
Prodigy: Towards Unsupervised Anomaly Detection in
Production HPC Systems

Burak Aksar

baksar@bu.edu

Boston University

Boston, MA, USA

Efe Sencan

esencan@bu.edu

Boston University

Boston, MA, USA

Benjamin Schwaller

bschwal@sandia.gov

Sandia National Laboratories

Albuquerque, NM, USA

Omar Aaziz
∗

omarraad.aaziz@gmail.com

Sandia National Laboratories

Albuquerque, NM, USA

Vitus J. Leung

vjleung@sandia.gov

Sandia National Laboratories

Albuquerque, NM, USA

Jim Brandt

brandt@sandia.gov

Sandia National Laboratories

Albuquerque, NM, USA

Brian Kulis

bkulis@bu.edu

Boston University

Boston, MA, USA

Manuel Egele

megele@bu.edu

Boston University

Boston, MA, USA

Ayse K. Coskun

acoskun@bu.edu

Boston University

Boston, MA, USA

ABSTRACT
Performance variations caused by anomalies in modern High Per-

formance Computing (HPC) systems lead to decreased efficiency,

impaired application performance, and increased operational costs.

While machine learning (ML)-based frameworks for automated

anomaly detection (often based on time series telemetry data) are

gaining popularity in the literature, practical deployment challenges

are often overlooked. Some ML-based frameworks require exten-

sive customization, while others need a rich set of labeled samples,

none of which are feasible for a production HPC system.

This paper introduces a variational autoencoder-based anomaly

detection framework, Prodigy, that outperforms the state-of-the-art

alternatives by achieving a 0.95 F1-score when detecting perfor-

mance anomalies. The paper also provides a real system implemen-

tation of Prodigy that enables easy integration with monitoring

frameworks and rapid deployment. We deploy Prodigy on a pro-

duction HPC system and demonstrate 88% accuracy in detecting

anomalies. Prodigy involves an interface to provide job- and node-

level analysis and explanations for anomaly predictions.

CCS CONCEPTS
• Computing methodologies→ Unsupervised learning;Ma-
chine learning; • General and reference → Performance; •
Software and its engineering;

∗
This work has been completed while the author was at Sandia National Laboratories.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00

https://doi.org/10.1145/3581784.3607076

KEYWORDS
High Performance Computing, Anomaly Detection, Machine Learn-

ing, Deployment

ACM Reference Format:
Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J. Leung,

Jim Brandt, Brian Kulis, Manuel Egele, and Ayse K. Coskun. 2023. Prodigy:

Towards Unsupervised Anomaly Detection in Production HPC Systems. In

The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3581784.3607076

1 INTRODUCTION
Modern High Performance Computing (HPC) systems are crucial

for many fields, such as drug discovery, climate modeling, nuclear

physics, and financial modeling. These systems have become more

complex and parallel following the exponential growth in data

and computing power. With the move towards exascale comput-

ing along with large-scale systems hitting more severe limitations

in power consumption, newer HPC systems are being designed

with higher degrees of resource sharing, which, in turn, reduces

performance predictability. According to Chunduri et al. [18], the

run-to-run variability in an application’s execution time may ex-

ceed 70%, even if the same input deck is used. Similarly, other

studies [27, 45, 51] show that performance anomalies can cause

an increase in a job’s execution time by over 100%. Performance

anomalies occur due to various factors, including network con-

tention, [13], hardware-related problems [29], memory issues [2],

shared resource contention [21], and CPU-related problems [46].

While performance anomalies that cause system crashes are typi-

cally easier to detect, those that result in degraded system efficiency

can be more challenging to identify since they do not always lead to

node or system failures. Therefore, this paper focuses on the more

challenging problem of detecting performance anomalies that do

not result in system crashes but lead to degraded system efficiency.

An HPC system today typically employs one or more moni-

toring frameworks to gather information on resource utilization

https://orcid.org/0000-0003-3627-7311
https://doi.org/10.1145/3581784.3607076
https://doi.org/10.1145/3581784.3607076

SC ’23, November 12–17, 2023, Denver, CO, USA Burak Aksar et al.

during application runs. Often, these frameworks collect teleme-

try data in the form of multivariate time series data gathered via

performance counters at various levels of the system, system logs,

and traces, which can be analyzed to detect anomalous behavior.

However, manual analysis is impractical due to the massive vol-

ume of telemetry data generated by HPC systems (i.e., billions of

data points per day). Moreover, each HPC application may exhibit

unique characteristics, requiring domain expertise to differentiate

healthy and anomalous states. Therefore, automated performance

analysis techniques, such as machine learning (ML)-based frame-

works, are gaining attention in the HPC community for effectively

detecting and diagnosing performance anomalies in large-scale

computing systems [5, 15, 26, 31, 49]. Recent work has designed

ML-based frameworks for detecting anomalies in supervised learn-

ing settings [3, 19, 49]. Although these supervised frameworks

achieve high anomaly detection accuracy, their performance is

closely tied to the amount and quality of labeled data. However, the

overwhelming majority of the telemetry data collected from HPC

systems are not labeled as healthy or anomalous due to the immense

scale of the data ingested and the wide range of domain expertise

needed. To alleviate this problem, recent work has introduced semi-

supervised [4, 5, 14] and unsupervised frameworks [31, 34] that

operate with limited or only healthy labeled data. These frame-

works are better suited for production systems compared to fully-

supervised ML frameworks; however, their applicability is also

limited as existing frameworks deploy compute-node-specific mod-

els [14] or focus on detecting and forecasting node failures [31]

rather than performance anomalies, which can often be more diffi-

cult to detect.

To address the open problems of limited labeled data and ardu-
ous deployment processes, we introduce Prodigy1, an unsupervised

2

anomaly detection framework that detects performance anomalies

on compute nodes. We also design a simple and flexible architecture

that allows for easy deployment of Prodigy and demonstrate its

effectiveness on a 1488-node production HPC system. Our frame-

work assumes having access to healthy labeled samples3 during
the training phase to learn the healthy application run characteris-

tics. This is a reasonable assumption, considering anomalies occur

infrequently in production HPC systems. Therefore, most of the

time, the system is expected to operate within “normal" ranges of

performance. We evaluate the anomaly detection performance of

our framework on a production HPC system and also using data

collected from an HPC testbed. Our specific contributions are as

follows:

• Design of Prodigy, a variational autoencoder (VAE)-based
framework, that detects performance anomalies on compute

nodes using multivariate time series telemetry data. Our

framework achieves 0.95 and 0.88 F1-scores on a produc-

tion system (Eclipse) and an HPC testbed (Volta) telemetry

datasets, respectively.

1
Our implementation is available at: https://github.com/peaclab/Prodigy

2
Even though Prodigy is based on unsupervised learning model (i.e., variational au-

toencoders), its training stage uses only healthy samples.

3
A sample is a vector (1 x N features) generated by extracting features of multivariate

telemetry data (Time xMmetrics) collected from a compute node during an application

run.

• Application of a state-of-the-art counterfactual explainability

framework CoMTE [7] to the anomaly detection problem,

which sheds light on the decisions of black-box models and

helps HPC administrators and users understand the root

cause of anomalies.

• Design of a simple and customizable software architecture

for Prodigy and demonstrating the effectiveness of the Prodigy
framework by deploying on a production HPC system with

1488 compute nodes. Our framework achieves an 88% accu-

racy in detecting real-world performance anomalies.

The rest of the paper starts with an overview of related work,

followed by introducing our anomaly detection framework in Sec-

tion 3. Next, we discuss the software architecture and deployment

of Prodigy in Section 4. The experimental methodology is explained

in Section 5, while the results are presented in Section 6. The paper

concludes in Section 7.

