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Abstract—Information leakage through temperature based
covert channels is a growing threat in modern multicore pro-
cessors. Thus, accurately detecting the presence of such ther-
mal covert communication channels in real time is crucial for
ensuring the security of confidential data. Existing detection
techniques fail when covert channels are implemented with low
power benchmarks, as shown in this paper. A novel detection
technique is proposed by considering the transitions in the CPU
workload as the primary metric. The proposed approach can
detect covert channels established with low power programs with
100% detection accuracy and less than 2% false positive rate.

I. INTRODUCTION

Confidential data such as bank passwords, personal contacts
and medical records often need to be legitimately transferred
between two computing hardware elements [1]. To prevent
the disclosure of information, this type of communication is
protected using strict security protocols. Nevertheless, mali-
cious attackers find ways to bypass these security controls
and exfiltrate the sensitive information. Covert channel com-
munication [2]-[4] is one such attack, where a compromised
sender process modifies properties of a computing hardware,
such as execution time [5], shared processor cache states [6],
sound produced by mobile devices [7] and processor core
temperature [8] to transmit secret information to a compromised
receiver process.

Recently, covert channel communication using heat as a
carrier, referred to as thermal covert channel (TCC) commu-
nication, has gained considerable attention [9]-[11]. Masti et
al. identified TCC as a dangerous leakage source between
individual cores of a multicore processor [8]. Specifically,
to send a bit ‘I’ in a TCC, a program is executed in the
transmitting core to raise its temperature and to transmit a
bit ‘0’, the execution of the program is stopped, thereby
reducing its temperature, as shown in Fig. 1. The receiving
core is a neighboring core that has similar changes in its
temperature profile due to the thermal coupling between the
two cores. In modern processors, temperature information from
the thermal sensors is available to user applications without the
need for special permissions [12]. Therefore, by processing its
temperature sensor output, the transmitted bits can be decoded
by the receiving core. Following Masti et al., researchers have
studied TCC modeling [9], [12], detection [11], [13] and mit-
igation techniques [10], [13], [14]. Furthermore, some studies
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identify techniques that increase communication throughput
with minimal error rates [12], [15], [16].

Since TCC attacks do not need physically shared resources,
run time detection techniques are needed to determine their
presence before blocking the attack. Huang er al. recently
proposed two techniques for TCC detection [11], [13]. The
first technique analyses the temperature spectrum of each core
to detect a TCC [13]. This technique is relatively inefficient
because of the need to scan frequencies and filter out the noise
components at each frequency step. Therefore, the instruction
per cycle (IPC) based detection was proposed [11]. Both of
these techniques assume that the covert channel is established
by executing compute intensive programs to sufficiently in-
crease the temperature of the source core. As shown in previous
work [16], it is possible to establish a high bandwidth TCC
by executing low power benchmarks in densely integrated
multicore processors where there is strong thermal crosstalk.
Since the existing detection techniques fail to consider such a
scenario, in this paper, we propose a novel detection metric
to detect a high bandwidth TCC established with low power
programs. Additionally, the proposed metric eliminates the need
to scan the frequency spectrum at multiple frequency steps. The
primary contributions of this work are as follows:

« We propose a novel detection technique that leverages the
transitions in the CPU workload (measured in terms of
the differences in giga instructions per second, referred
to as AGIPS) to detect a TCC established by low power
programs. The detection is achieved by scanning the power
spectral density (PSD) of the AGI PS profile of each core.

o The threshold for detection is statistically determined
based on exhaustive execution of typical SPLASH-
2/PARSEC benchmark applications without a TCC attack.

Our results demonstrate that the proposed technique can detect
100% of the TCCs at the pre-determined threshold with neg-
ligible (<2%) false positive rate for five different low power
programs from SPLASH-2/PARSEC benchmark suites.

The organization of the rest of the paper is as follows.
A brief background on TCC attack model, framework, and
communication protocol is provided in Section II. Existing
TCC detection techniques and their drawbacks are described in
Section III. The proposed TCC detection technique is detailed
in Section IV. The results are presented in Section V. Finally,
the paper is concluded in Section VI.
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Fig. 1. Thermal covert channel communication in multicore processors.

II. BACKGROUND

In this section, we briefly discuss the threat model of
the TCC attack, followed by the communication architecture
(including communication protocol), encoding process within
the transmitting core, and offline decoding technique.

