
Towards Practical Machine Learning Frameworks for
Performance Diagnostics in Supercomputers

Burak Aksar
baksar@bu.edu

Boston University
Boston, MA, USA

Efe Sencan
esencan@bu.edu
Boston University
Boston, MA, USA

Benjamin Schwaller
bschwal@sandia.gov

Sandia National Laboratories
Albuquerque, NM, USA

Vitus J. Leung
vjleung@sandia.gov

Sandia National Laboratories
Albuquerque, NM, USA

Jim Brandt
brandt@sandia.gov

Sandia National Laboratories
Albuquerque, NM, USA

Brian Kulis
bkulis@bu.edu

Boston University
Boston, MA, USA

Manuel Egele
megele@bu.edu
Boston University
Boston, MA, USA

Ayse K. Coskun
acoskun@bu.edu
Boston University
Boston, MA, USA

ABSTRACT
Supercomputers are highly sophisticated computing systems de-
signed to handle complex and computationally intensive tasks. De-
spite their tremendous efficiency, performance problems still arise
due to various factors, such as load imbalance, network congestion,
and software-related issues. Monitoring frameworks are commonly
used to collect telemetry data, which helps identify potential issues
before they become critical or debug problems. However, teleme-
try analytics is essentially a big data problem that is becoming
increasingly difficult to manage due to terabytes of telemetry data
collected daily. Owing to the limitations of manual analysis, re-
cent analytics frameworks leverage automated machine learning
(ML)-based frameworks to identify patterns and anomalies in this
data, enabling system administrators and users to take appropriate
action towards resolving performance problems quickly.

This paper explores the benefits and challenges of ML-based
frameworks that automate performance diagnostics, particularly
focusing on labeled training data requirements and deployment
challenges. We argue that ML-based frameworks can achieve de-
sirable performance diagnosis results while reducing the need for
large labeled data sets, and we demonstrate successful prototypes
that are suitable for rapid deployment on real-world systems.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Learning settings.

KEYWORDS
High-performance Computing, Machine Learning, Deployment

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
AI4Sys ’23, June 20, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0161-0/23/06. . . $15.00
https://doi.org/10.1145/3588982.3603609

ACM Reference Format:
Burak Aksar, Efe Sencan, Benjamin Schwaller, Vitus J. Leung, Jim Brandt,
Brian Kulis, Manuel Egele, and Ayse K. Coskun. 2023. Towards Practi-
cal Machine Learning Frameworks for Performance Diagnostics in Super-
computers. In Proceedings of the First Workshop on AI for Systems (AI4Sys
’23), June 20, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3588982.3603609

1 INTRODUCTION
Supercomputers are among the most powerful computing systems
in theworld [20]. The speed and performance of supercomputers are
truly impressive, with some of the fastest machines in the world ca-
pable of executing quintillions of calculations per second [26]. The
architecture of a supercomputer is highly sophisticated, consisting
of thousands of interconnected processing nodes that work together
to provide massive parallelism and processing power [20, 24, 32].
This architecture enables supercomputers to execute thousands of
tasks simultaneously for processing large datasets and performing
complex simulations. These capabilities have made them invaluable
in scientific research, engineering applications, and many other
fields. They have also been applied to solve some of the world’s
most challenging problems in areas such as climate modeling, drug
discovery, and astrophysics, as well as in commercial applications
like financial modeling and risk analysis. However, despite the
tremendous power of supercomputers, they are not immune to
performance problems. Detecting and diagnosing these problems
have become increasingly critical as supercomputers have grown
more complex, powerful, and expensive (i.e., in terms of operational
and energy costs).

Performance problems can arise from various sources, includ-
ing load imbalances, scheduling problems, network congestion,
hardware faults, software inefficiencies, and other factors. Load
imbalances and scheduling problems occur when the workload dis-
tribution across the system’s processors or cores is uneven, leading
to some processors being overutilized while others are underuti-
lized [19]. This type of imbalance can result in reduced efficiency
and increased resource consumption, ultimately leading to lower

https://orcid.org/0000-0003-3627-7311
https://doi.org/10.1145/3588982.3603609
https://doi.org/10.1145/3588982.3603609

AI4Sys ’23, June 20, 2023, Orlando, FL, USA Burak Aksar et al.

overall performance [18]. Network congestion is another common
problem in supercomputers [15, 37]. These machines rely on com-
plex interconnect networks to facilitate communication between
processors and cores, and if the network becomes congested, it
can lead to performance degradation. Software-related problems
are also a common source of performance problems in supercom-
puters [2, 17]. Poorly optimized code, for example, can result in
excessive memory usage, increased communication overhead, and
inefficient use of system resources. Memory management problems,
such as memory leaks or excessive swapping, also often lead to
performance degradation.

