorithm is expanded and the number of minority examples necessary for removal, l, is 

decreased. We thus make both k and l into tuning parameters for the algorithm.5 Increasing k 

means that more cases will be allowed to vote for the removal of a majority class case, while 

decreasing l reduces the number of minority class examples needed to remove a majority class 

case – essentially increasing the voting power of minority cases. The second method is to model 

the TSCS structure as a multilevel problem, using the full dataset with the unit effects modeled 

as a random variable from the normal distribution (Gelman and Hill 2006).  

 Over-sampling methods are also explored in this study. Random over-sampling, in which 

random minority cases are simply duplicated, is frowned upon because it tends to encourage 

over-fitted models. Thus, we utilize the synthetic minority over-sampling technique (SMOTE), 

which forms new minority class examples by interpolating between several minority class 

examples that lie in proximity (e.g. Chawla et al. 2002).6 For example, say that we have two 

minority class examples in one-dimensional (one variable) space. SMOTE essentially assumes 

that if one minority class example has a value of 6 and another a value of 8, a likely location for 

a third example would be at a value of 7. This is extended to higher dimensions using KNN to 

identify neighboring minority class members. This method avoids the over-fitting problem while 

allowing the minority class to spread further into the majority class space. 

                                                           
5 Tuning parameters are those that can be manipulated by the user, as opposed to being directly estimated from the 

data, to alter the characteristics of a model. In this case, the tuning parameters allow us to experiment with how 

aggressive our algorithm is in removing majority case examples. 
6 We modify the SMOTE function from the “Data Mining with R (DMwR)” package by Torgo (2013) for the 

purposes of this paper. Replication code for this function can be found on the author’s website. 
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 We also experimented with several combinations of the above methods (e.g. Batista et al. 

2004), but find no significant benefits to their combination. In what follows, we evaluate all of 

these methods to find which works best in both in-sample and out-of-sample forecasting. 

 

Data 

 The first step in this analysis is to, as best as possible, re-create PITF’s original data. 

Unfortunately, the replication data posted by PITF only includes the under-sampled data for their 

conditional logit models – data for which out-of-sample testing is impossible.7 The full data is 

unavailable due to licenses and other agreements with the producers of some constituent data 

sets.8 We thus had to reconstruct the dataset. This means that there will be some differences 

between our results and theirs. In particular, our region classifications do not completely 

overlap.9 Similarly, Goldstone et al. (2010: 197) state that in 2003, there were 77 countries with 

more than four state failure events ongoing in neighboring countries. Using the least restrictive 

definition of neighbor available in the Correlates of War (COW), we were only able to find ten 

cases with three or more neighbors experiencing said failures in that year. In reproducing their 

data, however, we are able to make some important additions, including using infant mortality 

data with more comprehensive coverage.10 Since the focus of this study is on the methods for 

                                                           
7 These replication data sets can be found at http://globalpolicy.gmu.edu/political-instability-task-force-home/pitf-

reports-and-replicant-data-sets/. 
8 Personal correspondence with PITF author, August 30, 2012. Comment from Journal of Peace Research reviewer, 

November 2, 2013. 
9 PITF uses a very basic, continent based, delineation of region. Many studies have found these classifications 

unclear and/or uninformative (e.g. Hadenius and Teorell 2005). Without knowledge of where they draw these 

boundaries, we default to Hadenius and Teorell’s (2005) more detailed classification, which defines region more by 

inter-country relevance. 
10 For infant mortality, we extend the Abouharb and Kinball (2007), which provides the most comprehensive 

historical data within the COW framework and extended it using more current World Bank (2008) World 

Development Indicators and the Institute for Health Metrics and Evaluation data on neonatal mortality (Rajaratnam 

et al. 2010). 
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evaluation and not on producing an alternative model of state failure, these issues are not severe. 

For brevity, we focus on their “full problem set,” which counts all of the different types of state 

failures (civil war onset, adverse regime change, and genocide), rather than on each individual 

type of event. 

