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ABSTRACT

Over the last few decades, processor performance has continued to grow due to the down-

scaling of transistor dimensions. This performance boost has translated into high power

densities and localized hot spots, which decrease the lifetime of processors and increase

transistor delays and leakage power. Conventional on-chip cooling solutions are often

insufficient to efficiently mitigate such high-power-density hot spots. Emerging cooling

technologies such as liquid cooling via microchannels, thermoelectric coolers (TECs), two-

phase vapor chambers (VCs), and hybrid cooling options (e.g., of liquid cooling via mi-

crochannels and TECs) have the potential to provide better cooling performance compared

to conventional cooling solutions. However, these potential solutions’ cooling performance

and cooling power vary significantly based on their design and operational parameters (such

as liquid flow velocity, evaporator design, TEC current, etc.) and the chip specifications.

In addition, the cooling models of such emerging cooling technologies may require addi-

tional Computational Fluid Dynamics (CFD) simulations (e.g., two-phase cooling), which

are time-consuming and have large memory requirements. Given the vast solution space
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of possible cooling solutions (including possible hybrids) and cooling subsystem parame-

ters, the optimal solution search time is also prohibitively time-consuming. To minimize

the cooling power overhead while satisfying chip thermal constraints, there is a need for

an optimization flow that enables rapid and accurate thermal simulation and selection of

the best cooling solution and the associated cooling parameters for a given chip design and

workload profile.

This thesis claims that combining the compact thermal modeling methodology with

machine learning (ML) models enables rapidly and accurately carrying out thermal simu-

lations and predicting the optimal cooling solution and its cooling parameters for arbitrary

chip designs. The thesis aims to realize this optimization flow through three fronts. First,

it proposes a parallel compact thermal simulator, PACT, that enables speedy and accurate

standard-cell-level to architecture-level thermal analysis for processors. PACT has high

extensibility and applicability and models and evaluates thermal behaviors of emerging in-

tegration (e.g., monolithic 3D) and cooling technologies (e.g., two-phase VCs). Second,

it proposes an ML-based temperature-dependent simulation framework designed for two-

phase cooling methods to enable fast and accurate thermal simulations. This simulation

framework can also be applied to other emerging cooling technologies. Third, this the-

sis proposes a systematic way to create novel deep learning (DL) models to predict the

optimal cooling methods and cooling parameters for a given chip design. Through experi-

ments based on real-world high-power-density chips and their floorplans, this thesis aims to

demonstrate that using ML models substantially minimizes the simulation time of emerg-

ing cooling technologies (e.g., up to 21×) and improves the optimization time of emerging

cooling solutions (e.g., up to 140×) while achieving the same optimization accuracy com-

pared to brute force methods.
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Chapter 1

Introduction

1.1 Motivation and Key Contributions

Over the last few decades, on-chip power densities have grown tremendously following the

down-scaling of transistors. Power densities that reach 1-2 KW/cm2 caused by the per-

formance boost of scaling already occur in high-performance chips and result in amplified

localized hot spots (Schultz et al., 2016). These on-chip hot spots not only degrade the

performance of the chip but also generate larger sub-threshold leakage power and create

reliability challenges (Schultz et al., 2016; Saini and Mehra, 2012).

Conventional on-chip cooling solutions such as forced air cooling via fans or pin-fin

heat sinks are often insufficient to mitigate high-power-density hot spots and result in

over/under-cooling. Emerging cooling technologies such as liquid cooling via microchan-

nels (Dang et al., 2010), thermoelectric coolers (TECs) (Chowdhury et al., 2009), two-

phase vapor chambers (VCs) (Bulut et al., 2019), and hybrid cooling options (Yazawa

et al., 2012) (e.g., of liquid cooling via microchannels and TECs) have the potential to pro-

vide better cooling performance compared to the conventional cooling solutions. However,

there is no obvious winner in terms of cooling efficiency among all these emerging cooling

technologies. These potential solutions’ cooling performance and cooling power vary sig-

nificantly based on the cooling parameters (such as liquid flow velocity, evaporator design,

TEC current, etc.) (Yuan et al., 2020; Yuan et al., 2019a; Yuan et al., 2019b). The cool-

ing technologies and the cooling parameters also need to consider the chip architecture,

chip size, floorplan, and the power profiles of the applications running on the given chip.
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To minimize the cooling power while satisfying chip thermal constraints, there is a need

for an optimization flow that enables rapid and accurate selection of the optimal cooling

solution and the associated cooling parameters for a given chip and application profile.

A key enabler to such a cooling design optimization flow is a set of accurate and fast

models for various cooling technologies. A common approach towards this direction is us-

ing compact thermal models (CTMs) that model heat dissipation with an equivalent lumped

circuit model (Pedram and Nazarian, 2006). However, existing thermal simulation tools are

limited by several major challenges that prevent them from providing fast solutions to large

problem sizes, which are necessary to conduct standard-cell-level thermal analysis or to

evaluate new technologies or large chips. In addition, some specific cooling methods, such

as two-phase cooling methods, require additional Computational Fluid Dynamics (CFD)

simulations. CFD simulations are often time-consuming and have large memory require-

ments (e.g., simulating a mm-scale chip model can take from hours to multiple days and

easily requires tens of GBs of memory). Given the vast solution space of possible cooling

solutions (including possible hybrids) and cooling parameters, the optimal solution search

time is still prohibitively time-consuming with CTMs (Yuan et al., 2019a). In addition to

cooling design choice possibilities, the optimization flow also needs to consider the specific

chip design and power profile changes. In this case, using a simple grid search to find the

optimal cooling design for even a small-sized chip floorplan and its typical power profile

could easily take up to days (Yuan et al., 2019a).

This thesis claims that combining a compact thermal modeling methodology with ma-

chine learning (ML) models enables rapidly and accurately predicting the optimal cool-

ing solution and its cooling parameters for arbitrary chip designs.

The thesis aims to realize this optimization flow through three fronts:

• Enabling fast and accurate parallel thermal simulations with PACT: We pro-
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pose a parallel compact thermal simulator, PACT1, that enables speedy and accurate

standard-cell-level to architecture-level thermal analysis for processors. PACT has

the following features: (i) it utilizes the parallelism in modern computing systems

to conduct parallel thermal simulations to speed up the process of solving problems

with a large number of grid nodes (e.g., for standard-cell-level problems or model-

ing the ultra-thin layers in a monolithic 3D stack), (ii) it offers support for various

steady-state and transient solvers to speed up simulation time while maintaining the

desired accuracy level, and (iii) it can be easily extended to support emerging integra-

tion and cooling technologies by modifying the thermal netlist. We interface PACT

with OpenROAD (Ajayi et al., 2019), an end-to-end silicon compiler to allow the

evaluation of thermal behaviors of full standard-cell-level industry designs directly.

