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Abstract—Distributed tracing has become an essential tool
to navigate performance of complex, distributed cloud-native
applications, providing a comprehensive view of a request from
end-to-end. However, the sheer amount of data generated by
distributed tracing can be overwhelming, making it difficult to store,
process, and extract meaningful insights. This paper presents the
vision of ’nuffTrace that embodies a novel tree-based probabilistic
data structure that summarizes trace data in a compact form without
storing all of the data, enabling developers to analyze cloud application
performance with high accuracy and efficiency.

I. INTRODUCTION

Distributed cloud applications are susceptible to performance
fluctuations caused by various factors, such as performance
bugs or faulty code launches. Such fluctuations can lead to
extended recovery times in the cloud as problems spread across
interdependent services. Delays in debugging problems result in
costly downtime and reduced user satisfaction [1]–[3].

With the large and complex nature of cloud application
architectures, it can be challenging to understand how a single
request is processed. This makes it difficult to locate the source of
unexpected slowdowns in request latency, particularly in the event
of a performance issue.

Distributed tracing has emerged to address this problem by
offering a means to track a request’s journey as it travels from one
service to another in the cloud. Distributed tracing uses unique
trace IDs that are propagated through the system as a service calls
further services to process a single request, allowing for a complete
end-to-end view of a request.

A trace consists of detailed timing information about how a single
user request traverses the system, recording spans that represent
the starting/ending time and causal relationships of operations being
performed. Extensive research has demonstrated the efficacy of
distributed tracing as a powerful tool for debugging [4]–[7]. By
offering end-to-end visibility into requests, distributed tracing assists
in identifying performance bottlenecks, conducting performance
analysis, and troubleshooting in distributed cloud applications.

While distributed tracing offers numerous advantages, the
amount of data generated is often large and overwhelming, making
it difficult to store, process, and extract meaningful insights. For
example, Netflix [8] comprises hundreds of microservices that
interact with each other to offer users a seamless and highly
available streaming experience. To guarantee the platform’s
reliability and performance, Netflix employs distributed tracing to
monitor and analyze the flow of requests and responses between
services. In just one hour of operation, the system generates tens of
millions of trace events, including information such as timestamps,

trace IDs, and more. Consequently, storing and processing GB/s
trace data poses a significant challenge, necessitating substantial
storage capacity and processing power. By the same token,
analyzing this data in a meaningful way is difficult, necessitating
advanced data analysis tools and techniques to extract insights.

There is an emerging need for a resource and computationally
efficient system to handle the vast amounts of tracing data and help
extract meaningful insights. We claim that such a system can be
accomplished by approximating trace statistics from a compressed
representation of data. To realize this vision, we are developing
a prototype system called ’nuffTrace that stores trace summaries
in a resource-efficient manner while providing developers with
substantially accelerated and highly accurate performance analysis
of cloud applications. This paper provides promising results on a
prototype implementation of ’nuffTrace.

II. THE ’NUFFTRACE APPROACH

The end-to-end view of ’nuffTrace is depicted in Figure 1. An
essential feature of ’nuffTrace is a tree-based probabilistic data
structure that organizes and summarizes large trace data in a
compact form without having to store all the data. Probabilistic data
structures summarize information efficiently, while the tree-based
organization captures the hierarchical nature of tracing, including
user requests, services, and operations within the services.

’nuffTrace processes incoming traces and populates summaries
of end-to-end request, service, and operation durations in our
tree-based data structure. Rather than storing all individual
observations, ’nuffTrace retains only enough information to
maintain approximate representative values with a small relative
error tolerance. This lightweight data structure, which only occupies
kilobytes of storage for thousands of traces (as shown in our
evaluation), allows ’nuffTrace to efficiently surface aggregate
summaries (e.g., various percentiles of a request, service, or
operation latency) and provide valuable insights (e.g., operations
that contribute to request slow-downs) that enable developers to
efficiently and swiftly navigate performance, and even help locate
the source of performance issues in cloud applications.

We use probabilistic data structures to approximate quantiles. In a
traditional solution, computing the exact percentile value of a stream
of values requires retaining and sorting them. Instead, we propose
a novel data structure that stores representative values that are
close enough to one another. This enables us to map any observed
latency value to one of the representatives with only a small loss in
accuracy. To achieve this, we bucketize the range of latency values
and choose the middle values of the buckets as representatives.



Fig. 1: End-to-end view of ’nuffTrace .

(a) Query durations for Train ticket. (b) Memory footprints for Train ticket. (c) Quantile error rates for Train ticket.

Fig. 2: ’nuffTrace vs. Plain approach comparison for Train Ticket application. The figure presents durations for computing various
quantiles (of requests, services, operations) with ’nuffTrace vs. Plain, memory footprints of ’nuffTrace and Plain, and approximation
error rate of ’nuffTrace.

Our data structure is a combination of α-accurate q-quantile
sketch [9] and count-min sketch [10]. The α-accurate q-quantile
sketch divides the range of latency values into buckets, with each
bucket counting the number of values that fall between (γi−1,γi],
where γ = (1 + α)/(1 − α). Given a latency value of x, it is
assigned to the bucket indexed by ⌈logγx⌉ with the bucket width
growing exponentially. we extract the span latency observations and
self-execution times of spans (which captures latency propagation
by subtracting child execution times from the parent span), to
populate the ’nuffTrace data structure.

III. EXPERIMENTAL RESULTS

Figure 2 compares the query duration, accuracy (by measuring
error rates of approximated quantiles), and memory usage of two
methods: ’nuffTrace and a Plain approach that uses raw traces
to calculate the precise quantiles on Train Ticket [11] application
traces. The Plain approach is used by systems such as tprof [1],
which hierarchically groups traces by request types and trace
structures, and calculates increasingly detailed aggregated statistics.
Our method demonstrates faster query durations compared to
the Plain approach. This is because we iterate a fixed number of
buckets of quantile sketch, retrieve corresponding counts from
count-min sketch, and approximate quantiles, while Plain needs
to iterate all traces, extract statistics, and sort to calculate the exact
percentiles. Our computational efficiency gains become more
significant as the number of traces increases (216x for 2000 traces).
Compared to Plain aggregation of traces, NuffTrace requires much
less memory, usually only a few kilobytes, while the Plain traces
can consume several megabytes (or even gigabytes/terabytes in
production systems). The magnitude of our savings becomes more
significant as the number of traces increases (234x for 2000 traces).

We measure the loss of information by calculating error rates for
quantile estimation of span durations. Our approximations allow
for a small error that is typically below 1%, which further justify
the computational and resource savings we achieve.
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