 With all the above caveats, Table 3 shows that we are able to approximate their results 

using three case-control samples from the data drawn from 1955 to 2004 (as in Goldstone et al. 

2005). The PITF model uses seven variables: dummy variables indicating full democracy, partial 

democracy with factionalism, partial democracy without factionalism, partial autocracy (full 

autocracy is the baseline); infant mortality; armed conflict in 4 or more border states (we move 

the threshold to three or more for the reasons discussed above); and the existence of state-led 

discrimination (Minorities at Risk 2009). All of the variables have the same directional effect 

and similar levels of statistical significance. The in-sample, in this case 1955 to 2004, sensitivity 

(onsets correctly classified) and specificity (controls correctly classified) are not as high as 

PITF’s reported results. This is likely due to the reconstruction problems mentioned above and 

the lower level of missing data in our reconstructed dataset. The average number of cases in our 

samples is 664, while PITF’s is 468. Despite these differences, since our goal is to test the 

relative performance of different methods for dealing with class skew, these results are close 

enough to proceed.  
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Table 3: Replication of PITF Conditional Logit Model 

 Sample 1 Sample 2 Sample 3 

Partial Autocracy 0.945*** 

(0.281) 

0.744*** 

(0.277) 

1.349*** 

(0.331) 

Partial Democracy 

Without Factionalism 

1.296*** 

(0.364) 

1.125*** 

(0.337) 

1.366*** 

(0.389) 

Partial Democracy With 

Factionalism 

2.852*** 

(0.362) 

2.644*** 

(0.342) 

2.972*** 

(0.423) 

Full Democracy 0.460 

(0.541) 

0.549 

(0.503) 

0.774 

(0.541) 

Infant Mortality 0.927*** 

(0.214) 

0.958*** 

(0.215) 

0.907*** 

(0.240) 

Armed Conflict in 3+ 

Border States 

1.012*** 

(0.299) 

1.161*** 

(0.312) 

1.014*** 

(0.357) 

State Led Discrimination 0.959*** 

(0.206) 

0.981*** 

(0.213) 

1.373*** 

(0.251) 

N 710 703 578 

Onsets Correctly Predicted 

(Sensitivity) 

76.5% 76.1% 74.3% 

Controls Correctly 

Predicted (Specificity) 

79.5% 79.2% 79.6% 

Note: Reported values are logistic regression coefficients with standard errors in parentheses. 

* p < .1, ** p < .05, *** p < .01 

 

 From this point on, we split the data between a training sample that runs from 1955 to 

1995, and a test sample that runs from 1996 to 2004. The decision to split the sample by time has 

its roots in the TSCS structure of the data. In machine learning, we can often assume time 

invariance of the results (Alpaydin 2010), but this is not the case for political science data, where 
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we might think that the causes of state failure will change over time.11 The choice of 1995 as the 

cutoff is arbitrary, simply reflecting the choice made by the PITF studies.12  

 

Methods 

 Both in their original report (Goldstone et al. 2005) and in the later published version 

(Goldstone et al. 2010), the PITF concentrate on the results of conditional logit models on their 

case-controlled training data. While these methods are common in epidemiology (e.g. Rothman 

et al. 2008), they are problematic for forecasting purposes. This can be seen in the equation for 

prediction from conditional logit 

Pr(𝑦𝑖𝑡 = 1) =  
exp (𝑥𝑖𝑡𝛽)

1+exp (𝑥𝑖𝑡𝛽)
  (4) 

where t denotes the 1:3 matched group to which the observation belongs. In other words, the 

predicted probability of the event is only relevant within the group to which it is being compared. 