We validate PACT’s accuracy by comparing it to COMSOL, using full standard-cell-

level industrial designs provided by OpenROAD. Compared to COMSOL, PACT

has a maximum temperature error of 2.77% for steady-state and 3.28% for transient

simulation. To demonstrate the applicability of PACT, we run standard-cell-level to

architecture-level thermal simulations with realistic 2D and monolithic 3D integrated

circuits (ICs) using PACT and a well-known compact thermal simulator, HotSpot

(Skadron et al., 2003). Compared to HotSpot, PACT reduces the steady-state simu-

lation time from more than 3 hours to only 16 minutes for simulating a monolithic

3D IC. PACT also speeds up the transient simulation time of a 256-core 2D IC from

more than three days to less than 19 minutes. When simulating the full standard-cell-

level industrial designs from OpenROAD, PACT shows up to 232× speedup with

the same accuracy level compared to HotSpot. PACT is able to model and evalu-

ate the thermal behaviors of emerging integration (e.g., monolithic 3D) and cooling

technologies (e.g., two-phase vapor chambers). Because of the fast simulation speed

and the high extensibility, PACT enables the co-design of the computing system and

1PACT is open-sourced at https://github.com/peaclab.

https://github.com/peaclab
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cooling system to achieve better energy efficiency or higher computing performance

improvements under the temperature constraints (see Chapter 3 for further details).

To further demonstrate the extensibility and applicability of PACT, we model lab-

grown diamond heat spreaders in PACT and conduct steady-state and transient ther-

mal simulations with various high-performance chips to evaluate the cooling per-

formance of lab-grown diamond heat spreaders. We run benchmark applications

on real-world-like high-performance chips using popular architecture-level perfor-

mance and power simulators to obtain transient power traces. The generated transient

power traces are used as inputs to PACT to perform transient thermal analysis with

lab-grown diamond heat spreaders and traditional copper heat spreaders. For each

high-performance chip under test, we evaluate the thermal maps, maximum temper-

ature reductions, and thermal gradient reductions with diamond heat spreaders versus

traditional copper heat spreaders. Simulation results show that lab-grown diamond

heat spreaders achieve maximum temperature and thermal gradient reductions of up

to 26.73◦C and 13.75◦C when compared to traditional copper heat spreaders, respec-

tively (see Chapter 3.5 for further details).

• Modeling emerging cooling methods via machine learning: We introduce ML-

enabled modeling methodologies for emerging cooling technologies. Two-phase

cooling with VCs is a prevalent cooling method for computing systems with tight

power and thermal budget (e.g., mobile systems) as it removes heat effectively and

requires minimum additional cooling power (Bulut et al., 2019). Developing fast and

accurate two-phase VCs thermal models facilitates early-stage design space explo-

ration and co-optimization for the computing system and this cooling technology. In

this thesis, we propose a steady-state CTM for two-phase VCs with micropillar wick

evaporators and use the CTM to compare the cooling performance (i.e., hot spot tem-

perature reductions and thermal gradients) against liquid cooling via microchannels
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and microchannel-based two-phase cooling (see Chapter 4.2 for further details). We

also propose a generalized ML-based temperature-dependent heat transfer coefficient

(HTC) simulation framework for two-phase cooling solutions. To demonstrate the

simulation speedup and accuracy of our proposed simulation framework, we build

a CTM for two-phase VCs with hybrid wick evaporators (of nanoporous membrane

and microchannels) and integrate it into our proposed simulation framework. Our

proposed ML-based simulation framework achieves a 21× speedup compared to the

COMSOL with an average error of 0.98◦C (see Chapters 4.3 and 4.4 for further

details). We further extend the ML-based thermal simulation framework with the

support of transient simulation and vapor core modeling (see Chapter 4.5 for further

details). To mitigate the on-chip thermal sensors inaccuracies, we propose an ML

and simulation-based temperature profile prediction methodology to predict the heat

map based on the measurements from the on-chip digital thermal sensors. Experi-

mental results when running a set of realistic benchmark applications show that our

proposed ML and simulation-based temperature profile prediction approach accu-

rately predicts temperatures within an error of less than 0.25◦C (see Chapter 4.6 for

further details).

• Optimizing emerging cooling methods for high-performance processors via deep

learning: Researchers have developed fast models for various emerging cooling

methods (Kaplan et al., 2014; Kaplan and Coskun, 2015; Kaplan et al., 2017; Kaplan

et al., 2019; Sridhar et al., 2013a; Sridhar et al., 2010; Sridhar et al., 2013b; Vaartstra

et al., 2019). To select and optimize a cooling solution for a given chip and power

profile, there is a need for a fast and accurate optimization flow that selects the most

power-efficient cooling solution and its cooling parameters for a given target chip

and power profile, such that the cooling power is minimized and the chip tempera-

ture stays below a safe threshold. To design such a cooling optimization flow, we
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perform two main steps. First, we propose the cooling parameters optimization flow

to optimize the cooling performance of two-phase VCs with micropillar wick and

hybrid wick evaporators. We demonstrate the accuracy and speedup of this cooling

parameters optimization flow against the exhaustive search approach. The proposed

two-phase VCs optimization flow is capable of finding better (or similar) cooling pa-

rameters than the exhaustive search approach with an average speedup of 4.37× (see

Chapter 5.2 for further details). Second, we design the target cooling optimization

flow that selects the most power-efficient cooling solution and its cooling parameters

for a given target chip and power profile (see Chapter 5.3 for further details). How-

ever, the optimization time of this cooling optimization flow still takes up to days

depending on the granularity of the cooling parameters solution space. To further

speed up the optimization time, we propose a systematic way to train novel deep

learning (DL) models to predict the optimal cooling methods and cooling parameters

for a given chip design at design time. A DL regression model learns the intrinsic

information among the chip designs and the cooling solutions, and then generates the

optimal cooling solution and the cooling parameters, given a specific chip floorplan

and power profile. We have designed multi-output convolutional neural networks

(CNNs) to estimate the best cooling method and its cooling design and technology

parameters. The cost function used to evaluate the output of the CNN is a func-

tion of cooling power, hot spot temperatures, and temperature constraint of the chip.

Our results confirm that, when compared to existing optimization methods with the

same cost function, our proposed CNN architectures and DL-based optimization flow

successfully predict the optimal cooling solution and cooling parameters with a max-

imum error of less than 4% and a maximum speedup of 140× (see Chapter 5.4 for

further details).
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1.2 Dissertation Organization

The rest of the thesis begins with a discussion on the background and related work of the

compact thermal modeling methodology, emerging cooling methods and their CTMs, and

optimization of emerging cooling methods for high-performance processors. In Chapter 3,

we introduce PACT, a fast and accurate parallel compact thermal simulator that has high

applicability and extensibility. We evaluate PACT’s accuracy and speed against existing

compact thermal simulators and present a case study on modeling lab-grown diamond heat

spreaders to demonstrate PACT’s applicability and extensibility. Chapter 4 shows the de-

tail of utilizing the compact thermal modeling methodology with ML models to build a

fast and accurate two-phase cooling simulation framework. We also discuss the ML and

simulation-based temperature profile prediction methodology in Chapter 4. In Chapter 5,

we discuss the optimization methods for the emerging cooling models we build in Chap-

ter 4 and provide the DL-based optimization flow that is used to search for the optimal

cooling method and its cooling parameters given a chip design and power profile.
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Chapter 2

Background and Related Work

This thesis proposes thermal modeling and optimization of emerging cooling methods us-

ing ML models to speed up the thermal simulation time and cooling methods optimization

time. In this chapter, we first briefly elaborate on the fundamental of compact thermal

modeling methodology. We continue to discuss popular emerging cooling methods for

processors and their corresponding CTMs. Finally, we discuss the potential optimization

angle to speed up optimization for the optimal cooling solution and its parameters for a

given chip design.