Detecting and diagnosing performance problems in supercom-
puters requires advanced analytics frameworks that can ideally
provide near-real-time insights into system behavior along with
automated alerts. These frameworks can help identify bottlenecks
and other performance problems in a fully- or semi-automated way,
allowing system administrators to take corrective action quickly.
The foundational element behind these frameworks is monitoring
frameworks, which have become the de-facto standard [1, 11, 28].
In practice, a supercomputer commonly employs one or more moni-
toring frameworks to collect information on the resource utilization
characteristics of the whole system. Monitoring frameworks often
gather telemetry data in the form ofmultivariate time series through
performance counters across different subsystems (e.g., memory,
CPU, network), system logs, and traces. This proactive monitoring
approach can help minimize system downtime and improve overall
system efficiency. For example, network traffic, processor usage,
memory usage, and other key metrics can be leveraged to identify
potential issues before they become critical.

Although monitoring frameworks have advanced significantly
in recent years (e.g., low memory overhead, negligible latency, etc.),
the big data problem of monitoring is becoming increasingly diffi-
cult to manage. Supercomputers generate vast amounts of telemetry
data, accumulating billions of data points over time, leading to ter-
abytes of data generated daily. Analyzing this data is a daunting
task, requiring sophisticated data processing and analysis tech-
niques. Fortunately, researchers have developed advanced analytics
frameworks to help system administrators extract meaningful in-
sights from available data [5, 7, 13, 23, 29, 33, 36]. These frameworks
leverage machine learning (ML) algorithms and other advanced
techniques to identify patterns and anomalies, enabling system
administrators to take appropriate action quickly. For the rest of
the paper, we refer to these frameworks as ML-based frameworks.

This position paper offers an overview of various recent ML-
based frameworks, specifically focusing on their labeled training
data requirements and suitability for deployment. We examine open
problems and potential next steps based advantages and disadvan-
tages of the available ML-based frameworks. Our primary objective
is to argue that a desirable performance diagnosis score can be
achieved with limited reliance on large labeled data sets using ML-
based frameworks. Furthermore, we present successful prototypes
that are suitable for rapid deployment on real-world systems.

Section 2 provides an overview of telemetry data-based analytics
in supercomputers. Section 3 discusses success stories and chal-
lenges with ML-based frameworks, including the deployment angle
at scale. Finally, Section 4 summarizes the key findings and open
problems for leveraging ML-based frameworks in supercomputers.

2 BACKGROUND
Over the last decade, there have been significant advancements in
high-performance computing (HPC) systems, particularly in pro-
cessor performance, networking technologies, storage capabilities,
and software tools. These improvements have enabled these sys-
tems to process larger workloads and perform computations faster.
However, despite these advancements, HPC systems still encounter
challenges in maintaining their efficiency and reliability, primarily
due to performance anomalies. Performance anomalies can occur
due to various factors, such as hardware problems, software bugs,
network congestion, and workload imbalances. They can signifi-
cantly affect the efficiency and reliability of the system, leading to
longer processing times, increased energy consumption, and varia-
tions in the application’s performance. For example, performance
anomalies can cause an eight times increase in application running
times in production systems [38], impacting efficiency and cost in
major ways.

Currently, a popular procedure for detecting and diagnosing
issues in large-scale systems involves system administrators manu-
ally examining logs and telemetry data and utilizing their domain-
specific knowledge to identify problems. However, the complexity
and scale of HPC systems make manual analysis extremely chal-
lenging to detect or diagnose these anomalies at scale. Traditional
rule-based anomaly detection methods are also limited because
of several reasons. Firstly, creating these rules is a manual and
time-consuming process that requires domain-specific expertise.
As systems become larger and more complex, creating rules that
can accurately diagnose issues becomes increasingly challenging.
Secondly, these rules are not generalizable, as they can only de-
tect issues that have been explicitly defined. As new issues arise,
new rules must be created, which can become unmanageable as
the system grows. Thirdly, transferring knowledge across different
systems is difficult, as the rules that work for one system may not
apply to another. This means that the expertise required for diag-
nostics must be built up separately for each system, which can be
inefficient and costly.

