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Section 1: 
The Nature of Computer System Telemetry Data
oWhat is High Performance Computing (HPC)?

o What are common challenges in using large / distributed computing systems?

oMonitoring and analysis frameworks for large computing systems   
o Lightweight Distributed Metric Service (LDMS)
o Overhead and resource usage tradeoffs
o Data format / complexity  

oChallenges in analyzing computing system telemetry data
o What makes this a hard/interesting data science problem? 



What is HPC? 

oHigh-performance computing (HPC) systems are designed to enable greater 
performance than single commodity systems

o Typically done by harnessing several single computers into a “cluster”
o Current top supercomputer, Frontier, can perform ~1.7 quintillion operations per 

second

oHPC systems provide answers to some of the toughest science questions
o Detailed weather simulations and forecasting
o Drug development and disease forecasting (like simulating the spread of COVID) 
o Physics simulations ranging from material science to electromagnetic radiation to 

biological system modelling

SNL’s Astra Supercomputer Frontier’s racks with liquid 
cooling



How does HPC work? 

oApplications run “in parallel” across multiple nodes of the cluster
o A single application can run across multiple nodes (using MPI)

o Pieces of the work to be done in the application are distributed across nodes

o Multiple applications can run simultaneously on the system

oNodes communicate with each other using high-speed networks 
o E.g. the popular InfiniBand boasts 400 gigabits/second throughput
o Network bandwidth is shared amongst nodes / applications 

oApplications typically pull input data from and save output data to large 
filesystems 

o Filesystem bandwidth is shared amongst nodes / applications



HPC System Diagram 
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How are HPC resources allocated?

o Compute nodes are assigned to applications using a job scheduler
o Common ones are Slurm, PBS, LSF, and Moab

o Users submit a job using the scheduler commands and then the jobs are put in a 
queue

o The queue can be as simple as FIFO or as complex as a priority-based, system-aware scheduler

o The scheduler tries to allocate jobs to resources in an optimal way
o Generally, having an application run on nodes that are close together in the network topology is 

preferred
o “Optimal way” is the subject of much research

oThe job scheduler only retains some information about the application
o Tracks what the name of the binary or script run is
o Assigns a unique job ID for all nodes in the job allocation
o Typically does not track the input deck / app name unless given by the user



What are we trying to understand about HPC systems?

oThe #1 HPC user complaint is “Why is my job running slow?”
o Could be an issue with their code introduced by a new feature
o Could be an issue with the system affecting their application 

oHPC system administrators also want to know if something is wrong on the 
system to make proactive fixes i.e.

o Is there a bad/slow node?
o Is a user causing issues for others?

oHPC systems are becoming increasingly complex and understanding what is 
abnormal about an application/system state is challenging



Example Use Case: EMPIRE Performance Degradation

o EMPIRE is a computational physics application built for simulating electromagnetics 
and plasma physics. Due to the nature of the physics, EMPIRE runs need lots of 
computing power to resolve the quantities of interest analysts and designers need.

o EMPIRE is also designed to make good use of next-generation exascale computing platforms. 
Especially at large scale, understanding actual real-world performance is of paramount 
importance

Sandia's Z-Machine Firing (~33m) Z-Machine Convolute Simulation (~10cm)



oRuns with EMPIRE were experiencing 1.2-1.5x performance degradation 
~10% of the time for unknown reasons

o Initial inspection of HPC telemetry data showed that kernel throughput and 
CPU core usage profiles were notably different:

Example Use Case: EMPIRE Performance Degradation



o Further inspection into CPU usage showed high 
I/O wait in the degraded jobs

o This extra I/O wait time correlated well with the extra 
runtime, more on that later

o EMPIRE occasionally writes out to a variety of 
files about state and science variables

o Long write-out causes application to stall
o Number of kernels called also drops during these write out 

stalls

o Application developers investigated and 
compared I/O performance of EMPIRE to other 
applications with similar file I/O mechanisms 

o EMPIRE was using a less efficient I/O version, a new 
upgrade produced more stability and less performance 
degradation

Example Use Case: EMPIRE Performance Degradation



Overarching Goals of Computer Monitoring

o Ideally, we could autonomously monitor the system and tune parameters to detect, 
mitigate, and/or resolve performance issues to make the most efficient system possible

o Higher efficiency means more science / second!