2.1 Compact Thermal Modeling Methodology

Compact thermal modeling has been designed to overcome the thermal simulation chal-

lenges of long simulation times and large memory requirements. A compact model lever-

ages the duality between electrical and thermal properties to model temperature (Pedram

and Nazarian, 2006).

The heat diffusion equation is generally used to describe the heat conduction and calcu-

late the temperature distribution of a chip. For homogeneous materials, the corresponding

heat equation is shown as follows:

ρcp
∂u
∂t

= k(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 )+q. (2.1)

In Equation (2.1), k is the thermal conductivity (W/mK), ρ is the density of the material

(kg/m3), cp is the specific heat (J/kgK), q is the power density (W/cm2), and u is the
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temperature (◦C) of the location (x, y, z) at time t. There is a well-known duality between

heat flow and electric current. The heat flow (W ) passing through a thermal resistor (◦C/W )

is represented as the electric current (A) flowing through an electrical resistance (Ω). The

corresponding temperature difference (◦C) is equivalent to the voltage drop (V ). In addition,

there is also a thermal capacitance (J/◦C) that describes how much heat is absorbed, which

is represented as the electric capacitance (F). Node temperature is then modeled as the

node voltage of an electric RC circuit as shown in Figure 2·1 (a). To model a chip with

multiple heat sources, heat conduction from each vertical and horizontal node is modeled

as thermal resistance. Node nk represents the temperature of the circuit block, and the

current source, ik, represents the power consumption of the corresponding node. v0 is the

ambient temperature, and Ck0 represents the thermal capacitance of the node. A thermal

RC network can be built based on the above parameters as shown in Figure 2·1 (b).

Figure 2·1: (a) A simple thermal RC circuit (Pedram and Nazarian, 2006). R is the
thermal resistor, C is the thermal capacitor, v0 is the ambient temperature, and v is the
temperature of the node. (b) An equivalent RC network to model temperature distribu-
tion (Pedram and Nazarian, 2006).

2.2 Emerging Cooling Technologies and CTMs

To overcome the high power density challenges for processor cooling, researchers have

developed several emerging cooling solutions targeting various architectures and cooling
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scenarios: (i) TECs are attractive due to their hot spot mitigation ability; (ii) liquid cool-

ing via microchannels can be used as an inter-layer cooling method to solve the thermal-

coupling problems for 3D-stacked chips; and (iii) compared to TEC and liquid cooling via

microchannels, hybrid cooling (of liquid cooling via microchannels and TEC) enhances

cooling performance while minimizing the cooling power. We next discuss emerging cool-

ing methods and compact thermal modeling methodologies for the aforementioned emerg-

ing cooling solutions.

2.2.1 TECs

TEC units have gained attraction due to their abilities to remove heat from high power

density hot spots effectively (Chowdhury et al., 2009). A TEC unit operates based on the

Peltier effect such that when an electric current passes through a TEC unit, heat is absorbed

from one side (cold side) and rejected on the other side (hot side) (Chowdhury et al., 2009;

Yazawa et al., 2012). TEC units are typically placed directly above hot spots. The amount

of heat removed by a TEC unit depends on the Seebeck coefficient (S), applied current (I),

electric resistance (ρT EC), and the temperature difference between the cold side and hot

side (Th−Tc). Superlattice-based thin-film TECs made of Bi2Te3 have high figure-of-merit

(ZT ) and are directly fabricated on the back of a silicon chip (Sahu et al., 2014; Chowdhury

et al., 2009). Existing on-chip TEC devices are composed of ultrathin (5–10 µm) Bi2Te3-

based p-n thermocouples sandwiched between copper mini-headers and are covered with

ceramic plates at the outmost surfaces to provide insulation(Chowdhury et al., 2009). The

terms that contribute to the heat flow in a TEC unit are shown as follows:

Qc = N(SITc −
Th −Tc

Rt
− 1

2
I2Re), (2.2)

Qh = N(SITh −
Th −Tc

Rt
+

1
2

I2Re), (2.3)
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where SITc is the Peltier effect term, Th−Tc
Rt

is the thermal conduction term, and 1
2 I2Re is the

Joule heating term represents by the heat generated by passing a current through the TEC.

Tc and Th represent the temperatures of the cold side and the hot side of TEC, respectively.

Rt is the thermal resistance and Re is the electrical resistance of a TEC unit (Kaplan et al.,

2019).

To model the thermal gradients caused by the Peltier effect, CTMs of TEC typically use

a voltage-controlled current source to represent the heat entering and leaving the TEC grid

cell (Chowdhury et al., 2009; Yazawa et al., 2012). The chip is divided into grid cells, and

the default grid cells are used to represent the processing layer (Figure 2·2 (a)). A typical

TEC grid cell is shown in Figure 2·2 (b). In this figure, the bottom surface of the TEC grid

cell represents the cold side of the TEC unit, whereas the bottom surface of the ceramic

grid cell corresponds to the hot side.

Several prior approaches have created similar CTMs for TECs and analyzed the cooling

performance of TECs. For example, a numerical CTM of TEC that includes both thermal

and electrical contact resistance predicts the cooling performance of TECs (Chowdhury

et al., 2009). Both the temperature measurements from real prototypes and thermal sim-

ulation results using TEC CTM show a maximum temperature reduction of 15◦C owing

to the cooling ability of TECs. The thermal resistance of TECs plays a significant role in

accurately determining the cooling performance of the TECs (Chowdhury et al., 2009). In

addition, TECs’ cooling performance is also highly correlated with the value of the bias

current.

Recent work has introduced another CTM of TEC to estimate the impact of the bias

current on the cooling performance of the TEC units (Kaplan et al., 2017). The TEC device

and the chip layers they modeled in COMSOL are illustrated in Figure 2·3. The authors

validated the accuracy of their proposed CTM of TEC by comparing the temperature results

against the TEC model in COMSOL. The reported max, average, and root mean square
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Figure 2·2: (a) Default grid cell and (b) TEC grid cell (Kaplan et al., 2017).

errors (RMSE) of their proposed CTM of TECs against COMSOL are 3.57◦C, 2.07◦C, and

2.25◦C, respectively. Compared to the COMSOL model, the reported speedup of the CTM

of TEC is 16900×, while the specific speedup number depends on the number of grids used

in CTM simulations and the number of nodes used in COMSOL simulations.

Figure 2·3: COMSOL model of the TEC device (Kaplan et al., 2017).
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2.2.2 Liquid Cooling via Microchannels

Liquid cooling via microchannels is an attractive cooling solution that uses the liquid con-

vection effect to remove heat from processors (Sridhar et al., 2014; Dang et al., 2010).

It is advantageous as an inter-layer cooling method to solve the strong thermal-coupling

issues for 3D-stacked architectures (Sridhar et al., 2014). Adding a liquid microchannel

layer between processing layers efficiently solves the thermal problems due to the vertical

layer stacking. A typical liquid cooling via microchannels 3D IC is shown in Figure 2·4.