2 RELATEDWORK
Anomaly detection in multivariate time series data is a crucial

area of research with a multitude of practical applications. In this

section, we provide an overview of recent developments in anomaly

detection methods in the context of large-scale computing systems.

Additionally, we examine the deployment of ML-based anomaly

detection frameworks for this purpose.

2.1 Anomaly Detection in HPC Systems
In the past decade, various supervised ML frameworks have been

designed for detecting anomalies. In a supervised setting, the model

is trained using labeled data that includes healthy and anomalous

samples. The idea is to teach the model to recognize the patterns

and characteristics that distinguish healthy data from anomalous

data, then use this knowledge to classify unseen data accurately.

For instance, Tuncer et al. [49] introduce a novel framework for

diagnosing performance anomalies. Their approach involves statis-

tical feature extraction and feature selection techniques to process

data collected from an HPC system. They then train a decision

tree-based classifier to identify and classify different types of per-

formance anomalies. Baseman et al. [11] introduce a framework for

fault detection in supercomputers using a statistical method called

classifier-adjusted density estimation. They employ a Random For-

est classifier trained on both real and artificially generated data

to predict performance anomalies. Klinkenberg et al. [26] monitor

power consumption and network traffic data of applications with-

out adding measurement overhead on compute nodes. They then

use descriptive statistics and a supervised ML model that predicts

imminent node failures caused by hardware or software issues with

high accuracy.

In a semi-supervised setting, the model is only trained with a

relatively small portion of the labeled and many unlabeled sam-

ples. Borghesi et al. [14] design a novel semi-supervised approach

for anomaly detection in HPC systems using autoencoder neural

networks [10]. Their approach requires data from normal system

states and detects anomalous conditions (e.g., anomalies due to mis-

configured CPU frequencies with respect to the current workload)

without the need for many examples of anomalous states. Aksar et

al. [5] build a semi-supervised anomaly diagnosis framework that

https://github.com/peaclab/Prodigy

Prodigy SC ’23, November 12–17, 2023, Denver, CO, USA

Prodigy: Offline Feature Selection

App 1

App 1

App 2

App 2

Prodigy: Offline Training
Variational Autoencoder Training

Z𝝁

Tr
ai

ni
ng

 D
at

a

C
on

st
ru

ct
ed

 D
at

a

Sampled
Latent Vector

Z𝝈

Z𝝈

Variance

Mean

DecoderEncoder

Node telemetry data
(Time x M metrics)

Sample
(1 x N features)

App 1

App 1

App 2

App 2

Feature Selection

Statistical
Feature

Extraction

Statistical
Feature

Extraction

App 1

App 2

Select only healthy runs from
the collected telemetry data

Efficient features

Efficient features

Extracts the
selected features

App 1

App 2

Save Efficient features to use during trainingNode with synthetic
anomaly

Telemetry Data Collection

Glossary:

Node without
synthetic anomaly

1

2

Figure 1: The high-level workflow of our framework, Prodigy. First, we extract statistical features from telemetry data collected
from healthy and anomalous application runs. We then employ the Chi-square feature selection method to determine the most
discriminative features (efficient features) that can separate healthy from anomalous samples. In the offline model training
stage, we only use healthy application runs to train the model and determine a reconstruction error-based threshold to detect
anomalies.

first uses autoencoders to learn the characteristics of healthy and

anomalous data. They then use a supervised classifier to determine

the anomaly types. However, their framework’s performance may

be limited as it solely relies on existing labeled samples. In their most

recent work [4], authors design a novel active learning-based [44]

anomaly diagnosis framework that significantly reduces the need

for labeled samples during the training phase while achieving high

classification performance.

In an unsupervised learning setting, theMLmodel is trained with

unlabeled samples. This training setup aims to identify the hidden

patterns and relationships in the data without any explicit guidance.

State-of-the-art unsupervised learning frameworks employ deep

neural networks for detecting anomalies in multivariate time series

data. Audibert et al. [9] propose USAD, which is based on adversely

trained autoencoders to isolate anomalies while having fast train-

ing time. Deng and Hooi [20] use Graph Neural Networks [40] for

identifying anomalies via attention-based forecasting and deviation

scoring. TranAD [48] is a deep transformer network-based anomaly

detection model that utilizes attention-based sequence encoders

with a focus on score-based self-conditioning and adversarial train-

ing of autoencoders.

Regarding anomaly detection frameworks in the HPC domain,

Molan et al. [31] design a recurrent autoencoder model that detects

anomalies in compute nodes. Their framework captures the tempo-

ral dependencies in the time-series data by including long short-

term memory [50] cells in the model architecture and achieves high

anomaly detection accuracy. Ozer et al. [34] employ Bayesian Gauss-

ian mixture models [39] to analyze HPC monitoring data. Their

method enables the extraction of statistical information about the

behavior of individual components within the HPC system through

Gaussian distributions.

2.2 Deployment
Operational Data Analytics (ODA) solutions [16, 32, 33] are be-

coming increasingly popular for their ability to provide real-time

system insights to users and system administrators. One impor-

tant application of ODA is detecting performance variations and

understanding the root cause of the anomalies in compute nodes.

ML-based frameworks greatly enhance the ability of system admin-

istrators to identify and address potential issues before they cause

significant problems by detecting and diagnosing anomalies in com-

pute nodes. As such, the deployment of ML-based frameworks is

a promising area of research that has the potential to improve the

efficiency and effectiveness of ODA solutions significantly.

Molan et al. [31] design a node-specific autoencoder model and

deploy it on a production HPC system with 980 nodes. They only

focus on detecting anomalies that cause severe malfunctioning of a

compute node (i.e., anomalies that cause a compute node failure).

However, our focus is on detecting anomalies that do not result in

node failures since these anomalies are generally harder to detect.

Moreover, maintaining and configuring separate ML models for

each compute node can be challenging as the size of the system

scales to thousands of compute nodes. Therefore, having a generic

model is a more feasible approach for the production system sce-

nario.

Our framework differs from prior works in the following direc-

tions. We design a VAE-based anomaly detection framework that

only requires healthy labeled samples during the training stage. We

also demonstrate the effectiveness of our framework by deploying

on a production HPC system with 1488 compute nodes and provide

an interface that includes job- and node-level analysis as well as

counterfactual explanations for anomalous predictions.

SC ’23, November 12–17, 2023, Denver, CO, USA Burak Aksar et al.

3 PRODIGY
Our primary goal is to identify whether any compute node within

a system displays anomalous behavior that leads to performance

variations. We are particularly interested in detecting anomalies

that cause performance variability without resulting in program

errors or premature termination, as such anomalies tend to be more

difficult to detect.

Prodigy is a VAE-based unsupervised framework that detects

performance anomalies on compute nodes. Figure 1 summarizes the

high-level workflow. The telemetry data collection stage shows how

we run controlled experiments to test the performance of Prodigy
before deployment. Note that this stage is optional, and we share

more guidance on the deployment pipeline in Section 4. We collect

telemetry data from compute nodeswhile running applicationswith

and without synthetic anomalies. The offline feature selection stage

aims to select the most discriminative features that can separate

healthy from anomalous samples. During the offline training stage,

we only use telemetry data collected from compute nodes without

synthetic anomalies. As anomalies are exceedingly rare, we assume

all samples from this collected data are healthy. We extract the

statistical features of the telemetry data and train a VAE to learn

an unsupervised representation (encoding) of healthy samples. In

the following sections, we provide details.