o In the shorter term, we want to alert when anomalies like the EMPIRE degradation arise 
o Detecting anomalies early in the application’s runtime could save wasted resources on a 

underperforming application 
o Finding ways to diagnose anomalies autonomously would save precious time root causing issues

o Knowing if anomalies exist and their cause can provide feedback to the application / 
resource manager 

o Though discussed in the context of HPC, these goals are generalizable to other large 
distributed computing infrastructures such as cloud computing



How do we collect information about HPC systems?
oMonitoring frameworks generally poll some kernel-level information from 

each node in the system at regular intervals
o Most frameworks are modular and can “load” different samplers to collect data 

from different subsystems of a machine
o Results in high-dimensional time-series data 

oA wide variety of system monitoring frameworks exist
o Ganglia and Nagios are great frameworks for high-level monitoring and alerting on 

select metrics across HPC systems
o DCDB Wintermute can collect higher fidelity of metrics with some small analysis 

capabilities done on the node collected
o Will discuss one framework in particular, but general methodologies and analysis 

challenges apply



Lightweight Distributed Metric Service (LDMS) 
o The tri-labs, NERSC, and other vendors use Lightweight Distributed Metric Service (LDMS) to 

collect system data
o LDMS can collect 1000s of system metrics at sub-second intervals, typically collect at 1 Hz
o These metrics range from network performance counters to filesystem statistics to CPU and memory 

utilization
o Typical collection results in ~10s of TB of data each day

o An LDMS sampler daemon on each compute node collects information and sends it synchronously 
to an LDMS aggregation daemon, typically on an admin node

o Aggregator daemons can chain as many times as desired
o Last daemon in chain is typically on a node where the data can be stored 
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https://github.com/ovis-hpc/ovis
https://github.com/ovis-hpc/ldms-containers 

https://github.com/ovis-hpc/ovis
https://github.com/ovis-hpc/ldms-containers


Push-pull System and Application Data Collection
oLDMS can collect data synchronously from a variety of subsystems at regular 

intervals 
o Typically used to get usage system  data about the CPU, memory, filesystem, network 

etc. 

oExternal data sources can also push data to LDMS asynchronously 
o Typically used to have applications periodically send function-timing and file operation 

information
o Want to provide higher-order, lightweight application information rather than replicate 

application performance profilers 

oProvides time-aligned application and system view to investigate how system 
conditions affect applications and vice versa



Monitoring Framework Tradeoffs 

oMonitoring frameworks must capture enough information at a high enough 
fidelity to resolve features of interest

o Anecdotal evidence has shown that 1 second resolution is needed to debug application-
level issues 

oFrameworks must have a small resource footprint to not impede applications
o Typical frameworks aim to have ~10 MB footprint and < 1% CPU usage

oThese restrictions limit the detail of data we can collect 
o Frameworks typically support higher fidelity and a wider field of collection but that 

introduces higher overhead



Achieving Low Overhead Monitoring
oAll monitoring frameworks aim to be as low overhead as possible to mitigate 

effects on the system / applications 
o Most frameworks are also modular and can add / subtract data source samplers to 

meet overhead requirements
oData source samplers often just do simple reads of files of the /proc 

filesystem (i.e memory information from /proc/meminfo) 
o /proc filesystem acts as an interface to internal data structures in the kernel
o Samplers also often interface with special hardware, such as HSN switches, through C 

APIs to poll usage statistics
oFrameworks often piggyback off HSN or available message brokers to reduce 

communication latency / overhead 
o Frameworks often try to reduce data sent by tracking if source data has changed or by 

only sending metadata as needed 



Analysis and Visualization Framework 
oSNL has deployed “AppSysFusion” to combine kernel timing data and system 

metrics in an analysis and visualization framework to enable real-time insights
o Uses Grafana as a front-end with a Django application to transform Grafana requests 

into database queries and analyses 

Application performance (top) and system conditions/characteristics (bottom)
Normal application profile (left) and degraded application profile (right)