Since there is no method for developing groups in out-of-sample data, the probabilities are likely 

to be wildly inaccurate (see also Goldsmith et al. 2013). When we attempt to calculate out-of-

sample probabilities using this method, the probabilities are unrealistically high, ranging from 

0.84 to 0.99. PITF recognize this and use unconditional logit for their out-of-sample predictions 

(Goldstone et al. 2010: 198). In our results, we also use unconditional logit models with different 

forms of under- and over-sampling prior to estimation. 

 When using an under-sampling or over-sampling technique, the slope estimates for the 

variables should be consistent. The intercept terms, however, will not translate from the training 

                                                           
11 We find empirical evidence for this intuition in our extended data. The longer we extend the out-of-sample data, 

the worse the PITF model, even when using our best version, performs worse. 
12 If we were using more sophisticated estimation methods with flexible tuning parameters, we would need to also 

divide our training data into k-fold cross-validation sets so we could tune the models prior to using them on the out-

of-sample data. Since we are limiting ourselves to linear models and are not trying to develop an alternative to their 

model, this step is omitted for space and clarity. 
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data to the test data without adjustment. We use the following formula to make this adjustment 

(see e.g. King and Zeng 2001): 

𝛽̂0 − 𝑙𝑛 [(
1−𝜏

𝜏
) (

𝑦̅

1−𝑦̅
)]  (5) 

where τ is the proportion of 1s in the population and 𝑦̅ is the proportion of 1s in the sample.13 

 Finally, PITF does not provide a clear threshold for the decision boundary. In the 

conditional logit models, they use a threshold of p > .24 to draw the difference between 0 and 1. 

In the out-of-sample data, they use all of the cases in the top quintile, but do not give a definite 

value for the threshold. The final section will deal with this issue and demonstrate how to draw a 

consistent decision threshold in studies like this one. 

 Since there is no clear decision threshold, we use ROC curves to evaluate the 

effectiveness of the models (Fawcett 2005). ROC curves look at the necessary tradeoff between 

classifying positive cases correctly (sensitivity) and classifying negative cases correctly 

(specificity). If we draw the decision boundary at p > 0, we will correctly classify all positive 

cases, but incorrectly classify all negative cases. Similarly, if we draw the boundary at p > 1, we 

will incorrectly classify all the positive cases, but will also correctly classify all the negative 

cases. ROC curves plot the ratio of sensitivity to specificity across all possible decision 

boundaries. Curves further from 45 degrees indicate a better trade-off across all decision 

boundaries. The area under the curve (AUC) provides a strong one-number summary of how 

well a model performs in correctly discriminating positive cases from negative ones and is the 

standard benchmark in machine learning (Hanley and McNeil 1982). It also has an intuitive 

                                                           
13 Changing the intercept does not change the prediction accuracy, it simply corrects the size of the probability 

estimates in under-sampled data. 
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interpretation as the probability that the classifier will rank a randomly chosen positive instance 

higher than a randomly chosen negative instance (Fawcett 2005: 868). 

 

Results 

 Figures 2 and 3 show our main findings. The Figures include the ROC curves, with the 

AUC reported in the lower-right-hand corner (along with the 95 percent confidence intervals), on 

the in-sample training set and the out-of-sample test set for each of the above methods of 

handling skewed classes.14 The results suggest that the case-control methods used by PITF do 

not produce any significant improvement, and are usually quite worse, than most of the 

alternatives in our replication data. 

 In the in-sample data, the three case-control samples yield AUC values between .760 and 

.771. This compares unfavorably with simply using standard logit with the full data set, which 

produces an AUC of .798. While not an overwhelming difference, the spread is statistically 

significant (p = .001, p = .010 and p = .011 for the three case-control samples). When we 

explicitly model the multi-level structure of the data, we receive even more favorable results. 