3.1 Feature Extraction
Feature extraction is a critical step in deriving meaningful informa-

tion from raw telemetry time series data. We use an open-source

toolkit known as TSFRESH [17], which computes 794 features for

each metric based on 63 distinct time series characterization meth-

ods. Some features are descriptive statistics (e.g., min, max, mean,

etc.) along with a more extensive and advanced set of features,

including, but not limited to, approximate entropy, power spectral

density, and variation coefficient.

3.2 Feature Selection
While feature extraction is essential to generate new features from

raw telemetry data, not all the extracted features may be neces-

sary or contribute significantly during training. Therefore, using a

feature selection methodology is crucial to identify the most dis-

criminative features and reduce dimensionality for faster training.

To ensure the selection of features that effectively discriminate

between healthy and anomalous samples, our approach utilizes a

dataset comprising both anomalous and healthy samples only in

this stage. We use the Chi-square [35] feature selection method,

which measures the dependency between each feature and the class

variable. Features with higher Chi-square values are considered

more important for predicting the class variable.

3.3 Unsupervised Training
This stage aims to learn the characteristics of the “healthy” samples

in an unsupervised setting using a VAE model. VAE is a generative

neural network that learns a lower-dimensional representation of

the input data and generates new samples similar to the input data.

The overarching goal is to minimize the reconstruction error, which

is a measure of how well the VAE can reconstruct the input data.

During training, the VAE model requires only input data. It learns

the underlying probability distribution of healthy samples without

accessing class labels; hence, it is considered in the unsupervised

learning category.

VAEs are a variant of the traditional autoencoder architecture,

which consists of an encoder network that maps input data to a

latent space and a decoder network that maps latent variables back

to the input space. The key difference between VAEs and traditional

autoencoders is that VAEs are designed to learn a continuous and

smooth representation of the latent space. Unlike standard autoen-

coders, the latent space is regularized to have a simple and tractable

distribution, which can be used to generate new samples as well as

identify potential outliers/anomalies.

The latent space assumes a prior distribution, typically a standard

normal distribution. The encoder network maps the input data to

the parameters of a Gaussian distribution in the latent space, with

a mean vector 𝜇 and diagonal covariance matrix Σ:

𝑞𝜙 (𝑧 |𝑥) = N(𝜇 (𝑥 ;𝜙), Σ(𝑥 ;𝜙)) (1)

where 𝑥 is the input data, 𝜙 are the parameters of the encoder net-

work, and 𝑧 represents the latent variables. The decoder network

then maps these latent variables back to the input space, with a

conditional distribution 𝑝𝜃 (𝑥 |𝑧). To train a VAE, we need to maxi-

mize the evidence lower bound (ELBO) on the log-likelihood of the

data, which is given by:

log 𝑝𝜃 (𝑥) ≥ E𝑞𝜙 (𝑧 |𝑥) [log𝑝𝜃 (𝑥 |𝑧)] − 𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑥) | |𝑝 (𝑧)) (2)

where𝑝 (𝑧) is the prior distribution on the latent space, and Kullback-
Leibler (KL) divergence between the encoder distribution and the

prior distribution is defined as:

𝐷𝐾𝐿 = (𝑞𝜙 (𝑧 |𝑥) | |𝑝 (𝑧)) (3)

This objective function can be optimized using stochastic gradi-

ent descent, where the gradient of the ELBO with respect to the

network parameters is estimated using backpropagation. To cal-

culate gradients efficiently, we use the reparameterization trick.

Instead of directly sampling from the Gaussian distribution in the

latent space, we sample from a standard normal distribution 𝜖 and

then transform it using the mean and covariance of the Gaussian

distribution:

𝑧 = 𝜇 + Σ1/2 ⊙ 𝜖 (4)

where ⊙ denotes element-wise multiplication. After the training is

completed, the initial step involves determining a threshold. This

threshold is typically determined through various statistical calcula-

tions like the 99
th

percentile or maximum value and represents the

acceptable range to classify a sample as healthy. To determine the

threshold, wemeasure the reconstruction error usingmean absolute

error for each sample in the training dataset (only healthy samples)

and then set the threshold as the 99
th

percentile. The process does

not necessitate manual intervention, but one can experiment with

different percentile values.

3.4 Anomaly Detection
During the evaluation stage, the VAE model reconstructs the input

sample using the latent space. We then compute the reconstruction

Prodigy SC ’23, November 12–17, 2023, Denver, CO, USA

Grafana
Web

Browser

Apache
Server

Django
Backend

DSOS
Database

HTTP HTTP
Python
Modules

Calls necessary modules Sends a query
to access data

Returns the raw
telemetry data

Outputs the
analysis results

User sends a Job ID and
selects the analysis dashboard

Figure 2: High-level flow of the analytics pipeline in Eclipse.

error by comparing the original input sample to its corresponding

output. A lower reconstruction error indicates that the model can

generate the sample with higher confidence, while a higher recon-

struction error indicates that the sample is likely from a distribution

not seen during training. To determine whether the new sample is

anomalous, we compare its reconstruction error to the determined

threshold. If the reconstruction error is below the threshold, we

classify the sample as healthy. If the reconstruction error exceeds

the threshold, we classify the sample as anomalous.

4 DEPLOYMENT PIPELINE
One of the main contributions of this paper is demonstrating a

working prototype of Prodigy on a production HPC system. Our

goals in deployment are enabling easy integration with monitoring

frameworks and faster deployment. The software architecture we

design is customizable (e.g., we support different feature extraction

and selection strategies and various ML models) and requires only

a monitoring framework and a backend server. This section details

the end-to-end deployment flow.

4.1 Monitoring, Storage, and Analytics
HPC systems typically rely on monitoring frameworks that gather

and analyze performance data from various subsystems to ensure

efficient operation. Ganglia [30] and Lightweight Distributed Met-

ric Service (LDMS) [1] are examples of monitoring frameworks

commonly used in HPC systems. This paper uses LDMS since it

is the default monitoring framework used on the production HPC

system we work with for deploying and evaluating Prodigy.
LDMS collects telemetry data from various subsystems and per-

formance counters at a sub-second granularity with minimal over-

head in a distributed manner. To collect telemetry data, LDMS

requires a sampler daemon, ldmsd, on each node of interest, where

the sampler daemon samples metrics from specific subsystems such

as memory from /proc/meminfo (meminfo), CPU from /proc/stat

(procstat), and virtual memory from /proc/vmstat (vmstat). In this

deployment, LDMS samples metrics from all compute nodes at

1Hz, and all data is aggregated and stored in a separate monitoring

cluster.

The monitoring cluster hosts an analytics pipeline, which pro-

vides derived figures-of-merit about application- and system-related

metrics, both at runtime and post-runtime, through a Grafana-

based dashboard [43]. It also hosts a database technology called

Distributed Scalable Object Storage (DSOS)
4
, which is a scalable

database designed specifically for continuous large-scale data inges-

tion and querying. The database has a variety of Python and bash

APIs to query and change objects and to provide performant execu-

tions. Users can create dashboards based on their needs by calling

different analysis modules on chosen LDMS metrics. For example, a

system administrator can create a dashboard to find and display the

jobs with the highest filesystem usage at a given time. On the other

hand, an application developer can create a dashboard to investi-

gate how specific metrics (e.g., Active, MemAvailable, AnonPages)
change over application execution time. Figure 2 summarizes the

analytics pipeline on the target system. First, a user inputs some

parameters of interest, such as job ID and type of analysis dash-

board they want to display (e.g., anomaly detection dashboard or

CPU usage dashboard), through a Grafana interface. Parameters are

sent through a Django-based backend server, and Python modules

are called based on the selected analysis dashboard. The selected

modules can query the DSOS database, perform the necessary data

transformations, and return the output to the backend server. We

create a new Python module to interface with Prodigy and a sepa-

rate analysis dashboard to display anomaly detection results for a

given job ID, as detailed in the next section.