AppSysFusion
oCreated a system for in-query analyses so only 

user-requested analyses happen rather than 
always analyzing HPC data and storing results 
to a separate database

o Saves significant compute and storage resources at the cost of 
increased query times

o The “always analyze” use case is still available but is not the 
default

o Allows for analyses to be easily changed without needing to 
recompute and store results

o Users can easily add new analyses to be used in-query

oCreated our own database, Distributed Scalable 
Object Store (DSOS), to handle the continuous 
ingest rate and scalability needs presented by 
HPC monitoring



Analysis and Visualization Pipeline
o User queries from Grafana dashboards are sent through a backend python 

application which can call python analyses to derive metrics from raw data
o In-query analyses save significant computation time/resources for creating analysis results 

o Only data of interest is analyzed and new analyses can be created without recreation of analysis results 
across the database

o Analyses can easily be changed / added to meet new challenges and decrease

o Python modules can query the database and return pandas DataFrames for analysis
o The backend application then takes DataFrames and formats them as JSON objects 

which Grafana can interpret 
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Challenges in HPC analysis
Why can’t ChatGPT tell me what’s wrong?



Why are HPC systems difficult to understand?

o System generates terabytes of high-dimensional, often non-linear, time-series data for 
each node

o Variance thresholding and resampling / time-aggregation can be useful for some HPC data analysis, but 
there is no perfect way (yet) to simplify the dataset for ML 

o The application mix on the system can change throughout the day and all system states 
may be perfectly “normal” 

o Often HPC clusters have 100s to 1000s of jobs running jointly on them each day

o Job schedulers only collect some information about an application
o The exact parameters of the job are often opaque making application “labels” scarce
o In research settings, this is often circumnavigated by working with users or submitting our own 

applications



Why are HPC applications difficult to understand?

o Difficult to characterize normal and abnormal behavior for HPC applications
o Applications can have different resource utilization characteristics throughout execution
o The same application can use a different input deck and exhibit different resource utilization 

characteristics

o Many system conditions can affect an application’s performance, and all must be considered
o Sources of application performance bottlenecks include:

o CPU issues (slow node)
o Usually caused by a degradation or failure of some component

o Memory 
o Ranks within an application contend for memory usage on the node

o Network 
o Separate applications can use the same routers and interfere with each other

o I/O
o Separate applications can r/w the same filesystem over a shared network



Example: Different memory usage amongst nodes in job

o A single job can exhibit a wide variety of behaviors on different nodes



Example: Different node behavior / different phases

o The red node exhibits different memory usage behavior than the rest of the 
nodes

o Often this is the case for rank 0 in a parallel MPI application

o Behavior of the application changes around 4:00:00 for all nodes
o Many HPC applications have multiple “phases”



Example: Similar behavior in one metric, different in another

o Just because a node behaves similarly to all others in one system metric, 
does not mean it will be the same across all metrics



Example Takeaways

o“Normal” or “healthy” behavior on HPC systems is incredibly hard to define
o Applications can have different resource utilization characteristics throughout 

execution
o The same application can use a different input deck and exhibit different resource 

utilization characteristics
o Which input parameters are chosen by users is often opaque to administrators / analysts making 

labelling what is running equally difficult

oApplications can indirectly interact with each by contending for shared 
resources

o Application profiles like in the examples can vary under different system conditions
o Applications vie for filesystem and network bandwidth and can block each other
o The application mix on the system can change throughout the day, and all system states 

may be perfectly normal, leading to many valid application profiles



Wrap Up

oHigh-performance computing systems are critical to many sectors
o Detecting and diagnosing performance degradation is necessary to maintain scientific 

throughput

oHPC monitoring, analysis, and visualization provides real-time insights to 
combat performance issues

o Monitoring frameworks must balance high data capture with low overhead 
o Analysis frameworks must handle the data volume and be able to perform 

oAnalyzing HPC monitoring data presents unique data science challenges 
o High-dimensional time-series data with many non-intuitive features 



oPerformance variations in large scale systems
oML-based analytics

o Anomaly detection and diagnosis
o Application detection

oTowards real-world deployments

Section II: 
ML-based Analytics in Large-scale Computing Systems



Large Scale Computing Systems Today

SimulationsClimateSecurityMedicine

• Over 1 million cores
• Parallel applications

Shared Resources Performance Variation

30



Performance Unpredictability at Large Scale

● 8x delay in in job execution time [Zhang 
et al., Cluster’20]

