
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Runtime Performance Anomaly Diagnosis in
Production HPC Systems Using Active Learning

Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J. Leung, Jim Brandt,
Brian Kulis, Manuel Egele, and Ayse K. Coskun

Abstract—With the increasing scale and complexity of High-Performance Computing (HPC) systems, performance variations in
applications caused by anomalies have become significant bottlenecks in system health and operational efficiency. As we move
towards exascale systems, these variations become more prominent due to the increased sharing of resources. Such variations lead to
lower energy efficiency and higher operational costs. To mitigate these problems, one must quickly and accurately diagnose the root
cause of the anomalies at scale. One way to evaluate system health and identify the underlying causes is by manually examining
certain performance metrics in telemetry data or using rule-based methods. Due to the daily size of telemetry data reaching terabytes
and the fact that the numeric telemetry data contains thousands of metrics, manual analysis of telemetry to diagnose problems
becomes challenging. Given these limitations, Machine Learning (ML)-based approaches have been gaining popularity as they have
been shown to be effective and practical in diagnosing previously encountered performance anomalies. One primary challenge for
supervised ML models is that they require a significant amount of labeled samples during training. However, obtaining many labels for
anomalies is extremely difficult and costly, considering anomalies occur infrequently and real-world numeric system telemetry data is
hard to label since it contains thousands of metrics. This paper proposes a novel active learning-based framework that diagnoses
performance anomalies (i.e., identifying the type of an anomaly) in HPC systems at runtime using significantly fewer labeled samples
compared to state-of-the-art ML-based approaches. We show that the proposed framework achieves the same F1-score compared to
a supervised approach using much fewer labeled samples (i.e., 16x fewer samples for achieving a 0.78 F1-score, 11x fewer samples
for achieving a 0.82 F1-score), even when there are previously unseen applications and application inputs in the test dataset.

Index Terms—anomaly diagnosis, active learning, machine learning, high-performance computing

✦

1 INTRODUCTION

MODERN large-scale computing systems are highly
complex and parallel systems that perform a multi-

tude of intricate operations simultaneously. They are vital
for a variety of societal and scientific applications. Unfortu-
nately, the increased usage of shared resources and the scale
of systems often lead to substantial resource contention, re-
sulting in performance variability and decreased efficiency.
For example, it is possible to observe up to 8 times increase
in job execution times [1] and more than a 70% variation in
application performance even with the same input deck [2].

Performance variabilities can be caused by either soft-
ware or hardware-related anomalies, such as network con-
tention [3], OS jitter [4], firmware bugs [5], memory leak-
age [6], fluctuating CPU frequencies [7], or orphan processes
that are leftover from previous jobs [8]. Detecting these
anomalies is challenging because they may not directly
result in failures, making them more elusive than outright
failures. However, promptly identifying and diagnosing the
root cause of performance anomalies is crucial for the energy
and power efficiency of large-scale High-Performance Com-
puting (HPC) systems. Today, HPC systems leverage vari-

• Burak Aksar, Efe Sencan, Brian Kulis, Manuel Egele, and Ayse K. Coskun
are with Electrical and Computer Engineering Department, Boston Uni-
versity.
E-mail: baksar, esencan, bkulis, megele, acoskun@bu.edu

• Ben Schwaller, Omar Aaziz, Vitus J. Leung, and Jim Brandt are
with Sandia National Laboratories. E-mail: bschwal, oaaziz, vjleung,
brandt@sandia.gov

ous monitoring frameworks to understand how resources
(i.e., memory, CPU, GPU, etc.) are utilized during appli-
cation runs [9], [10], [11]. Anomalous behavior during the
execution of an application is reflected in various forms
of data, such as performance metrics, system logs, and
traces. One method of detecting and diagnosing perfor-
mance anomalies is manually analyzing these metrics, logs,
and traces, which relies on human expertise. However, as
HPC systems grow in size and complexity, this approach
would necessitate investigating billions of data points daily,
rendering it infeasible and impractical for humans. In addi-
tion, due to their complex nature, certain anomalies may be
difficult to detect or differentiate, even by HPC experts, as
they may manifest themselves across multiple performance
metrics in a convoluted manner. A more efficient approach
for anomaly diagnosis is automated performance analysis
techniques, with Machine Learning (ML) being an auspi-
cious method [12], [13], [14].

In this paper, we focus on diagnosing the type of perfor-
mance anomaly (e.g., memory leakage or CPU contention)
while an application is running instead of solely determin-
ing whether the run is anomalous or healthy. To accomplish
this, we assume the availability of a few labeled samples*,
classified as either healthy or anomalous, with a specific
type of anomaly. A variety of ML frameworks have been
introduced, such as those utilizing Neural Networks [15]

*A sample is a vector (1 x N features) generated by extracting fea-
tures of multivariate telemetry data (Timestamps x M metrics) collected
from a compute node during an application run.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

and Support Vector Machines (SVMs) [16], for detecting
or diagnosing anomalies in a supervised setting. Although
these supervised ML frameworks achieve high classification
performance, their performance is heavily dependent on the
availability of labeled data. However, the numeric telemetry
data (such as CPU usage, memory consumption, network
traffic, and disk I/O operations) collected from production
HPC systems are usually unlabeled, and it is expensive
for HPC administrators to provide labels for such a large
amount of data. Several semi-supervised frameworks have
been developed to mitigate this issue, and they achieve sat-
isfactory detection or diagnosis scores using a modest size
of labeled samples (e.g., [14], [17]). These semi-supervised
frameworks either wait until the application run is com-
pleted (i.e., no runtime diagnosis) or only leverage the ex-
isting labeled samples (i.e., not covering dynamic scenarios
where users or system admins can provide additional labels
for new samples).

This paper builds on our recent active learning-based
framework, ALBADross [18], which diagnoses performance
anomalies in compute nodes after an application run is
completed using significantly fewer labeled samples com-
pared to state-of-the-art ML-based frameworks. ALBADross
incorporates active learning to minimize the number of
labeled samples required during training and employs a su-
pervised classifier to determine the root cause of anomalies.
We run controlled experiments to collect labeled numeric
telemetry data from application runs and train an ML model
using only a small subset of the collected data. Then, active
learning determines which sample should be labeled among
thousands of unlabeled samples to achieve a satisfactory F1-
score for anomaly diagnosis during the training phase. In
this paper, our specific contributions are as follows:

• Redesign of ALBADross to diagnose performance
anomalies at runtime using a minimum number of
labeled samples.

• Using data collected from real applications on a pro-
duction HPC system, our framework achieves the same
F1-score compared to a supervised approach using
much fewer labeled samples (i.e., 16x fewer samples
for achieving a 0.78 F1-score, 11x fewer samples for
achieving a 0.82 F1-score).

• Quantification of our framework’s robustness when the
test dataset contains previously unseen applications
and application inputs.

• Investigation of overheads (e.g., inference and feature
extraction times) incurred in a production system de-
ployment scenario.

The remainder of the paper starts with an overview of
the related work. Then, Section 3 introduces our proposed
runtime anomaly diagnosis framework. In Section 4, we
explain our experimental methodology. In Section 5, we
present our results and conclude in Section 6.

2 RELATED WORK AND BACKGROUND

This section overviews recent anomaly detection and diag-
nosis research in large-scale computing systems, focusing
first on active learning for detection and then on ML tech-
niques for analyzing HPC telemetry data. The primary clas-
sification problem we address is detecting and diagnosing

performance anomalies in multivariate time series telemetry
data gathered from computing nodes. These anomalies may
stem from various sources, such as load imbalances, net-
work congestion, hardware malfunctions, and software in-
efficiencies. Additionally, our objective is to diagnose these
performance anomalies at runtime rather than relying on
post-application run analysis. The ability to rapidly detect
and diagnose anomalies at runtime is crucial, considering
that execution times for HPC applications can range from
several days to weeks.

2.1 Active Learning and Anomaly Detection
Given the limited availability of labeled data in most do-
mains, active learning has become increasingly prevalent
for anomaly detection tasks, as it can significantly reduce
the number of labels required during model training while
still achieving satisfactory classification accuracy. Active
learning is a semi-supervised learning paradigm based on
iteratively querying the label of a data point provided by
the oracle (e.g., a human annotator). The objective of active
learning is to minimize the number of queries to the oracle
(i.e., the person who provides the label) during the training
by selecting the most informative data points from the un-
labeled dataset and using them to train the ML model [19].