4.2 Deploying Prodigy
This section describes how Prodigy is integrated into the existing

analytics pipeline. First, we discuss offline model training and then

describe anomaly detection and explainability components.

4.2.1 Offline Model Training. Figure 3 provides the high-level flow
for data processing and model training. We provide a generic Data-
Generator class that performs data preprocessing to generate nec-

essary training and test datasets and labels
5
for ML models. Data-

Generator expects raw telemetry data from available samplers (e.g.,

meminfo, vmstat, and procstat) and performs preprocessing for each

job ID. Some collected metrics are accumulated, and we are inter-

ested in the relative change in those metrics, so we calculate the

difference in each time step. We also apply linear interpolation to

4
https://github.com/ovis-hpc/sos

5
Label generation is not required for unsupervised models, but the provided class

supports supervised and semi-supervised settings.

SC ’23, November 12–17, 2023, Denver, CO, USA Burak Aksar et al.

DSOS
Database DataGenerator DataPipeline ModelTrainer

Model weights

Model architecture

Scaler

Metadata

meminfo
sampler data

vmstat
sampler data

procstat
sampler data

Glossary:

Pandas Dataframe

Python Class

FeatureExtractor

Scaler

Class Methods

Variational
Autoencoder

HDF file

Training
Data

Data Processing and Training Pipeline

Save to Shirley’s local storageGet available sampler data for the
corresponding job ID

Figure 3: The high-level architecture of data processing and training pipelines.

everymetric to fill in missing values, as some values may be lost dur-

ing the collection stage. Then, we find common timestamps across

different samplers and drop unused columns. The prepared datasets

have three index columns: job_id, component_id, and timestamp,
and the remaining columns correspond to metrics.

The DataPipeline class is designed to perform common opera-

tions for ML models before training and evaluation. The Feature
Extractor method calculates a wide range of features such as descrip-

tive statistics (e.g., mean, max, and standard deviation) and complex

statistics such as C3 values [42] and Benford correlation [24]. The

Scaler module fits the selected scaler (e.g., min-max scaler) to the

training data, then transforms the test data (if available) and saves

the scaler object.

The ModelTrainer is a generic class that trains the provided

model and saves the necessary files to use the model in production.

ModelTrainer expects the provided model as a subclass of Keras
Models6, which enables users to add their own models easily. We

create a class for the proposed VAE architecture by following the

implementation details discussed in Section 5.4. After the training

process is completed based on provided hyperparameters, Model-

Trainer saves the trained model, weights, scaler, and deployment

metadata (e.g., the columns of training data and extracted features)

in the specified output directory.

4.3 Anomaly Detection
Figure 4 shows the prediction pipeline. When a user selects the

anomaly detection dashboard, the backend server calls the required

module. First, DataGenerator queries the sampler data from the

DSOS database, applies preprocessing, and then feeds it to Dat-

aPipeline. The DataPipeline module extracts the same features used

during training, scales the extracted features, and passes them to

AnomalyDetector. AnomalyDetector loads the scaler, the deploy-

ment metadata, and the pre-trained model. Finally, we provide a

binary prediction for each compute node (component_id) that ex-
ists in the provided job_id, and display the results through a new

Grafana analysis dashboard.

6
https://keras.io/api/models/model/

Grafana
Web

Browser

Apache
Server

Django
Backend

DSOS
Database

Calls the
required module

User sends a Job ID and
selects the anomaly
detection dashboard

DataGenerator

DataPipeline

AnomalyDetector

CoMTE
Counterfactual explanations

Anomaly detection results

Prediction Pipeline

Figure 4: A user provides a job ID and selects the anomaly
detection dashboard. For each compute node associated with
the job ID, we provide binary anomaly detection results. We
also provide CoMTE explanations for anomalous predictions.

4.4 Explainability
The motivation behind using an explainability framework after de-

tecting anomalies is to understand better why the model identified

certain compute nodes as anomalous. Explainability frameworks

can help provide insights into the model’s decision-making pro-

cess, increase transparency, and improve trust in the model’s out-

put. We investigate popular feature-based explainability methods

(e.g., LIME [38], SHAP [28]) and time series-specific explainability

techniques. However, we ultimately decide to use the open-source

implementation of “CoMTE: Counterfactual Explanations for Mul-

tivariate Time Series” [7]. The first reason is that feature-based

explainability methods assign positive and negative scores to each

feature, but they cannot determine theminimumnumber of features

required for an explanation. This makes them infeasible for high-

dimensional datasets. Second, other time series-specific explainabil-

ity techniques are either limited to univariate time series [22, 41] or

based on specific model architectures [6, 25]. In contrast, CoMTE

can explain the predictions of multivariate time series models with

any architecture. CoMTE formulates the problem of explaining

time series via counterfactuals as follows. First, given a sample

classified as anomalous that requires explanation, the goal is to

identify (1) the distractor, which is a training set sample classified

as healthy, and (2) the minimum set of time series (i.e., metrics) to

Prodigy SC ’23, November 12–17, 2023, Denver, CO, USA

be replaced from the distractor sample, resulting in a change of the

classification label to the healthy class.

Assume that the predictions for job_id 123 indicate that com-
ponent_id 66 is healthy, whereas component_id 12 is anomalous.

To interpret the anomalous predictions, CoMTE is initialized us-

ing the trained model and the training dataset. For example, the

explanation is composed of pgrotated and pginodesteal metrics. It

also informs us that the sample would be classified as healthy if

the pgrotated metric were lower and the pginodesteal metric were

higher. This explanation can help to identify the root cause of any

anomalies and determine the appropriate actions to take to improve

system performance.

5 EXPERIMENTAL METHODOLOGY
This section provides a detailed overview of the target HPC pro-

duction system, applications, and synthetic anomalies used during

experimental scenarios. We also provide the implementation details

and design choices.

5.1 HPC Systems and Monitoring Server
Volta is a testbed supercomputer at Sandia National Laboratories

with 52 computing nodes connected in 13 switches, each with four

nodes. Each node has 64GB of memory and two sockets equipped

with an Intel Xeon E5-2695 v2 CPUwith 12 two-way hyper-threaded

cores.

Eclipse is located at Sandia National Laboratories and consists

of 1488 compute nodes, each equipped with 128GB of memory

and two sockets. Each socket contains 18 E5-2695 v4 CPU cores

with 2-way hyperthreading, providing substantial computational

power for scientific and engineering applications. Shirley is a dedi-

cated monitoring server for Eclipse and is responsible for collecting,

processing, and displaying analysis results to the end users. It com-

prises 16 compute nodes, each with 48 Intel Xeon Gold 6240R CPUs,

1.5 TB of memory, and 56 TB of NVMe storage [43]. ldmsd sam-

plers collect telemetry data from Eclipse compute nodes, and the

sampled data is aggregated into Shirley every second. Currently,

the resulting data is approximately 10 TB per day.

5.2 Applications and Synthetic Anomalies
Before deploying an ML model to production, evaluating its perfor-

mance with a ground truth dataset is a common practice. However,

acquiring such a dataset from production HPC systems poses sig-

nificant challenges due to the infrequency of anomalies and the

complexity of the collected telemetry data, which makes it difficult

to label. To overcome this challenge, first, we select some common

HPC applications (Table 1) and build them on the target system.

