
Machine Learning Based Analytics
Towards Automated Computing System
Management

July 9-13 , 2023
Moscone West Center, San Francisco, CA, USA

BY AYSE K. COSKUN,1 BEN SCHWALLER,2 BURAK AKSAR1, EFE SENCAN1,
VITUS J. LEUNG2, JIM BRANDT2, MANUEL EGELE1, BRIAN KULIS1
1Boston University; 2Sandia National Laboratories

1

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solution of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525

SAND2023-03640C

This presentation describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the presentation do not
necessarily represent the views of the U.S. Department of Energy or the United States Government

• Ben Schwaller - Sandia National Laboratories
○ Senior Computer Science R&D Staff
○ HPC development analysis and visualization lead
○ Lead for monitoring, metrics, analytics, and integration in

Lawrence Livermore / Los Alamos / Sandia

• Prof. Ayse Coskun - Boston University
○ Director, Center for Information and Systems Engineering
○ Research interests:
■ Energy-efficient computing
■ Cloud computing
■ High performance computing

Presenters

2

Section 1:
The Nature of Computer System Telemetry Data
oWhat is High Performance Computing (HPC)?

o What are common challenges in using large / distributed computing systems?

oMonitoring and analysis frameworks for large computing systems
o Lightweight Distributed Metric Service (LDMS)
o Overhead and resource usage tradeoffs
o Data format / complexity

oChallenges in analyzing computing system telemetry data
o What makes this a hard/interesting data science problem?

What is HPC?

oHigh-performance computing (HPC) systems are designed to enable greater
performance than single commodity systems

o Typically done by harnessing several single computers into a “cluster”
o Current top supercomputer, Frontier, can perform ~1.7 quintillion operations per

second

oHPC systems provide answers to some of the toughest science questions
o Detailed weather simulations and forecasting
o Drug development and disease forecasting (like simulating the spread of COVID)
o Physics simulations ranging from material science to electromagnetic radiation to

biological system modelling

SNL’s Astra Supercomputer Frontier’s racks with liquid
cooling

How does HPC work?

oApplications run “in parallel” across multiple nodes of the cluster
o A single application can run across multiple nodes (using MPI)

o Pieces of the work to be done in the application are distributed across nodes

o Multiple applications can run simultaneously on the system

oNodes communicate with each other using high-speed networks
o E.g. the popular InfiniBand boasts 400 gigabits/second throughput
o Network bandwidth is shared amongst nodes / applications

oApplications typically pull input data from and save output data to large
filesystems

o Filesystem bandwidth is shared amongst nodes / applications

HPC System Diagram

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e Node

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e Node

Comput
e NodeComput

e NodeComput
e NodeComput

e NodeComput
e NodeComput

e Node

HSN Switch HSN Switch

Admin NodeAdmin Node

Filesystem

How are HPC resources allocated?

o Compute nodes are assigned to applications using a job scheduler
o Common ones are Slurm, PBS, LSF, and Moab

o Users submit a job using the scheduler commands and then the jobs are put in a
queue

o The queue can be as simple as FIFO or as complex as a priority-based, system-aware scheduler

o The scheduler tries to allocate jobs to resources in an optimal way
o Generally, having an application run on nodes that are close together in the network topology is

preferred
o “Optimal way” is the subject of much research

oThe job scheduler only retains some information about the application
o Tracks what the name of the binary or script run is
o Assigns a unique job ID for all nodes in the job allocation
o Typically does not track the input deck / app name unless given by the user

What are we trying to understand about HPC systems?

oThe #1 HPC user complaint is “Why is my job running slow?”
o Could be an issue with their code introduced by a new feature
o Could be an issue with the system affecting their application

oHPC system administrators also want to know if something is wrong on the
system to make proactive fixes i.e.

o Is there a bad/slow node?
o Is a user causing issues for others?

oHPC systems are becoming increasingly complex and understanding what is
abnormal about an application/system state is challenging

Example Use Case: EMPIRE Performance Degradation

o EMPIRE is a computational physics application built for simulating electromagnetics
and plasma physics. Due to the nature of the physics, EMPIRE runs need lots of
computing power to resolve the quantities of interest analysts and designers need.

o EMPIRE is also designed to make good use of next-generation exascale computing platforms.
Especially at large scale, understanding actual real-world performance is of paramount
importance