The coolant that is pumped from the inlet to the outlet absorbs heat due to the convective

heat transfer (liquid convection). The chiller outside the system then cools down the heated

coolant. There are two main contributors to the convective heat transfer of the coolant: 1)

convective heat transfer from the walls of the channel to the liquid and 2) convective heat

transfer in the direction of the liquid flow into and out of the current liquid cell.

Figure 2·4: Liquid cooling via microchannels 3D IC architecture (Sridhar et al., 2014).

To build a CTM for liquid cooling via microchannels, one approach (4-resistor model

(4RM)) is to use the thermal resistors to represent the convective heat transfer from side-

walls of the microchannels and use a voltage-controlled current source to represent the

convective heat transfer along the liquid flow direction (Sridhar et al., 2013a). Figure 2·5

(b) shows the liquid grid cell, and the thermal resistors from sidewalls are defined as fol-

lows:

Rtop,bottom =
1

h f ,vertical ·w · l
, (2.4)
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Figure 2·5: (a) Default grid cell and (b) Liquid grid cell (Sridhar et al., 2013a).

Reast,west =
1

h f ,side ·h · l
. (2.5)

In Equations (2.4) and (2.5), h, w, and l stand for the height, width, and length of the

grid cell, respectively. h f ,vertical and h f ,side are HTCs for microchannel forced convection.

h f ,vertical and h f ,side are obtained from empirical correlations or numerical presimulations.

Prior work provides the following formulas to calculate h f ,vertical and h f ,side by assuming

imposed axial heat flux and radial isothermal conditions:

h f ,vertical = h f ,side =
kcoolant ·Nu

dh
, (2.6)

where kcoolant is the thermal conductivity of the coolant and dh is the hydraulic diameters

of the channel defined as 2hw
h+w . Nu is the Nusselt number as a function of channel aspect

ratio (Sridhar et al., 2013a). h f ,vertical , h f ,side, and Nu may differ under different system

assumptions.

The value of the convective heat transfer along the microchannels (i.e., current) is rep-

resented as follows (Sridhar et al., 2013a):

Jconv = cconv(Tsouth −Tnorth), (2.7)
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where Tsouth and Tnorth are the temperatures at the south and north surfaces of the grid cell.

cconv is the liquid convection coefficient, which is defined as Cvuavg,y∆Ay. Cv is the specific

heat capacity, uavg,y is the average liquid flow velocity and ∆Ay =wh. The inlet temperature

of the coolant is the boundary condition for this model.

Kaplan et al. has validated the 4RM-based CTM against a liquid cooling via microchan-

nels COMSOL model (Kaplan et al., 2017). They ran steady-state simulations for a range

of heat flux values of 12.5, 25, 50, and 100 W/cm2 as well as for different flow velocities

= 0.5, 1.0, 1.5, 2.0 m/s, and record the maximum temperature of the processing layer for

the 4RM-based CTM and COMSOL. Compared to COMSOL simulations, the 4RM-based

CTM has a maximum error of 2.8% with a speedup of 43300×.

To further speed up the simulation time of the liquid cooling via microchannels, a 2-

resistor model-based (2RM-based) CTM has been designed in the previous work (Sridhar

et al., 2010). In the 4RM-based CTM, the thermal cells’ boundaries to conform to the

solid-liquid interfaces need to be defined, which results in very fine discretization and con-

sequently prohibitively large simulation time. The 2RM-based CTM solves this problem

by homogenizing the whole microchannel layer into a single porous medium. In this way,

thermal cells are no longer constrained by microchannel dimensions, and even multiple mi-

crochannels are covered by a single thermal cell in this homogeneous medium. Sridhar et

al. (Sridhar et al., 2014) compared the simulation speed and accuracy of 4RM-based CTM

and 2RM-based CTM of liquid cooling via microchannels on test 3D chips. The simula-

tion results show that 2RM-based CTM achieves a 375× speedup compared to 4RM-based

CTM, with an accuracy loss of 7%.

2.2.3 Hybrid Cooling

Hybrid cooling refers to incorporating two or more cooling solutions on the same platform.

For example, a hybrid cooling system can be designed using liquid cooling via microchan-

nels and TECs. Using liquid cooling via microchannels effectively removes the background
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heat on large chips and 3D-stacked architectures. However, as the liquid flows through the

microchannels, it gets hotter, and the ability to remove heat further decreases. TEC is fa-

vorable for handling high power densities in a small area. But the additional cooling power

cost is substantially increased when cooling a large area. In this case, a hybrid cooling

strategy that combines the strengths of liquid cooling via microchannels and TEC provides

much better cooling efficiency. A group of works focuses on using TECs to target the hot

spots and liquid cooling via microchannels to remove the background heat (Sahu et al.,

2014; Yazawa et al., 2012; Hu et al., 2013). A typical hybrid cooling method using TEC

and liquid cooling via microchannels is shown in Figure 2·6.

Figure 2·6: Front view of a hybrid cooling design (Kaplan et al., 2019).

There are several ways to create CTMs for hybrid cooling (liquid cooling via mi-

crochannels and TEC). One approach is to use a high HTC value to represent liquid cool-

ing via microchannels in addition to a TEC CTM to model hybrid cooling (Yazawa et al.,

2012). This method shows a 10× cooling power reduction when compared to using only

liquid cooling via microchannels (Yazawa et al., 2012). Another way builds a CTM of

hybrid cooling using liquid cooling via microchannels CTM and TEC CTM (Kaplan et al.,

2019). This method incorporates the CTMs for liquid cooling via microchannels and TEC

from a previous work (Kaplan et al., 2017). Kaplan et al. validated the accuracy of this

hybrid cooling CTM against COMSOL simulations. This hybrid cooling CTM achieves a

1607× speedup with a max error of less than 5.7◦C.
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2.3 Cooling Optimization Methods

Researchers have developed optimization methods for emerging cooling methods. For liq-

uid cooling via microchannels, Coskun et. al. adjusted the flow rate at runtime to minimize

the pumping power while satisfying the temperature limit (Coskun et al., 2010). Sabry et

al. proposed a fuzzy controller to determine the liquid flow velocity at runtime (Sabry et al.,

2011). GreenCool reduces the thermal gradients by modulating the channel width of liq-

uid cooling via microchannels at design time (Sabry et al., 2013). Other approaches either

optimize or co-optimize the microchannels’ number, locations, dimension, and flow rate to

achieve better pumping power for a given power profile (Shi and Srivastava, 2013; Sharma

et al., 2015; Qian et al., 2013). For TECs, researchers focus on optimizing TEC device ge-

ometry and TEC current to maximize coefficient of performance (COP) (Sahu et al., 2014;

Yazawa et al., 2012; Taylor and Solbrekken, 2008). For hybrid cooling, Kaplan et. al.

introduced an optimization method that is based on gradient descent to optimize the TEC

current and liquid flow velocity to achieve the minimal cooling power while satisfying the

temperature constraint (Kaplan et al., 2019). However, there is no comprehensive study to

compare the cooling efficiency in cooling performance and cooling power for these cool-

ing technologies. These potential solutions’ cooling performance and cooling power vary

significantly based on the cooling parameters (liquid flow velocity, TEC current, etc.). The

cooling technologies and the cooling parameters also need to consider the chip architecture,

chip size, floorplan, and the power profiles of the applications running on the given chip.