Using country random effects, AUC dramatically increases to approximately .900, while the 

three-level model, with both country and region, produces a slightly lower AUC of .887. While 

not statistically distinguishable from each other, both are significantly better than the case-

control models (p < .001 in all cases for both models). The three under-sampling techniques 

gleaned from the machine learning literature also out-perform the case-control method in the in-

sample data, with AUC values ranging between .797 and .798. These results are fairly close to 

those for the logit model on the full dataset, suggesting little improvement from any data 

                                                           
14 Statistical significance and 95% confidence intervals calculated using the methods introduced by DeLong et al. 

(1988). 
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cleaning method. Finally, the SMOTE over-sampling procedure is the one alternative that does 

not out-perform the case-control method. Its AUC of .763 is lower than all but one of the case-

control samples and none of the differences are statistically significant. 

 We receive similar results when evaluating the different techniques on the out-of-sample 

data. The three case-control samples yield AUC values between .793 and .801. Results for the 

same simple logit model using the full dataset yield an AUC of about .818. This difference fails 

to achieve conventional levels of statistical significance (p = .270, p = .449 and p = .398 for the 

three case-control samples). This is not completely surprising, as our out-of-sample data is about 

one-fourth the size of our in-sample data.15 Nevertheless, given that the case-control method was, 

by far, the most difficult of the various algorithms to implement, its failure to make any 

improvement on out-of-sample prediction over simply using all the available data, strongly 

undermines its oft-assumed status as the default method for data with rare events. Instead of 

clarifying the decision boundary for out-of-sample testing, the loss of information from block-

random under-sampling method has produced less generalizable results. 

 None of the other methods for under- or over-sampling produce better results than 

straightforward logit estimation with the full dataset. The ENN procedure only identifies 37 

problematic cases, and their removal does not produce a substantial improvement. The more 

aggressive AENN procedure finds more problematic cases, 91, but their removal from the 

training set worsens the out-of-sample prediction accuracy. Results inversely correlate with the 

aggressiveness of the AENN tuning parameters, indicating that under-sampling itself is ill-

advised in this data. Finally, the NCR procedure is less aggressive than AENN, but more 

                                                           
15 If we split the data at 1990, for example, these differences all surpass standard levels of statistical significance (p 

< 0.05). 
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aggressive than ENN, removing 49 cases. While NCR produces better results than ENN or 

AENN, it is still worse than the model utilizing the full training data. 

 Over-sampling performs no better. The SMOTE procedure doubles the number of 

positive cases in the dataset, but performs worse in out-of-sample prediction, producing an AUC 

of .780. This performance can be improved by tuning the number of synthetic cases, but the 

results suggest better performance the fewer synthetic cases are imputed, arguing against its use 

in this data. Contrary to findings in some previous studies (Batista et al. 2004), we find no better 

results from combining SMOTE with any of our under-sampling techniques. 

 Conversely, both of the multilevel models produce noticeably better results. The three-

level model, where both the country and region are given random intercepts, yields a 

significantly higher AUC of .845. The simpler two-level model, with a random effect for country 

and a fixed effect for region produces similar results, with an AUC of about .841. In comparison 

with the three case-control samples, the two-level (p = .088, p = .146 and p = .129) and three-

level models (p = .053, p = .087 and p = .075) produce results that are only marginally 

statistically significant. Again, this is not too surprising, given the smaller number of cases. 

Given the superiority of these models in both the in-sample and out-of-sample data, these results 

are substantial enough to recommend their continued usage since this data is not so large as to 

introduce dramatically higher computation times on a standard office computer. We should note, 

however, that we make no claim that multilevel models will always perform better.16 In this case, 