Sandia's Z-Machine Firing (~33m) Z-Machine Convolute Simulation (~10cm)

oRuns with EMPIRE were experiencing 1.2-1.5x performance degradation
~10% of the time for unknown reasons

o Initial inspection of HPC telemetry data showed that kernel throughput and
CPU core usage profiles were notably different:

Example Use Case: EMPIRE Performance Degradation

o Further inspection into CPU usage showed high
I/O wait in the degraded jobs

o This extra I/O wait time correlated well with the extra
runtime, more on that later

o EMPIRE occasionally writes out to a variety of
files about state and science variables

o Long write-out causes application to stall
o Number of kernels called also drops during these write out

stalls

o Application developers investigated and
compared I/O performance of EMPIRE to other
applications with similar file I/O mechanisms

o EMPIRE was using a less efficient I/O version, a new
upgrade produced more stability and less performance
degradation

Example Use Case: EMPIRE Performance Degradation

Overarching Goals of Computer Monitoring

o Ideally, we could autonomously monitor the system and tune parameters to detect,
mitigate, and/or resolve performance issues to make the most efficient system possible

o Higher efficiency means more science / second!

o In the shorter term, we want to alert when anomalies like the EMPIRE degradation arise
o Detecting anomalies early in the application’s runtime could save wasted resources on a

underperforming application
o Finding ways to diagnose anomalies autonomously would save precious time root causing issues

o Knowing if anomalies exist and their cause can provide feedback to the application /
resource manager

o Though discussed in the context of HPC, these goals are generalizable to other large
distributed computing infrastructures such as cloud computing

How do we collect information about HPC systems?
oMonitoring frameworks generally poll some kernel-level information from

each node in the system at regular intervals
o Most frameworks are modular and can “load” different samplers to collect data

from different subsystems of a machine
o Results in high-dimensional time-series data

oA wide variety of system monitoring frameworks exist
o Ganglia and Nagios are great frameworks for high-level monitoring and alerting on

select metrics across HPC systems
o DCDB Wintermute can collect higher fidelity of metrics with some small analysis

capabilities done on the node collected
o Will discuss one framework in particular, but general methodologies and analysis

challenges apply

Lightweight Distributed Metric Service (LDMS)
o The tri-labs, NERSC, and other vendors use Lightweight Distributed Metric Service (LDMS) to

collect system data
o LDMS can collect 1000s of system metrics at sub-second intervals, typically collect at 1 Hz
o These metrics range from network performance counters to filesystem statistics to CPU and memory

utilization
o Typical collection results in ~10s of TB of data each day

o An LDMS sampler daemon on each compute node collects information and sends it synchronously
to an LDMS aggregation daemon, typically on an admin node

o Aggregator daemons can chain as many times as desired
o Last daemon in chain is typically on a node where the data can be stored

LDMS
sampler
daemon

LDMS
aggregat

or
daemon

LDMS
aggregat

or
daemon
database /

file

Compute
Nodes

Aggregator
Node(s)

Storage
Node(s)

https://github.com/ovis-hpc/ovis
https://github.com/ovis-hpc/ldms-containers

https://github.com/ovis-hpc/ovis
https://github.com/ovis-hpc/ldms-containers

Push-pull System and Application Data Collection
oLDMS can collect data synchronously from a variety of subsystems at regular

intervals
o Typically used to get usage system data about the CPU, memory, filesystem, network

etc.

oExternal data sources can also push data to LDMS asynchronously
o Typically used to have applications periodically send function-timing and file operation

information
o Want to provide higher-order, lightweight application information rather than replicate

application performance profilers

oProvides time-aligned application and system view to investigate how system
conditions affect applications and vice versa

Monitoring Framework Tradeoffs

oMonitoring frameworks must capture enough information at a high enough
fidelity to resolve features of interest

o Anecdotal evidence has shown that 1 second resolution is needed to debug application-
level issues

oFrameworks must have a small resource footprint to not impede applications
o Typical frameworks aim to have ~10 MB footprint and < 1% CPU usage

oThese restrictions limit the detail of data we can collect
o Frameworks typically support higher fidelity and a wider field of collection but that

introduces higher overhead

Achieving Low Overhead Monitoring
oAll monitoring frameworks aim to be as low overhead as possible to mitigate

effects on the system / applications
o Most frameworks are also modular and can add / subtract data source samplers to

meet overhead requirements
oData source samplers often just do simple reads of files of the /proc

filesystem (i.e memory information from /proc/meminfo)
o /proc filesystem acts as an interface to internal data structures in the kernel
o Samplers also often interface with special hardware, such as HSN switches, through C