We prepare three different input decks for each application to run

on 4, 8, and 16 nodes for 20-45 minutes.

After the build, we run the listed applications with and with-

out synthetic anomalies to collect ground truth labels. We utilize

synthetic anomalies provided by the High Performance Anomaly

Suite (HPAS), an open-source tool that generates anomalies de-

signed to create contention across various subsystems, such as

memory, network, and I/O [8]. We use the following anomalies:

memleak, which simulates memory leakage by allocating an array

of characters without storing the addresses; membw, which mimics

Table 1: The list of applications we run on Eclipse and Volta
for data collection.

Eclipse
Application Description

Real Applications LAMMPS Molecular dynamics

HACC Cosmological simulation

sw4 Seismic modeling

ECP Proxy Suite ExaMiniMD Molecular dynamics

SWFFT 3D Fast Fourier Transform

sw4lite Numerical kernel optimizations

Volta
Application Description

NAS bt Block tri-diagonal solver

cg Conjugate gradient

ft 3D Fast Fourier Transform

lu Gauss-Seidel solver

mg Multi-grid on meshes

sp Scalar penta-diagonal solver

Mantevo MiniMD Molecular dynamics

CoMD Molecular dynamics

MiniGhost Partial differential equations

MiniAMR Stencil calculation

Other Kripke Particle transport

memory bandwidth contention, preventing data from being loaded

into the cache; cpuoccupy, which simulates excessive CPU utiliza-

tion; and cachecopy, which mimics cache contention by swapping

the contents of two arrays repeatedly for a specific cache level, such

as the L3 cache. We also conduct experiments involving I/O- and

network-related anomalies. Due to significant contention caused by

I/O-related anomalies, system administrators terminated the runs.

The network anomaly generates contention only when applications

are run on two compute nodes; hence, it is not incorporated into

our experiments. The configuration details of injected anomalies

are provided in Table 2.

Table 2: A list of performance anomalies used in our experi-
ments and their configurations.

Anomaly type Configuration

cpuoccupy -u 100%, 80%

cachecopy -c L1,-m 1 / -c L2 -m 2

membw -s 4K, 8K, 32K

memleak -s 1M, -p 0.2 / -s 3M -p 0.4 / -s 10M -p 1

5.3 Baseline Models
To evaluate the effectiveness of our framework, we compare it

against several baselines, including both deep learning and tradi-

tional anomaly detection methods. We do not experiment with

non-ML-based methods (e.g., ARIMA [37] or exponential smooth-

ing [36]) because they are typically designed for forecasting future

values based on historical data and may struggle to effectively cap-

ture complex patterns and irregularities when non-linear trends

SC ’23, November 12–17, 2023, Denver, CO, USA Burak Aksar et al.

are present. One of the deep learning baselines we implement is

USAD [9]. USAD employs a 2-stage autoencoder for training, where

each autoencoder is trained to reconstruct input data. Then, adver-

sarial training is used to make one autoencoder learn to distinguish

between real data and reconstructions from the other autoencoder,

while the other autoencoder learns to produce more realistic re-

constructions to fool the discriminator. During inference, these

dual-purpose autoencoders are used to calculate an anomaly score

based on the reconstruction errors.

Among the traditional unsupervised learning algorithms, K-

means clustering [23] is a popular method for grouping data points

into clusters based on their similarity. However, this method may

not be effective in detecting anomalies in high dimensional datasets

or when the clusters are non-spherical [47]. Therefore, we im-

plement Local Outlier Factor (LOF) as an alternative to K-means

clustering. LOF calculates the density of each data point based on

its local neighborhood, which takes into account the distribution

of the data and is a more informative measure of similarity in high-

dimensional spaces. Specifically, LOF calculates a score for each

data point that indicates how far it is from its neighbors in terms

of density. Points that have significantly lower densities than their

neighbors are considered anomalies.

Another popular baseline we implement is Isolation Forest (IF),

which can scale to large datasets while maintaining a high and

robust anomaly detection performance. IF creates an ensemble

of random trees that isolate anomalies in the data based on how

quickly they are isolated from the rest of the data points. The

algorithm randomly selects a feature and splits the data at a random

value within the range of the feature. By repeating this process,

the algorithm builds a tree structure that isolates the anomalies, as

they require fewer splits to be separated from the rest of the data.

The anomaly score is computed by averaging the number of splits

required to isolate a data point across all the trees in the ensemble.

Data points with lower scores are considered anomalies.

We also implement two heuristic baselines for comparison: Ran-

dom Prediction and Majority Label Prediction. In Random Predic-

tion, we randomly select the prediction output, while in Majority

Label Prediction, we predict the label of each sample based on the

majority label in the test dataset. Majority Label Prediction acts as

a fundamental benchmark or starting point for classification tasks.

If an ML model fails to surpass its performance, it indicates that the

model is not providing any substantial improvement. Even though

the majority of runs are expected not to be anomalous, our test

dataset for Volta has 10%, whereas Eclipse has a 90% anomaly ratio.

So in this context, Majority Label Prediction gives a better idea in

terms of the generalization of the model. We provide more details

on implementing the baselines in the next section.

5.4 Implementation Details
This section provides the implementation details for data collection,

preprocessing, ML models, and CoMTE.

5.4.1 Data Collection and Preprocessing. The telemetry data has T
timestamps, each belonging to the corresponding application run,

and M metrics. We collect 806 metrics per second from every com-

pute node using meminfo, vmstat, and procstat samplers. However,

we exclude the per-core metrics (such as per_core_cpu_enabled8,

Table 3: Optimal hyperparameters are shown with a star (∗)
for each model.

Model Hyperparameter Space

Prodigy

Learning rate: 1e-5, 1e-4
∗
, 1e-3, 1e-2

Batch Size: 32, 64, 128, 256
∗

Num. Epochs: 400, 800, 1200, 2400
∗
, 3000, 6000

USAD

Batch Size: 32, 64, 128, 256
∗

Num. Epochs: 50, 100
∗
, 200, 400

Hidden Layer Sizes: 100, 200
∗
, 400

Alpha & Beta: 0.1, 0.5
∗
, 1

per_core_guest8, per_core_irq8, etc.) because we observe significant
fluctuations in core-level metrics for the same application run with

the same input deck. This is primarily because the operating system

dynamically allocates cores. In contrast, node-level aggregate CPU

metrics exhibit greater stability and consistency. As a result, we end

up with 156 metrics in total. In the data preprocessing stage, we

eliminate the first and last 60 seconds as they mostly correspond

to the initialization and termination phases, where some metrics

may deviate significantly from expected values. We perform linear

interpolation on each time series to fill in missing values. Addition-

ally, we calculate the difference between each time step to capture

the relative change in some procstat-related metrics as they are

accumulated as raw values.

5.4.2 Train-Test Split. After we run the applications and anomalies

described in Section 5.2, we collect 24,566 (6,325 healthy) and 20,915

(18,980 healthy) samples from Eclipse and Volta systems, respec-

tively. To create our training and test datasets, we split (20-80%) the

data while maintaining the distribution of both normal and anoma-

lous samples. The training and test dataset remains the same across

all experiments. We also set the anomaly ratio (i.e., the number of

anomalous samples divided by the total number of samples) as 10%

in our training dataset. We determine this ratio by observing the

outlier application runs in Eclipse. The outlier behavior is defined

as runs with execution times of 1.5 interquartile range (IQR) below

Q1 or 1.5 IQR above Q3. We observe that the outlier ratio ranged

between 2-7%. As a result, we cap the anomaly ratio to 10%.

