
MicroFaaS on OpenFaaS: An Embedded
Platform for Running Cloud Functions

Abin B. George†, Anthony Byrne† and Ayse K. Coskun†
†Boston University, Boston, MA 02215; Emails: {abg309, abyrne19, acoskun}@bu.edu

Abstract—Function-as-a-Service (FaaS) platforms present a new
cloud computing paradigm by enabling serverless deployment and
execution of functions. MicroFaaS, a cost-effective and energy-
efficient datacenter architecture, replaces x86-based rack servers
with ARM-based single-board computers (SBCs). This paper
focuses on enhancing MicroFaaS by incorporating OpenFaaS,
a popular secure function building and deployment framework.
Through extensive experimentation, MicroFaaS on OpenFaaS
showcases improved energy efficiency, ease-of-use, and scalability
over traditional cloud systems.

Index Terms—serverless, function-as-a-service, single-board
computers, OpenFaaS

I. INTRODUCTION

The success of cloud computing has been primarily driven by
the desire to increase efficiency. This has led to the development
of function-as-a-service (FaaS), a cloud computing paradigm in
which developers can deploy stateless functions to be hosted
and managed by a cloud platform.

Current cloud computing hardware implementations rely on
traditional x86 CPUs, despite their poor energy efficiency
compared to modern alternatives. The result is that cloud
computing datacenters consumed over 1% of all electricity used
globally in 2020 [1], [2]. Previously, we introduced MicroFaaS,
an alternative hardware model that breaks datacenters free from
their traditional reliance on x86-based rack servers [3]. In this
new iteration, we propose MicroFaaS on OpenFaaS, which uses
the same hardware model of MicroFaaS but adds an OpenFaaS
plug-in that allows users to more easily access and run FaaS
workloads on MicroFaaS.

MicroFaaS on OpenFaaS1 is a FaaS-focused datacenter hard-
ware model that executes FaaS functions on ARM-based single-
board computers (SBCs) via OpenFaaS. The use of ARM-based
SBCs provide a cheaper, more secure, and more energy-efficient
alternative than x86 rack server models by taking advantage of
the stateless and granular nature of serverless functions.

The key difference between the two iterations of MicroFaaS
is the orchestration platform. The previous version used proof-
of-concept cluster orchestration software to demonstrate feasi-
bility. However, in this paper, OpenFaaS, a popular open-source
FaaS framework, is incorporated as the orchestration platform
for MicroFaaS. This integration enhances the deployment and
execution of functions on MicroFaaS, making it easier for cloud
platform users. The purpose of incorporating OpenFaaS is to
provide an updated model of MicroFaaS that aligns with the
current framework for FaaS workloads.

1MicroFaaS on OpenFaaS is open-source and available to the community at
github.com/peaclab/MicroFaaS.

py
ae

s

reg
ex

-se
arc

h
zli

b

red
is-

mod

red
is-

ins

floa
t-o

ps

htm
l-g

en

rea
d-k

afk
a

reg
ex

-m
atc

h
fw

rit
e

ca
sc-

sh
a2

56

up
loa

d-k
afk

a

ps
ql-

pu
r

ps
ql-

inv

ca
sc-

md5
20
40
60
80
100

%
of

To
ta

l
E

xe
cu

tio
n

Ti
m

e

Networking

Computation

Figure 1: Function Profiling

II. METHODS

Our MicroFaaS prototype utilizes multiple BeagleBone
Black SBCs, each containing a single-core 1GHz ARM Cortex-
A8 microprocessor. The MicroFaaS prototype includes an
orchestrator SBC, which is responsible for turning on the
available worker node, and 10 worker SBCs. Each SBC worker
node runs serverless functions using a MicroPython interpreter,
following a single-tenant, run-to-completion model. Details on
optimizing the minimal OS for worker nodes and execution
model of the worker nodes can be found in our previous
paper [3].

The main difference in our new MicroFaaS version is the
adoption of OpenFaaS as the orchestrator. OpenFaaS simplifies
the deployment and invocation of serverless functions for cloud
computing users. A user interacts with an OpenFaaS gateway
through its CLI or web interface, which directs requests to
the MicroFaaS cluster. Using the OpenFaaS provider API,
MicroFaaS sends a JSON object containing the function name
along with the function parameters to invoke functions on
worker nodes. Workers execute functions with provided inputs
and return outputs via the OpenFaaS gateway. After 15 seconds
of inactivity, workers power off to conserve energy.

In order to verify the feasibility of MicroFaaS as an energy-
efficient alternative to conventional serverless platforms, we
evaluate the MicroFaaS system against an x86-based rack
server (AMD 12-core processor) by running 1,000 invocations
of a series of workload functions (Table I). To compare the
two cloud computing platforms fairly, we ran the workload
functions via OpenFaaS on the x86 server with 1, 6, and 12
threads. We also conducted function profiling using utilities
nload and operf to characterize the functions as either “CPU
Intensive” or “Network Intensive” (Figure 1).