Fortunately, ML offers a promising solution to this problem. Un-
like traditional rule-based methods that rely on fixed thresholds
and predefined rules based on domain expertise, ML-based frame-
works can learn and adapt from historical data to identify and detect
anomalies automatically. This approach offers several benefits, in-
cluding runtime anomaly detection, the ability to adjust to new
patterns in the data, and improved accuracy over time. Over the
past decade, there has been a notable increase in the development
of ML-based frameworks designed to detect performance anomalies
in HPC systems. These frameworks can be categorized into three
main groups: supervised, semi-supervised, and unsupervised, based
on the amount of labeled data used during the model training stage.

Researchers have designed supervised ML-based frameworks
to address the challenge of detecting and diagnosing performance
anomalies in HPC systems [7, 23, 35]. These frameworks utilize a
range of algorithms such as support vector machines [30], k-nearest
neighbors [21], random forest [31], and Bayesian classifier [25].
These frameworks aim to detect anomalies or identify the type of
anomalies (i.e., diagnosis). This is achieved through the use of la-
beled datasets that contain healthy and anomalous application runs.

Towards Practical Machine Learning Frameworks for Performance Diagnostics in Supercomputers AI4Sys ’23, June 20, 2023, Orlando, FL, USA

Figure 1: Anomaly detection and diagnosis performance for
Random Forest and several baselines using 5-fold stratified
cross-validation. Random Forest correctly detects 98% of the
anomalies with a 0.08% false alarm rate.

Although supervised ML-based frameworks have shown promising
results in detecting performance anomalies, they have a significant
limitation of requiring a large amount of labeled data, which can
be time-consuming and expensive. In fact, telemetry data collected
from HPC systems is often largely unlabeled. Furthermore, the
high-dimensional and voluminous nature of time series data in
such systems makes it impractical to label each sample manually.
As a result, researchers have designed alternative approaches, such
as semi-supervised and unsupervised ML-based frameworks.

Semi-supervised ML-based frameworks aim to achieve target
anomaly detection or diagnosis performance using much fewer
labeled samples than fully supervised methods, thereby reducing
the cost and effort required for manual labeling. These methods
typically involve training an ML model on a small subset of labeled
data and leveraging additional information from the unlabeled data.
One such popular approach uses autoencoders [10], which are neu-
ral networks trained to reconstruct input data. This approach has
been used for detecting anomalies in HPC systems by learning the
normal behavior of compute nodes and detecting anomalies based
on the reconstruction error [12]. Similarly, Aksar et al. [5] introduce
an autoencoder-based semi-supervised framework for diagnosing
anomalies in production HPC systems. Their approach involves
learning the characteristics of previously encountered performance
anomalies in an unsupervisedmanner, followed by using supervised
classifiers to diagnose anomalies on compute nodes. Other semi-
supervised methods in the HPC domain for detecting performance
anomalies include clustering-based approaches, which group sim-
ilar time series samples. For each cluster, the labeled samples are
used to train a supervised classifier and classify the remaining un-
labeled samples in that cluster. Another semi-supervised approach
for diagnosing anomalies is based on active learning [4], which in-
volves selecting the most valuable unlabeled samples for labeling by
a human expert and using these samples to train a supervised clas-
sifier. By leveraging labeled and unlabeled data, semi-supervised
methods have shown great potential in improving the accuracy
and efficiency of anomaly detection and diagnosis in HPC systems.
However, labeling a relatively smaller number of samples (i.e., com-
pared to data requirements of fully supervised methods) can still
be time-consuming and challenging in practice, which motivates
the design of unsupervised ML-based frameworks.

In the unsupervised setting, an ML model is trained without
labeled data. The goal is to discover hidden patterns and relation-
ships in the data without having the label information. Traditional
unsupervised learning methods include K-means clustering [22],
local outlier factor [6], and kernel density estimation [14]. These
methods aim to identify the underlying structure or pattern in the
data and detect anomalies based on deviations from that structure
or pattern. However, their performance can be limited when data is
complex or similar in shape, making it difficult to distinguish normal
patterns from anomalous ones. Furthermore, distance-based clus-
tering methods may not be able to handle high-dimensional data
or outliers. In contrast, researchers often use deep neural networks
in state-of-the-art unsupervised frameworks to detect anomalies
in multivariate time series data. These methods include adversari-
ally trained autoencoders [9] for isolating anomalies, graph neural
networks for identifying anomalies via attention-based forecasting
and deviation scoring [16], deep transformer networks that utilize
attention-based sequence encoders [34], and recurrent autoencoder
models that capture the healthy time-series characteristics while
capturing temporal dependencies in the data [29]. Despite unsu-
pervised frameworks excelling in detecting anomalies, these frame-
works lack the ability to diagnose anomaly types as they do not
utilize known anomalous labels.