● Most performance variations are caused 
by system anomalies:
o Shared resource contention
o Orphan processes from previous jobs
o Software/Hardware bugs 

Performance 
variations

Job terminations

Variable running 
time

Wasted 
computing power

Performance 
degradation
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Numeric Monitoring Data

● Anomalies manifest themselves in performance 
metrics
○ CPU: system time, user time, …
○ Memory: usage, page count, cache metrics, …
○ Network: sent packages, blocked packages, …

● Diagnosing performance anomalies is necessary 
for:
○ Understanding the root cause of the problem
○ Increased energy efficiency
○ Better resource utilization 

Various performance metrics collected 
from a compute node

32



ML is a Good Fit for This Problem

o TBs of numeric data in the form of logs, traces, performance metrics
o Data is complex and huge in size

o Similar problems often repeat

o ML helps us identify previously encountered performance problems rapidly
o Adapt from historical data to diagnose anomalies without heavily relying on human 

expertise
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Supervised Anomaly Diagnosis

Semi Supervised Anomaly DiagnosisUnsupervised Anomaly Detection

Research Landscape

Deployment
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Related Work - ML for Anomaly Detection 
Supervised Frameworks

● Data Mining-Based Analysis of HPC Center Operations 
[Klinkenberg et al., Cluster’17]

● Interpretable Anomaly Detection for Monitoring of HPC 
Systems [Baseman et al., KDD’16]

● Diagnosing Performance Variations in HPC Applications Using 
Machine Learning [Tuncer et al., ISC’17]

Semi-Supervised Frameworks
● A semisupervised autoencoder-based approach for anomaly 

detection in HPC systems [Borghesi et al., EAAI’19]
● Proctor: A semi-supervised performance anomaly diagnosis 

framework for production hpc systems [Aksar et al., ISC’21]
● ALBADross: Active Learning Based Anomaly 

Diagnosis for Production HPC Systems [Aksar et al., 
Cluster’22]

Unsupervised Frameworks

● Characterizing HPC Performance Variation with Monitoring and Unsupervised Learning 
[Ozer et al., ISC’20]

● Failure prediction in datacenters using unsupervised multimodal anomaly detection 
[Zhao et al., ICBG’20]

● RUAD: Unsupervised Anomaly Detection in HPC Systems [Molan et al., FGCS’23]
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Requirements for Supervised ML Frameworks

● To diagnose performance anomalies using supervised ML models:
o We need the labels corresponding to different anomalous application runs
o The ML model learns the relationship between the input features and the target 

prediction output

Memory Leakage

Network Contention

Cache Contention

Healthy

Input Data ML Model
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Supervised Frameworks -  Challenges of Obtaining a 
Labeled Dataset

● Supervised frameworks require a large labeled dataset consisting of anomalous and 
healthy samples

● Labeled data is often scarce in real-world scenarios, particularly anomalies, which are 
usually rare events

● No standardized way of reproducing performance variability with synthetic anomalies

● One way to solve this problem is to generate labeled data using synthetic 
performance anomalies

37



● Goal: Mimic real-world performance 
anomalies that reproduce performance 
variations 

● Each synthetic anomaly targets specific 
subsystem (CPU, memory, network, 
storage) and has adjustable anomaly 
intensity

● Implemented in C language

HPAS: An HPC Performance Anomaly Suite 

[Ates et al., ICPP’19 - github.com/peaclab/HPAS]

membw

cpuoccupy

cpuoccupy

memeater memleak

iometadata

iobandwidth

netoccupy
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Synthetic Anomalies in HPAS

Anomaly 
Name

Subsystem Operation Real-Life Event Modeled

Dial CPU Floating point operations CPU intensive orphan process

Dcopy Cache Read and write Cache interference

Linkclog Network Inject sleep before MPI calls Network interference

Memeater Memory Allocate, write and realloc() Memory intensive orphan 
process

Leak Memory Allocate Memory leak

• Each anomaly has multiple intensity settings and targets a specific subsystem (CPU, memory, etc.)
• Anomaly runs on one of the nodes of the application
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HPC Systems

• Production HPC system
• 1488 compute nodes
• Running on 4 nodes for 20 – 45 minutes