A. Threat model

In our threat model, the transmitting core is in a secure zone
with access to confidential information whereas the receiving
core is in a low-security zone and is looking to exfiltrate the
confidential information. Technologies such as Intel SGX [17]
and Arm Trustzone [18] provide special security enclaves to
software applications (apps) that handle sensitive information.
We assume that the app on the transmitting core is protected
by such technologies. However, research has shown that these
enclaves can also be compromised by malwares [11]. In order
to secretly transmit the sensitive data to the receiver core sitting
in the low-security zone, the malware program is executed by
the attacker to raise the power consumption (and therefore the
temperature of the transmitting core) to send a bit ‘1’. Similarly
to send a bit ‘0’, the program execution is stopped and hence the
transmitting core is cooled down, as shown in Fig. 1. Because
of the thermal coupling between the cores of a processor, the
temperature of the adjacent cores also has a similar variation.
Therefore, the attacker app in the receiving core can decode
the secret data by reading its temperature sensor information
and processing it, as illustrated in the figure.

B. Communication Architecture

The TCC communication protocol, communication encoding
and decoding processes are briefly discussed in this subsection.

1) Communication protocol: The malware program in the
transmitting core reads the sensitive data and breaks it into
several blocks or frames with the same number of data bits.
Therefore, even if a part of the transmitted data bits are lost
in communication, the fragmentation of the entire secret data
enables successful communication for the remaining blocks.

The program appends a stream of preamble bits to each block
of data to enable synchronization between the transmitting and
the receiving cores. In this work, we use a series of alternating
‘I’s and ‘0’s as preamble bits.

The temperature profile of the transmitting core is encoded
with the secret information by controlling the execution of the
malware program, as described in Section II-A. The app on the
receiving core continuously monitors the temperature profile
information by reading the temperature sensor. Because of the
thermal coupling between the transmitting and the receiving
cores, the secret data bits can be decoded offline by processing
the temperature profile of the receiving core.

2) Encoding process: The secret data bits are encoded on
the temperature profile of the transmitting core by varying its
power consumption. A simple amplitude shift keying (ASK)
modulation technique is used to create the modulated power
profile [19]. Typically, a compute intensive program is executed
to sufficiently increase the temperature of the transmitting core
and therefore reduce the error rates of communication [8], [11],
[12], [15]. If the secret data bits are represented by the vector
v[n], where 0 < n < N for N bits to be transmitted per
block, and p(t) is the power consumption of the transmitting
core when the malware program is executed for bit-width (73)
amount of time, the modulated power consumption of the
transmitting core, p,,(t), encoded with the secret data bits is

given as,
N

pm(t) =Y _v[n] x p(t — nT}). (1)
n=1
Since the temperature of the transmitting core is proportional
to its power consumption, the secret data bits are also encoded
on the temperature profile of the transmitting core.

3) Offline decoding process: Due to the thermal coupling
between the transmitting and the receiving cores, the secret
data bits can be decoded by analyzing the temperature profile of
the receiving core. The attacker app in the receiving core con-
tinuously records the information from the temperature sensor,
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Fig. 2. IPC profiles showing (a) time domain IPC data of a core sequentially executing random applications from SPLASH-2 and PARSEC suites, (b) time
domain IPC data of a core executing raytrace program encoded with the secret data, (c) power spectral density of IPC data for a core sequentially executing
random applications from SPLASH-2 and PARSEC suites and (d) power spectral density of IPC data for a core executing raytrace program encoded with the

secret data.

which is sampled at every T3. The sensor resolution and refresh
rates must be considered while decoding the temperature sensor
output. Temperature sensors in modern processors often have a
resolution (referred to as S) of approximately 1°C [20], [21],
as assumed in this work. The secret data bits are decoded by
comparing the cumulative rise and fall of the temperature with

S [16].

III. LIMITATIONS OF EXISTING TCC DETECTION
TECHNIQUES

Huang et al. recently proposed two techniques for TCC de-
tection [11], [13]. The first technique analyzes the temperature
profile of each core in the frequency domain [13]. Specifically,
power spectrum of temperature profile of each core is scanned
at high frequencies and compared against a fixed threshold
to detect the presence of a TCC. However, this frequency
scanning technique requires the use of band pass filter at
several frequency steps, thereby increasing the overhead in each
detection cycle. More importantly, relying on temperature as the
metric causes the detection to be very slow since temperature
is a low frequency signal. Thus, once the covert channel is
detected, it is possible that some of the secret information is
already transmitted.

