
Step-by-Step Vulnerability Detection using Large Language Models
Saad Ullah 1 Ayse Coskun 1 Alessandro Morari 2 Saurabh Pujar 2 Gianluca Stringhini 1

1Boston University 2IBM Research

Motivation

Vulnerability detection is a very critical task for systems security.

Current analysis techniques suffer from the trade-off between coverage and accuracy.

ML-based* analysis tools are non-robust, black-box and unreliable to use in real-world [1].

LLMs* demonstrate revolutionizing capabilities for programming language-related tasks but

they are also studied in a black-box fashion for both vulnerability detection and its repair.

Security experts follow a step-by-step approach for vulnerability detection. Can using the

same approach help LLMs performing better at the vulnerability detection task?

Objective

Design a framework to emulate step-by-step reasoning process of a human

security expert using LLMs, to efficiently detect vulnerabilities in source code.

Methodology

Our approach uses few-shot in-context learning to guide LLMs to follow a step-by-step

human-like reasoning model for vulnerability detection.

We make sure that the model first generates chain-of-thought reasoning [5] and then makes

a decision based on that reasoning (as shown in Figure 1 and 3b).

Figure 1. Overview of our few-shot in-context learning approach for vulnerability detection using LLMs.

* ML = Machine Learning

LLM = Large Language Model

Visualizing the Process of Vulnerability Detection

Figure 2. Code Snippet from the MITRE Out-of-Bound

Write Vulnerability (CWE-787).

In this experiment, we study the behavior of an

LLMwhen it is asked to detect a vulnerability in

two different scenarios. First, when it is asked

to give a direct answer (Figure 3a); and second,

when it is first asked to perform human-expert

like reasoning and then make a decision (Figure

3b).

We choose GPT-3.5 as an LLM and a code snip-

pet (shown in Figure 2) containing an out-of-

bound write vulnerability as a running example.

(a) Standard Prompting.

(b) Step-by-Step Reason Prompting.

Figure 3. Vulnerability Analysis using GPT-3.5

Evaluation

Figure 3 shows that step-by-step reasoning guides the LLM to detect the (CWE-787)

vulnerability.

To systematically evaluate this approach, we create our own diverse synthetic dataset based

on a subset of the MITRE 2022 top 25 most dangerous vulnerabilities.

For each vulnerability we create vulnerable examples and their patches with varying levels

of complexity.

We use the ‘gpt-3.5-turbo-16k’ chat API to compare our approach with SoTA tools (Table 1).

Tool/Model Description Size F1 Precision

cppcheck, infer,

flawfinder

Combination of SoTA static analysis (SA) tools

for C/C++ - 0.49 0.53

UniXcoder
RoBERTa-based model fine-tuned for defect

detection in C/C++ 126M 0.33 0.25

CodeT5+ LLM specifically pre-trained for progamming

langauges-related tasks, including C/C++ 16B 0.46 0.54

GPT-3.5 GPT-3.5 without reasoning 175B 0.48 0.50
Our approach

with GPT-3.5
GPT-3.5 with step-by-step reasoning 175B 0.70 0.72

Table 1. Evaluation of different vulnerability analysis techniques on our dataset.

Takeaways

Following a human-like step-by-step reasoning approach helps LLMs to efficiently analyze

code and detect vulnerabilities.

Our approach provides an explanation for the detected vulnerabilities, which helps user to

better contextualize them and to find their root cause.

Systematic evaluation of this approach on real-world datasets is still required to determine

its reliability in real-world use cases.

References

[1] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, and Fabio Pierazzi.

Dos and don’ts of machine learning in computer security, 2021.

[2] Mark Chen, Jerry Tworek, and Heewoo Jun.

Evaluating large language models trained on code, 2021.

[3] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and Michelle L. Mazurek.

An observational investigation of reverse Engineers’ processes, 2020.

[4] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.

Hackers vs. testers: A comparison of software vulnerability discovery processes, 2018.

[5] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.

Chain-of-thought prompting elicits reasoning in large language models, 2023.

The 32nd USENIX Security Symposium on August 9 - 11, 2023 {saadu, gian, acoskun}@bu.edu amorari@us.ibm.com saurabh.pujar@ibm.com