III. EVALUATION RESULTS

Experimental results show that MicroFaaS on OpenFaaS is
more energy-efficient than conventional rack servers, with an
average 50% reduction in energy consumption per function.

https://github.com/peaclab/MicroFaaS


TABLE I: Workload Functions
Name Description Name Description
FloatOps* floating-point

trigonometric
operations

RedisInsert insert Redis key-value
record

CascSHA cascading SHA256
hash calculations

RedisUpdate update Redis key-
value record

CascMD5 cascading MD5 hash
calculations

SQLSelect query our Postgre-
SQL server using SE-
LECT

HTMLGen dynamically generate
and serve HTML

SQLUpdate query our Postgre-
SQL server using UP-
DATE

Decompress* extract a DEFLATE-
compressed string

MQProduce send message to
Kafka topic

Pyaes cascading AES128
encryption/decryption

MQConsume receive message from
Kafka topic

RegExSearch find all regular expr.
matches in input

Fwrite write to a file on the
server.

RegExMatch determine if input
matches regular expr.

*Adapted from or inspired by FunctionBench [4].

0 2 4 6 8 10 12
0

500

T
hr

ou
gh

pu
t

(f
un

c/
m

in
)

Server MicroFaaS

0 2 4 6 8 10 12

20
40
60
80

Number of Workers

E
ne

rg
y

U
se

(J
/f

un
c)

Figure 2: Throughput and energy use of MicroFaaS on Open-
FaaS and conventional server.

Our results also show that conventional servers draw at least 4
times as much power as MicroFaaS on OpenFaaS to run the
same function (Figure 4).

However, Figure 3 shows that MicroFaaS on OpenFaaS
spends more time executing workload functions than the x86-
based servers. Similarly, Figure 2 indicates that MicroFaaS
on OpenFaaS has a lower throughput than that of the x86-
based servers. This difference is expected due to the higher
FLOPS capacity of the x86 server’s processor and network
card, enabling faster execution of computation- and network-
intensive tasks than MicroFaaS.

An additional advantage of MicroFaaS on OpenFaaS over
conventional rack servers is in cost. We conduct a cost analysis
based on the total cost of ownership (TCO) model used in
our previous paper [3]. Table II shows that MicroFaaS on
OpenFaaS is ∼33% less expensive than the conventional rack
server. This is mainly due to low SBC hardware costs and the
energy-efficient design of MicroFaaS.

Comparing both iterations of MicroFaaS, adding OpenFaaS
typically increases execution times and subsequently reduces
throughput on average. However, the power consumption of
both MicroFaaS iterations remain unchanged as they share the
same hardware and execution model. Note that the purpose
of including OpenFaaS is not to improve performance, but to
provide a more accessible framework to use MicroFaaS.

regex-search zlib float-ops html-gen regex-match fwrite
0

5

10

Ti
m

e
(m

s)

MicroFaaS Working MicroFaaS Overhead Conventional Working Conventional Overhead

pyaes

redis-m
od

redis-i
ns

read-kafka

casc-sh
a256

upload-kafka
psql-pur

psql-in
v

casc-md5
0

100
200
300

Ti
m

e
(m

s)

Figure 3: Performance Evaluation

0 2 4 6 8 10 12
0

20
40
60
80
100
120
140

Number of Workers

A
ve

ra
ge

Po
w

er
C

on
su

m
pt

io
n

(W
) Server

MicroFaaS

Figure 4: Power Evaluation

TABLE II: 5-Year Single Rack Lifetime Cost Comparison*
Ideal Realistic

(100% Util., 100% OR) (50% Util., 95% OR)
Expense Conventional MicroFaaS Conventional MicroFaaS
Compute $82,451 $51,923 $86,791 $54,655
Network $574 $12,280 $574 $12,280
Energy $41,303 $17,884 $29,056 $11,778
Total $124,328 $82,087 $116,421 $78,713

*Based on TCO model by Cui [5]. Costs shown in U.S. dollars.

IV. CONCLUSION
Previously, MicroFaaS demonstrated a proof-of-concept pro-

totype that provided an energy-efficient alternative to conven-
tional FaaS platforms. In this paper, we present MicroFaaS
on OpenFaaS creating an easier-to-use and more accessible
method of running FaaS functions on MicroFaaS, while main-
taining energy- and cost-efficiency.

ACKNOWLEDGEMENT
The authors thank A. Zou and Y. Pang for their contributions

to the first iteration of MicroFaaS. This work has been partially
funded by the Boston University UROP.

REFERENCES

[1] E. Masanet et al., “Recalibrating global data center energy-use estimates,”
Science, vol. 367, no. 6481, pp. 984–986, Feb. 2020. [Online]. Available:
https://doi.org/ggm3sk

[2] C. Jiang et al., “Energy proportional servers: Where are we in 2016?”
in 37th Int. Conf. Distrib. Comput. Sys. (ICDCS). IEEE, 2017, pp.
1649–1660. [Online]. Available: https://doi.org/gmsk69

[3] A. Byrne et al., “Microfaas: Energy-efficient serverless on bare-metal
single-board computers,” in Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2022, pp. 754–759.

[4] J. Kim and K. Lee, “FunctionBench: A suite of workloads for serverless
cloud function service,” in 12th Int. Conf. Cloud Comput. (CLOUD).
IEEE, Jul. 2019, pp. 502–504. [Online]. Available: https://doi.org/gmsk64

[5] Y. Cui et al., “Total cost of ownership model for data center
technology evaluation,” in 16th Intersoc. Conf. Thermal and Thermomech.
Phenomena in Electron. Sys. (ITherm), 2017, pp. 936–942. [Online].
Available: https://doi.org/gmtnbh

https://doi.org/ggm3sk
https://doi.org/gmsk69
https://doi.org/gmsk64
https://doi.org/gmtnbh

	Introduction
	Methods
	Evaluation Results
	Conclusion
	References