Given the vast amount of tunable parameters and input designs, there is a need for a fast

and accurate optimization method to facilitate cooling solutions design space exploration

and optimization.
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Chapter 3

Enabling Fast and Accurate Parallel Thermal
Simulations with PACT

3.1 Introduction

Over the last few decades, chip temperature has become one of the essential criteria for

designing high-performance, cost-effective, and reliable ICs. Increased power consump-

tion and temperature not only degrade the performance of a chip but also generate larger

sub-threshold leakage power and cause reliability challenges (Pedram and Nazarian, 2006).

Therefore, thermal analysis is an essential procedure for designing any chip. The conven-

tional thermal analysis relies on finite-element method (FEM) based multiphysics simula-

tors (e.g., COMSOL and ANSYS (COM, 1998; Madenci and Guven, 2015)). However,

such commercial simulators are computationally expensive and experience long solution

times along with large memory requirements (Yuan et al., 2019a). These limitations make

commercial simulators unsuitable for evaluating numerous design alternatives or running

time scenarios. Therefore, having fast and accurate thermal analysis is crucial for chip

design and thermal optimization.

To address the fast thermal analysis needs, researchers have developed tools using com-

pact thermal modeling methods (Skadron et al., 2003; Sridhar et al., 2014; Kaplan et al.,

2019; Sridhar et al., 2013b; Allec et al., 2008). We identify several challenges in existing

compact thermal simulators (Skadron et al., 2003; Sridhar et al., 2014; Sridhar et al., 2013b;

Allec et al., 2008). First, these thermal simulators target architecture-level thermal simu-

lations only and do not perform standard-cell-level thermal simulations. The input power
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information to the existing compact thermal simulators are typically through architecture-

level or standard-cell-level performance and power simulation tools. For standard-cell in-

puts, high grid resolution thermal simulation is necessary for accurate temperature esti-

mation. To demonstrate the necessity of standard-cell-level simulation, we select a high

power design (Sparc) from OpenROAD (Ajayi et al., 2019) and carry out steady-state

thermal simulations at various granularities. Figure 3·1 shows that architecture-level ther-

mal simulation (e.g., 32×32, 64×64, and 128×128) cannot achieve the same accuracy as

standard-cell-level simulation (e.g., 256×256, 512×512, and 1024×1024), with a maxi-

mum temperature inaccuracy of 3.28◦C and a thermal gradient inaccuracy of 3.56◦C. For

thermally-aware circuit or policy design (e.g., thermally-aware dynamic voltage frequency

scaling (Hanumaiah and Vrudhula, 2012)), applying architecture-level (low grid resolu-

tion) thermal simulations will result in accuracy loss and lead to suboptimal designs or

even failures. Therefore, a compact thermal simulator should support fast and accurate

standard-cell-level (high grid resolution) simulation for standard-cell design inputs.

Another challenge with existing compact simulators is that they cannot tackle large and

complex problems (e.g., standard-cell-level design problems or multi-layered chips such as

in monolithic 3D integration (Wong et al., 2007)) as the simulation time rises dramatically

when problem size increases. One reason is that thermal simulators are typically designed

to be sequential and cannot easily be parallelized. In addition, the solvers embedded in

these simulators are often not efficient enough to perform high grid resolution thermal

simulations. For example, HotSpot (Skadron et al., 2003) uses explicit adaptive 4th order

Runge-Kutta (adaptive RK4) to conduct transient thermal analysis, and this method suffers

from numerical instability (Distefano, 1968). Such Forward Euler methods may converge

slowly for transient simulation (e.g., on the order of days for a standard-cell-level chip

model), depending on the granularity of the chip and the thickness of the chip layers.

A third challenge is that existing compact thermal simulators are either dedicated to a
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Figure 3·1: Temperature profiles for a standard-cell design at various grid resolutions.
The maximum temperature and thermal gradient plots are expected to saturate with
higher grid resolutions (> 1024×1024).

specific cooling technology or it is difficult and time-consuming to extend them for emerg-

ing integration and cooling technologies, such as microchannel-based two-phase cooling,

TECs, or two-phase VCs (Kaplan et al., 2019; Yuan et al., 2020; Yuan et al., 2019a). As

a result, research that proposes models for such novel cooling methods frequently roll out

customized software packages (e.g., (Sridhar et al., 2013b; Sridhar et al., 2014; Kaplan

et al., 2019; Yuan et al., 2019b; Yuan et al., 2020)), resulting in a fragmented space of ther-

mal modeling tools. We summarize the solvers, cooling methods, and inputs of popular

compact thermal simulators in Table 3.1.

Table 3.1: Solvers, cooling methods, and inputs of PACT and of existing compact ther-
mal simulators (e.g., HotSpot (Skadron et al., 2003), 3D-ICE (Sridhar et al., 2014), and
ThermalScope (Allec et al., 2008)). BE stands for the Backward Euler solver, and TRAP
is a hybrid solver of the Backward Euler and the Trapezoidal method. Full industrial de-
sign means that PACT takes real-world standard-cell designs as input, such as designs
from OpenROAD.

Simulator Steady-state Transient Cooling Inputs
HotSpot SuperLU Explicit RK4 N/A Block/architecture-level
3D-ICE SuperLU Backward Euler Liquid cooling Block/architecture-level

ThermalScope Gauss Seidel Trapezoidal N/A Block/architecture-level
PACT KLU,KSparse TRAP, BE, Gear Liquid cooling Block/architecture-level

AztecOO, Belos and easily extensible and full industrial design
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This chapter introduces a SPICE-based1 PArallel Compact Thermal simulator (PACT)

that enables speedy and accurate thermal analysis for processors. Recent advances in

SPICE (Massobrio and Antognetti, 1993; Hutchinson et al., 2002; Zhou et al., 2008; Liu

et al., 2009; Biolek and Biolek, 2014; Vladimirescu, 1994) solve many of the compu-

tational challenges associated with modeling electric circuits, and PACT leverages these

improvements toward thermal modeling and analysis. Unlike existing thermal simulators

that cannot easily solve standard-cell-level simulation problems, PACT supports parallel

computing with various types of solvers to provide fast and accurate standard-cell-level

to architecture-level2 thermal analysis, regardless of problem size. We also provide an

interface between OpenROAD and PACT, allowing PACT to take industrial standard-cell

designs through this interface directly. Users are able to carry out either fine-granularity

(each standard cell is covered by a grid cell) or coarse-granularity (a grid cell covers multi-

ple standard cells) thermal simulations for standard-cell designs, owing to the fast parallel

thermal simulation and the OpenROAD interface. Experimental results confirm that, com-

pared to HotSpot, PACT reduces the steady-state simulation time of a monolithic 3D IC

from more than 3 hours to less than 16 minutes. PACT also speeds up the simulation

time of a 256-core 2D IC from more than three days to less than 19 minutes compared

to HotSpot. In addition, users are able to easily extend PACT to model various emerging

integration and cooling technologies by adding dependent/independent sources, resistors,

and capacitors.