3 SUCCESS STORIES AND CHALLENGES
WITH ML-BASED FRAMEWORKS

In this section, we present ML-based framework success stories and
challenges. We discuss supervised and semi-supervised frameworks
for anomaly detection, as well as unsupervised frameworks.We also
discuss the challenges of deploying ML-based frameworks at scale
in HPC systems. Despite these challenges, ML-based frameworks
improve HPC system performance.

3.1 Evaluation Metrics
To evaluate the performance of ML-based frameworks, we use
the F1-score as a primary evaluation metric since it is commonly
adopted to assess the classification performance of ML models,
especially in scenarios with imbalanced datasets. The F1-score is
particularly well-suited for evaluating anomaly diagnosis frame-
works due to the rarity of anomalies compared to the abundance
of healthy samples. The suitability of the F1-score extends beyond
binary classification tasks and also applies to multi-class settings,
where anomalies can be represented by one or more classes. By con-
sidering both precision and recall, the F1 score provides a balanced
assessment of the model’s ability to accurately classify anomalies
in such imbalanced datasets.

Another popular metric is Area Under the Curve (AUC) [27],
which is generally adopted for binary classification tasks such as
anomaly detection. It measures the overall performance of a model
by assessing the trade-off between a true positive rate and a false
positive rate at various classification thresholds. It provides a com-
prehensive summary of the model’s classification power across
different thresholds, regardless of the threshold chosen for the final
classification. However, the AUC may not be a suitable metric in
scenarios where the class distribution is heavily imbalanced. In
such cases, where the rare anomalies are of primary interest, a

AI4Sys ’23, June 20, 2023, Orlando, FL, USA Burak Aksar et al.

Active
Learning
Module

[x1, x2, x3, …] Labeled
Dataset

Human
Annotator

[x*,y*]

2. Investigate all
samples in the

unlabeled dataset

4. Add the new
sample and its label

to the labeled dataset

ML
Model

5. Re-fit the
model

Unlabeled
Dataset

[x*]

3. Decide the sample
to be labeled

Active
Learning
Stage

Reached target
diagnosis score

No Yes
Deployment

App 1

App 1

App 2

App 2

Node telemetry data
(Time x M metrics)

Node with
synthetic anomaly

Telemetry
Data Collection

Glossary: Node without
synthetic anomaly

Feature extraction

Preparation

Feature
Selection

Sample
(1 x N features)

x

Figure 2: During the preparation stage, we collect telemetry data from compute nodes while running applications with and
without synthetic anomalies. In the active learning stage, ALBADross decides which samples should be labeled from the
unlabeled dataset and re-trains the model until a satisfactory diagnosis score is reached.

small number of correct or incorrect predictions can result in a
large change in the AUC score.

In the anomaly diagnosis domain, false alarm and miss rates are
other important metrics to consider. False positives are generally
considered more critical than false negatives. The main reason is
that false positives typically require human intervention to investi-
gate and address these alarms, incurring additional costs and efforts.
On the other hand, the anomaly miss rate refers to a case where true
anomalies are not detected. While minimizing the anomaly miss
rate is important, it is generally considered less critical than false
positives since missed anomalies may still be identified through
rule-based methods or manual intervention.

3.2 Supervised Frameworks
Recently, researchers and practitioners have given growing atten-
tion to utilizing supervised anomaly detection and diagnosis frame-
works for detecting anomalies in HPC systems. Such frameworks
require a large labeled dataset consisting of anomalous and healthy
samples. However, labeled data is often scarce in real-world scenar-
ios, particularly anomalies, which are usually rare occurrences. One
way to solve this problem is to generate labeled data using synthetic
performance anomalies. High-performance anomaly suite (HPAS)
is one example that generates realistic synthetic anomalies and can
emulate different types of anomalies impacting the main subsys-
tems of HPC systems, including CPU, cache, memory, network, and
shared storage [8]. Another popular open-source example is “Global
Performance and Congestion Network Tests”, which specifically
target network-related performance variations [15].