APIs to poll usage statistics
oFrameworks often piggyback off HSN or available message brokers to reduce

communication latency / overhead
o Frameworks often try to reduce data sent by tracking if source data has changed or by

only sending metadata as needed

Analysis and Visualization Framework
oSNL has deployed “AppSysFusion” to combine kernel timing data and system

metrics in an analysis and visualization framework to enable real-time insights
o Uses Grafana as a front-end with a Django application to transform Grafana requests

into database queries and analyses

Application performance (top) and system conditions/characteristics (bottom)
Normal application profile (left) and degraded application profile (right)

AppSysFusion
oCreated a system for in-query analyses so only

user-requested analyses happen rather than
always analyzing HPC data and storing results
to a separate database

o Saves significant compute and storage resources at the cost of
increased query times

o The “always analyze” use case is still available but is not the
default

o Allows for analyses to be easily changed without needing to
recompute and store results

o Users can easily add new analyses to be used in-query

oCreated our own database, Distributed Scalable
Object Store (DSOS), to handle the continuous
ingest rate and scalability needs presented by
HPC monitoring

Analysis and Visualization Pipeline
o User queries from Grafana dashboards are sent through a backend python

application which can call python analyses to derive metrics from raw data
o In-query analyses save significant computation time/resources for creating analysis results

o Only data of interest is analyzed and new analyses can be created without recreation of analysis results
across the database

o Analyses can easily be changed / added to meet new challenges and decrease

o Python modules can query the database and return pandas DataFrames for analysis
o The backend application then takes DataFrames and formats them as JSON objects

which Grafana can interpret

Grafana
Web

Browser

Apache
Server

Django
App

Python
Module

DSOSHTTP HTTP
Module
Call

Python
Query

DataFram
e

DataFram
e

Challenges in HPC analysis
Why can’t ChatGPT tell me what’s wrong?

Why are HPC systems difficult to understand?

o System generates terabytes of high-dimensional, often non-linear, time-series data for
each node

o Variance thresholding and resampling / time-aggregation can be useful for some HPC data analysis, but
there is no perfect way (yet) to simplify the dataset for ML

o The application mix on the system can change throughout the day and all system states
may be perfectly “normal”

o Often HPC clusters have 100s to 1000s of jobs running jointly on them each day

o Job schedulers only collect some information about an application
o The exact parameters of the job are often opaque making application “labels” scarce
o In research settings, this is often circumnavigated by working with users or submitting our own

applications

Why are HPC applications difficult to understand?

o Difficult to characterize normal and abnormal behavior for HPC applications
o Applications can have different resource utilization characteristics throughout execution
o The same application can use a different input deck and exhibit different resource utilization

characteristics

o Many system conditions can affect an application’s performance, and all must be considered
o Sources of application performance bottlenecks include:

o CPU issues (slow node)
o Usually caused by a degradation or failure of some component

o Memory
o Ranks within an application contend for memory usage on the node

o Network
o Separate applications can use the same routers and interfere with each other

o I/O
o Separate applications can r/w the same filesystem over a shared network

Example: Different memory usage amongst nodes in job

o A single job can exhibit a wide variety of behaviors on different nodes

Example: Different node behavior / different phases

o The red node exhibits different memory usage behavior than the rest of the
nodes

o Often this is the case for rank 0 in a parallel MPI application

o Behavior of the application changes around 4:00:00 for all nodes
o Many HPC applications have multiple “phases”

Example: Similar behavior in one metric, different in another

o Just because a node behaves similarly to all others in one system metric,
does not mean it will be the same across all metrics