Active learning has been studied in various anomaly
detection tasks over the years to improve classification
performance when the number of labeled data is limited.
For example, Huang et al. propose an online anomaly
detection framework for cloud applications by combining
uncertainty-based active learning query strategies with a
variational autoencoder [20]. Wang et al. introduce Active-
MTSAD for detecting anomalies in key performance indica-
tor data, where the data distribution changes over time due
to continuous integration and deployment cycles [21]. Their
framework consists of an unsupervised anomaly detector
and active learner with three different feedback strategies
(denominator penalty, negative penalty, and metric learn-
ing) and achieves over 0.95 F1-score in anomaly detection
using 0.2% of the available labels. Another study by Li et al.
presents a framework that combines active learning with
variational autoencoders to detect anomalies in monitor-
ing data collected from eBay’s search services [22]. Their
framework demonstrates an F1-score of up to 0.96 using
only 3% of labeled data. Khowaja introduces an approach
that incorporates quality learning characteristics into active
learning, allowing the network to either predict or request
the label of a data point during the training stage [23]. They
leverage sparse autoencoders and long short-term memory
with action-value functions to classify malware applications
using a small number of labeled data points.

Despite active learning being a prevalent method in var-
ious anomaly detection tasks, there have been few studies
that have applied it to the detection of performance anoma-
lies in HPC systems. For instance, Xie et al. use call-stack
trees to represent application executions as vector embed-
dings. Then, they combine active learning with a one-class
SVM to detect anomalies [24]. While these active learning-
based techniques yield promising results, our objective ex-
tends beyond simple detection. We aim to diagnose specific
types of anomalies during the course of an application’s
execution.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

2.2 ML-Based HPC Monitoring Analytics
As HPC systems generate terabytes of telemetry data daily,
automated performance analytics become a vital component
in system management. In particular, there has been a recent
trend in utilizing ML-based approaches for detecting and
diagnosing performance anomalies in HPC systems. For
instance, Tuncer et al. introduce a supervised ML-based
framework that first extracts statistical features from the
collected telemetry data, then utilizes tree-based ML algo-
rithms to diagnose the root causes of the anomalies [25].
Ates et al. use a random forest model to identify different
applications running on supercomputers [26]. Klinkenberg
et al. capture descriptive statistics from monitoring data and
employ a supervised ML classifier to detect anomalous com-
pute nodes [27]. While these methods achieve auspicious
classification performance, they require a significant amount
of labeled data during the training phase. However, in
real-world systems, the collected telemetry data are mostly
unlabeled.

To address this challenge, Borghesi et al. introduce a
semi-supervised autoencoder-based framework that detects
anomalies in compute nodes by learning healthy node
characteristics [28]. However, their method cannot perform
anomaly diagnosis (i.e., they do not identify the root causes
of the anomalies). We propose a semi-supervised framework
that first captures performance anomaly characteristics in an
unsupervised manner, then integrates a supervised classifier
to diagnose anomalies [14]. While this approach requires
fewer labels than a supervised training setup, its perfor-
mance is limited by the available labels.

In our recent work [18], we design an anomaly diagnosis
framework ALBADross that combines an active learning-
based query strategy and a supervised classifier to minimize
the number of labeled samples required for achieving a
target performance score. However, this framework neces-
sitates that an application run is completed before any
diagnosis can be made. Some HPC applications run for
days or even weeks; therefore, diagnosing the anomalies at
runtime is necessary to design more effective mitigation and
resource management policies. In this paper, we redesign
ALBADross for runtime anomaly diagnosis, and we inves-
tigate the impact of various deployment-related parameters
(e.g., feature extraction, model training, and inference) for a
production system deployment scenario.

3 ALBADross 2.0: RUNTIME DIAGNOSIS

Our primary objective is to diagnose the underlying causes
of performance anomalies at runtime in an application-
agnostic way as much as possible. We mainly focus on
identifying and understanding anomalies that do not re-
sult in crashes or errors, as they can be more elusive
and challenging than failures. To achieve this goal, in this
paper, we redesign our active learning-based framework,
ALBADross [18].

Figure 1 shows the redesigned version of ALBADross.
Compared to the initial version of ALBADross [18], we
make several modifications to enhance its functionality. The
redesigned version introduces new active learning query
strategies, as well as the capability for runtime anomaly
diagnosis. First, we collect multivariate numeric telemetry

data from compute nodes while running applications with
and without synthetically introduced anomalies. We then
divide telemetry data into equal-length windows and ex-
tract features of each window. Then, the initial model is
trained with the available windows in the labeled dataset.
Next, the active learning module examines windows in
the unlabeled dataset and selects a subset of windows for
annotation based on various query strategies. Finally, the
model is retrained using the newly labeled windows. Our
system is independent of the monitoring framework being
employed. The following sections cover these stages more
deeply.

3.1 Window Generation
To diagnose performance anomalies at runtime, our frame-
work divides the telemetry data into equal-length windows
of a specified size, denoted as w. Each window is a 2D vec-
tor: [w x M metrics]. S is a hyperparameter controlling skip
interval, and its value is determined offline based on the
trade-off between computational time and delay in anomaly
diagnosis. As the window size increases, we have fewer
windows, hence, lower CPU and memory requirements,
but the diagnosis delay is higher. Therefore, the value of w
should be carefully chosen depending on the requirements.

3.2 Feature Extraction
We apply feature extraction for each window to gain insight
into the underlying temporal and spectral characteristics
of time series. We use two different open-source feature
extractors: TSFRESH [29] and MVTS [30]. TSFRESH com-
putes 794 features for each metric in raw telemetry data.
For instance, C3 statistics [31], which measures the non-
linearity of the time series, Benford correlation [32], which
detects anomalous patterns, and descriptive statistics such
as mean, standard deviation, and maximum. MVTS com-
putes 48 statistical features for each metric. Some extracted
features include descriptive statistics, the absolute difference
between descriptive statistics, and their derivatives.

3.3 Feature Selection
To save the computational time spent during the model
training phase and achieve better anomaly diagnosis per-
formance, we use the Chi-Square approach [33] to select
a subset of metrics after the feature extraction stage. Chi-
Square is a statistical test to measure two events’ indepen-
dence. Given the observed values and the expected value,
Chi-Square computes how the observed value deviates from
the expected value. We choose features that strongly depend
on our class labels, which we determine by selecting the
ones with the highest Chi-Square values.

3.4 Hyperparameter Search and Initial Training
At this stage, the goal is to determine the best hyperpa-
rameters for supervised models prior to leveraging active
learning. The initially labeled dataset assumes a single
labeled sample representing each distinct combination of
application-anomaly pair is available. Using this dataset, we
perform a hyperparameter search for each model through a
grid search over several cross-validation (CV) sets.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Labeled
Dataset

ML
Model

1. Build an ML model using
the available labeled dataset

(2) Initial
Supervised

TrainingTelemetry
Data

Storage

Feature extraction

(1) Preparation

(4) Runtime
Diagnosis

ML
Model

Active
Learning
Module

[W1, W2, W3, …] Labeled
DatasetAnnotator

2. Investigate all
windows in the

unlabeled dataset

4. Add the new
window and its label

to the labeled
dataset

ML
Model

5. Re-fit the model

[W1]

3. Decide the
window

to be labeled

(3) Active
Learning

Is the model accurate?
No Yes

Stop the training

Unlabeled Dataset

W1 W2

W5W4
W3

[W1, y]

6. Runtime telemetry data
collection starts at t₀

7. n windows are generated
at t₀ + w

Feature
Selection

Extract only selected
features

8. Extract only the selected features
from each window

9. Generate predictions for n
windows and store predictions

Node 1

Node 2

Node 3

Node n

[W₃]
… …

[W₁]

[W₂]

Pred₁: Normal

Pred₂: CacheCopy

Pred₃: Normal

Predn: Memleak

…
…

[Wn]

Repeat in every S seconds

Fig. 1. The redesigned architecture of ALBADross. First, we divide the telemetry data into equal-length windows (W) based on the window size (w)
and skip interval (S). Then, we extract features and select useful features based on statistical measures. We then train a supervised model using
the available labeled samples. The active learning module determines which windows should be labeled from the unlabeled dataset, and then an
annotator provides labels. We continue this process until we either meet the desired performance score or spend the maximum number of samples
our budget allows for labeling. At runtime, we continuously monitor every compute node. Assuming the model is deployed at t0 and the system
has n compute nodes, n windows are generated in total (denoted as W1,W2, ...,Wn) at t0 + w. We only extract the selected features during the
preparation stage and provide the label (e.g., memleak, normal) for each window. Steps 8 and 9 are repeated whenever a new batch of windows
arrives every S seconds.

3.5 Active Learning
After completing the initial training stage, we use an active
learning query strategy to determine the most informative
windows in the unlabeled pool. The informativeness of
a window is determined by the selected active learning
query strategy. We query 50 windows simultaneously at
each query iteration and then learn their labels from the
annotator. This process is referred to as batch mode active
learning. It is useful when the dataset is large and frequently
retraining the ML model is computationally costly. In the
labeling process, we hold two key assumptions. First, we
assume that annotators provide only correct labels for the
selected windows or samples. Second, we assume that
annotators possess either a systematic method or domain
expertise for labeling the selected windows or samples. We
plan to examine these issues in future work, as noted in Sec-
tion 6. We experiment with two different sampling methods:
uncertainty sampling and query-by-committee (QBC) [34],
which we describe in the following sections.