We design a framework that can detect and diagnose anomaly
types at runtime [35], which achieves state-of-the-art performance.
As a first step, we collect historical telemetry data collected from
application runs with and without synthetic anomalies generated
using HPAS. Then, we leverage statistical feature extraction and se-
lection steps to reduce the size and dimensionality of the telemetry
data. In the last step, we train ML Models (random forest, deci-
sion tree, and AdaBoost) to learn the characteristics of previously
observed anomalies. During runtime, we process telemetry data col-
lected from individual nodes using a sliding window technique and
extract statistical features. The trained model provides a prediction
for each window; however, to decide whether a compute node is
anomalous, we wait unless anomaly prediction is valid for a certain
amount of consecutive sliding windows. Figure 1 highlights one of
the key results we achieve. Random forest correctly identifies 98%

of the anomalies while leading to only 0.08% false anomaly alarms.
While supervised frameworks can achieve almost perfect anom-
aly diagnosis scores when provided with representative samples
of both healthy and anomalous data of sufficient size, acquiring a
large labeled dataset may not be practical due to the high cost and
time-consuming nature of manual diagnosis required for labeling.

3.3 Relaxing the Label Requirement
To address the challenge of labeling a large number of labeled
samples, we approach the problem from two different angles. The
first angle focuses on a scenario where there is an abundance of
healthy samples, but only a few anomalous samples are available.
Our recent work introduces Proctor, a semi-supervised anomaly
diagnosis framework that effectively utilizes labeled and unlabeled
samples [5]. Proctor performs better than a fully supervised base-
line, especially when the number of labeled samples is limited.
Proctor has an autoencoder-based unsupervised pretraining stage
and a supervised classification layer that diagnoses performance
anomalies on compute nodes. The autoencodermodel is first trained
on a large amount of unlabeled data (anomalous and health sam-
ples), followed by a finetuning stage with a few labeled samples.
The finetuning stage helps the model use a few labeled samples to
adjust its learning process. Proctor outperforms a fully-supervised
baseline model [35] by 4.5% on average (and up to 11%) in terms of
macro average F1-score when the labeled data percentage is less
than 5%.

The second angle frames the problem in a different setting where
a few anomalous and a large set of healthy samples are available;
however, it also assumes a human annotator is available to provide
the label of a selected sample upon request. In this setting, we aim to
determine the minimum number of samples, which maximizes the
model performance, to be labeled among thousands of unlabeled
samples since admins or code developers have limited capacity.
Our framework, ALBADRoss [4], trains a supervised model with
initially available labeled samples and then utilizes active learn-
ing query strategies to determine which sample should be labeled
among the thousands of unlabeled samples to achieve a desirable
F1-score for anomaly diagnosis. Figure 2 shows the preparation
and active learning stages. We evaluate ALBADRoss with a dataset
collected from a production HPC system and achieve a 0.95 F1-
score (the same score that a fully-supervised framework achieved)
and near-zero false alarm rate using 28x fewer labeled samples.

Towards Practical Machine Learning Frameworks for Performance Diagnostics in Supercomputers AI4Sys ’23, June 20, 2023, Orlando, FL, USA

One key takeaway is that semi-supervised frameworks can achieve
competitive performance by leveraging both labeled and unlabeled
samples, even when the number of labeled samples is limited. These
frameworks help mitigate the need for extensive manual labeling
efforts while still achieving accurate results.
3.4 Anomaly Detection without Supervision
Ideally, the goal would be to possess a readily available framework
that can be immediately implemented in a new system. However,
before we achieve this goal, we need to minimize the acquisition
cost of anML-based framework for a new system. One of the biggest
obstacles to adopting an ML-based framework at scale is labeled
data. Recent research [13, 29] adopts unsupervised ML models with
a goal of zero-label or minimal supervision. In this context, we
observe two main directions: partially and fully unsupervised. In
the partially unsupervised direction, ML models are trained with
only healthy samples to detect anomalies. One can argue that this
requires knowledge of which samples are healthy, but ML models
do not require label information during training, so we categorize
them in the unsupervised setting. Borghesi et al. [13] design an
autoencoder-based framework that learns the healthy character-
istics of compute node telemetry data. The framework achieves
12% higher anomaly detection accuracy than baselines. In the fully
unsupervised case, ML models are trained with the overwhelming
majority of healthy samples and a limited number of anomalous
samples, accurately representing a production system scenario.
Molan et al. [29] design a different autoencoder framework, which
extracts temporal characteristics of raw telemetry data. Based on
the evaluation, the framework achieves a 0.767 AUC score, whereas
the previous work [13] achieves a 0.747 AUC score in the same test
dataset. Even though the performance gain is minimal, training
models without supervision is an important step towards lowering
the labeled data barrier and enabling the wide spread of ML-based
frameworks in production HPC systems. Another direction to con-
sider while moving to the minimal supervision era is diagnosing
the anomaly type. In both frameworks, it is impossible to diagnose
the anomaly type, which is crucial to understanding root causes
and developing effective mitigation policies in the long run.