Example Takeaways

o“Normal” or “healthy” behavior on HPC systems is incredibly hard to define
o Applications can have different resource utilization characteristics throughout

execution
o The same application can use a different input deck and exhibit different resource

utilization characteristics
o Which input parameters are chosen by users is often opaque to administrators / analysts making

labelling what is running equally difficult

oApplications can indirectly interact with each by contending for shared
resources

o Application profiles like in the examples can vary under different system conditions
o Applications vie for filesystem and network bandwidth and can block each other
o The application mix on the system can change throughout the day, and all system states

may be perfectly normal, leading to many valid application profiles

Wrap Up

oHigh-performance computing systems are critical to many sectors
o Detecting and diagnosing performance degradation is necessary to maintain scientific

throughput

oHPC monitoring, analysis, and visualization provides real-time insights to
combat performance issues

o Monitoring frameworks must balance high data capture with low overhead
o Analysis frameworks must handle the data volume and be able to perform

oAnalyzing HPC monitoring data presents unique data science challenges
o High-dimensional time-series data with many non-intuitive features

oPerformance variations in large scale systems
oML-based analytics

o Anomaly detection and diagnosis
o Application detection

oTowards real-world deployments

Section II:
ML-based Analytics in Large-scale Computing Systems

Large Scale Computing Systems Today

SimulationsClimateSecurityMedicine

• Over 1 million cores
• Parallel applications

Shared Resources Performance Variation

30

Performance Unpredictability at Large Scale

● 8x delay in in job execution time [Zhang
et al., Cluster’20]

● Most performance variations are caused
by system anomalies:
o Shared resource contention
o Orphan processes from previous jobs
o Software/Hardware bugs

Performance
variations

Job terminations

Variable running
time

Wasted
computing power

Performance
degradation

31

Numeric Monitoring Data

● Anomalies manifest themselves in performance
metrics
○ CPU: system time, user time, …
○ Memory: usage, page count, cache metrics, …
○ Network: sent packages, blocked packages, …

● Diagnosing performance anomalies is necessary
for:
○ Understanding the root cause of the problem
○ Increased energy efficiency
○ Better resource utilization

Various performance metrics collected
from a compute node

32

ML is a Good Fit for This Problem

o TBs of numeric data in the form of logs, traces, performance metrics
o Data is complex and huge in size

o Similar problems often repeat

o ML helps us identify previously encountered performance problems rapidly
o Adapt from historical data to diagnose anomalies without heavily relying on human

expertise

33

Supervised Anomaly Diagnosis

Semi Supervised Anomaly DiagnosisUnsupervised Anomaly Detection

Research Landscape

Deployment

34

Related Work - ML for Anomaly Detection
Supervised Frameworks

● Data Mining-Based Analysis of HPC Center Operations
[Klinkenberg et al., Cluster’17]

● Interpretable Anomaly Detection for Monitoring of HPC
Systems [Baseman et al., KDD’16]

● Diagnosing Performance Variations in HPC Applications Using
Machine Learning [Tuncer et al., ISC’17]

Semi-Supervised Frameworks
● A semisupervised autoencoder-based approach for anomaly

detection in HPC systems [Borghesi et al., EAAI’19]
● Proctor: A semi-supervised performance anomaly diagnosis

framework for production hpc systems [Aksar et al., ISC’21]
● ALBADross: Active Learning Based Anomaly

Diagnosis for Production HPC Systems [Aksar et al.,
Cluster’22]

Unsupervised Frameworks

● Characterizing HPC Performance Variation with Monitoring and Unsupervised Learning
[Ozer et al., ISC’20]

● Failure prediction in datacenters using unsupervised multimodal anomaly detection
[Zhao et al., ICBG’20]

● RUAD: Unsupervised Anomaly Detection in HPC Systems [Molan et al., FGCS’23]

35

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://ieeexplore.ieee.org/abstract/document/9912728/?casa_token=y2gxgZOtnecAAAAA:dI_h3qTMdZbMB7j4amolr7N9m1M5xkm3dRdbka1Z4MvzOr-6x1NILCYoXPlQND4-0Gl6MOrI
https://ieeexplore.ieee.org/abstract/document/9912728/?casa_token=y2gxgZOtnecAAAAA:dI_h3qTMdZbMB7j4amolr7N9m1M5xkm3dRdbka1Z4MvzOr-6x1NILCYoXPlQND4-0Gl6MOrI
https://link.springer.com/chapter/10.1007/978-3-030-59851-8_18
https://ieeexplore.ieee.org/abstract/document/9378419/?casa_token=LI8OA84BCYwAAAAA:HOE7VpyU_9jLWszzIQSlZt_Kc2pEpBw8qSbPARRzM7MsO3Kq-EgSWLgGNTitoZ6q-h9Q5dgc

