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Background and Motivation
* Significant growth in the scale of large-scale computing systems
* Over a million CPU cores
* Huge amount of performance data
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Problems caused by performance variations

/ Challenges of Anomaly Diagnosis in Large Scale

Computing Systems

* Thousands of compute nodes generate GBs of system data
which makes manual analysis infeasible
* A labeled dataset of large-scale system anomalies does not

\ exist in literature
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ML-Based Online Anomaly Diagnosis Framework
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Random forest correctly identifies 98 percent of the anomalies while leading to
only 0.08 percent false anomaly alarms
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Overall pipeline for supervised anomaly diagnosis framework
Anomaly Diagnosis Results
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Web-based Anomaly Diagnosis Framework N

* To make our anomaly diagnosis framework widely
accessible, we created a web application

* Diagnoses anomalies in user uploaded system

telemetry data

\° Website link; http://ai4hpc.bu.edu/ /
Results
Basic Information = normal - 28.0%
Number of Jobs: 50 memeater - 20.0%

B dcopy - 20.0%
B leak - 20.0%

Percentage of Each Anomaly . dial - 12.0%

* none: 22.22%

* memeater: 11.11%

= dcopy: 33.33%

* leak: 22.22%
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Anomaly diagnosis result of user uploaded telemetry data

/ Limitations of Supervised Anomaly Diagnosis \
Framework

* Requires a large number of labeled samples

* The data collected from the monitoring systems is
mostly unlabeled

* Obtaining ground truth labels for these samples is
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Active Learning-based Anomaly Diagnosis Framework
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Overall pipeline for active learning-based anomaly diagnosis framework
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