The second approach analyzes the frequency spectrum of
the CPU workload of each logical core to detect a TCC [11].
The CPU workload is measured in terms of the instructions
per cycle (IPC), which varies much faster than temperature.
In this technique, the power spectral density of IPC for each
core is obtained and the maximum amplitude of the spectrum
is compared against a set threshold to determine if a TCC
is present. Note that the power consumption of benchmark
applications from SPLASH-2 or PARSEC suites occupy a low

frequency band of approximately 0-10 Hz. Therefore, a TCC
attack is typically established at greater frequencies to avoid
interference [15]. Thus, the above detection technique focuses
on a frequency range from 10 Hz up to 500 Hz. Unfortunately,
this technique fails to detect TCC attacks established with
low power applications. This limitation is illustrated in Fig. 2.
Figs. 2(a) and (c) show, respectively, the time domain and
frequency domain IPC spectrum of an Intel Haswell processor
core when there is no covert channel. The core executes random
benchmark applications from the SPLASH-2 and PARSEC
suite sequentially. Figs. 2(b) and (d) depict, respectively, the
time domain and frequency domain IPC spectrum of the
same core executing a raytrace based TCC program. Thus,
in Figs. 2(b) and (d), an attacker establishes a covert channel
attack by using raytrace program, which is one of the lowest
power apps in the benchmark suite. From the time domain
IPC data, it is observed that the peak IPC of the processor
core with raytrace based TCC [Fig. 2(b)] is lower than the
peak IPC of the core without TCC [Fig. 2(a)]. Similarly, in the
frequency domain, it is observed that the peak power spectral
density (PSD) of IPC without TCC [Fig. 2(c)] is greater than
the peak PSD of the IPC with TCC [Fig. 2(d)], even in the
range of 10 Hz to 100 Hz. In [11], the threshold for detection
is set to be greater than the average IPC without TCC. For
example, according to Fig. 2(c), the threshold should be greater
than the average peaks of 50 IPC?/Hz. However, the PSD
of the IPC spectrum with TCC in Fig. 2(c) is much lower
than 50 IPC?/Hz. Therefore, this type of TCC cannot be
detected by analyzing only the IPC metric of each core. The
following section describes an enhanced detection technique
that overcomes this drawback.



10

8
6

GIPS

4
2

0

0.00 005 010 015 020 025
Time (s)

(a)

0.30

0.00 0.05 010 015 020 025 030

Time (s)
©

8

z

%6

Y4

=

£

2

0

0 200 400 600 800 1000

Frequency (Hz)
(O]

GIPS

0.0
000 005 0.10 0.15 020 025 0.30
Time (s)

(®)

AGIPS

000 005 010 015 020 025 030

Time (s)
(@
25
20
4
fng
Y10
o
&
5
0
0 200 400 600 800 1000
Frequency (Hz)
®

Fig. 3. GIPS profiles showing (a) time domain GIPS data of a core sequentially executing random applications from SPLASH-2 and PARSEC suites, (b)
time domain GIPS data of a core executing raytrace program encoded with the secret data, (c) time domain AGIPS data of a core sequentially executing
random applications from SPLASH-2 and PARSEC suites, (d) time domain AGIPS data of a core executing raytrace program encoded with the secret data,
(e) power spectral density of AGIPS of a core sequentially executing random applications from SPLASH-2 and PARSEC suites, and (f) power spectral density
of AGIPS of a core executing raytrace program encoded with the secret data.

IV. PROPOSED TECHNIQUE FOR DETECTING LOW-POWER
AND HIGH BANDWIDTH TCC

A. Enhanced detection metric

In this section, we propose two enhancements to the existing
techniques to detect a TCC attack established by a low power
program. First, we use the metric giga instructions per second
(GIPS), calculated as GIPS = IPC x f, where f is the
frequency of the processor. The reason behind adopting the
GIPS is that IPC of a processor is independent of the processor
frequency. In a scenario where an attacker chooses to increase
the frequency of the transmitting core [22] to raise its temper-
ature to transmit a bit ‘1°, the IPC metric alone falls short of
detecting this situation. Therefore, we rely on the metric GIPS.
However, GIPS is only a scaled version of IPC and the peak
power spectral density of GIPS without TCC is still greater than
the peak power spectral density with TCC for a raytrace based
attack, as discussed in Section III. Therefore, in this work,
we propose to leverage the transitions in the GIPS profile to
detect the TCC. Specifically, a GIPS spectrum with TCC has
significant variations in its magnitude because of the frequent
turning ON (for encoding a bit ‘1”) and OFF (for encoding a bit