5.4.3 Feature Selection. The Chi-square feature selection method

measures the statistical significance between a feature and the class

variable by computing the Chi-square statistic; hence, it requires

at least two classes (or labels) in the dataset. During our feature

selection process, we use healthy and anomalous samples to de-

termine the most discriminative features. Considering this, our

feature selection process requires minimal supervision (i.e., 24 and

55 anomalous samples in total for Eclipse and Volta datasets, re-

spectively). We experiment with the top 250, 500, 1000, and 2000

features, and our model performs best on the test set with 2000

features.

Prodigy SC ’23, November 12–17, 2023, Denver, CO, USA

5.4.4 ML Models and CoMTE. We conduct a grid search to identify

the optimal hyperparameters (e.g., learning rate, batch size, number

of epochs, and the number of hidden layers) for each ML model.

Table 3 shows the best values for hyperparameters of Prodigy and

USAD.During the training process of Prodigy andUSAD,we remove

the anomalous samples in the training dataset and then divide the

remaining data into additional training and validation sets (80-20%).

In USAD implementation, unlike the original paper, we do not

divide the time series into windows; instead, we directly extract

and select features from raw telemetry data. After completing the

training process, we use the validation set to determine the opti-

mal anomaly threshold for making predictions. We iterate through

possible values between 0 and 1 with 0.001 increments and select

the threshold that results in the highest F1-score in the test dataset.

We report the F1-score in the larger part using the determined

threshold.

For IF and LOF, we use their scikit-learn implementations. During

their training process, we keep anomalous samples in the training

dataset as they can work with healthy and anomalous samples. For

both methods, we set the contamination ratio to 10% due to the

anomaly ratio in our training dataset. Additionally, for IF, we set

the maximum sample size to 100 and use the default values for the

rest.

We use the open-source implementation of CoMTE
7
. CoMTE

requires an ML model that returns classification probabilities and

the training dataset, whereas autoencoder-based models, including

Prodigy predict an anomaly based on a threshold. To address this,

we slightly modify the existing implementation of BruteForceSearch
and OptimizedSearch classes.

6 EVALUATION
We compare the F1-score of Prodigy and baselines in the first sec-

tion across two datasets. The F1-score is the harmonic mean of

precision and recall, and we use the macro average F1-score, which

treats all classes equally. This is crucial in imbalanced data sets,

where healthy samples outnumber anomalous ones. For the rest

of the paper, F1-score refers to the macro average F1-score. In the

second section, we evaluate the performance of Prodigy with two

production system experiments.

6.1 Controlled Experiments
We compare Prodigy with the baselines and report the average

F1-scores based on the 5-fold cross-validation. Figure 5 shows the

comparison results. We observe that, in the Eclipse dataset, LOF

performs the worst among all the baselines, with an average F1-

score of 0.15. Conversely, in the Volta dataset, Random Prediction

lags behind with an F1-score of 0.39. Majority Label Prediction

performs slightly better than Random Prediction, with an F1-score

of approximately 0.47. IF performs significantly better on the Volta

dataset, with an F1-score of 0.86, compared to the Eclipse dataset,

which only achieves an F1-score of 0.31. The difference in perfor-

mance is attributed to the disparity in the anomaly ratio in the test

datasets. While the anomaly ratio in the training dataset is 10% for

both datasets, the Eclipse dataset has significantly more anoma-

lous samples (i.e., 90% anomaly ratio) due to the data collection

7
https://github.com/peaclab/CoMTE

Eclipse Volta
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

M
ac

ro
 A

ve
ra

ge
 F

1-
Sc

or
e

Prodigy
USAD

Majority Label Prediction
Random Prediction

Isolation Forest
Local Outlier Factor

Figure 5: Comparison of Prodigy with baselines. Prodigy
reaches 0.95 and 0.88 F1-scores in Eclipse and Volta, outper-
forming the baselines.

strategy. As a result, setting the contamination ratio to 10% during

the training of isolation forest leads to poor performance on the

Eclipse dataset. USAD performs better on the Volta dataset with an

F1-score of 0.84, while it performs worse on the Eclipse dataset with

a 0.68 F1-score. Prodigy achieves a 0.95 and 0.88 F1-score on Eclipse

and Volta datasets, respectively, and outperforms other baselines.

4 8 16 32 48 64
Num. Healthy Samples in Training Data

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ac

ro
 A

ve
ra

ge
 F

1-
sc

or
e

Figure 6: We run a separate experiment on Eclipse to demon-
strate Prodigy’s ability to function effectively with a limited
amount of production system data. The figure shows the
change in F1-score in the test dataset with respect to differ-
ent numbers of healthy samples in the training dataset.

6.2 Production System Experiments
In this section, we conduct two experiments on Eclipse. The first

experiment aims to demonstrate that the proposed framework can

work with a small amount of production system data and still

achieve a satisfactory anomaly detection score. We select 4 previ-

ously compiled applications: LAMMPS, sw4, sw4Lite, and ExaMin-

iMD, to cover real and proxy applications. We run each application

5 times without injecting any anomalies on 4 compute nodes. We

select the memleak anomaly to demonstrate in our experiment be-

cause it is one of the most common anomaly types.We also run each

SC ’23, November 12–17, 2023, Denver, CO, USA Burak Aksar et al.

application 5 times with the selected anomaly. The distribution of

the collected dataset is as follows: 160 samples in total, 80 samples

for anomalous and healthy labels. We experiment with different

numbers of healthy samples existing in the training dataset and

repeat the selection process 10 times in each case. The test dataset

has all the anomalous and remaining healthy samples because we

want to ensure our framework can work well with unseen healthy

samples. Figure 6 shows the F1-score of Prodigy when the train-

ing dataset has different numbers of healthy samples. When the

training dataset has only 4 samples (i.e., 1 job that runs on 4 com-

pute nodes), Prodigy achieves a 0.58 F1-score. Prodigy achieves an

average F1-score of 0.9 using only 16 healthy samples. When

the number of healthy samples increases, approximately 60 sam-

ples, Prodigy achieves a 0.96 F1-score. This experiment shows that

Prodigy can work with a small amount of production system data

if a user wants to deploy to an existing system.

We also investigate the explanations generated by CoMTE to

better understand the characteristics of anomalous samples and

potential fixes. MemFree::meminfo and pgrotated::vmstat are the

top two metrics CoMTE returned as an explanation for a sample

predicted as anomalous. Figure 7 shows the predictions for each

compute node in the chosen job ID and raw time series correspond-

ing to the explanation metrics. Each plot shows all compute nodes

in the chosen job ID. The MemFree::meminfo metric reports the

amount of free and available memory. It has a clear decreasing

trend for the anomalous compute nodes, whereas healthy compute

nodes have a constant memory usage pattern for most of the appli-

cation run. pgrotated::vmstat metric reports the number of pages

that have been rotated to and from the swap space since the last

boot of the system. When the value of pgrotated::vmstat metric

is high, it may indicate that the system is experiencing memory

pressure and is being forced to swap out pages to free up physical

memory. We compare values of pgrotated::vmstat metric for healthy

and anomalous compute nodes separately and observe that in some

cases anomalous compute nodes have higher values, and in some

cases, they are lower. It is possible that memory leakage does not

result in swapping, i.e., when the leaked memory is still within the

program’s address space, it is not swapped out to disk. Even though

values of pgrotated::vmstat metric do not exhibit a consistent trend,

an application domain expert should have a much better starting

point for debugging their application given this information.