• Testbed HPC system
• 52 compute nodes
• Running on 4, 8, 16 nodes for 10 – 

15 minutes

Eclipse Volta
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Diagnosing Performance Variations using ML

● Automated analytics framework
● Learns anomaly characteristics 

using labeled historical data
● Sources of labeled data:
○ Controlled experiments
○ Run applications with and 

without known anomalies  

[Tuncer et al., ISC-HPC’17, Tuncer et al., TPDS’18]
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Training Phase: Collecting the Dataset

o Inject synthetic anomalies:
o Anomaly runs on one of the nodes of the application run
o Each anomaly stresses specific subsystem

o Memory, network, CPU, …
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Training Phase: Monitoring

o Collect numeric monitoring data:
• Lightweight Distributed Metric System [Agelastos et al., SC’14]

• Collect the data from software and hardware counters such as meminfo, 
procstat, vmstat, …
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Training Phase: Data Preprocessing

o Feature Extraction
o Generate features per rolling window
o Min, max, mean, average, skewness, …

o Feature Selection
o Reduces computational overhead
o Increases model’s accuracy

44



Training Phase: Model Training

o Train the supervised ML model using selected features
• Tree-based models:

• Random Forest, Decision Tree, AdaBoost
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Online Anomaly Diagnosis Framework

o At runtime:
o Collect monitoring data per compute 

node
o Extract only selected features
o Use previously trained ML model to 

predict anomalies
o Apply false positive filter to reduce 

false alarms
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Evaluation

o Random Forest identifies 98% of injected 
performance anomalies

o 0.08% false alarm rate
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Limitations of Supervised Frameworks

o Require a large set of labeled data corresponds to the normal & anomalous 
state of a compute node

o It is not possible to mimic all types of real-world performance anomalies using 
synthetic anomaly suite
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Relaxing the Label Requirement 

o What happens when there are not enough amount of labeled samples?
o Goal: Achieve target anomaly detection/diagnosis performance using fewer 

labeled samples  
o Semi-supervised training settings:

o First setting:

o Large amount of healthy samples and few/no labeled samples anomalous samples

o Second setting:
o Few labeled samples and large amount of unlabeled samples

o Human annotator is available to provide the label of selected sample upon 
request

49



When Training Dataset Contains Only Healthy Labeled Samples

● Method:
○ Train an autoencoder using the 

normal state of compute 
nodes

○ Detect anomalous compute 
nodes based on the 
reconstruction error

● No need for labels of anomalous 
samples during the training stage

[Borghesi et al., EAAI’19]

Architecture of data collection infrastructure and anomaly detection 
scheme
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Proctor: A Semi-Supervised Performance 
Anomaly Diagnosis Framework

● Operates with significantly less labeled data 
compared to supervised baselines

● Not just detect but diagnose anomalies
● Evaluation on a production HPC system and a 

testbed HPC cluster
○ 11% performance improvement in F-score on 

average
○ 0.06% anomaly miss rate on average

Overall framework[Aksar et al., ISC’21 – github.com/peaclab/Proctor]

When Training Dataset Contains Few Healthy and Anomalous 
Labeled Samples
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How to Train an Autoencoder?

• Training objective is to learn the weights for the encoding and decoding layers so 
that the reconstructed input is as close to the original input as possible

• Compressed knowledge exists in the code layer 
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Training Phase: Autoencoder Training

▪ Extract statistical features that retain the raw time series characteristics 
▪ Remove application initialization and finalization periods
▪ Transform cumulative counters into events/sec

53



Training Phase: Autoencoder Training

▪ Extract statistical features that retain the raw time series’ characteristics 
▪ Train an autoencoder to learn a representation (encoding) of normal and 

anomalous runs in an unsupervised manner
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Testing Phase: Diagnosis

▪ Use the trained autoencoder’s encoder and perform two-level classification
▪ First classifier learns to classify anomalous vs normal
▪ Second classifier learns to classify the type of the anomalies using a few labeled 

samples
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Proctor – Baseline Methods

o RF-Tuncer [Tuncer et al., TPDS’18]
o Uses statistical feature extraction and feature selection to train supervised machine learning 

models 
o It can diagnose anomalies

o AE-Borghesi [Borghesi et al., EAAI’19]
o Uses an autoencoder trained with only normal samples and selects a threshold 
o Only high-level anomaly detection no anomaly diagnosis
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Evaluation – Anomaly Diagnosis (Volta)

o Proctor outperforms RF-Tuncer by 25% on average (up to 50%) in F1-score and 
maintains a similar false alarm and miss rate
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Initially labeled Dataset Build a model Evaluate the model on constant 
test set

Is my model 
accurate enough?