‘0’) of the application. Therefore, we propose to calculate the
difference between the consecutive samples of GIPS, referred
to as AGIPS, to quantify these variations. Thus, the proposed
metric for a particular cycle c is defined as,

c=m+1
(AGIPS), = GIPS ,

c=m

(@)

where the GIPS of two consecutive cycles are subtracted.
This metric is then quantified as a function of the number
of cycles. For example, Figs. 3(a) and (b) depict the GIPS
data of the processor core without TCC and with TCC at 100
Hz, respectively. The corresponding AGIPS data is calculated
according to (2) and plotted in Fig. 3(c) for the core with-
out TCC. Similarly, AGIPS plot for the core with TCC is
shown in Fig. 3(d). Please note that even though the absolute
magnitude of GIPS is larger in Fig. 3(a) [and thus resulting
in higher peaks in the AGIPS plot shown in Fig. 3(c)], the
occurrence of the peaks is random and less frequent compared
to Fig. 3(d) where the occurrence of the peaks is consistent
and more frequent. Specifically, Fig. 3(d) represents a Dirac
comb function [23] and the frequency spectrum of this type of
Dirac comb function is also a Dirac comb with peaks at odd



multiples of the fundamental frequency (100 Hz), as illustrated
in Fig. 3(f). Thus, these peaks can be used to detect a TCC
attack. To capture this effect, we propose to calculate the sum
of these peaks to determine if the resultant magnitude is greater
than the peak value in the power spectrum without TCC in
Fig. 3(e). This algorithm is described in the following section.

B. Detection algorithm

The TCC detection algorithm is shown in Alg. 1. We assume
that TCC detection program can be configured for the secure
cores. Based on the configuration, this algorithm is executed
as an asynchronous thread on these cores that have access
to secure information. The detection cycle is assumed to
execute 10 times in every second. In each detection cycle, each
secure core extracts the GIPS data and calculates the frequency
spectrum of AGIPS for that core, as shown in line 4 of Alg. 1.
If the frequency response represents a Dirac comb function
[C(f)], as discussed in the previous section, the sum of all
the peaks in F' is stored in Pagrps, (see lines 5 to 9). If
Pagrps, crosses a pre-determined threshold, a detect flag is
set, as shown in lines 10 to 12. The threshold is statistically
calculated based on exhaustive set of simulations of common
applications from SPLASH-2/PARSEC suite, as described in
the following subsection.

Algorithm 1 AGIPS based TCC detection
1: Inputs: AGIPS;, Tyet, Neores
2: Initialization: f = 10: 10 : 1000H z
3: for 1 <7 < N_ppes do
4. F < Fast Fourier Transform (FFT) spectrum of
AGIPS;

5. if F € C(f) then

6: Pacrps; < Sum of all peaks in F
7. else

8: PAGIPSi < Peak in F

9: end if

10:  if Pagrps; > Tie: then

11: detect; <+ 1

12:  end if

13: end for

C. Threshold determination

In existing IPC based detection technique [11], the threshold
for detection is estimated based on the average of the IPC
power spectrum for SPLASH-2/PARSEC applications when
there is no covert channel. The variations in the power spectrum
for different applications and its impact on threshold are not
considered extensively. Thus, in this work, we sequentially
execute random applications from SPLASH-2/PARSEC suite in
a core with dispersed instants of idle time to mimic a processor
core when there is no covert channel. In order to statistically
model the threshold for detection, the peak power spectral
density of GIPS and AGIPS is recorded for 1000 such
simulations. These amplitudes follow a Gaussian distribution,
as shown in Fig. 4(a) for GIPS and Fig. 4(b) for AGIPS.
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Fig. 4. Probability distribution functions of (a) peak power spectral density of
GIPS and (b) peak power spectral density of AGIPS. This data is used to
statistically determine the detection threshold.

In order to consider the 95% of the variation in the ampli-
tudes, the maximum threshold for detection is calculated based
on the 40 value (mean plus 20), which corresponds to 1324
GIPS?/Hz for GIPS and 53 AGIPS?/Hz for AGIPS.
Thus, if Pagrps, in Alg. 1 is greater than the threshold
calculated above, a TCC is said to be detected.