Requirements for Supervised ML Frameworks

● To diagnose performance anomalies using supervised ML models:
o We need the labels corresponding to different anomalous application runs
o The ML model learns the relationship between the input features and the target

prediction output

Memory Leakage

Network Contention

Cache Contention

Healthy

Input Data ML Model

36

Supervised Frameworks - Challenges of Obtaining a
Labeled Dataset

● Supervised frameworks require a large labeled dataset consisting of anomalous and
healthy samples

● Labeled data is often scarce in real-world scenarios, particularly anomalies, which are
usually rare events

● No standardized way of reproducing performance variability with synthetic anomalies

● One way to solve this problem is to generate labeled data using synthetic
performance anomalies

37

● Goal: Mimic real-world performance
anomalies that reproduce performance
variations

● Each synthetic anomaly targets specific
subsystem (CPU, memory, network,
storage) and has adjustable anomaly
intensity

● Implemented in C language

HPAS: An HPC Performance Anomaly Suite

[Ates et al., ICPP’19 - github.com/peaclab/HPAS]

membw

cpuoccupy

cpuoccupy

memeater memleak

iometadata

iobandwidth

netoccupy

38

https://dl.acm.org/doi/abs/10.1145/3337821.3337907?casa_token=7TtrGrdR7JUAAAAA:H4s_MVFQZUuVbbPY4kZA0km0vXw1mKLurKyDLzYH64AYOOAsmEr8zppFROllIajqWqCYQEydO-1I
https://github.com/peaclab/HPAS

Synthetic Anomalies in HPAS

Anomaly
Name

Subsystem Operation Real-Life Event Modeled

Dial CPU Floating point operations CPU intensive orphan process

Dcopy Cache Read and write Cache interference

Linkclog Network Inject sleep before MPI calls Network interference

Memeater Memory Allocate, write and realloc() Memory intensive orphan
process

Leak Memory Allocate Memory leak

• Each anomaly has multiple intensity settings and targets a specific subsystem (CPU, memory, etc.)
• Anomaly runs on one of the nodes of the application

39

HPC Systems

• Production HPC system
• 1488 compute nodes
• Running on 4 nodes for 20 – 45 minutes

• Testbed HPC system
• 52 compute nodes
• Running on 4, 8, 16 nodes for 10 –

15 minutes

Eclipse Volta

40

Diagnosing Performance Variations using ML

● Automated analytics framework
● Learns anomaly characteristics

using labeled historical data
● Sources of labeled data:
○ Controlled experiments
○ Run applications with and

without known anomalies

[Tuncer et al., ISC-HPC’17, Tuncer et al., TPDS’18]

41

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8466019&casa_token=3TuPvA4rkAQAAAAA:EB5HpWfLnk4GtDM9XUCcYP5LYNtWhEd7BFg_DSKzVLIpxXQNBeRVs5S6jerELmdhaC_vrpGD
https://ieeexplore.ieee.org/abstract/document/8466019?casa_token=8wh-AR8xhLoAAAAA:JMqgLzfjVkmNP7aPk8YfMyZ2kgzYM3HCDuUH-ygO1uF1Y-jhU15t4A2F4l4mx7C-jBU9VXE

Training Phase: Collecting the Dataset

o Inject synthetic anomalies:
o Anomaly runs on one of the nodes of the application run
o Each anomaly stresses specific subsystem

o Memory, network, CPU, …

42

Training Phase: Monitoring

o Collect numeric monitoring data:
• Lightweight Distributed Metric System [Agelastos et al., SC’14]

• Collect the data from software and hardware counters such as meminfo,
procstat, vmstat, …

43

Training Phase: Data Preprocessing

o Feature Extraction
o Generate features per rolling window
o Min, max, mean, average, skewness, …

o Feature Selection
o Reduces computational overhead
o Increases model’s accuracy

44

Training Phase: Model Training

o Train the supervised ML model using selected features
• Tree-based models:

