Motivation

Step-by-Step Vulnerability Detection using Large Language Models

Saad Ullaht

= Vulnerability detection is a very critical task for systems security.

= Current analysis technigues suffer from the trade-off between coverage and accuracy.

= ML-based™ analysis tools are non-robust, black-box and unreliable to use in real-world [1].

= LLMs* demonstrate revolutionizing capabilities for programming language-related tasks but
they are also studied in a black-box fashion for both vulnerability detection and its repair.

= Security experts follow a step-by-step approach for vulnerability detection. Can using the
same approach help LLMs performing better at the vulnerability detection task?

Objective

Design a framework to emulate step-by-step reasoning process of a human
security expert using LLMs, to efficiently detect vulnerabilities in source code.

Methodology

= QOur approach uses few-shot in-context learning to guide LLMs to follow a step-by-step
human-like reasoning model for vulnerability detection.

= \We make sure that the model first generates chain-of-thought reasoning [5] and then makes

a decision based on that reasoning (as shown in Figure 1 and 3b).

Model Prompt

Code 1

Step-by-Step
Reasoning for
Code 1

Decision for
Code 1

Code 2

=)

LLM

Code analyzed by human

Code analyzed by LLM

—

Model Output

Step-by-Step
Reasoning for
Code 2

Decision for
Code 2

Figure 1. Overview of our few-shot in-context learning approach for vulnerability detection using LLMs.

* ML = Machine Learning

LLM = Large Language Model

The 32nd USENIX Security Symposium on August 9 - 11, 2023

Ayse Coskun! Alessandro Morari= Saurabh Pujar= Gianluca Stringhini *

1Boston University

2|BM Research

Visualizing the Process of Vulnerability Detection Evaluation

In this experiment, we study the behavior of an
LLM when it is asked to detect a vulnerability in
two different scenarios. First, when it is asked
to give a direct answer (Figure 3a); and second,
when it is first asked to perform human-expert
ike reasoning and then make a decision (Figure

3b).

We choose GPT-3.5 as an LLM and a code snip-
pet (shown in Figure 2) containing an out-of-
bound write vulnerability as a running example.

_ . = Figure 3 shows that step-by-step reasoning guides the LLM to detect the (CWE-787)
void host_lookup(char xuser_supplied_addr){ -
struct hostent *hp; vulnerability.

in_addr_t xaddr;
char hostname[64];

I e @ Ao eebiricenst di el = To systematically evaluate this approach, we create our own diverse synthetic dataset based
on a subset of the MITRE 2022 top 25 most dangerous vulnerabilities.

= For each vulnerability we create vulnerable examples and their patches with varying levels

validate_addr_form(user_supplied_addr); .
addr = inet_addr(user_supplied_addr); C)f (ZC)FT1L)|€E><It\/.
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);

strcpy(hostname, hp->h_name) ; = We use the ‘gpt-3.5-turbo-16k’ chat APl to compare our approach with SoTA tools (Table 1).

Figure 2. Code Snippet from the MITRE Out-of-Bound Tool/Model Description Size F1 Precision
Write Vulnerability (CWE-787).

4[Model Prompt]

Q: Code (Figure 2): ...

Is the given code potentially vulnerable to out-of-bounds write?

cppcheck, infer,| Combination of SoTA static analysis (SA) tools | 049 053
flawfinder for C/C++ ' '
UniXcoder RoBERTa-based model fine-tuned for defect 196M 1033 1095

detection in C/C++
LLM specifically pre-trained for progamming

Codelo+ langauges-related tasks, including C/C++ 1B 046 10.54

4[Model Output }

A: No, the given code is not potentially vulnerable to out-of-bounds write. ... x

GPT-3.5 GPT-3.5 without reasoning 175B 10.48 10.50
Our approach

with GPT-3.5 GPT-3.5 with step-by-step reasoning 1/5B 10.70 |0.72
(a) Standard Prompting. Table 1. Evaluation of different vulnerability analysis technigues on our dataset.
—[Model Prompt]
Takeaways

Q: Code (Figure 2): ...

Q: Vulnerable code snippet example: .

A: Step-by-step analysis by human: ...

Decision by human on the presence of vulnerability: ...

= Following a human-like step-by-step reasoning approach helps LLMs to efficiently analyze
code and detect vulnerabilities.

= Our approach provides an explanation for the detected vulnerabilities, which helps user to

better contextualize them and to find their root cause.

4[Model Output]

A: Overview:

Sub-components:

format for conversion.

Analysis:
1

in a buffer overflow.

Decision:

and buffer overflow ... J

It is a function called "host_lookup™ that performs a reverse DNS lookup to find
the hostname associated with a given IP address.

3. "char hostname[64]" is an array that will store the hostname.
4. "inet_addr" converts an |IP address string to its binary form. [1] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, and Fabio Pierazzi.
5. "validate_addr_form" ensures the user-supplied address is in the correct

2. The code does not check if "gethostbyaddr” returns NULL. If it does,
accessing "hp->h_name" will result in a segmentation fault.

3. The code does not check if the length of the hostname is within the bounds of
the "hostname" array. If the hostname is longer than 63 characters, it will result

Based on the above analysis steps, the code is vulnerable to segmentation faults

= Systematic evaluation of this approach on real-world datasets is still required to determine
its reliability in real-world use cases.

References

Dos and don'ts of machine learning in computer security, 2021.

[2] Mark Chen, Jerry Tworek, and Heewoo Jun.
Evaluating large language models trained on code, 2021.

[3] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S. Foster, and Michelle L. Mazurek.
An observational investigation of reverse Engineers’ processes, 2020.

[4] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.
Hackers vs. testers: A comparison of software vulnerability discovery processes, 2018.

[5] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.
Chain-of-thought prompting elicits reasoning in large language models, 2023.

TON

SeclaBU [[rsi i =

VERSITY

‘ | Red Hat
Research

T

(b) Step-by-Step Reason Prompting.

Figure 3. Vulnerability Analysis using GPT-3.5

{saadu, gian, acoskunl@bu.edu amorari@us.ibm.com saurabh.pujar@ibm.com