The rest of the chapter starts with a discussion on existing thermal simulators (Section

3.2). Section 3.3 elaborates on the simulation flow, thermal netlist generation, and compact

modeling of various emerging technologies in PACT. We demonstrate the impact of PACT

by simulating realistic 2D ICs, monolithic 3D ICs, die-stacked 3D ICs with liquid cooling,

1SPICE stands for Simulation Program with Integrated Circuit Emphasis.
2Standard-cell-level thermal simulation refers to a high grid resolution simulation (i.e. a grid node oc-

cupies one or more standard cells). Architecture-level thermal simulation refers to a relatively low grid
resolution simulation (i.e., several grid nodes often occupy a hardware block).
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and chips with photonic network-on-chip (PNoC) in Section 3.4. Section 3.4 also shows the

validation and speed analysis of PACT using full industrial designs from OpenROAD. To

further demonstrate the extensibility and applicability of PACT, we model lab-grown dia-

mond heat spreaders in PACT and evaluate the cooling performance of lab-grown diamond

heat spreaders using PACT in Section 3.5.

3.2 Background of Existing Compact Thermal Simulators

To maintain safe chip temperatures, researchers have proposed various solutions includ-

ing design-time thermal management techniques (Eris et al., 2018; Pedram and Nazarian,

2006) and runtime policies such as dynamic voltage frequency scaling (Bao et al., 2009;

Lee et al., 2010), task scheduling (Tang et al., 2008; Zhou et al., 2010; Coskun et al., 2007),

and thread migration (Sheikh et al., 2012; Beigi and Memik, 2016). Several emerging cool-

ing technologies such as liquid cooling via microchannels(Sridhar et al., 2014; Dang et al.,

2010; Coskun et al., 2010; Coskun et al., 2009), TECs (Kaplan et al., 2019; Chowdhury

et al., 2009; Paterna and Reda, 2013), two-phase cooling (Yuan et al., 2019a; Sridhar et al.,

2013b), and hybrid cooling (such as a hybrid design of liquid cooling via microchannels

and TECs (Kaplan et al., 2019; Yazawa et al., 2012)) have also been proposed by the re-

searchers to mitigate the high chip temperatures. These solutions often rely on fast and

accurate thermal analysis to enable design exploration and optimization of their design

parameters and runtime knobs.

However, existing FEM-based thermal simulators experience high computational com-

plexity and memory usage when modeling large and complex chips or conducting standard-

cell-level analysis. For example, simulating the transient behavior of a realistic chip with

a high grid resolution can take from several hours to days and easily requires beyond tens

of GBs of memory (Kaplan et al., 2019). Compact thermal modeling methodology is a

popular solution to solve the long simulation time problem (Huang et al., 2004). Several
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compact thermal simulators have been designed to model the full-chip temperature behav-

ior, and emerging cooling solutions (Sridhar et al., 2014; Skadron et al., 2003; Sridhar

et al., 2013b; Pedram and Nazarian, 2006). Skadron et al. introduced HotSpot, an archi-

tectural thermal simulator that utilizes the CTM method to conduct the thermal analysis for

processors (Skadron et al., 2003). The latest version of HotSpot uses a sparse matrix di-

rect solver (SuperLU (Skadron et al., 2003)) to obtain steady-state temperature profiles and

an adaptive RK4 method to compute the transient thermal behavior (Li, 2005). However,

Forward Euler methods such as explicit adaptive RK4 suffers from numerical instability

issues (Distefano, 1968). As the number of grids increases or layer thickness decreases to

the nanometer level, adaptive RK4 continuously decreases the minimum simulation step

size, which slows down the simulation speed significantly. For instance, transient simula-

tion of thin layers (such as in a monolithic 3D system) with a high grid resolution takes

more than a day in HotSpot. There exist other compact thermal simulators that focus on

modeling specific types of emerging cooling technologies (Sridhar et al., 2014; Sridhar

et al., 2013b). However, a common issue in these compact thermal simulators (Skadron

et al., 2003; Sridhar et al., 2014; Sridhar et al., 2013b; Yuan et al., 2020; Allec et al., 2008;

Pedram and Nazarian, 2006) is that these simulators only perform sequential thermal sim-

ulations and are hard to modify to support parallel thermal simulations. As the problem

size increases, the simulation time increases significantly, especially for transient thermal

analysis of standard-cell design.

To speed up standard-cell-level thermal simulations, Green’s function is a promising so-

lution to conduct efficient simulation for high grid resolution thermal simulations (Varshney

et al., 2019). However, if the geometry of the chip or boundary condition changes, Green’s

function needs to be recomputed or resimulated (Ziabari et al., 2014). Other works have

either introduced fast thermal simulation algorithms (Tan et al., 2008; Liu et al., 2006; Yu

et al., 2013) or used hardware platforms (CPU-GPU platforms) (Liu et al., 2014) to ac-
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celerate the thermal simulations. However, these works focus solely on architecture-level

thermal simulations, and their methods have not been demonstrated to be applicable to

emerging integration and cooling technologies.

Another potential solution is to use the SPICE simulator to build the thermal network

and carry out thermal simulations (Chiang et al., 2001; Wang and Chen, 2004). However,

these works model the thermal effects and reliability of interconnects and do not focus

on using the SPICE simulator for full system thermal analysis. Moreover, these works

are not open-sourced and cannot be extended to support emerging integration and cooling

technologies.

PACT aims to address the fragmentation in the thermal modeling tool space and pro-

vides a single tool to conduct efficient thermal evaluation from standard-cell-level to architecture-

level for various chip integration and cooling technologies. A key distinguishing feature

of PACT is its inherent parallelism, which speeds up the simulation time for standard-cell-

level thermal simulations while maintaining high accuracy. As PACT is a SPICE-based

simulator, it can be easily extended to support and evaluate chip designs with emerging

cooling technologies. Moreover, PACT allows users to decide whether they want a faster

convergence speed or a more accurate thermal profile by supporting various steady-state

and transient solvers.

3.3 Proposed SPICE-Based Thermal Simulator

PACT is a SPICE-based standard-cell-level to the architecture-level parallel compact ther-

mal simulator. To explain how PACT works, we first go over the simulation flow of PACT

and then discuss the core of PACT, which is a thermal netlist. A thermal simulator should

support the modeling of various emerging integration and cooling technologies and be com-

patible with architecture-level performance and power simulators. Because of the simple

structure of PACT’s thermal netlist and the available SPICE component library, it’s easy
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to extend PACT to support various emerging integration and technologies. We illustrate

the extensibility of PACT by modifying the thermal netlist to support the modeling of con-

ventional heat sinks, 3D ICs (die-stacked 3D and monolithic 3D), and liquid cooling via

microchannels. We show the compatibility of PACT with popular architecture-level per-

formance and power simulators by creating a 2.5D PNoC simulation framework. Since

PACT acquires full industrial designs from OpenROAD, we also elaborate on the inter-

face between PACT and OpenROAD. The SPICE engine also provides PACT with various

steady-state and transient solvers, which benefits PACT in simulation speed. We discuss

the available solvers in PACT and demonstrate why the solver selection is essential for

evaluating the thermal behavior of processors.