• Random Forest, Decision Tree, AdaBoost

45

Online Anomaly Diagnosis Framework

o At runtime:
o Collect monitoring data per compute

node
o Extract only selected features
o Use previously trained ML model to

predict anomalies
o Apply false positive filter to reduce

false alarms

46

Evaluation

o Random Forest identifies 98% of injected
performance anomalies

o 0.08% false alarm rate

47

Limitations of Supervised Frameworks

o Require a large set of labeled data corresponds to the normal & anomalous
state of a compute node

o It is not possible to mimic all types of real-world performance anomalies using
synthetic anomaly suite

48

Relaxing the Label Requirement

o What happens when there are not enough amount of labeled samples?
o Goal: Achieve target anomaly detection/diagnosis performance using fewer

labeled samples
o Semi-supervised training settings:

o First setting:

o Large amount of healthy samples and few/no labeled samples anomalous samples

o Second setting:
o Few labeled samples and large amount of unlabeled samples

o Human annotator is available to provide the label of selected sample upon
request

49

When Training Dataset Contains Only Healthy Labeled Samples

● Method:
○ Train an autoencoder using the

normal state of compute
nodes

○ Detect anomalous compute
nodes based on the
reconstruction error

● No need for labels of anomalous
samples during the training stage

[Borghesi et al., EAAI’19]

Architecture of data collection infrastructure and anomaly detection
scheme

50

Proctor: A Semi-Supervised Performance
Anomaly Diagnosis Framework

● Operates with significantly less labeled data
compared to supervised baselines

● Not just detect but diagnose anomalies
● Evaluation on a production HPC system and a

testbed HPC cluster
○ 11% performance improvement in F-score on

average
○ 0.06% anomaly miss rate on average

Overall framework[Aksar et al., ISC’21 – github.com/peaclab/Proctor]

When Training Dataset Contains Few Healthy and Anomalous
Labeled Samples

51

https://link.springer.com/chapter/10.1007/978-3-030-78713-4_11
https://github.com/peaclab/Proctor

How to Train an Autoencoder?

• Training objective is to learn the weights for the encoding and decoding layers so
that the reconstructed input is as close to the original input as possible

• Compressed knowledge exists in the code layer

52

Training Phase: Autoencoder Training

▪ Extract statistical features that retain the raw time series characteristics
▪ Remove application initialization and finalization periods
▪ Transform cumulative counters into events/sec

53

Training Phase: Autoencoder Training

▪ Extract statistical features that retain the raw time series’ characteristics
▪ Train an autoencoder to learn a representation (encoding) of normal and

anomalous runs in an unsupervised manner

54

Testing Phase: Diagnosis

▪ Use the trained autoencoder’s encoder and perform two-level classification
▪ First classifier learns to classify anomalous vs normal
▪ Second classifier learns to classify the type of the anomalies using a few labeled

samples

55

Proctor – Baseline Methods

o RF-Tuncer [Tuncer et al., TPDS’18]
o Uses statistical feature extraction and feature selection to train supervised machine learning

models
o It can diagnose anomalies

o AE-Borghesi [Borghesi et al., EAAI’19]
o Uses an autoencoder trained with only normal samples and selects a threshold
o Only high-level anomaly detection no anomaly diagnosis

56

Evaluation – Anomaly Diagnosis (Volta)

o Proctor outperforms RF-Tuncer by 25% on average (up to 50%) in F1-score and
maintains a similar false alarm and miss rate

57

Initially labeled Dataset Build a model Evaluate the model on constant
test set

Is my model
accurate enough?

No

Unlabeled Dataset

Query the label of a sample

Add the sample to the labeled dataset

Yes

TerminateActive Learning Based Anomaly Diagnosis

Can We Minimize Labeling Cost?

ALBADross: Active Learning Based Anomaly Diagnosis
for Production HPC Systems

o Goal: Minimize the number of
labeled samples during the
training phase while achieving
target F1-score

o Achieves the same F1-score as
fully supervised baseline using
28x fewer labeled samples even
with previously unseen
applications

[Aksar et al., Cluster’22 - github.com/peaclab/ALBADross]

Active Learning Based Anomaly Diagnosis Framework

59

http://github.com/peaclab/ALBADross

ALBADross: Research Problem

o Scenario:
o A few labeled and a large set of unlabeled data samples
o A subject matter expert (SME) that provides the label of the selected sample

o Research Problem:
o How to design a robust anomaly diagnosis framework using the least amount of labeled data

samples?