3.5.1 Uncertainty Sampling
In uncertainty sampling, the active learner chooses a sam-
ple to be labeled based on the model’s most uncertain
predictions. We employ all available query strategies for

classification tasks in the selected software package. We
represent class probabilities with ŝi = [p1, p2, p3, ..., pk],
where i denotes the sample’s index, pk is the probability for
the k-th class, and ŝi contains all class probabilities for the
sample. Assume we have the following class probabilities
for three different samples:

ŝ1 = [0.1, 0.85, 0.05]; ŝ2 = [0.6, 0.3, 0.1]; ŝ3 = [0.39, 0.61, 0.0]

Classification Uncertainty computes the uncertainty proba-
bilities of samples as follows:

U(x) = 1− P (y|x), (1)

where x is the instance to be predicted, and y is the most
likely class prediction. It then selects the sample with the
highest uncertainty probability. The uncertainty probabili-
ties of the above example are Ulist = [0.15, 0.4, 0.39], and
the selected example is the second one.
Classification Margin computes the class probabilities of
each sample, and it calculates the difference between the
first and second highest class probabilities as follows:

M(x) = P (y1|x)− P (y2|x), (2)

where y1 and y2 are the first and second most likely classes.
It then selects the sample with the lowest margin.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Classification Entropy computes the entropy of each sample
based on the prediction probabilities of each sample:

H(x) = −
∑
y

P (y|x) log(P (y|x)). (3)

Then, it selects the sample with the highest entropy.

3.5.2 Query-by-Committee

QBC determines the informativeness of an unlabeled sam-
ple based on the disagreement level of multiple classifiers.
This can alleviate the drawbacks of having a single classifier
biased towards certain classes while measuring uncertainty.
There are several strategies to determine the disagreement
level. We employ all available query strategies for classifica-
tion tasks in the selected software package.

Consensus Entropy Sampling (CES) computes the class
probabilities of unlabeled samples for each supervised clas-
sifier. It then takes the average of these class probabilities,
called consensus probabilities. Finally, it computes the en-
tropy of the consensus probabilities and picks the sample
with the highest entropy.

Vote Entropy Sampling (VES) computes the class proba-
bilities for each sample. Then, it computes the probability
ratios of predicted labels for each sample. Then, it computes
the entropy of these probability distributions and selects the
sample with the highest entropy.

Maximum Disagreement Sampling (MDS) computes the
vote probabilities for each classifier and then obtains the
consensus probabilities. Then, it computes the Kullback-
Leibler divergence [35] of each classifier with respect to the
consensus prediction. Finally, it selects the sample with the
largest value.

3.6 Runtime Anomaly Diagnosis

Since some HPC applications can run for extended periods,
it is essential to diagnose anomalies at runtime. While train-
ing the model, we employ an active learning query strategy
and monitor the training process until a certain condition
is met, such as reaching the maximum allowed queries
or target diagnosis score. Once this condition is achieved,
the training is finalized, and the trained model is stored.
At runtime, we continuously collect telemetry data from
each compute node. Then, we create equal-length windows
and extract only the selected features. The trained model
outputs the anomaly type for each window if the window
is anomalous; otherwise, it classifies as normal.

4 EXPERIMENTAL METHODOLOGY

The first subsection discusses the applications that run on
the target production system. The following subsections
explain the monitoring framework and synthetic anomalies
we inject to mimic common performance variations in HPC
systems. We conclude the section by providing the imple-
mentation details.

TABLE 1
Applications we run on Eclipse for data collection.

Application Description
Real Applications LAMMPS Molecular dynamics

HACC Cosmological simulation
SW4 Seismic modeling

ECP Proxy Suite EXAMINIMD Molecular dynamics
SWFFT 3D Fast Fourier Transform
SW4LITE Numerical kernel optimizations

4.1 Production System and Selected Applications

We run our applications on a production HPC system called
Eclipse located at Sandia National Laboratories. Eclipse
has 1,488 compute nodes and a peak performance of 1.8
petaflops. Each node has 128GB of RAM with two sockets,
and each socket has 18 E5-2695 v4 CPU cores. We run six
applications: LAMMPS, HACC, sw4, ExaMiniMD, SWFFT,
and sw4lite. Amongst these, three of them are real applica-
tions: LAMMPS, a molecular dynamics simulation focusing
on materials modeling [36]; HACC, an extreme-scale cos-
mological simulation [37]; and sw4, a popular 3D seismic
model [38]. The remaining three, ExaMiniMD, SWFFT, and
sw4lite, are proxy applications from the ECP Proxy Apps
Suite [39]. We list all applications used in our experiments
in Table 1. We run each application for 20-45 minutes on 4, 8,
and 16 nodes, where each application has a different input
deck for each unique node count, i.e., input one is designed
for running the application on four nodes, whereas input
two is designed to run the application on eight nodes.

TABLE 2
A list of the HPAS anomalies used in our experiments.

Anomaly type Anomaly behavior
CPU intensive process Arithmetic operations

Cache contention Cache read & write
Memory bandwidth contention Uncached memory write

Memory leakage Increasingly allocate
& fill memory

4.2 Monitoring Framework

We use the Lightweight Distributed Metric Service
(LDMS) [10] to collect telemetry data from applications at
runtime. LDMS is a monitoring framework capable of gath-
ering, transferring, and storing telemetry data on large-scale
distributed systems with low overhead. It collects data from
different subsystems and performance counters at the sec-
ond granularity for a specific compute node. Note that our
framework is not limited to LDMS and can be customized to
work with different monitoring frameworks. Some example
metrics from different subsystems are memory (e.g., free,
active, inactive memory), CPU (e.g., user and idle time, I/O
wait time), network (e.g., received/transmitted packets, av-
erage packet size, link status), shared file system (e.g., open,
read, write counts), virtual memory (e.g., free, active, and
inactive pages). We gather 806 metrics at a rate of 1Hz from
each compute node. However, we do not use per-core related
metrics (e.g., per core cpu enabled8, per core guest8, etc.)
as we observe significant fluctuations in them for the same

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

application run with the same input. We use node-level CPU
features as they exhibit greater consistency. After dropping
per-core metrics, we have 156 metrics.

4.3 Synthetic Performance Anomalies
To assess the performance of our framework, a dataset with
ground truth labels is necessary. However, obtaining such a
dataset from production HPC systems is challenging due to
the infrequency of anomalies and complexity of the data.
Several fault or anomaly injection tools (e.g., FINJ [40],
GPCNet [41], and PFault [42]) are available. GPCNet em-
ploys a range of configurable patterns to induce congestion
across the network systematically. Meanwhile, PFault mim-
ics failure conditions for individual storage nodes within
the parallel file system by leveraging a set of predetermined
fault models. While existing tools typically focus on a single
subsystem or solely inject faults that result in program
termination, we aim to identify performance anomalies that
target multiple subsystems (e.g., memory, CPU), resulting in
diminished performance.

We use the HPC Performance Anomaly Suite
(HPAS) [43], an open-source performance anomaly suite
reproducing common performance anomalies in produc-
tion HPC systems. In HPAS, synthetic anomalies aim to
impact five main subsystems: CPU, cache, memory, net-
work, and shared storage. These anomalies operate through
processes that run in user space, eliminating the need for
any hardware or kernel modifications. The details of in-
jected anomaly types and their anomalous behavior are
provided in Table 2. We also carry out experiments that
include anomalies related to I/O and network. Due to sig-
nificant contention caused by I/O-related anomalies, system
administrators terminate the runs. The network anomaly
only causes contention when applications operate on two
compute nodes; therefore, it is not included in our experi-
ments. While executing an application that runs on multiple
compute nodes, we run a synthetic anomaly on every node
that the application uses. If an anomaly is injected for that

application run, the telemetry data for each compute node
is labeled with an anomaly type; otherwise, it is labeled as
healthy. We also run the same anomaly with two or three
intensity settings.

4.4 ML Models and Baselines
We choose the ML models used in the HPC domain to
evaluate the diagnosis performance: SVM, Random Forest
(RF), Multi-Layer Perceptron (MLP), and Light Gradient
Boosting Machine (LGBM). To test the performance of query
strategies, we implement the random selection, Random,
as a baseline [44]. There are other active learning-based
techniques we consider for baselines. Huang et al. [20] and
Wang et al. [21] employ unsupervised anomaly detection
methods combined with active learning to classify time
series windows as either healthy or anomalous. Our objec-
tive, however, is to identify types of anomalies within these
windows. Furthermore, our training data originates from
multiple compute nodes, unlike these techniques that de-
pend on a singular data source with a continuous timestamp
sequence. Given these differences, we opt not to benchmark
our method against theirs.