3.3.1 PACT Simulation Flow

Figure 3·2: PACT simulation flow.

Figure 3·2 shows the simulation flow of PACT. The simulation steps are as follows: (i)

users pass information about the chip stack (such as number of layers, floorplans, or power

traces), material properties (including thermal resistivity and specific heat), problem size
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(number of grids), heat sink type, and cooling method to PACT, (ii) PACT calculates the

lateral and vertical thermal resistance as well as thermal capacitance for each grid. For the

layers that consume power, PACT also computes the power consumption of each grid. For

emerging cooling layers, PACT determines the corresponding cooling parameters based on

the cooling design and the input. In the meantime, PACT builds the heat sink requested

by users, (iii) PACT calculates and assigns R, C, and power values to the corresponding

resistors, capacitors, and independent current sources and uses these circuit components

to build a thermal netlist, (iv) PACT allows the users to specify the type of simulation

(steady-state or transient) as well as the solvers, (v) users can also enable parallel thermal

simulations by specifying the number of cores and nodes via OpenMPI (OpenMPI, 2014).

PACT utilizes hypergraph partitioning via the Zoltan library (Boman et al., 2012) and sub-

divides and distributes the thermal netlist to the available processors. The Zoltan library

provides an effective load balancer and seeks to minimize the message passing overhead

among processors (Boman et al., 2012), and (vi) PACT solves the RC thermal netlist using

the SPICE engine of PACT and outputs the grid temperatures along with the simulation

time and resource usage summary.

3.3.2 Thermal Netlist and SPICE Circuit Components

Similar to other compact simulators, PACT also calculates the thermal resistor, capacitor,

and heat flow values using Equations (3.1-3.4). Rx, Ry, and Rz are the thermal resistance

along the x, y, and z directions, respectively. C is the thermal capacitance of the grid node.

Rλ and cp are the thermal resistivity (mK/W ) and specific heat capacity (J/m3K) of the ma-

terial, respectively. w, l, and t are the grid node’s width, height, and thickness, respectively.

To calculate the heat flow values, PACT uniformly divides the power profile of the chip into

grids based on the predefined grid resolution. Then it creates a power matrix (W ) to assign

power to each grid to represent the heat flow. Since PACT is a SPICE-based simulator,

PACT directly uses the circuit components available in the SPICE library to construct the
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thermal netlist. To extend PACT to support emerging integration and cooling technologies,

users need to add additional libraries or utility functions and modify the thermal netlist.

It is straightforward to build and modify the thermal netlist by adding and deleting the

circuit components or changing the connection of the thermal grids in PACT. Figure 3·3

shows the component symbol, component name in SPICE, and equivalent terminology in

PACT. For steady-state simulation, PACT only uses resistors, voltage sources, and current

sources to build the thermal netlist and conducts operating point analysis (.OP in SPICE) to

solve the thermal netlist. For transient simulation, PACT also calculates the thermal capaci-

tance of the corresponding grid node. To construct the thermal netlist for emerging cooling

technologies, users need to add the circuit components from the SPICE library to model the

unique cooling behavior of that cooling method. For instance, additional voltage-controlled

current sources need to be added to the thermal netlist to model the heat conduction along

the microchannel of the liquid cooling via the microchannel method. For modeling the

additional vertical heat conduction provided by the TEC units, voltage-controlled current

sources need to be included between the normal grid node and the TEC grid node. For tran-

sient thermal simulations with real power traces, PACT uses the piece-wise linear (PWL)

function component and stores the power traces for each grid node in the corresponding

PWL component to conduct transient analysis (.TRAN in SPICE).

Rx =
Rλ ·w

l · t
(3.1)

Ry =
Rλ · l
w · t

(3.2)

Rz =
Rλ · t
w · l

(3.3)

C = cp ·w · l · t (3.4)
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Figure 3·3: SPICE circuit component usage in PACT.

3.3.3 Extensibility of PACT

As we discussed in Section 3.3.2, building the thermal netlist in PACT using SPICE sim-

plifies the construction and modification of the netlist, which enhances the extensibility of

PACT. This section gives several examples to demonstrate how we extend PACT to sup-

port new technologies, such as different kinds of heat sinks, 3D ICs, and liquid cooling via

microchannels.

Heat Sink

Many different kinds of heat sinks can be modeled using PACT. In the current version of

PACT, we support a medium-cost heat sink that is adopted from a recent work (Skadron

et al., 2003) and a fixed-air convection HTC heat sink.

The medium-cost heat sink represents a combination of the heat spreader, heat sink,

and fan and is used to mimic the realistic heat sinks in processors and servers (Skadron

et al., 2003). By modifying the size, material, and air convection HTC of this medium-cost

heat sink, it is able to model heat sinks for mobile chips. To build this type of heat sink, we

add two additional layers on top of the chip to represent the heat spreader and heat sink.
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In addition to the normal heat spreader and heat sink grid nodes that connect to the chip

nodes, we only need to add 12 additional heat sink and heat spreader nodes on top of the

original thermal netlist and populate the resistance and capacitance as the thermal resistors

and capacitors attached to these nodes (Skadron et al., 2003). Similar to HotSpot, four of

the additional nodes are assigned to the periphery of the heat spreader, while the remaining

eight nodes (four inner nodes and four outer nodes) are assigned to the periphery of the heat

sink. The thermal resistance and capacitance of the additional nodes of the heat spreader

and heat sink are calculated based on the size, thickness, air convection resistivity, thermal

conductivity, and specific heat of the heat sink and heat spreader. We show the high-level

simulation flow for enabling this medium-cost heat sink in Figure 3·4. The heat spreader

and heat sink specifications have to be specified through the PACT front-end. The medium-

cost heat sink utility functions are added to the PACT’s back-end to calculate the additional

thermal resistance and thermal capacitance introduced by this medium-cost heat sink.

Figure 3·4: The high-level simulation flow with the medium-cost heat sink.

Since simulations of some emerging cooling technologies (e.g., liquid cooling via mi-

crochannels and two-phase cooling) require a fixed-air convection HTC heat sink or even
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no heat sink on top of the chip, it is not realistic to use the medium-cost heat sink (Sridhar

et al., 2014; Sridhar et al., 2013b; Kaplan et al., 2019; Yuan et al., 2019a; Yuan et al.,

2020). Due to this reason, PACT also provides a fixed-air convection HTC heat sink where

the vertical thermal resistance of the heat sink is the air convection HTC. PACT replaces

the heat spreader and heat sink with a dummy layer and connects it to the ground with a

vertical thermal resistance calculated using the fixed-air convection HTC (Kaplan et al.,

2019).

Modeling Layers with Heterogeneous Materials

Unlike the typical 2D chips, 3D ICs need additional through-silicon vias (TSVs) or mono-

lithic inter-tier vias (MIVs) to enable inter-layer communication and power delivery to

the tiers. Therefore, thermal simulators should be able to model heterogeneous materials

within one layer. Similar to the 3D extension in HotSpot, PACT is also capable of mod-

eling layers with heterogeneous materials (Meng et al., 2012; Skadron et al., 2003). For a

layer with homogeneous material, PACT assigns the same vertical and horizontal thermal

resistance and thermal capacitance to each resistor and capacitor component inside of this

layer, respectively. For heterogeneous material nodes in a layer, PACT directly modifies

the thermal resistance and thermal capacitance of the corresponding heterogeneous nodes

and creates thermal resistance and capacitance matrices to generate the thermal netlist.