The goal of the second experiment is to demonstrate that the

Prodigy can detect performance anomalies in the wild, i.e., we do not

inject synthetic anomalies. We collaborate with a plasma-physics

domain expert who had identified that their runs of Empire [12]

occasionally run with degraded performance. We run this applica-

tion with the same input parameters multiple times to observe a

variation on 4 compute nodes. We observe that 7 jobs are completed

in around 60 minutes, labeled as healthy, and 2 jobs that take 10-30%

longer, labeled as anomalous. HPC domain experts determine that

the application occasionally has degraded I/O performance due to

apparent backend Lustre file system issues. We train our framework

with the available healthy jobs (28 samples in total) and test the

performance with the anomalous jobs (8 samples). Prodigy detects

anomalies in 7 samples out of 8. Even though we have 7 healthy

jobs, Prodigy can extract the characteristics of healthy samples and

Figure 7: The anomaly detection results and CoMTE explana-
tions for a job ID (shown as “Chosen Job") with the memleak
anomaly from the Empire application runs. We compare the
metrics provided by CoMTE with the healthy version (no
synthetic anomalies injected) of the same application.

achieve an 88% accuracy for the samples labeled by subject matter

experts.

As a last step of our production system experiments, we mea-

sure the average inference time to generate predictions for all the

samples in Volta and Eclipse test datasets. To predict 18,947 and

14,589 samples takes 3.28 and 2.5 seconds on average for Eclipse

and Volta test datasets, respectively. We average the results over

ten runs using a compute node with two 14-core 2.4 GHz Intel Xeon

E5-2680v4 processors.

7 CONCLUSION & FUTUREWORK
In this paper, we propose Prodigy, a VAE-based unsupervised frame-

work that detects performance anomalies in compute nodes. The

framework assumes access to healthy labeled samples during the

training phase to learn the healthy application run characteristics.

Our evaluation shows that the proposed framework achieves a 0.95

F1-score on a dataset collected from a production HPC system,

Eclipse. Additionally, we apply a state-of-the-art counterfactual

explainability framework, CoMTE, to the anomaly detection prob-

lem, which helps HPC administrators understand the root cause

of anomalies. We demonstrate the practicality of our framework

by deploying it on a production HPC system with 1488 compute

nodes, providing job and node-level analysis through the deployed

framework.

As part of future work, we plan to support a fully unsupervised

pipeline for Prodigy. This direction is predicated on our assumption

of exclusively healthy samples during the training phase, while

the telemetry data from production systems may contain a small

percentage of anomalous samples. Another potential avenue for

future exploration is exploring heterogeneous computing systems

with GPU and CPU compute nodes. Naturally, the telemetry data

Prodigy SC ’23, November 12–17, 2023, Denver, CO, USA

generated by GPUs and CPUs differs in terms of metrics and granu-

larity. Thus, there is a necessity for frameworks that can effectively

operate within heterogeneous system environments.

ACKNOWLEDGMENTS
This work has been partially funded by Sandia National Labora-

tories. Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology and Engineering

Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under Contract DE-NA0003525.

This paper describes objective technical results and analysis. Any

subjective views or opinions that might be expressed in the paper

do not necessarily represent the views of the U.S. Department of

Energy or the United States Government.

REFERENCES
[1] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos,

Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden,

Mahesh Rajan, Michael Showerman, Joel Stevenson, Narate Taerat, and Tom

Tucker. 2014. The lightweight distributed metric service: a scalable infrastructure

for continuous monitoring of large scale computing systems and applications.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 154–165.

[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Ann Gentile, Sophia Lefantzi,

Steve Monk, Jeff Ogden, Mahesh Rajan, and Joel Stevenson. 2015. Toward rapid

understanding of production HPC applications and systems. In International
Conference on Cluster Computing (CLUSTER). IEEE, 464–473.

[3] Burak Aksar, Benjamin Schwaller, Omar Aaziz, Vitus J Leung, Jim Brandt, Manuel

Egele, and Ayse K Coskun. 2021. E2EWatch: an end-to-end anomaly diagnosis

framework for production HPC systems. In Euro-Par 2021: Parallel Processing: 27th
International Conference on Parallel and Distributed Computing, Lisbon, Portugal,
September 1–3, 2021, Proceedings 27. Springer, 70–85.

[4] Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J Leung, Jim

Brandt, Brian Kulis, and Ayse KCoskun. 2022. ALBADross: Active Learning Based

Anomaly Diagnosis for Production HPC Systems. In International Conference on
Cluster Computing (CLUSTER). IEEE, 369–380.

[5] Burak Aksar, Yijia Zhang, Emre Ates, Benjamin Schwaller, Omar Aaziz, Vi-

tus J Leung, Jim Brandt, Manuel Egele, and Ayse K Coskun. 2021. Proctor: A

semi-supervised performance anomaly diagnosis framework for production hpc

systems. In High Performance Computing: 36th International Conference, ISC High
Performance 2021, Virtual Event, June 24–July 2, 2021, Proceedings 36. Springer,
195–214.

[6] Roy Assaf and Anika Schumann. 2019. Explainable Deep Neural Networks for

Multivariate Time Series Predictions. In Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI. International Joint Conferences on
Artificial Intelligence Organization, Macao, China, 6488–6490.

[7] Emre Ates, Burak Aksar, Vitus J Leung, and Ayse K Coskun. 2021. Counterfactual

explanations for multivariate time series. In International Conference on Applied
Artificial Intelligence (ICAPAI). IEEE, 1–8.

[8] Emre Ates, Yijia Zhang, Burak Aksar, Jim Brandt, Vitus J Leung, Manuel Egele,

and Ayse K Coskun. 2019. HPAS: An HPC Performance Anomaly Suite for

Reproducing Performance Variations. In Proceedings of the 48th International
Conference on Parallel Processing. ACM, 1–10.

[9] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A

Zuluaga. 2020. Usad: Unsupervised anomaly detection on multivariate time

series. In Proceedings of the 26th SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, New York, NY, USA, 3395–3404.

[10] Dor Bank, Noam Koenigstein, and Raja Giryes. 2020. Autoencoders. CoRR
abs/2003.05991 (2020). arXiv:2003.05991

[11] Elisabeth Baseman, Sean Blanchard, Nathan DeBardeleben, Amanda Bonnie, and

Adam Morrow. 2016. Interpretable anomaly detection for monitoring of high

performance computing systems. In Outlier Definition, Detection, and Description
on Demand Workshop at SIGKDD. ACM, 1–27.

[12] Matthew Tyler Bettencourt, Sidney Shields, Kristian Beckwith, Keith Cartwright,

Eric C Cyr, Richard Michael Jack Kramer, Paul Lin, William McDoniel, Sean

Miller, Roger P. Pawlowski, Edward Geoffrey Phillips, and Nathan V. Roberts.

2019. EMPIRE: Sandia’s Next Generation Plasma Tool ? Kokkosifying EMPIRE-

Fluid. (4 2019).

[13] Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs.

2013. There goes the neighborhood: performance degradation due to nearby jobs.

In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC). IEEE, New York, NY, USA, 1–12.

[14] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and

Luca Benini. 2019. A semisupervised autoencoder-based approach for anomaly

detection in high performance computing systems. Engineering Applications of
Artificial Intelligence 85 (2019), 634–644.

[15] Andrea Borghesi, Antonio Libri, Luca Benini, and Andrea Bartolini. 2019. On-

line anomaly detection in hpc systems. In International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, 229–233.

[16] James M Brandt, David DeBonis, Ann C Gentile, Jim Lujan, Cindy Martin, David J

Martinez, Stephen Lecler Olivier, Kevin Pedretti, Narate Taerat, and Ron Velarde.