Sample*: Feature extracted version of the telemetry data collected from one compute node throughout an application run

60

ALBADross: Dataset Preparation

▪ Run synthetic anomalies with different real and proxy HPC applications
▪ Each anomaly stresses a specific subsystem (CPU, memory, cache, network)

▪ Extract statistical features
▪ TSFRESH (743 metrics)
▪ MVTS (48 metrics)

▪ Feature selection
▪ Chi-Square feature selection

61

ALBADross: Initial Supervised Training

▪ Few labeled and a large number of unlabeled samples
▪ Methodology:

▪ Start with 1 sample from all application-anomaly pairs in the Eclipse and Volta datasets
▪ 30 samples for Eclipse
▪ 55 samples for Volta
▪ Train a supervised ML model using labeled dataset & make predictions on test dataset

62

ALBADross: Active Learning

▪ Determines the sample to be labeled from the unlabeled data pool
▪ Adds the new sample to the labeled dataset and retrains the model

63

Active Learning – Query Strategies

o How does active learning determine the samples to be labeled?
o x: Sample to be predicted
o y: Most likely prediction (class label)
o [p1, p2, p3,…., pk]: Class probabilities

o Uncertainty Sampling: U(x) = 1 – Pmax(y|x)
o P1 = [0.1, 0.85, 0.05] => 0.85
o P2 = [0.6, 0.3, 0.1] => 0.6
o P3 = [0.3, 0.7, 0.0] => 0.61

Ulist = [0.15, 0.4, 0.3]

64

Experimental Methodology – Anomaly Diagnosis

o Goal:
o Determine how many samples should be labeled to reach target F1-scores, anomaly

miss rates, and false alarm rates

o Methodology:
o Start with 1 sample from all application-anomaly pairs in the Eclipse and Volta dataset
o Compare the performance of active learning and baselines for 250 queries:

o Active Learning:
o Entropy, Margin, and Uncertainty Sampling

o Baselines:
o Random sampling

65

Anomaly Diagnosis with Active Learning

Dataset Feature
Extraction

The Best
Sampling
Strategy

Starting
F1-score

F1-score:
0.95

All Active
Learning

Training Data
F1-score

Max Score
 (5 fold CV)

Volta TSFRESH Uncertainty 0.86
76

Samples
0.95

(6329 Samples)

0.99
(16732

Samples)

Eclipse MVTS Margin 0.72 230 Samples
0.95

(5619 Samples)

0.99
(19652

Samples)

• Active learning achieves the same F1-score as a fully supervised approach using significantly
fewer data samples

66

Anomaly Diagnosis with Active Learning

Dataset Feature
Extraction

The Best
Sampling
Strategy

Starting
F1-score

F1-score:
0.95

All Active
Learning

Training Data
F1-score

Max Score
 (5 fold CV)

Volta TSFRESH Uncertainty 0.86
76

Samples
0.95

(6329 Samples)

0.99
(16732

Samples)

Eclipse MVTS Margin 0.72 230 Samples
0.95

(5619 Samples)

0.99
(19652

Samples)

• Active learning can achieve a 0.95 F1-score with 48x and 22x fewer samples in the Volta and
Eclipse datasets respectively

67

Evaluating Robustness

o Robustness:
o Being able to diagnose anomalies with

a small error margin with previously
unseen applications and application
inputs

o Compared to 5-fold CV results:
o 30% drop in F1-score
o 35x increase in FAR

Error bars: 95% confidence interval
Dashed lines: 5-fold CV results

68

Active Learning With Previously Unseen Apps

o Start with 2 applications in the training
dataset, and place the remaining 9
applications to the test dataset

o Uncertainty achieves 0.95 F1-score using
50 additional samples

o Random achieves 0.95 F1-score using
~550 samples

69

Outline

Diagnosing performance variations

Identifying applications

Towards real-world deployments

70

Can We Go Beyond Anomaly Diagnosis?

● Identifying Applications
● Why is it important?