3.5 ML-based Frameworks at Scale
Even though many novel ML-based frameworks target produc-
tion systems, the deployment aspect is often overlooked. In one
of our earlier works [3], we design an end-to-end architecture
to deploy the state-of-the-art fully supervised anomaly diagnosis
framework [35] to a 1500-node production HPC system. To train
the model, we collect telemetry data from application runs with
and without synthetic anomalies. Using the best model, we achieve
a 0.92 macro average F1-score in the anomaly diagnosis task. How-
ever, the biggest challenges we observe are compiling applications
properly with different input decks (since it requires domain ex-
pertise) and verifying that synthetic anomalies create the desired
impact on application runs. These tasks can be time-consuming,
considering they are not the main focus of administrators, which
leads to a difficult adoption process. Borghesi et al. [13] design a
deployment scenario that includes a generic and a node-specific
approach to reduce the adoption barrier from the data collection
angle. While using a node-specific approach may be feasible for
small computing clusters, it entails high training and maintenance

costs, such as tuning hyperparameters or selecting a new detec-
tion threshold for each model. Since production systems generally
have thousands to tens of thousands of compute nodes, a generic
approach may be a more practical solution. However, this brings
another challenge regarding the generalizability of the model. For
example, node-specific models have an F1-score of 0.898; however,
the generic model has a 0.726 F1-score, which reveals a significant
performance drop for the only anomaly detection task. Considering
the generic model is trained with telemetry data from multiple
compute nodes, it is necessary to consider robust architectures or
different training approaches. Currently, we are working on highly
customizable yet simple software architecture, which supports var-
ious feature extraction and selection strategies as well as multiple
ML models. Our primary objectives are facilitating easy integra-
tion with monitoring frameworks and expediting the deployment
process. The architecture requires only a monitoring framework
and a backend server. Using the designed architecture, we deploy
a variational autoencoder-based framework to a production sys-
tem with 1488 nodes. This generic model (i.e., not node-specific)
achieves a macro average F1-score of 0.9 using only 16 healthy sam-
ples, corresponding to 4 jobs where each job runs on four compute
nodes. Even though ML-based frameworks are gaining popularity,
we need low-overhead and customizable software architectures
that can simplify the integration with monitoring frameworks and
expedite the deployment process in production systems.

4 OPEN PROBLEMS AND NEXT STEPS
This section discusses open problems and potential next steps to
enhance the accuracy, efficiency, and usability of ML-based frame-
works. Active learning-based frameworks reduce labeling efforts,
but labeling high-dimensional telemetry data remains challenging.
Additional efforts, especially automated approaches, are needed
for efficient and accurate labeling. Another open problem is de-
veloping robust ML-based frameworks to facilitate deployment.
Autoencoder-based frameworks work well when trained with only
healthy samples but require extensive human monitoring to ensure
the long-term stability of the system. Therefore, frameworks that
can be trained with healthy and anomalous samples can facilitate
easy deployment.

The above directions focus on data and software-related open
problems. Designing and developing monitoring frameworks suit-
able for heterogeneous clusters (CPU and GPU) is necessary, consid-
ering the latest supercomputer architectures. Especially collecting
telemetry data from GPU clusters with low overhead and fine gran-
ularity is critical to support large-scale heterogeneous systems.

ACKNOWLEDGMENTS
This work has been partially funded by Sandia National Labora-
tories. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under Contract DE-NA0003525.
This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

AI4Sys ’23, June 20, 2023, Orlando, FL, USA Burak Aksar et al.

REFERENCES
[1] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos,

Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden,
et al. 2014. The lightweight distributed metric service: a scalable infrastructure
for continuous monitoring of large scale computing systems and applications. In
Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and
Analysis (SC). 154–165.

