

Sarai's project -- seeing through rock

Sarai's project -- seeing through rock

Sarai, Bennett and Will

Sarai, Bennett and Will

Sarai, Bennett and Will

Seeing thru rock

Scattering of light

Scattering in glass of milk

Speckle of laser

Overcoming scattering of light

Arab-D Reservoir Rock

Scattering of light

Scattering in glass of milk

Speckle of laser

Overcoming scattering of light

 SLM

A unling my in the desc

250µm x 250µm µCT image of Arab-D rock

Arab-D Reservoir Rock

250µm x 250µm µCT image of Arab-D rock

A

Imaging thru rock

Peak Signat: 1 SNR: 38 Contrast: 1.9

Peak Signal 0.018 SNR: 2.0 Contrast: 0.18

Poet Signar 0.15 SNR '48 Contrast 0.66 FCV, 10jun Entancement 10

Peak Signal: 1

SNR: 38

Contrast: 1.9

Peak Signal: 0.015

SNR: 2.0

Contrast: 0.18

REU project

Nanoparticles are good scatterers

Nanoparticles in flexible membrane

Transition between imaging and scattering

Backgro geometr images of system of and to p to destro why sca why one

Theory: for scatt

Experim using nato the im

Applicat research strongly

REU project

Nanoparticles are good scatterers

Nanoparticles in flexible membrane

Nanoparticles in flexible membrane

Transition between imaging and scattering

Background: Be able to use the methods of geometric optics, specifically ray tracing to form images using lenses. Build a simple imaging system on an optical rail and use it to form images, and to place various scattering materials in the way to destroy the images. Develop an understanding of why scattering affects imaging, be able to describe why one can't see through fog or milk or tissue.

Theory: Be able to describe how pre-compensating for scattering can overcome it and form images.

Experiment: Help explore examples of scattering using nanoparticles, and apply these test systems to the imaging through strongly scattered media.

Application: Develop an appreciation for photonics research. Understand where imaging through strongly scattered media can be useful to society.

REU project

Nanoparticles are good scatterers

Nanoparticles in flexible membrane

Transition between imaging and scattering

Background: Be able to use the methods of geometric optics, specifically ray tracing to form images using lenses. Build a simple imaging system on an optical rail and use it to form images, and to place various scattering materials in the way to destroy the images. Develop an understanding of why scattering affects imaging, be able to describe why one can't see through fog or milk or tissue.

Theory: Be able to describe how pre-compensating for scattering can overcome it and form images.

Experiment: Help explore examples of scattering using nanoparticles, and apply these test systems to the imaging through strongly scattered media.

Application: Develop an appreciation for photonics research. Understand where imaging through strongly scattered media can be useful to society.

Sarai's project -- seeing through rock