2015. Enabling Advanced Operational Analysis Through Multi-subsystem Data In-
tegration on Trinity. Technical Report. Sandia National Lab. (SNL-CA), Livermore,

CA (United States); Sandia National .

[17] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. 2018.

Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a

python package). Neurocomputing 307 (2018), 72–77.

[18] Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel Oshin,

Naveen Cherukuri, and Kalyan Kumaran. 2017. Run-to-run variability on Xeon

Phi based Cray XC systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, New York,

NY, USA, 1–13.

[19] Bruno L Dalmazo, Joao P Vilela, Paulo Simoes, andMarilia Curado. 2016. Expedite

feature extraction for enhanced cloud anomaly detection. In IEEE/IFIP Network
Operations and Management Symposium. IEEE, 1215–1220.

[20] Ailin Deng and Bryan Hooi. 2021. Graph Neural Network-Based Anomaly

Detection in Multivariate Time Series. Proceedings of the AAAI Conference on
Artificial Intelligence 35, 5 (May 2021), 4027–4035.

[21] MatthieuDorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim. 2014.

CALCioM: Mitigating I/O interference in HPC systems through cross-application

coordination. In International parallel and distributed processing symposium. IEEE,

155–164.

[22] Alan H Gee, Diego Garcia-Olano, Joydeep Ghosh, and David Paydarfar. 2019.

Explaining deep classification of time-series data with learned prototypes. 2429

(2019), 15.

[23] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means

clustering algorithm. Journal of the royal statistical society. series c (applied
statistics) 28, 1 (1979), 100–108.

[24] Theodore P. Hill. 1995. A Statistical Derivation of the Significant-Digit Law.

Statist. Sci. 10, 4 (1995), 354 – 363.

[25] Tsung-YuHsieh, SuhangWang, Yiwei Sun, and Vasant Honavar. 2021. Explainable

Multivariate Time Series Classification: A Deep Neural Network Which Learns

to Attend to Important Variables As Well As Time Intervals. In Proceedings of
the 14th International Conference on Web Search and Data Mining (WSDM ’21).
Association for Computing Machinery, New York, NY, USA, 607–615.

[26] Jannis Klinkenberg, Christian Terboven, Stefan Lankes, and Matthias S Müller.

2017. Data mining-based analysis of HPC center operations. In IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 766–773.

[27] Vitus Joseph Leung, Michael A Bender, David P Bunde, and Cynthia Ann Phillips.

2003. Algorithmic support for commodity-based parallel computing systems. Techni-
cal Report. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore,

CA .

[28] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model

Predictions. In NeurIPS 30. 4765–4774.
[29] Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumbhare, Ghaleb Ab-

dulla, and Barry Rountree. 2017. An empirical survey of performance and energy

efficiency variation on intel processors. In Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing. ACM, 1–8.

[30] Matthew L Massie, Brent N Chun, and David E Culler. 2004. The ganglia dis-

tributed monitoring system: design, implementation, and experience. Parallel
Comput. 30, 7 (2004), 817–840.

[31] Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, and Andrea

Bartolini. 2023. RUAD: Unsupervised anomaly detection in HPC systems. Future
Generation Computer Systems 141 (2023), 542–554.

[32] Alessio Netti, Michael Ott, Carla Guillen, Daniele Tafani, and Martin Schulz. 2022.

Operational data analytics in practice: experiences from design to deployment in

production HPC environments. Parallel Comput. 113 (2022), 102950.
[33] Alessio Netti, Woong Shin, Michael Ott, Torsten Wilde, and Natalie Bates. 2021.

A conceptual framework for HPC operational data analytics. In International
Conference on Cluster Computing (CLUSTER). IEEE, 596–603.

[34] GenceOzer, Alessio Netti, Daniele Tafani, andMartin Schulz. 2020. Characterizing

HPC Performance Variation with Monitoring and Unsupervised Learning. In

High Performance Computing: ISC High Performance 2020 International Workshops,
Frankfurt, Germany, June 21–25, 2020, Revised Selected Papers 35. Springer, 280–
292.

[35] Karl Pearson. 1900. X. On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that it can

be reasonably supposed to have arisen from random sampling. The London,

https://arxiv.org/abs/2003.05991

SC ’23, November 12–17, 2023, Denver, CO, USA Burak Aksar et al.

Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50, 302 (july
1900), 157–175.

[36] Danny Pfeffermann and J Allon. 1989. Multivariate exponential smoothing:

Method and practice. International Journal of Forecasting 5, 1 (1989), 83–98.

[37] Gregory C Reinsel. 2003. Elements of multivariate time series analysis. Springer
Science & Business Media.

[38] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I

Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (San Francisco, California, USA) (KDD ’16). 1135–1144.

[39] Stephen J Roberts, Dirk Husmeier, Iead Rezek, andWilliam Penny. 1998. Bayesian

approaches to Gaussian mixture modeling. Transactions on Pattern Analysis and
Machine Intelligence 20, 11 (1998), 1133–1142.

[40] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[41] U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim. 2019. Towards A

Rigorous Evaluation Of XAI Methods On Time Series. In IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW). 4197–4201.

[42] Thomas Schreiber and Andreas Schmitz. 1997. Discrimination power of measures

for nonlinearity in a time series. Physical Review E 55, 5 (1997), 5443.

[43] Benjamin Schwaller, Nick Tucker, Tom Tucker, Benjamin Allan, and Jim Brandt.

2020. HPC system data pipeline to enable meaningful insights through analysis-

driven visualizations. In IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 433–441.

[44] Burr Settles. 2009. Active learning literature survey. (2009).

[45] David Skinner and William Kramer. 2005. Understanding the causes of perfor-

mance variability in HPC workloads. In Proceedings of the Workload Characteri-
zation Symposium. IEEE, 137–149.

[46] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh

Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al.

2014. Addressing failures in exascale computing. The International Journal of
High Performance Computing Applications 28, 2 (2014), 129–173.

[47] N Tajunisha and V Saravanan. 2010. An increased performance of clustering

high dimensional data using Principal Component Analysis. In First International
Conference on Integrated Intelligent Computing. IEEE, 17–21.

[48] Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. 2022. TranAD: Deep

Transformer Networks for Anomaly Detection in Multivariate Time Series Data.

Proc. VLDB Endow. 15, 6 (feb 2022), 1201–1214.
[49] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J Leung, Manuel

Egele, and Ayse K Coskun. 2018. Online diagnosis of performance variation in

HPC systems using machine learning. Transactions on Parallel and Distributed
Systems 30, 4 (2018), 883–896.

[50] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. 2019. A review

of recurrent neural networks: LSTM cells and network architectures. Neural
computation 31, 7 (2019), 1235–1270.

[51] Yijia Zhang, Taylor Groves, Brandon Cook, Nicholas JWright, and Ayse K Coskun.

2020. Quantifying the impact of network congestion on application performance

and networkmetrics. In International Conference on Cluster Computing (CLUSTER).
IEEE, 162–168.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Anomaly Detection in HPC Systems
	2.2 Deployment

	3 Prodigy
	3.1 Feature Extraction
	3.2 Feature Selection
	3.3 Unsupervised Training
	3.4 Anomaly Detection

	4 Deployment Pipeline
	4.1 Monitoring, Storage, and Analytics
	4.2 Deploying Prodigy
	4.3 Anomaly Detection
	4.4 Explainability

	5 Experimental Methodology
	5.1 HPC Systems and Monitoring Server
	5.2 Applications and Synthetic Anomalies
	5.3 Baseline Models
	5.4 Implementation Details

	6 Evaluation
	6.1 Controlled Experiments
	6.2 Production System Experiments

	7 Conclusion & Future Work
	Acknowledgments
	References