○ Detect illegal/unwanted applications
■ Known malicious or fraudulent apps
■ Wasteful apps
■ Vulnerable or buggy apps

○ Detect (types of) applications to improve system
■ Performance
■ Energy efficiency
■ System design or software optimization

71

Taxonomist: An Application Detection Framework

o Data is collected from applications of interest
o 100s of time series per node

[Ates et al., EuroPar’18 (Best Artifact Award) - github.com/peaclab/taxonomist]

72

https://github.com/peaclab/taxonomist

Taxonomist: An Application Detection Framework

o Statistical feature extraction for summarizing time series
o Min, max, mean, standard deviation, skewness, kurtosis, percentile

[Ates et al., EuroPar’18 (Best Artifact Award) - github.com/peaclab/taxonomist]

73

https://github.com/peaclab/taxonomist

One vs. Rest Classifier

o Observations from three classes

Medium confidence:
Probably not red

Low confidence: Not red

74

▪ At runtime, take predictions from every classifier
▪ If confidence is under a threshold, mark as unknown

75

Taxonomist: An Application Detection Framework

Evaluation
6 Cryptocurrency miners and

password crackersVolta usage over 6 months

76

Outline

Diagnosing performance variations

Identifying applications

Towards real-world deployments

77

Deployment - What Has Been Achieved So Far?

● Generic model deployment [Borghesi et
al., EAAI’19]
○ Deploy a single model that predicts

anomalies in different compute
nodes

● Compute node specific model
deployment [Molan et al., FGCS’23]
○ Deploy autoencoder based anomaly

detection model on a production
HPC system with 980 nodes

78

Deployment - Our Key Achievements

o We deploy the state-of-the-art fully
supervised anomaly diagnosis
framework to a 1500-node
production HPC system

[Aksar et al., EuroPar’21 https://github.com/peaclab/Proctor] The high-level architecture of E2EWatch

79

https://github.com/peaclab/taxonomist

Deployment - Challenges

● Compiling applications properly with different input decks requires domain expertise
● Verifying that synthetic anomalies are creating the desired impact on application runs is

not trivial
● Compute node-specific deployment:

○ High training and maintenance cost
■ Hyperparameter tuning
■ Selecting new anomaly threshold for each model

● Generic deployment:
○ Developing a generic ML model that accurately detects/diagnose anomalies for thousands of

compute nodes is hard

80

Web Based Anomaly Diagnosis Framework

o To make our supervised ML-based anomaly
diagnosis framework widely accessible, we
developed a website

o Determines anomalies in user uploaded system
telemetry data

o Website link: http://ai4hpc.bu.edu/

55

81

http://ai4hpc.bu.edu/

o Diagnosing performance variation/problems
o Supervised training setup:

o Works well if there are sufficient amount of labeled
samples

o Unfortunately, that’s not case in the real-world
production system scenario

o Semi-supervised training setup:
o Achieves better than fully supervised framework

when there are limited labeled samples
o Active learning for minimizing the labeling cost

o Application discovery
o At development
o At installation
o During execution

82

Takeaways
53

References
● Diagnosing Performance Variations in HPC Applications Using Machine Learning [Tuncer et al., ISC’17]

● Online Diagnosis of Performance Variation in HPC Systems Using Machine Learning [Tuncer et al., TPDS’18]
● Taxonomist: Application Detection Through Rich Monitoring Data [Ates et al., EuroPar’18 - github.com/peaclab/taxonomist]

● HPAS: An HPC Performance Anomaly Suite for Reproducing Performance Variations [ICPP’19 - github.com/peaclab/HPAS]

● Proctor: A Semi-Supervised Performance Anomaly Diagnosis Framework for Production HPC Systems [Aksar et al., ISC’21

github.com/peaclab/Proctor]

● E2EWatch: An End-to-End Anomaly Diagnosis Framework for Production HPC Systems [Aksar et al., EuroPar’18

github.com/peaclab/E2EWatch]

● ALBADross: Active Learning Based Anomaly Diagnosis for Production HPC Systems [Aksar et al., Cluster’22

github.com/peaclab/ALBADross]

83

https://github.com/peaclab/taxonomist
https://github.com/peaclab/HPAS
https://github.com/peaclab/Proctor
https://github.com/peaclab/E2EWatch
https://github.com/peaclab/ALBADross

Backup Slides

84

o Significant outages, major losses of profit,
problems due to widespread vulnerabilities, …
are all very common in computing systems

o Automated analytics can tremendously help
solve or pinpoint many important problems

o Many open research problems exist in the
design of data-driven management solutions

85

Vision: ML to Improve and Automate HPC Management
54