[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Ann Gentile, Sophia Lefantzi,
Steve Monk, Jeff Ogden, Mahesh Rajan, and Joel Stevenson. 2015. Toward rapid
understanding of production HPC applications and systems. In 2015 IEEE Inter-
national Conference on Cluster Computing. IEEE, 464–473.

[3] Burak Aksar, Benjamin Schwaller, Omar Aaziz, Vitus J Leung, Jim Brandt, Manuel
Egele, and Ayse K Coskun. 2021. E2EWatch: An End-to-End Anomaly Diagnosis
Framework for Production HPC Systems. In European Conference on Parallel
Processing. Springer, 70–85.

[4] Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J Leung, Jim
Brandt, Brian Kulis, and Ayse K Coskun. 2022. ALBADross: Active Learning
Based Anomaly Diagnosis for Production HPC Systems. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 369–380.

[5] Burak Aksar, Yijia Zhang, Emre Ates, Benjamin Schwaller, Omar Aaziz, Vi-
tus J Leung, Jim Brandt, Manuel Egele, and Ayse K Coskun. 2021. Proctor: A
semi-supervised performance anomaly diagnosis framework for production hpc
systems. In High Performance Computing: 36th International Conference, ISC High
Performance 2021, Virtual Event, June 24–July 2, 2021, Proceedings 36. Springer,
195–214.

[6] Omar Alghushairy, Raed Alsini, Terence Soule, and Xiaogang Ma. 2020. A review
of local outlier factor algorithms for outlier detection in big data streams. Big
Data and Cognitive Computing 5, 1 (2020), 1.

[7] Emre Ates, Ozan Tuncer, Ata Turk, Vitus J Leung, Jim Brandt, Manuel Egele, and
Ayse K Coskun. 2018. Taxonomist: Application detection through rich monitor-
ing data. In Euro-Par 2018: Parallel Processing: 24th International Conference on
Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings
24. Springer, 92–105.

[8] Emre Ates, Yijia Zhang, Burak Aksar, Jim Brandt, Vitus J Leung, Manuel Egele,
and Ayse K Coskun. 2019. HPAS: An HPC Performance Anomaly Suite for
Reproducing Performance Variations. InACM Proceedings of the 48th International
Conference on Parallel Processing. 1–10.

[9] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A
Zuluaga. 2020. Usad: Unsupervised anomaly detection on multivariate time series.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 3395–3404.

[10] Dor Bank, Noam Koenigstein, and Raja Giryes. 2020. Autoencoders. arXiv
preprint arXiv:2003.05991 (2020).

[11] Andrea Bartolini, Andrea Borghesi, Antonio Libri, Francesco Beneventi, Daniele
Gregori, Simone Tinti, Cosimo Gianfreda, and Piero Altoè. 2018. The DAVIDE
big-data-powered fine-grain power and performance monitoring support. In
Proceedings of the 15th ACM Int. Conf. on Computing Frontiers. 303–308.

[12] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and
Luca Benini. 2019. A semisupervised autoencoder-based approach for anomaly
detection in high performance computing systems. Engineering Applications of
Artificial Intelligence 85 (2019), 634–644.

[13] Andrea Borghesi, Antonio Libri, Luca Benini, and Andrea Bartolini. 2019. Online
anomaly detection in hpc systems. In 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS). IEEE, 229–233.

[14] Yen-Chi Chen. 2017. A tutorial on kernel density estimation and recent advances.
Biostatistics & Epidemiology 1, 1 (2017), 161–187.

[15] Sudheer Chunduri, Taylor Groves, Peter Mendygral, Brian Austin, Jacob Balma,
Krishna Kandalla, Kalyan Kumaran, Glenn Lockwood, Scott Parker, Steven War-
ren, et al. 2019. Gpcnet: Designing a benchmark suite for inducing and measuring
contention in hpc networks. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–33.

[16] Ailin Deng and BryanHooi. 2021. Graph neural network-based anomaly detection
in multivariate time series. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 4027–4035.

[17] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim.
2014. CALCioM: Mitigating I/O interference in HPC systems through cross-
application coordination. In 2014 IEEE 28th international parallel and distributed
processing symposium. IEEE, 155–164.

[18] Yuping Fan, Zhiling Lan, Paul Rich, William Allcock, and Michael E Papka. 2022.
Hybrid Workload Scheduling on HPC Systems. In 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 470–480.