                                                           
16 Indeed, the preferred model will vary, not only by the data analyzed, but also by the evaluation method. While 

ROC curves and AUC are the standard measures for most applications, there are a range of alternatives – e.g., F-

measures, F1-scores, Rand Accuracy, Jaccard, Matthews correlation coefficient, and Cohen’s kappa. For all of these, 

the best performance for Goldstone et al.’s (2010) threshold is produced by the multilevel models. If, on the other 

hand, we used the highest F1-score for decision boundary selection and model evaluation, the relative performance 

of the machine learning techniques is much better. The AENN procedure produces the best results under this 

criterion (results available from authors). The case control method is still among the worst performing methods, 

regardless of evaluation method. Some of these alternative model evaluation methods have substantial biases and 

assumptions of which users should be aware before using (see e.g. Powers 2011). 
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they are picking up on unmodeled heterogeneity between states that is useful for prediction, but 

this might be eliminated by more detailed information on the cases, such as better measures of 

contentious issues that might lead to conflict in addition to the structural characteristics on which 

previous studies have focused (e.g. in international conflict, see Gleditsch and Ward 2013). 
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Figure 2: In-Sample ROC Curves for Methods of Balancing Data 
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Figure 3: Out-Of-Sample ROC Curves for Methods of Balancing Data 
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 The punch line of these findings is that social scientists should not use under- or over-

sampling as a first resort when forecasting events. Indeed, some studies on more traditional 

machine learning data have suggested that scholars should always be cautious about under- or 

over-sapling their data in response to skewed classes (e.g. Weiss and Provost 2001). Previous 

scholars have put much work into developing comprehensive datasets of state failure and 

conflict, and researchers should be cautious about removing data. Where under- or over-

sampling are tried, it makes sense to test a variety of tools, since the performance of these tools is 

likely to vary from problem to problem and since the other tools introduced above are 

significantly easier to implement. 

 

Formulating a Cost Sensitive Decision Boundary for State Failure 

 Once we have chosen a model, we must formulate the decision boundary – the 

probability over which we will predict a state failure will take place. As noted above, we need to 

base our decision of where to draw the decision boundary on the expected utility of that decision 

boundary. To date, however, we know of no study in political science that justifies its decision 

boundary according to any utility calculation. Goldstone et al. (2010) simply draw their decision 

boundary by taking those cases in the top quartile and predicting these cases will experience state 

failure. In their data, this produces 18 correct positive predictions and 2 incorrect positive 

predictions, for a sensitivity score of .857. It also, however, produces 233 false positives, for a 

precision of .033. This suggests that they associate extremely low cost with false positives, and, 

by implication, with the commitment of resources towards preventing conflict. 

 In this section, we expound on cost sensitive decision boundaries. Using the two-level 

unconditional logit model on the full dataset, we reconstruct the confusion matrix. By adding a 
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few logical assumptions to our cost matrix from above, we are able to gain an approximate 

calculation of the relative utility implicitly assumed by Goldstone et al. (2010) for state failure 

outcomes, at least for the results from our reconstructed data. We should note that we are not 

suggesting that Goldstone et al. (2010) overtly support these utility cost decisions – this is an “as 

if” exercise to demonstrate the importance of making these decisions explicit. The results 

confirm that they implicitly assume a very low cost of intervention to prevent state failure. 

 We start by introducing two “reasonableness conditions” to the cost matrix in Table 2 

(Elkan 2001): 

𝑐10 > 𝑐00  (6) 

and  

𝑐01 > 𝑐11.  (7) 

The first condition essentially states that there must be some cost to false positives, making them 

more costly than correctly labeling negative outcomes. If not, then the policy-maker should 

always predict a positive outcome. The second condition states that there is a cost to false 

negatives. If not, then the policy-maker should always predict a negative outcome and there is no 

reason for estimation. 

 We add two additional conditions: 

𝑐10 > 𝑐11  (8) 

and 

𝑐01 > 𝑐00.  (9) 

These conditions state that there is some benefit to correct prediction over incorrect prediction. 

While not necessary to prevent row dominance, they are both intuitive and will allow interesting 

later calculations. 
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 Using the first two reasonableness conditions (equations (6) and (7)), we can standardize 

costs to simplify the Table 2. This is illustrated on the left-hand side of Table 4, where  

𝑐11
′ = (𝑐11 − 𝑐00) (𝑐10 − 𝑐00)⁄  

and  

𝑐01
′ = (𝑐01 − 𝑐00) (𝑐10 − 𝑐00)⁄ . 