V. SIMULATION RESULTS

To simulate a thermal covert channel attack, 10 blocks of
secret data are encoded in the power profile based on ASK by
executing different programs from SPLASH-2/PARSEC suites
on a 4-core Intel Haswell architecture, operating at a frequency
of 3.5 GHz [16], [24]. Each secret data block comprises of
10 bits of preamble and 100 bits of data. The different TCC
workloads are simulated for a 4-core CPU based on an Intel
Haswell architecture [24]. The architecture-level simulations
to obtain the transient IPC and GIPS traces are performed
using the SNIPER multicore simulator [25]. To evaluate the
effectiveness of the proposed detection technique, we simulate
100 such communications and determine detection accuracy or
TCC detection rate Rge:,

Rdet(in%) _ Ndetected’ (3)
Nrce

where, Nyctecteq 1S the number of TCCs that are detected
(when the sum of the peaks of AGIPS; spectrum crosses the
threshold, as shown in lines 10 to 12 in Alg. 1) and Nrcoc is

the total number of TCCs established.
Furthermore, to evaluate this detection against cores exe-
cuting nominal SPLASH-2/PARSEC applications without any
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Fig. 5. TCC detection rate and false positive rate vs. detection threshold for
(a) traditional GIPS (or IPC) based detection and (b) proposed AGIPS
based detection.

covert channel attacks, we execute 100 simulations of a se-
quence of such applications and define a metric referred to as
false positive rate Ry,

Ryp(int%) = L2, )
where, Ny, is the total number of typical simulations without
TCC that get detected as a TCC (i.e. false positives) and N is
the total number of such simulations.

Fig. 5(a) depicts the variation of Rge; (blue plot) and Ry,
(black plot) as a function of detection threshold for the existing
GIPS (or IPC) based detection. The same data is shown for the
proposed AGI PS based detection in Fig. 5(b). In this example,
raytrace (one of the lowest power applications in the suite,
making it among the most difficult to detect) is used to establish
a TCC attack. The detection threshold (7};.;) determined in the
previous section with the 40 variation is marked in both plots.
First, it can be observed that the false positive rate is less than
2% when the threshold is increased beyond T} in both of the
plots, thereby verifying the proposed procedure to calculate
the detection threshold (T.;). Importantly, as observed from
Fig. 5(a), at the marked T},.;, the TCC detection rate for the
existing approach is 0%. Thus, the existing detection technique
based on GIPS (or IPC) metric fails to detect any of the TCCs
encoded by executing the low power raytrace application.
Alternatively, the detection rate for the same raytrace based
TCC with the proposed AGIPS metric at Ty is 100%, as
illustrated in Fig. 5(b). Furthermore, the red and green lines in
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Fig. 6. TCC detection rate and false positive rate vs. detection threshold for
(a) traditional GIPS (or IPC) based detection and (b) proposed AGIPS
based detection.

the plots show that for the thresholds where Rge; is 100%, Ry,
is 95% in Fig. 5(a) whereas Ry, is less than 2% in Fig. 5(b).

The proposed algorithm is evaluated for TCC encoded by
executing four more low power applications, water.nsq, barnes,
blackscholes and water.spatial. Similar plots for the variation
of Rget and Ry, as a function of detection threshold are
shown in Fig. 6(a) (for the conventional GIPS metric) and
Fig. 6(b) (for the proposed AGIPS metric). As observed
from the plots, R4e; and Ry, are approximately 0% for all
of the applications at Ty.; in Fig. 6(a), which relies on the
existing detection method. If the detection threshold is reduced
to increase detection rate, the false positive rate also quickly
increases. Alternatively, with the proposed algorithm, the TCC
detection rate with all of the applications is 100% at Tj.; = 53
whereas the false positive rate is less than 2%, as shown in
Fig. 6(b). Thus, the proposed detection algorithm overcomes
the limitation of the existing detection technique, thereby
successfully detecting a TCC attack established by executing
low power benchmarks.

VI. CONCLUSION AND FUTURE WORK

Thermal covert communication attacks in multicore pro-
cessors can enable the exfiltration of confidential information
by exploiting thermal coupling between the physical cores.
Previous works have shown that a high bandwidth TCC can
be established by executing low power benchmark programs.
However, the existing techniques fail to detect such TCC
attacks, thus posing a danger to data security. Therefore, we



have proposed a novel detection technique in this work. The
proposed approach can detect any TCC attack established by
low power programs with 100% detection accuracy and less
than 2% false positive rate. Furthermore, the detection threshold
is statistically determined based on extensive simulations that
mimic a practical processor without a TCC attack. In future
work, this method can be extended to detect other types
of covert channels such as power and EM. The potential
of machine learning based detection approaches can also be
explored.
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