[19] Yuping Fan, Zhiling Lan, Paul Rich, William E Allcock, Michael E Papka, Brian
Austin, and David Paul. 2019. Scheduling beyond CPUs for HPC. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed
Computing. 97–108.

[20] Jiangang Gao, Fang Zheng, Fengbin Qi, Yajun Ding, Hongliang Li, Hongsheng Lu,
Wangquan He, Hongmei Wei, Lifeng Jin, Xin Liu, et al. 2021. Sunway supercom-
puter architecture towards exascale computing: analysis and practice. Science
China Information Sciences 64, 4 (2021), 141101.

[21] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. 2003. KNN
model-based approach in classification. In On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Confer-
ences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003.
Proceedings. Springer, 986–996.

[22] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c (applied
statistics) 28, 1 (1979), 100–108.

[23] Jannis Klinkenberg, Christian Terboven, Stefan Lankes, and Matthias S Müller.
2017. Data mining-based analysis of HPC center operations. In 2017 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). IEEE, 766–773.

[24] Peter M Kogge and William J Dally. 2022. Frontier vs the Exascale Report: Why
so long? and Are We Really There Yet?. In 2022 IEEE/ACM International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE, 26–35.

[25] K Ming Leung et al. 2007. Naive bayesian classifier. Polytechnic University
Department of Computer Science/Finance and Risk Engineering 2007 (2007), 123–
156.

[26] Adam Mann. 2020. Nascent exascale supercomputers offer promise, present
challenges. Proceedings of the National Academy of Sciences 117, 37 (2020), 22623–
22625.

[27] Caren Marzban. 2004. The ROC curve and the area under it as performance
measures. Weather and Forecasting 19, 6 (2004), 1106–1114.

[28] Matthew L Massie, Brent N Chun, and David E Culler. 2004. The ganglia dis-
tributed monitoring system: design, implementation, and experience. Parallel
Comput. 30, 7 (2004), 817–840.

[29] Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, and Andrea
Bartolini. 2023. RUAD: Unsupervised anomaly detection in HPC systems. Future
Generation Computer Systems 141 (2023), 542–554.

[30] William S Noble. 2006. What is a support vector machine? Nature biotechnology
24, 12 (2006), 1565–1567.

[31] Steven J Rigatti. 2017. Random forest. Journal of Insurance Medicine 47, 1 (2017),
31–39.

[32] David Schneider. 2022. The Exascale Era is Upon Us: The Frontier supercomputer
may be the first to reach 1,000,000,000,000,000,000 operations per second. IEEE
Spectrum 59, 1 (2022), 34–35.

[33] Denis Shaykhislamov and Vadim Voevodin. 2018. An approach for dynamic
detection of inefficient supercomputer applications. Procedia Computer Science
136 (2018), 35–43.

[34] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. 2022. Tranad: Deep
transformer networks for anomaly detection in multivariate time series data.
arXiv preprint arXiv:2201.07284 (2022).

[35] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J Leung, Manuel
Egele, and Ayse K Coskun. 2018. Online diagnosis of performance variation
in HPC systems using machine learning. IEEE Transactions on Parallel and
Distributed Systems 30, 4 (2018), 883–896.

[36] Cong Xie, Wei Xu, and Klaus Mueller. 2018. A visual analytics framework for
the detection of anomalous call stack trees in high performance computing
applications. IEEE transactions on visualization and computer graphics 25, 1 (2018),
215–224.

[37] Yijia Zhang, Taylor Groves, Brandon Cook, Nicholas J. Wright, and Ayse K.
Coskun. 2020. Quantifying the impact of network congestion on application
performance and networkmetrics. In 2020 IEEE International Conference on Cluster
Computing (CLUSTER). 162–168. https://doi.org/10.1109/CLUSTER49012.2020.
00026

[38] Yijia Zhang, Taylor Groves, Brandon Cook, Nicholas JWright, and Ayse K Coskun.
2020. Quantifying the impact of network congestion on application performance
and network metrics. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 162–168.

https://doi.org/10.1109/CLUSTER49012.2020.00026
https://doi.org/10.1109/CLUSTER49012.2020.00026

	Abstract
	1 Introduction
	2 Background
	3 Success Stories and Challenges with ML-based Frameworks
	3.1 Evaluation Metrics
	3.2 Supervised Frameworks
	3.3 Relaxing the Label Requirement
	3.4 Anomaly Detection without Supervision
	3.5 ML-based Frameworks at Scale

	4 Open Problems and Next Steps
	Acknowledgments
	References