4.5 Implementation Details
This section details the parameters and design decisions
made during the implementation phase.

4.5.1 Telemetry Data Collection
We gather telemetry data while running applications in the
form of multivariate time series data RTxM where T is the
number of timestamps that belong to that application run,
and M is the number of metrics. After the data collection, we
remove the first and last 60 seconds of telemetry data of each
application run, as some metrics may deviate significantly
from expected values during the initialization and termina-
tion phases. The choice of 60 seconds is based on investi-
gating raw telemetry data and is specific to the applications

TABLE 3
The performance summary of the supervised classifiers in terms of F1-score, FAR, and AMR with TSFRESH and MVTS feature extractors. For
each classifier, we report the model’s performance when trained in ALTD and 5-fold CV settings. We report the performance on the same test

dataset for each training setup. The bold text shows the best-performing models.

F1-score (Macro Avg) False Alarm Rate (%) Anomaly Miss Rate (%)
mean max mean max mean max

Feature Extractor Model Configuration

MVTS LGBM 5-Fold CV 90.41 91.12 0.00 0.00 0.05 0.20
ALTD 82.21 82.21 0.00 0.00 0.28 0.28

MLP 5-Fold CV 87.36 88.07 0.41 0.54 0.16 0.41
ALTD 71.95 71.95 0.02 0.02 3.15 3.15

RF 5-Fold CV 83.23 83.74 0.02 0.02 0.34 0.51
ALTD 71.74 71.74 0.00 0.00 6.35 6.35

SVM 5-Fold CV 69.88 74.23 2.37 4.75 2.48 3.63
ALTD 51.24 51.24 0.05 0.05 23.93 23.93

TSFRESH LGBM 5-Fold CV 88.93 89.41 0.22 0.33 0.15 0.41
ALTD 82.45 82.45 0.00 0.00 0.22 0.22

MLP 5-Fold CV 83.31 84.23 0.04 0.09 0.20 0.42
ALTD 73.80 73.80 0.00 0.00 0.31 0.31

RF 5-Fold CV 84.00 84.58 0.00 0.00 0.24 0.47
ALTD 81.58 81.58 0.00 0.00 1.19 1.19

SVM 5-Fold CV 63.04 69.02 8.55 13.54 7.91 12.59
ALTD 50.85 50.85 0.01 0.01 23.61 23.61

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Test DatasetActive Learning
Training Dataset

Labeled
Dataset

Unlabeled
Dataset

Fig. 2. Splitting the dataset into training and test datasets. The labeled
dataset represents the initial state for the supervised training stage,
where one compute node telemetry data from each application-anomaly
pair exists. The unlabeled dataset is used to determine the samples to
be labeled.

used. Some LDMS metrics accumulate the raw values, and
since we are interested in the relative change, we calculate
the difference between each time step. As a final stage,
we apply linear interpolation in every time series to fill in
missing values, as some values in LDMS metrics may be lost
during the collection stage due to sampling problems. After
the preprocessing stage, we create equal-length windows
of 60 seconds with a 15-second skip interval, such as [0 -
60], [15 - 75], and [30 - 90]. We train the same supervised
classifier using both 45-second and 60-second windows and
select the 60-second window because it yields a superior F1-
score, a lower anomaly miss rate, and a reduced false alarm
rate during evaluation [45]. After the window generation
stage, we obtain 507,738 and 1,677,999 windows for our train
and test datasets from 24,566 compute nodes, respectively.

4.5.2 Feature Extraction and Selection
To extract essential characteristics of raw time series data
and obtain the most relevant features corresponding to the
class labels, we apply feature extraction and feature selec-
tion, respectively. We use the efficient setting in the TSFRESH
feature extractor, which generates 121,836 features. For the
MVTS package, the total number of features we obtain
after the feature extraction step is 6,396. Some example fea-
tures that are generated per metric are: absolute energy, ben-
ford correlation, fft coefficient, kurtosis, maximum, minimum,
quantile, and skewness, etc. Unfortunately, it is not feasible to
extract features from all available windows simultaneously
due to memory constraints. To mitigate this problem, we
process windows in smaller groups by submitting parallel
jobs and then store the feature-extracted versions. To reduce
the dimensionality of the feature-extracted time series data,
we utilize the Chi-Square feature selection technique and
select the top 2,000 features. The choice of 2,000 is based on
the experimentation in our previous work [18].

4.5.3 Dataset Split and Hyperparameter Tuning
In Figure 2, we show how we split our dataset into training
and test datasets. To mimic the production system scenario,
we further divide the active learning training dataset into
labeled and unlabeled datasets where the size of the unla-
beled dataset is significantly larger than the labeled dataset.
Note that the figure does not represent the actual sizes
of the datasets. We use the labeled portion of the active
learning training dataset to train classifiers. Initially, the
labeled dataset consists of 30 compute node telemetry data
since the Eclipse dataset has six applications and five labels.
We use the unlabeled portion of the active learning training
dataset to query the label of the most informative windows

iteratively. After determining the windows to be queried,
we remove it from the unlabeled dataset and add it to the
labeled dataset. Then, we retrain our supervised ML model
and test the model’s performance on the test dataset.

We also maintain a 10% anomaly ratio (i.e., the number
of anomalous samples divided by all samples) in the active
learning training dataset. The choice of a 10% anomaly ratio
is based on our observations on Eclipse. Before running
synthetic anomalies, we first investigate the percentage of
the application runs that show outlier characteristics (i.e.,
runs with execution time 1.5 interquartile range below the
25th percentile or 1.5 interquartile range above the 75th
percentile in terms of execution time). We observe that the
outlier ratio ranges between 2-7%. Therefore, we cap the
anomaly ratio as 10% in our training dataset.

We experiment with different hyperparameters for each
model to select the best-performing supervised ML classi-
fier. We tune the hyperparameters by performing a 5-fold
CV on the active learning training dataset. Since hyper-
parameter tuning takes too much time on the windowed
dataset, we use a feature-extracted version of the raw time
series while searching for the optimal parameters analogous
to our prior work [18].

5 EVALUATION

Our framework is evaluated across three distinct experi-
mental scenarios to assess its performance, utilizing three
key performance metrics: F1-score, false alarm rate (FAR),
and anomaly miss rate (AMR). Despite each active learn-
ing query strategy utilizing unique informativeness metrics
(detailed in Section 3.5) to select samples for labeling, our
overarching goal remains uniform in focusing on these three
metrics. The F1-score combines precision (how often the
model is correct when it predicts a positive class) and recall
(how often the model correctly identifies actual positive
class instances). FAR is the percentage of healthy windows
incorrectly classified as anomalies, i.e., the number of false
positives divided by the number of false positives plus
the number of true negatives. AMR is the percentage of
anomalous instances incorrectly classified as healthy, i.e., the
number of false negatives divided by the number of false
negatives plus the number of true positives.

5.1 Selecting Supervised Classifiers

This experiment aims to determine the best-performing
supervised models before applying active learning query
strategies. We experiment with four different ML classifiers
and report their F1-score, FAR, and AMR for two settings. In
the active learning training data (ALTD) setting, we train the
classifier with the samples in the active learning training
dataset (Figure 2) and report the anomaly diagnosis perfor-
mance in the test dataset. In the cross validation setting (5-fold
CV), we apply 5-fold CV using the whole dataset, i.e., active
learning training and test datasets.

Table 3 shows the F1-score, FAR, and AMR when the
classifiers are evaluated in 5-fold CV and ALTD settings.
LGBM and RF are the top two performing models in terms
of F1-score with MVTS and TSFRESH feature extractors,
respectively. The anomaly diagnosis performance of SVM

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

TABLE 4
Evaluation of various ML models and query strategies with MVTS and TSFRESH feature extractors. Random* is the baseline query strategy. For

each setting, we report the F1-score, AMR, and FAR when the model learns the labels of 500, 1,000, and 2,000 windows from the unlabeled pool.
The bolded models are the best-performing ones.