Using the latter two conditions (equations (8) and (9)), we can similarly standardize the cost 

matrix as in the right-hand side of Table 4, where  

𝑐11
′ = (𝑐11 − 𝑐00) (𝑐01 − 𝑐00)⁄  

and  

𝑐10
′ = (𝑐10 − 𝑐00) (𝑐01 − 𝑐00)⁄ . 

 

Table 4: Standardizations of Cost Matrix 

 

Standardization Using Reasonableness 

Conditions 

 Standardization Using Additional 

Conditions 

 Actual 

Positive 

Actual 

Negative 

  Actual 

Positive 

Actual 

Negative 

Predict 

Positive 
𝑐11

′  1  Predict 

Positive 
𝑐11

′  𝑐10
′  

Predict 

Negative 
𝑐01

′  0  Predict 

Negative 

1 0 

 

 

 

 Unfortunately, the unavailability of PITF’s original data makes exact computation of the 

implicit cost structure impossible. We therefore use the 2-level model from above and replicate 

the quartile decision boundary (p > .044), along with a boundary that produces marginally lower 

(p > .053) and higher (p > .039) true positives in out-of-sample data from 1995 to 2004. While 

not exact, they replicate the decision structure given by Goldstone et al. (2010) and serve as a 
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useful illustration of why their decision not to evaluate the precision of their results is important. 

The results are shown in Table 5.  

 

Table 5: Confusion Matrix at Three Values of p* Using PITF Model on Out-of-Sample, 

1995-2004, Data. 

 

Quartile Threshold, p* > .044  Lower Threshold, p* > .039  Upper Threshold, p* > .053 

 Actual 

Positive 

Actual 

Negative 

  Actual 

Positive 

Actual 

Negative 

  Actual 

Positive 

Actual 

Negative 

Predict 

Positive 

27 305  Predict 

Positive 

29 367  Predict 

Positive 

26 266 

Predict 

Negative 

9 970  Predict 

Negative 

7 908  Predict 

Negative 

10 1009 

 

 

 Combined with the right-hand standardization from Table 4, this yields two inequalities 

and allows us to estimate the assumed cost of intervention to prevent state failure. 

The two inequalities are:  

27𝑐11 + 305𝑐10 + 9 < 26𝑐11 + 266𝑐10 + 10 

and 

27𝑐11 + 305𝑐10 + 9 < 29𝑐11 + 367𝑐10 + 7. 

When we solve the two inequalities, the lowest estimate for 𝑐11 is 𝑐11 < −39𝑐10 + 1. Assuming 

that a successful forecast allows successful intervention to prevent state failure, the only cost 

associated with correct prediction is the cost of intervention. Since the cost of stability and non-

intervention is 𝑐00 = 0, the cost of a true positive, which involves intervention, must be greater 

than 0. This means we would only prefer the PITF threshold to the higher threshold if 𝑐10 <

.026. In other words, a false positive, which would recommend intervention when there was no 

danger of state failure, would have to be less than 2.5% of the cost of allowing state failure to 
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take place for us to prefer this threshold over the higher threshold. Taking this a step further, if 

we compare the PITF threshold with a completely naïve model, where we always predict no state 

failure (p* > 1), we get the inequality: 

27𝑐11 + 305𝑐10 + 9 < 0𝑐11 + 0𝑐10 + 36. 

Carrying out the same calculations, we would only prefer PITF’s threshold to a completely naïve 

model if the cost of intervention were less than 11.8% the cost of allowing state failure to take 

place.  