No

Unlabeled Dataset 

Query the label of a sample

Add the sample to the labeled dataset 

Yes

TerminateActive Learning Based Anomaly Diagnosis

Can We Minimize Labeling Cost?



ALBADross: Active Learning Based Anomaly Diagnosis 
for Production HPC Systems

o Goal: Minimize the number of 
labeled samples during the 
training phase while achieving 
target F1-score

o Achieves the same F1-score as 
fully supervised baseline using 
28x fewer labeled samples even 
with previously unseen 
applications

[Aksar et al., Cluster’22 - github.com/peaclab/ALBADross]

Active Learning Based Anomaly Diagnosis Framework
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ALBADross: Research Problem

o Scenario:
o A few labeled and a large set of unlabeled data samples
o A subject matter expert (SME) that provides the label of the selected sample

o Research Problem:
o How to design a robust anomaly diagnosis framework using the least amount of labeled data 

samples? 

Sample*:  Feature extracted version of the telemetry data collected from one compute node throughout an application run
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ALBADross: Dataset Preparation

▪ Run synthetic anomalies with different real and proxy HPC applications
▪ Each anomaly stresses a specific subsystem (CPU, memory, cache, network)

▪ Extract statistical features
▪ TSFRESH (743 metrics)
▪ MVTS (48 metrics)

▪ Feature selection
▪ Chi-Square feature selection 
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ALBADross: Initial Supervised Training

▪ Few labeled and a large number of unlabeled samples
▪ Methodology:

▪ Start with 1 sample from all application-anomaly pairs in the Eclipse and Volta datasets
▪ 30 samples for Eclipse
▪ 55 samples for Volta
▪ Train a supervised ML model using labeled dataset & make predictions on test dataset
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ALBADross: Active Learning

▪ Determines the sample to be labeled from the unlabeled data pool
▪ Adds the new sample to the labeled dataset and retrains the model
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Active Learning – Query Strategies

o How does active learning determine the samples to be labeled?
o x: Sample to be predicted
o y: Most likely prediction (class label) 
o [p1, p2, p3,…., pk]:  Class probabilities

o Uncertainty Sampling: U(x) = 1 – Pmax(y|x)
o P1  = [ 0.1, 0.85, 0.05] => 0.85
o P2  = [ 0.6, 0.3, 0.1]    => 0.6
o P3  = [ 0.3, 0.7, 0.0] => 0.61

Ulist   = [ 0.15, 0.4, 0.3]
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Experimental Methodology – Anomaly Diagnosis

o Goal:
o Determine how many samples should be labeled to reach target F1-scores, anomaly 

miss rates, and false alarm rates

o Methodology:
o Start with 1 sample from all application-anomaly pairs in the Eclipse and Volta dataset
o Compare the performance of active learning and baselines for 250 queries:

o Active Learning: 
o Entropy, Margin, and Uncertainty Sampling

o Baselines:
o Random sampling

65



Anomaly Diagnosis with Active Learning

Dataset Feature 
Extraction

The Best 
Sampling 
Strategy

Starting 
F1-score

F1-score:
0.95

All Active 
Learning 

Training Data 
F1-score

Max Score
 (5 fold CV)

Volta TSFRESH Uncertainty 0.86
76 

Samples
0.95 

(6329 Samples)

0.99 
(16732 

Samples)

Eclipse MVTS Margin 0.72 230 Samples
0.95 

(5619 Samples)

0.99 
(19652 

Samples)

• Active learning achieves the same F1-score as a fully supervised approach using significantly 
fewer data samples 
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Anomaly Diagnosis with Active Learning

Dataset Feature 
Extraction

The Best 
Sampling 
Strategy

Starting 
F1-score

F1-score:
0.95

All Active 
Learning 

Training Data 
F1-score

Max Score
 (5 fold CV)

Volta TSFRESH Uncertainty 0.86
76 

Samples
0.95 

(6329 Samples)