F1-score (Macro Avg) False Alarm Rate (%) Anomaly Miss Rate (%)
Num. Windows 0 500 1000 2000 0 500 1000 2000 0 500 1000 2000

Feature Extractor Model Query Type

MVTS LGBM Entropy 66.01 79.29 81.24 81.67 3.22 0.04 0.01 0.00 0.62 0.34 0.34 0.23
Margin 66.07 81.15 81.95 81.27 3.15 0.01 0.00 0.00 0.64 0.70 0.26 0.23
Random* 66.03 71.64 73.38 76.41 3.23 0.13 0.07 0.03 0.65 0.39 0.42 0.47
Uncertainty 66.11 78.71 82.05 81.49 3.02 0.08 0.00 0.00 0.65 0.31 0.27 0.23

RF Entropy 56.02 62.42 65.71 68.61 19.56 0.40 0.34 0.09 2.55 1.87 0.93 0.67
Margin 56.15 68.27 71.76 75.46 20.16 0.01 0.01 0.00 2.07 0.82 0.45 0.34
Random* 56.09 56.34 56.81 57.86 20.87 0.27 0.12 0.03 2.18 6.43 6.17 6.30
Uncertainty 56.08 64.36 67.68 73.21 17.84 0.44 0.27 0.18 2.52 0.89 0.55 0.45

TSFRESH LGBM Entropy 73.17 76.59 78.68 82.29 5.14 0.19 0.13 0.07 0.32 0.34 0.32 0.29
Margin 73.16 79.93 82.23 82.32 5.26 0.03 0.01 0.00 0.31 0.37 0.33 0.27
Random* 73.20 74.91 75.77 76.96 5.20 0.30 0.20 0.06 0.31 0.34 0.35 0.37
Uncertainty 73.20 76.81 80.56 82.42 5.02 0.05 0.01 0.00 0.31 0.35 0.34 0.26

RF Entropy 74.49 74.88 76.16 78.57 0.06 0.00 0.00 0.00 0.29 0.34 0.30 0.29
Margin 74.41 78.92 81.23 83.02 0.07 0.00 0.00 0.00 0.28 0.30 0.30 0.29
Random* 74.13 75.09 75.37 75.60 0.09 0.02 0.01 0.00 0.28 0.34 0.38 0.40
Uncertainty 74.23 76.40 77.85 78.32 0.06 0.00 0.00 0.00 0.28 0.29 0.29 0.29

is poor since we only experiment with the linear kernel due
to a quadratic increase in the execution time with respect
to the number of samples. Both LGBM and RF achieve the
perfect FAR in ALTD setting with MVTS and TSFRESH
feature extractors. When we use MVTS feature extractor
and Chi-Square feature selection with 2000 features, LGBM
and MLP are the best-performing models in the 5-fold CV
setting in terms of F1-score. RF has the same F1-score as
MLP in ALTD setting, but its F1-score is slightly lower for
the 5-fold CV setting. In terms of FAR, LGBM and RF are the
best-performing models. Even though RF’s performance is
slightly lower in 5-fold CV setting, it is more important not
to raise false alarms in the context of anomaly diagnosis. So,
we choose LGBM and RF as the top-performing models.

5.2 Anomaly Diagnosis with Active Learning
This scenario aims to determine the minimum number of
windows required to achieve a certain F1-score. We evaluate

multiple active learning query strategies from two sampling
methods: uncertainty sampling and QBC. We also compare
their performances with the Random baseline and fully su-
pervised settings. Active learning query strategies and the
Random baseline starts with one sample per application-
anomaly pair (i.e., approximately 30 samples). We then
query 2000 windows for each method and report F1-score,
AMR, and FAR on the same test dataset after each query.
In each figure, the black dashed line shows the F1-score of
a supervised classifier when the model is trained in ALTD
setting, referred to as F1-ALTD. The red dashed line shows
the minimum number of windows needed to reach F1-
ALTD, referred to as Min-Query-ALTD. The purple dashed
line shows the F1-score of a supervised classifier when the
model is trained in a 5-fold CV setting, referred to as F1-CV.

Table 4 shows the anomaly diagnosis results of active
learning with different query strategies. The margin query
is the best strategy for both classifiers since it achieves

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

74

76

78

80

82

84

F1
-s

co
re

 (M
ac

ro
 A

vg
)

F1-score

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

False Alarm Rate (%)

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

0.30

0.35

0.40

0.45

Anomaly Miss Rate (%)

Entropy Margin Random Uncertainty MinQueryF1ALTD F15FoldCV F1ALTD

Fig. 3. The F1-scores, FARs, and AMRs of different uncertainty sampling query strategies, and the Random baseline for the first 2000 queried
windows when using RF as a supervised classifier and TSFRESH as a feature extractor. Among uncertainty sampling strategies, margin sampling
is the best-performing query strategy, reaching an F1-score of 82% with an additional 1100 windows.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

0 50 100 150 200 250 300
Number of Samples

74

76

78

80

82

84
F1

-s
co

re
 (M

ac
ro

 A
vg

)

Entropy
Margin

Random
Uncertainty

MinQueryF1ALTD

F15FoldCV

F1ALTD

Fig. 4. The change in F1-score in terms of samples for different query
strategies used in Figure 3. The margin query strategy reaches the F1-
score of the supervised classifier trained in ALTD setting (5619 samples)
by only querying the label of an additional 260 samples.

the highest F1-score with the least number of windows.
LGBM with margin query strategy reaches an 81.15% F1-
score using MVTS, and it reaches a 79.93% F1-score with TS-
FRESH using additional 500 windows, which is nearly the
same F1-score (82.45%) when the model is trained in ALTD
setting, which includes approximately 500,000 windows. To
make a fair comparison, we gradually increase the number
of windows and find that the model achieves the same
performance with approximately 170,000 instead of 500,000.
On the other hand, Random needs to query more than 10000
windows to achieve the same accuracy. This shows that
active learning query strategies can be beneficial in deter-
mining which windows should be labeled. Figure 3 shows
the change in the F1-score, FAR, and AMR with respect to
the increasing number of windows when we use different
query strategies and the Random baseline with TSFRESH.
All active learning query strategies, especially margin, sig-
nificantly outperform Random baseline by achieving a higher
F1-score with fewer windows. Considering FAR and AMR,
RF with margin query strategy achieves near-perfect results
when using TSFRESH.

Even though it is possible to provide a label for a
single window, it can be difficult for a human annotator
to determine the health status of an application based on a
single window, as this limited observation may not provide
sufficient information. To ensure more reliable feedback,

the annotator may need to examine larger periods of the
application or even the entire run. We define the sample
as the feature extracted version of the telemetry data col-
lected from one compute node when an application runs.
Our assumption is that all windows in a sample share the
same label, based on our initial data collection strategy. As
outlined in Section 4.5.2, each sample contains 2000 features,
though not all are necessary for labeling. For example, an
annotator may focus on specific memory usage metrics,
such as free memory, utilizing their domain expertise to
detect a memory leak and consequently label all windows in
the sample as exhibiting a memleak anomaly. It is important
to note that this paper does not directly address the labeling
of high-dimensional telemetry data, a topic we reserve
for future exploration. Initially, the margin query strategy
reaches F1-ALTD using 1100 windows (Figure 3). However,
to label 1100 windows, a human annotator should only
provide the labels of 260 samples, as shown in Figure 4. This
means that the actual cost of obtaining labels is significantly
lower than the total number of queried windows if the
annotator chooses to investigate samples.

ExaMiniMD
HACC

LAMMPS
SWFFT sw4

sw4lite

20

40

60

Nu
m

. U
ni

qu
e

Sa
m

pl
es

None
cachecopy

cpuoccupy
membw

memleak
0

25

50

75

100

125

Model: RF - Query strategy: Margin
 Num. Features: 2000 - Total Num. Windows Investigated: 1100

Fig. 6. The distribution of application and anomaly types within the
first 1100 queried windows when using RF with margin sampling as a
query strategy. The top two queried anomaly types are cachecopy and
membw. The top two queried applications are HACC and SW4.

We also perform a drill-down analysis to understand
which application and anomaly types are queried by the
active learner. Figure 6 shows how many samples are se-
lected from each application and anomaly type for RF with
TSFRESH feature extractor. We observe that cachecopy and
membw are the most frequently queried anomaly types. This
shows that these anomalies created more confusion in the

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

74

76

78

80

82

84

F1
-s

co
re

 (M
ac

ro
 A

vg
)

F1-score

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

False Alarm Rate (%)

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Anomaly Miss Rate (%)

Margin-CES Margin-MDS Margin-VES MinQueryF1ALTD F15FoldCV F1ALTD

Fig. 5. The F1-scores, FARs, and AMRs of different QBC sampling query strategies, and the Random baseline for the first 2000 windows when
using TSFRESH as a feature extractor. We use RF and LGBM as supervised classifiers for the two active learners and margin sampling as an
uncertainty sampling query strategy. Margin-CES strategy is the best-performing strategy since it reaches an F1-score of 82% with fewer windows.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

0 20 40 60 80 100 120 140 160
Number of Samples

74

76

78

80

82

84
F1

-s
co

re
 (M

ac
ro

 A
vg

)

Margin-CES
Margin-MDS

Margin-VES
MinQueryF1ALTD

F15FoldCV F1ALTD

Fig. 7. The change in F1-score in terms of samples for different un-
certainty sampling query strategies (Figure 5). Margin-VES sampling
reaches the F1-score of a supervised classifier trained in ALTD setting
by querying the label of an additional 159 samples.

model than other anomaly types; therefore, their label is
queried more often. Among the HPC applications, HACC
and SW4 are the most queried application types. We also
conduct a similar drill-down analysis for LGBM in the same
setting. One key difference is that LGBM queries 3x more
samples with None label, but it requires fewer samples for
membw anomaly. Regarding application types, HACC and
SW4 are the most queried. It is expected to observe that
each classifier prioritizes different characteristics.