Collier (2004) puts the average cost of civil conflict at about $50 billion. Whether PITF’s 

implicit cost structure holds will depend, of course, on the intervention proposed. Some 

proposals, like reorienting foreign aid, entail mostly opportunity costs related to domestic and 

foreign relations (Bueno de Mesquita and Smith 2009). Military intervention entails much more 

direct costs. The interventions in Bosnia, Cambodia, El Salvador, Haiti, Rwanda and Somalia 

cost an average of $14.1 billion – and had a mixed record in averting subsequent costs (Collier et 

al. 2003: 174). These are rough numbers – as noted above, there is likely to be substantial 

heterogeneity in cost estimates, depending on where the conflict takes place and the proposed 

intervention. 

 This result leads to two conclusions. First, there is a lot more room for improving the 

prediction model than the headline number of 86% correct prediction would indicate. There is a 

clear false positive problem. This should not be surprising, given that PITF attribute the success 

of their model to the ability to clearly distinguish cases where state failure is unlikely. Future 

research may wish to focus on the factors that distinguish cases that are likely to become 

unstable. 
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 Second, political scientists in this area of study have rarely bothered to estimate the cost 

structure of state failure and intervention. The work that has been done in this area suggests a 

wide range of costs and benefits, depending on the intervention involved (Collier et al. 2003: 

173-186). From the perspective of cost sensitive learning, the criteria for successful prediction is 

not whether researchers can produce a decision boundary above 0.5 or produce an arbitrary level 

of correct positive predictions, but whether they can produce a useful decision boundary for 

policy-makers. 

 Before concluding, we must be clear that these results should not detract from the 

achievements of the PITF. Their work will likely stand the test of time as a landmark 

achievement, both for the success of their models and for helping to bring ambitious prediction 

goals into the mainstream of political science. In our interactions with scholars close to the 

group, we have been informed that they recognize the false positive issue and are continuing to 

work on the issue. Our main purpose is not to detract from their achievement, but to make clear 

to the rest of the field the issues involved in pre-processing data and evaluating success. Based 

on what we have learned in soliciting comments for this project, we strongly suspect that most 

political scientists have a limited understanding of how to evaluate prediction models, 

automatically assuming that they must use case-control methods in the presence of skewed 

classes. Such issues must be addressed as machine learning methods, new data sets, and 

prediction-based projects become more common (see e.g. Hegre et al. 2013; Leetaru and Schrodt 

2013; Goldsmith et al. 2013; Gleditsch and Ward 2013). 
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Conclusions 

 We draw several conclusions from the above results. First, consistent with Leamer 

(2010), we doubt that every asymptotically unbiased estimation strategy will be equally 

successful in every situation. Out-of-sample prediction is a powerful mechanism for evaluating 

the relative merits of estimation strategies. Moreover, our results recommend trying several 

strategies for dealing with the class skew problem. In this particular case, this study finds using 

the full dataset is most successful. We do not believe this will always be the result, but we should 

not default to a class balancing strategy without testing. 

 Second, once we develop an estimator, we must decide on a decision boundary above 

which we predict the event will happen. Political scientists have generally ignored the theoretical 

implications of this choice, either setting the threshold at p* > 0.5 or choosing another arbitrary 

value that produces a prima-facie “reasonable” distribution of outcomes. This study shows that 

the choice of this threshold is tied inherently to the relative costs of potential outcomes, and 

ignoring this can lead to underestimating the cost of false positives produced by a model of a rare 

event.  

 Finally, this study opens several new lines of research. It reveals how much further we 

have to go in regards to predicting state failure. The PITF model, at least in our best effort at 

replication, produces outstanding results in terms of sensitivity and specificity, but weaker results 

in terms of precision. This is an accurate reflection of their approach to explaining conflict by 

looking at the institutions that make state failure especially unlikely. From a utility perspective, 

improving the precision is important and would likely benefit from exploring both the factors 

preventing state failure and those which contribute to its onset. Research also needs to be done 

into the relative costs associated with state failure and intervention. We often hear that political 
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scientists should do more to make their work relevant to policy-makers, this, however, also 

involves developing a clearer understanding of policy makers’ preferences than we have 

currently. 
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