0.99 
(16732 

Samples)

Eclipse MVTS Margin 0.72 230 Samples
0.95 

(5619 Samples)

0.99 
(19652 

Samples)

• Active learning can achieve a 0.95 F1-score with 48x and 22x fewer samples in the Volta and 
Eclipse datasets respectively
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Evaluating Robustness

o Robustness: 
o Being able to diagnose anomalies with 

a small error margin with previously 
unseen applications and application 
inputs

o Compared to 5-fold CV results:
o 30% drop in F1-score
o 35x increase in FAR

Error bars: 95% confidence interval
Dashed lines: 5-fold CV results
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Active Learning With Previously Unseen Apps 

o Start with 2 applications in the training 
dataset, and place the remaining 9 
applications to the test dataset

o Uncertainty achieves 0.95 F1-score using 
50 additional samples

o Random achieves 0.95 F1-score using  
~550 samples
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Outline

Diagnosing performance variations

Identifying applications

Towards real-world deployments
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Can We Go Beyond Anomaly Diagnosis?

● Identifying Applications
● Why is it important?

○ Detect illegal/unwanted applications
■ Known malicious or fraudulent apps
■ Wasteful apps
■ Vulnerable or buggy apps

○ Detect (types of ) applications to improve system
■ Performance
■ Energy efficiency
■ System design or software optimization 
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Taxonomist: An Application Detection Framework

o Data is collected from applications of interest
o 100s of time series per node

[Ates et al., EuroPar’18 (Best Artifact Award) - github.com/peaclab/taxonomist]
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Taxonomist: An Application Detection Framework

o Statistical feature extraction for summarizing time series
o Min, max, mean, standard deviation, skewness, kurtosis, percentile

[Ates et al., EuroPar’18 (Best Artifact Award) - github.com/peaclab/taxonomist]
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One vs. Rest Classifier

o Observations from three classes

Medium confidence:
Probably not red

Low confidence: Not red
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▪ At runtime, take predictions from every classifier
▪ If confidence is under a threshold, mark as unknown
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Taxonomist: An Application Detection Framework



Evaluation
6 Cryptocurrency miners and 

password crackersVolta usage over 6 months

76



Outline

Diagnosing performance variations

Identifying applications

Towards real-world deployments
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Deployment - What Has Been Achieved So Far?

● Generic model deployment [Borghesi et 
al., EAAI’19]
○ Deploy a single model that predicts 

anomalies in different compute 
nodes

● Compute node specific model 
deployment [Molan et al., FGCS’23]
○ Deploy autoencoder based anomaly 

detection model on a production 
HPC system with 980 nodes
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Deployment - Our Key Achievements

o We deploy the state-of-the-art fully 
supervised anomaly diagnosis 
framework to a 1500-node 
production HPC system 

[Aksar et al., EuroPar’21 https://github.com/peaclab/Proctor] The high-level architecture of E2EWatch
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Deployment - Challenges

● Compiling applications properly with different input decks requires domain expertise
● Verifying that synthetic anomalies are creating the desired impact on application runs is 

not trivial
● Compute node-specific deployment:

○ High training and maintenance cost
■ Hyperparameter tuning
■ Selecting new anomaly threshold for each model

● Generic deployment:
○ Developing a generic ML model that accurately detects/diagnose anomalies for thousands of 

compute nodes is hard
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Web Based Anomaly Diagnosis Framework

o To make our supervised ML-based anomaly 
diagnosis framework widely accessible, we 
developed a website

o Determines anomalies in user uploaded system 
telemetry data

o Website link: http://ai4hpc.bu.edu/

55
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o Diagnosing performance variation/problems 
o Supervised training setup:

o Works well if there are sufficient amount of labeled 
samples

o Unfortunately, that’s not case in the real-world 
production system scenario

o Semi-supervised training setup:
o Achieves better than fully supervised framework 

when there are limited labeled samples
o Active learning for minimizing the labeling cost

o Application discovery 
o At development
o At installation
o During execution
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Backup Slides
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o Significant outages, major losses of profit, 
problems due to widespread vulnerabilities, … 
are all very common in computing systems

o Automated analytics can tremendously help 
solve or pinpoint many important problems

o Many open research problems exist in the 
design of data-driven management solutions
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