We conduct a similar experiment for the QBC sampling
query strategies. The main motivation is to leverage the
strengths of two different classifiers to reduce further the
number of samples that should be labeled. Based on previ-
ous drill-down analysis results, LGBM and RF prioritize dif-
ferent anomaly types. We initialize two active learners with
LGBM and RF, respectively. Figure 5 shows the performance
of QBC sampling query strategies in terms of F1-score, FAR,
and AMR. In terms of achieving F1-ALTD, the margin-CES
query strategy is the best one. However, margin-MDS and
margin-VES query strategies also achieve a very close score.
All strategies achieve a perfect FAR and 0.4% AMR. In
Figure 7, we investigate the number of samples required to
reach F1-ALTD. The margin-VES query strategy leverages
entropy scores to determine which samples to label, which
achieves the highest F1-score by querying the label of an
additional 159 samples.

0 500 1000 1500 2000
Number of Windows

40

60

80

100

F1
-s

co
re

 (M
ac

ro
 A

vg
)

Training Dataset: 1 App

0 500 1000 1500 2000
Number of Windows

40

60

80

100

Training Dataset: 2 Apps

Margin Random F15FoldCV F1ALTD MinQueryF1ALTD

Fig. 8. The F1-scores, FAR, and AMR when the training dataset includes
1 and 2 known applications, while the test set has the remaining 4
applications. We repeat this experiment for all combinations. We reach
F1-ALTD by querying the label of an additional 950 windows.

5.3 Robustness for Anomaly Diagnosis

In production HPC systems, collecting labeled samples for
each combination of applications and application inputs is
not feasible, as there may be thousands of combinations.
Our previous work demonstrates a 30% drop in average F1-
score and a 35x increase in FAR of a fully-supervised model
when there are unseen applications in the test dataset [18].
Thus, we conduct experiments with unseen applications
and inputs to gauge the robustness of our framework.

5.3.1 Previously Unseen Applications
To replicate the situation where there are previously unseen
applications in the test dataset, we select four applications to
be included in the test dataset and begin the initial training
phase with the remaining two applications. However, it
is worth noting that samples of all application types are
present in the unlabeled pool, which means that if active
learning determines that a particular sample is informative,
it may still query the label of an application type that is
present in the test dataset.

Figure 8 illustrates the change in F1-score in relation to
the number of queried windows. On the left side of the
plot, we initiated the initial training phase by having one
labeled sample for all anomaly types of a single application
(i.e., five labeled samples in total). The starting F1-score, in
this case, was 49%, which is significantly lower compared
to a scenario where we have one labeled sample for each
application and anomaly pair. However, as we queried
the label of 950 additional windows (505 samples), our
framework achieves F1-ALTD. On the right side of the plot,
we begin with one labeled sample for all anomaly types
of two applications (i.e., ten labeled samples). The starting
F1-score, in this case, was 58%, which is again lower when
compared to a situation where we have labeled samples of
all application and anomaly types. We achieve F1-ALTD by
querying the label of an additional 1100 windows (508 sam-
ples), demonstrating that our framework is robust against
previously unseen applications.

5.3.2 Previously Unseen Application Inputs
We conduct a similar experiment to the previously unseen
application experiment, where the test dataset includes pre-
viously unseen application inputs. We then evaluate the
robustness of our framework by measuring the F1-score
with respect to the increasing number of window queries.
We have three input configurations for each application type
in our experimental settings. We select two inputs of an
application run for the test dataset and place the remaining
input for that application in the training dataset. We repeat
the experiment with all possible scenarios in all application
types. As seen in Figure 9, we start with an F1-score of 53%,
and by querying an additional 2000 windows (357 samples),
we reach 78%, which is very close to F1-ALTD. We reach
perfect FAR after querying 50 windows. For AMR, it takes
200 windows to reach the perfect score.

5.4 Discussion of Deployment Scenarios

In this section, first, we discuss two potential scenarios to
deploy the proposed approach in production. Then, we

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

50

60

70

80

F1
-s

co
re

 (M
ac

ro
 A

vg
)

F1-score

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

0
10
20
30
40
50
60
70

False Alarm Rate (%)

0 250 500 750
1000

1250
1500

1750
2000

Number of Windows

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Anomaly Miss Rate (%)

Margin Random MinQueryF1ALTD F15FoldCV F1ALTD

Fig. 9. The F1-scores, FARs, and AMRs when the training dataset consists of only the first input from each application and the test dataset includes
the other two inputs. We repeat this experiment for all combinations. We reach a 0.77 F1-score by querying the label of an additional 2000 windows.

investigate the overhead of various deployment-related pa-
rameters for the selected deployment scenario.

Eclipse has a dedicated monitoring server, Shirley, to
collect, process, and visualize data. Shirley comprises 16
compute nodes, each with 48 Intel Xeon Gold 6240R CPUs,
1.5 TB of memory, and 56 TB of NVMe storage. LDMS runs
on all 1488 compute nodes on Eclipse, and the runtime
telemetry data is aggregated into Shirley.

1 4 16 64 256 1488
Number of Windows

100

101

Feature Extraction Time (s)
Num. Features

250
1000
2000

1 4 16 64 256 1488
Number of Windows

0.01

0.02

0.03

Inference Time (s)

Fig. 10. Execution time analysis for feature extraction and inference
stages for different numbers of windows. Using the model with 250
features, extracting features from 1488 windows takes 19.06, and gen-
erating predictions takes 0.03 seconds on average.

We investigate two scenarios to provide anomaly diag-
nosis results for the interval of interest. Query-based Cal-
culation involves retrieving telemetry data for the selected
time interval from the database and processing it through
the ML Pipeline, which extracts features for each 60-second
window and performs anomaly diagnosis. This approach
does not store predictions, eliminating the need for storage
and additional database management. However, latency
may become a concern since the ML pipeline needs to
generate millions of predictions when the job execution time
is long or uses more than 500 nodes. Stream-based Calculation
involves feeding the telemetry data to the ML pipeline as
the data becomes available and storing the diagnosis re-
sults in another database. This predict-as-you-go approach
significantly reduces the execution time overhead because
the maximum number of windows processed equals the
number of compute nodes in the worst case, which is 1488
for Eclipse. In terms of memory overhead, assuming every
node is fully utilized for 24 hours and storing a 4-byte
integer per prediction, the memory cost is approximately
35 MB daily without any compression or optimization
strategies, which is also negligible. However, it requires

managing another database. Although both approaches are
feasible depending on system requirements, we focus on
investigating the execution time overhead for the stream-
based calculation approach as it has a lower overhead in the
worst-case scenario.

TABLE 5
Time distribution of a single iteration during offline training.

Query Model Refit Model Prediction Other

Mean 6.56 s 1.05 s 26.4 s 6.1 s
Std 1.02 s 0.08 s 1.04 s 1.1 s

We investigate the execution time overhead of the best-
performing model, RF, for feature extraction and inference
stages across different numbers of windows. We measure
the execution time for 1, 4, 16, 64, 256, and 1488 windows,
spanning the maximum possible range. While we obtain
the best performance with the model trained using 2000
features, we also utilize the same model with 250 and 1000
features to demonstrate how the execution time overhead
scales with the number of features extracted. Both models
exhibit less than a 2% performance drop in the F1-score
for the same number of labeled samples. To select the
optimal number of processes, we start by turning off the
parallelization (n jobs=0) and then systematically increase
the number of processes to the maximum (n jobs=48). Using
all available cores for the feature extraction stage results in
the fastest execution time in most cases. However, paral-
lelization slows the process up to 10 times for the inference
stage since the operation is not computationally intensive.
As a result, we use all 48 cores for feature extraction and
disable parallelization for inference. Figure 10 shows the
time spent during the feature extraction and inference stages
across different numbers of windows for models trained
with different numbers of features. Extracting 250, 1000,
and 2000 features from one window takes an average of
0.45, 0.57, and 1.08 seconds, respectively. For 1488 windows,
extracting 250, 1000, and 2000 features takes 19.06, 23.64, and
28.5 seconds on average. In the worst case, inference time
takes 0.03 seconds on average, which is negligible. We run
all experiments on a single compute node, but it is possible
to distribute 1488 windows to 16 nodes (i.e., processing 90

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

windows per node), which takes approximately 2 seconds.
For the offline training, we use a compute node with

two fourteen-core 2.4 GHz Intel Xeon E5-2680v4 processors.
A single iteration of batch mode active learning mainly
includes querying 50 windows, refitting the model, and
measuring the current performance. On average, one iter-
ation takes 40 seconds on average. The exact distribution
is reported in Table 5. To train the best performing model
(Figure 3) with 1100 windows takes 880 seconds on average.

1 3 5 7 9
Num. Consecutive Windows

70

75

80

F1
-s

co
re

 (M
ac

ro
 A

vg
)

F1-score

1 3 5 7 9
Num. Consecutive Windows

0

10

20 Anomaly Miss Rate (%)

Majority Voting Consecutive Filtering

Fig. 11. Change in F1-score and AMR for two different filtering tech-
niques for different numbers of consecutive windows. Majority voting
increases the F1-score by 3% while keeping a perfect AMR and FAR.

We also explore two different runtime filtering methods
to investigate whether we can improve FAR and F1 scores.
The first method, named majority voting, involves replacing
the original class prediction of the model with the most
frequent class prediction across C consecutive windows.
The second method, named consecutive filtering, retains the
original classification prediction if a consistent class appears
in C consecutive windows. If not, the prediction is replaced
with a label indicating a healthy state. While this method ef-
fectively reduces the FAR by setting a confidence threshold
for anomalous predictions, it often leads to a higher AMR,
as some anomalous predictions get replaced with healthy
labels.

To assess the impact of these filtering methods, we
calculate the F1-score, FAR, and AMR by comparing each
window’s predicted class to its corresponding ground truth
value. Figure 11 shows the change in F1-score and AMR
with increasing C consecutive windows. In the majority
voting case, we observe a slight increase in the F1-score
while having perfect AMR. Unlike consecutive filtering,
we observe a lower F1-score with higher C values due to
increased AMR. It is important to note that both methods
achieve a perfect FAR, but due to a higher F1-score, we find
the majority voting method more feasible.

6 CONCLUSION AND FUTURE WORK

The fluctuation of application performance in HPC sys-
tems not only impairs user satisfaction but also diminishes
resource utilization efficiency and squanders computing
power. As the magnitude and intricacy of large-scale sys-
tems continue to expand, telemetry data-based automated
analytics are becoming increasingly necessary for reliable
and efficient service. Although active learning frameworks
have become prevalent in different domains where labeled
data is scarce, there has been a lack of utilization of such
frameworks for anomaly diagnosis. We present an active

learning framework to identify previously encountered per-
formance anomalies at runtime. We evaluate our framework
using telemetry data collected from a production HPC sys-
tem and show that we use 16 times fewer labeled samples
compared to a supervised baseline utilizing the entire active
learning training dataset, even in the presence of previously
unseen applications and inputs in the test dataset.

In this paper, our framework operates under the assump-
tion that annotators consistently provide accurate labels
for selected windows or samples. This assumption, while
effectively establishing an upper limit for the performance
of our approach, presents an open problem regarding its
practical applicability in production environments. One po-
tential solution is to assess the impact of the contamination
ratio, defined as the proportion of incorrect labels relative
to the total number of labels, on model performance across
diverse experimental settings [46]. This examination could
lead to the development of more robust query strategies
that are better equipped to handle incorrect labels. Another
open problem arises from our reliance on domain expertise
or established systematic approaches for annotation. The
development of human-guided frameworks that incorpo-
rate domain-specific heuristics and rules to improve the
annotation process presents a significant area for future
exploration.

ACKNOWLEDGMENTS

This work has been partially funded by Sandia National
Laboratories. Sandia National Laboratories is a multimis-
sion laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security
Administration under Contract DE-NA0003525. This paper
describes objective technical results and analysis. Any sub-
jective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

REFERENCES

[1] Y. Zhang, T. Groves, B. Cook, N. J. Wright, and A. K. Coskun,
“Quantifying the Impact of Network Congestion on Application
Performance and Network Metrics,” in IEEE Int. Conf. on Cluster
Computing (CLUSTER), 2020, pp. 162–168.

[2] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin,
N. Cherukuri, and K. Kumaran, “Run-to-run Variability on Xeon
Phi-based Cray XC systems,” in SC’17: Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–13.

[3] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There
Goes the Neighborhood: Performance Degradation Due to Nearby
Jobs,” in IEEE Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013, pp.
1–12.

[4] D. Skinner and W. Kramer, “Understanding the Causes of Perfor-
mance Variability in HPC Workloads,” in IEEE Workload Character-
ization Symposium, 2005, pp. 137–149.

[5] A. Das, F. Mueller, and B. Rountree, “Systemic Assessment of
Node Failures in HPC Production Platforms,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2021, pp.
267–276.

[6] A. Agelastos, B. Allan, J. Brandt, A. Gentile, S. Lefantzi, S. Monk,
J. Ogden, M. Rajan, and J. Stevenson, “Toward Rapid Understand-
ing of Production HPC Applications and Systems,” in IEEE Int.
Conf. on Cluster Computing (CLUSTER), 2015, pp. 464–473.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[7] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
Failures in Exascale Computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173,
2014.

[8] J. Brandt, F. Chen, V. De Sapio, A. Gentile, J. Mayo, P. Pebay,
D. Roe, D. Thompson, and M. Wong, “Quantifying Effectiveness
of Failure Prediction and Response in HPC Systems: Methodol-
ogy and Example,” in IEEE International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2010, pp. 2–7.

[9] W. Barth, Nagios: System and network monitoring. No Starch Press,
2008.

[10] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The
Lightweight Distributed Metric Service: a Scalable Infrastructure
for Continuous Monitoring of Large Scale Computing Systems
and Applications,” in IEEE Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, 2014, pp. 154–165.

[11] A. Borghesi, A. Burrello, and A. Bartolini, “Examon-X: A Pre-
dictive Maintenance Framework for Automatic Monitoring in
Industrial IoT Systems,” IEEE Internet of Things Journal, 2021.

[12] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Online Diagnosis of Performance
Variation in HPC Systems Using Machine Learning,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 30, no. 4, pp. 883–
896, 2018.

[13] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, “Online Anomaly
Detection in HPC Systems,” in IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), 2019, pp. 229–
233.

[14] B. Aksar, Y. Zhang, E. Ates, B. Schwaller, O. Aaziz, V. J. Le-
ung, J. Brandt, M. Egele, and A. K. Coskun, “Proctor: A Semi-
Supervised Performance Anomaly Diagnosis Framework for Pro-
duction HPC Systems,” in International Conference on High Perfor-
mance Computing. Springer, 2021, pp. 195–214.

[15] S. R. Kumar, P. D. B, and G. R. G, “Supervised Machine Learning-
based Anomaly Detection and Diagnosis in Grid Connected Pho-
tovoltaic Systems.” EAI, 12 2021.

[16] M. Hosseinzadeh, A. M. Rahmani, B. Vo, M. Bidaki, M. Mas-
dari, and M. Zangakani, “Improving Security Using SVM-based
Anomaly Detection: Issues and Challenges,” Soft Computing,
vol. 25, no. 4, pp. 3195–3223, 2021.

[17] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Anomaly Detection Using Autoencoders in High Performance
Computing Systems,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 9428–9433.

[18] B. Aksar, E. Sencan, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt,
B. Kulis, and A. K. Coskun, “Albadross: Active Learning-based
Anomaly Diagnosis for Production HPC Systems,” in IEEE Int.
Conf. on Cluster Computing (CLUSTER), 2022, pp. 369–380.

[19] B. Settles, “Active Learning Literature Survey,” 2009.
[20] T. Huang, P. Chen, and R. Li, “A Semi-Supervised VAE-based

Active Anomaly Detection Framework in Multivariate Time Series
for Online Systems,” in Proceedings of the ACM Web Conference,
2022, pp. 1797–1806.

[21] W. Wang, P. Chen, Y. Xu, and Z. He, “Active-Mtsad: Multi-
variate Time Series Anomaly Detection with Active Learning,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2022, pp. 263–274.

[22] Z. Li, Y. Zhao, Y. Geng, Z. Zhao, H. Wang, W. Chen, H. Jiang,
A. Vaidya, L. Su, and D. Pei, “Situation-aware Multivariate Time
Series Anomaly Detection Through Active Learning and Contrast
VAE-based Models in Large Distributed Systems,” IEEE Journal
on Selected Areas in Communications, vol. 40, no. 9, pp. 2746–2765,
2022.

[23] S. A. Khowaja and P. Khuwaja, “Q-Learning and LSTM-based
Deep Active Learning Strategy for Malware Defense in Industrial
IoT applications,” Multimedia Tools and Applications, vol. 80, no. 10,
pp. 14 637–14 663, 2021.

[24] C. Xie, W. Xu, and K. Mueller, “A Visual Analytics Framework for
the Detection of Anomalous Call Stack Trees in High Performance
Computing Applications,” IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 1, pp. 215–224, 2018.

[25] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Diagnosing Performance Variations

in HPC Applications Using Machine Learning,” in International
supercomputing conference. Springer, 2017, pp. 355–373.

[26] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and
A. K. Coskun, “Taxonomist: Application Detection Through Rich
Monitoring Data,” in European Conference on Parallel Processing.
Springer, 2018, pp. 92–105.

[27] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Müller, “Data
Mining-based Analysis of HPC Center Operations,” in IEEE Int.
Conf. on Cluster Computing (CLUSTER), 2017, pp. 766–773.

[28] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“A Semisupervised Autoencoder-based Approach for Anomaly
Detection in High Performance Computing Systems,” Engineering
Applications of Artificial Intelligence, vol. 85, pp. 634–644, 2019.

[29] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time
Series Feature Extraction on Basis of Scalable Hypothesis Tests
(Tsfresh–a Python Package),” Neurocomputing, vol. 307, pp. 72–77,
2018.

[30] A. Ahmadzadeh, K. Sinha, B. Aydin, and R. A. Angryk, “Mvts-
Data Toolkit: A Python Package for Preprocessing Multivariate
Time Series Data,” SoftwareX, vol. 12, p. 100518, 2020.

[31] T. Schreiber and A. Schmitz, “Discrimination Power of Measures
for Nonlinearity in a Time Series,” Physical Review E, vol. 55, no. 5,
p. 5443, 1997.

[32] T. P. Hill, “A Statistical Derivation of the Significant-Digit Law,”
Statistical science, pp. 354–363, 1995.

[33] C. D. Manning, Introduction to information retrieval. Syngress
Publishing,, 2008.

[34] B. Settles, “Active Learning,” Synthesis lectures on artificial intelli-
gence and machine learning, vol. 6, no. 1, pp. 1–114, 2012.

[35] J. M. Joyce, “Kullback-Leibler Divergence,” in International encyclo-
pedia of statistical science. Springer, 2011, pp. 720–722.

[36] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of computational physics, vol. 117, no. 1, pp. 1–
19, 1995.

[37] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and
K. Heitmann, “Hacc: Extreme Scaling and Performance Across
Diverse Architectures,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
2013, pp. 1–10.

[38] N. Petersson and B. Sjögreen, “Sw4 v1.1 [software],” Computa-
tional Infrastructure for Geodynamics, 2014.

[39] “Exascale Proxy Applications.” [Online]. Available:
https://proxyapps.exascaleproject.org

[40] A. Netti, Z. Kiziltan, O. Babaoglu, A. Sı̂rbu, A. Bartolini, and
A. Borghesi, “Finj: A Fault Injection Tool for HPC Systems,”
in Euro-Par 2018: Parallel Processing Workshops, G. Mencagli,
D. B. Heras, V. Cardellini, E. Casalicchio, E. Jeannot, F. Wolf,
A. Salis, C. Schifanella, R. R. Manumachu, L. Ricci, M. Beccuti,
L. Antonelli, J. D. Garcia Sanchez, and S. L. Scott, Eds. Cham:
Springer International Publishing, 2019, pp. 800–812.

[41] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma,
K. Kandalla, K. Kumaran, G. Lockwood, S. Parker, S. Warren,
N. Wichmann, and N. Wright, “GPCNeT: Designing a Benchmark
Suite for Inducing and Measuring Contention in HPC Networks,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3295500.3356215

[42] R. Han, O. R. Gatla, M. Zheng, J. Cao, D. Zhang, D. Dai,
Y. Chen, and J. Cook, “A Study of Failure Recovery and
Logging of High-Performance Parallel File Systems,” ACM
Trans. Storage, vol. 18, no. 2, apr 2022. [Online]. Available:
https://doi.org/10.1145/3483447

[43] E. Ates, Y. Zhang, B. Aksar, J. Brandt, V. J. Leung, M. Egele, and
A. K. Coskun, “HPAS: An HPC Performance Anomaly Suite for
Reproducing Performance Variations,” in ACM Proceedings of the
48th International Conference on Parallel Processing, 2019, p. 1–10.

[44] G. C. Cawley, “Baseline Methods for Active Learning,” in Active
Learning and Experimental Design workshop In conjunction with AIS-
TATS. JMLR Workshop and Conference Proceedings, 2011, pp.
47–57.

[45] B. Aksar, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt, M. Egele,
and A. K. Coskun, “E2EWatch: An End-to-End Anomaly Di-
agnosis Framework for Production HPC Systems,” in European
Conference on Parallel Processing. Springer, 2021, pp. 70–85.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[46] Z. Liu, Z. Wang, Y. Yao, L. Zhang, and L. Shao, “Deep Active
Learning with Contaminated Tags for Image Aesthetics Assess-
ment,” IEEE Transactions on Image Processing, 2018.

Burak Aksar is a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering at
Boston University. He received his B.S. degree
in Electronics Engineering from Sabanci Uni-
versity, Istanbul, Turkey. His research interests
are applied machine learning & explainable AI
techniques to improve the performance of large-
scale computing systems. He has completed
successful internships at IBM AI Research and
Sandia National Labs.

Efe Sencan is a Ph.D. student in the Depart-
ment of Electrical and Computer Engineering at
Boston University. He received his B.S. degree in
Computer Science and Engineering with a minor
in Mathematics from Sabanci University, Istan-
bul, Turkey. His research interests are applied
machine learning to improve the performance
and efficiency of HPC systems.

Benjamin Schwaller is an R&D member of San-
dia National Laboratories’ High-Performance
Computing Development division. He earned
his Bachelor’s and Master’s degrees in Electri-
cal Engineering from the University of Florida
and the University of Pittsburgh, respectively.
He was a research assistant at the NSF Cen-
ter for Space, High-performance, and Resilient
Computing (SHREC) from 2015 to 2018. His re-
search interests include hardware performance
optimization and supercomputing development.

Omar Aaziz is an R&D Computer Scientist at
Sandia National Laboratories. He received an
M.S. in Computer Science from Baghdad Uni-
versity in 2003 and a Ph.D. from New Mex-
ico State University in 2018. He worked as an
instructor at Baghdad University in Iraq from
2003 to 2009. His research interests are High-
Performance Computing, specifically in dynamic
analysis, application performance, and runtime
monitoring. In the HPC arena, he used several
statistical and machine learning modules to im-

prove scientific application performance. His current research focuses
on studying the increase of the overall utility of expensive HPC re-
sources in a scientific application and analyzing the behavior patterns
of parallel applications using statistical and numerical techniques.

Vitus J. Leung is a principal member of the
Technical Staff at Sandia National Laboratories,
where he leads research in distributed memory
resource management. He has won R&D 100,
US Patent, and Federal-Laboratory-Consortium
Excellence-in-Technology-Transfer Awards for
work in this area. He is a senior member of the
ACM and IEEE and has been a member of the
Technical Staff at Bell Laboratories in Holmdel,
New Jersey, and a Regents Dissertation fellow
at the University of California.

Jim Brandt is a distinguished member of the
Technical Staff at Sandia National Laboratories
in Albuquerque, New Mexico, where he leads
research in HPC monitoring and analysis.

Brian Kulis is an associate professor at Boston
University, with appointments in the Department
of Electrical and Computer Engineering, the De-
partment of Computer Science, the Faculty of
Computing and Data Sciences, and the Division
of Systems Engineering. He also is an Amazon
Scholar, working with the Alexa team. Before
joining Boston University, he was an assistant
professor in Computer Science and Statistics
at Ohio State University, and before that was a
postdoctoral fellow at UC Berkeley EECS. His

research focuses on machine learning, statistics, computer vision, and
large-scale optimization. He obtained his Ph.D. in computer science
from the University of Texas in 2008 and his B.A. from Cornell University
in computer science and mathematics in 2003. He has won three best
paper awards for his research at top-tier conferences (International
Conference on Machine Learning and IEEE Conference on Computer
Vision and Pattern Recognition). He also received an NSF CAREER
Award in 2015, an MCD graduate fellowship from the University of Texas
(2003-2007), and an Award of Excellence from the College of Natural
Sciences at the University of Texas.

Manuel Egele is an associate professor with
the Electrical and Computer Engineering De-
partment, Boston University (BU). He is the head
of the Boston University Security Lab, where
his research focuses on the practical security of
commodity and mobile systems. He is a member
of the IEEE and the ACM.

Ayse K. Coskun is a full professor in the Elec-
trical and Computer Engineering Department at
Boston University and the director of the Center
for Information and Systems Engineering. Her
research focuses broadly on design automation
and computer systems, particularly focusing on
energy efficiency, thermal challenges, and us-
ing analytics for intelligent system management.
Coskun led multi-institutional projects, authored
over 120 technical papers, taught classes on
computer systems and software, and delivered

many invited talks and tutorials. Her research outcomes are widely
recognized and culminated in several technical awards, including the
IEEE CEDA Ernest Kuh Early Career Award and an IBM Faculty Award.
Coskun received her Ph.D. degree in Computer Science and Engineer-
ing from UC San Diego.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2024.3365462

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 26,2024 at 01:52:50 UTC from IEEE Xplore. Restrictions apply.