Liquid Cooling via Microchannels in PACT

PACT offers standardized interfaces for easy integration of various compact models of

emerging cooling techniques. These models are imported as Python modules in PACT. A

sample liquid cooling via microchannels chip stack is shown in Figure 3·5. Both the bottom

and top layers are silicon dies in this chip stack. The liquid microchannel layer is placed

in the middle to mitigate the strong vertical thermal coupling issue for 3D stacking archi-

tectures. We adopt the liquid cooling via microchannels compact modeling methods from
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Figure 3·5: A small section of a liquid-cooled chip stack.

recent work (Sridhar et al., 2014; Kaplan et al., 2019). Unlike a typical compact thermal

grid that consists of six thermal resistors for each node to represent the heat conduction

from north, south, east, west, top, and bottom directions, a liquid microchannel grid node

has only four thermal resistors, which represent the heat conduction between the coolant

and the microchannel walls. In PACT, the thermal resistance of a liquid microchannel grid

node is calculated based on the vertical and side wall HTCs (i.e., h f ,vertical and h f ,side,

respectively) as shown in Equation (3.5) (Sridhar et al., 2014; Kaplan et al., 2019). Nu,

kcoolant , and dh are Nusselt number, the thermal conductivity of the coolant, and the hy-

draulic diameter of the channel, respectively. The additional voltage-controlled current

source models the liquid convection effect inside the microchannel. Equation (3.6) shows

the relationship between the current, Jconv, and liquid convection coefficient, cconv. PACT

uses cconv as the transconductance of the voltage-controlled current source and {Tin,Tout} as

the voltage controlling nodes. Tin is the average voltage of the previous microchannel node

and current microchannel node, and Tout is the average voltage of the current microchannel
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node and the next microchannel node.

h f ,vertical = h f ,side =
kcoolant ·Nu

dh
(3.5)

Jconv = cconv(Tin −Tout) (3.6)

We show how to implement liquid cooling via microchannels grid nodes in Figure 3·6. All

the liquid cooling input parameters (e.g., liquid flow velocity, thermal resistivity, specific

heat capacity, etc.) must be specified as user inputs. Users have to create a Python module

(Liquid.py) to define the vertical and side walls’ thermal resistance and the liquid convec-

tion coefficient. The thermal resistance and liquid convection coefficient are then used to

create the thermal netlist, where vertical and side walls’ thermal resistance are modeled as

electric resistors. The liquid convection coefficient is used to model the voltage-controlled

current source. In addition, users also need to define the liquid grid type (e.g., the virtual

temperature node is placed at the center of the grid node and not at the bottom of the grid

node). To obtain the thermal resistance and liquid convection coefficient, PACT calls the

correct liquid cooling library (Liquid.py). In this way, the modeling methodology of liquid

cooling via microchannels grid node in PACT can be applied to model the grid nodes of

microchannel-based two-phase cooling and TEC units by creating their respective compact

libraries (i.e., Python modules).

As we see in Figures 3·4 and 3·6, to support emerging integration and cooling tech-

nologies in PACT, users only need to add their additional cooling method libraries and

the existing circuit components from the SPICE simulator library to create a new thermal

netlist based on the current design. To model a new cooling technology in PACT, users

need first to create the CTM of the cooling method and then map the CTM components to

circuit components. For example, voltage-controlled current sources is used in the CTM to

model latent heat transfer. The thermal netlist code is well-structured and requires minimal

changes to support emerging technologies. It is also possible for users to extend the SPICE
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Figure 3·6: (a) The high-level simulation flow with liquid cooling via microchannels
and (b) the additional liquid cooling library file for implementing a CTM for liquid
cooling via microchannels.
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library with a self-defined circuit component to support other emerging cooling technolo-

gies. Depending on the SPICE engine integrated with PACT, users are able to either modify

the .lib file or create a new component written in Verilog-A (Hutchinson et al., 2002).

3.3.4 Compatibility of PACT

To show the compatibility with architecture-level performance/power simulators, we in-

tegrate PACT with Sniper (Carlson et al., 2011) and McPAT (Li et al., 2009), and create

a PNoC cross-layer simulation framework to model the system performance and PNoC

power under different activated laser wavelengths and Microring Resonators (MRRs) lock

status. The PNoC simulation framework is adopted from recent work (Narayan et al., 2019)

and shown in Figure 3·7. The original simulation framework uses HotSpot as the thermal

engine; we replace HotSpot with PACT to evaluate the temperature of the PNoC. POP-

STAR is a 2.5D manycore system with a PNoC architecture, and it has been modeled in

Sniper. McPAT is used to compute the core and cache power consumption, while PACT

determines the temperatures of all the Microring Resonator Groups (MRRGs). We show

the temperature validation results against the original PNoC simulation framework in Sec-

tion 3.4.2.

3.3.5 OpenROAD Interface

OpenROAD is a top-level register-transfer level (RTL) to graphic data stream (GDS) flow,

which generates post-routing design exchange format (DEF) files of a given circuit (Ajayi

et al., 2019). We use OpenROAD to get spatial power information at the standard-cell-

level. Figure 3·8 shows the flow diagram of using OpenROAD (Ajayi et al., 2019) to

generate an industrial input for PACT. Using the DEF files, we generate the power values

for every single instance in the design using OpenSTA3 (Ajayi et al., 2019), which is a

static timing analysis tool from parallax software that recently went open-source and sup-

3OpenSTA: https://github.com/The-OpenROAD-Project/.

https://github.com/The-OpenROAD-Project/
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Figure 3·7: PNoC simulation framework.

ports gate-level simulation. OpenSTA is included in the OpenROAD project, and the power

reporting mechanism is similar to Synopsys PrimeTime (Ajayi et al., 2019). The accuracy

of OpenSTA was verified against industrial tools by its developer. Using the DEF files, ev-

ery single instance in the circuit is passed to OpenSTA (Ajayi et al., 2019) while providing

the standard-cell library files (lib and lef) and the operating frequency. Finally, based on

the die dimensions and the number of grid nodes the user desires, we compute the power

per grid node by identifying the gates that belong to each single grid node based on their

coordinates, and then compute the grid node power by summing the power values of all

the gates that belong to it. Further details on power map generations using OpenROAD for

standard-cell designs and usage of the interface can be found in the previous work (Ajayi

et al., 2019) and PACT’s GitHub repository. Since OpenROAD is an open-source project,

users are able to directly utilize this interface to create standard-cell-level power maps and

perform thermal simulations. For other commercial EDA design flows (e.g., Cadence and

Synopsis), PACT can also be used as the backend thermal simulator with the same interface.
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Figure 3·8: The flow diagram of OpenROAD.

3.3.6 PACT Solver

The steady-state and transient solvers in existing compact thermal simulators such as HotSpot

are not comprehensive enough to model and simulate different chip architectures. For in-

stance, we model and simulate a two-layer chip stack’s transient behavior with a grid res-

olution equal to 50×50. The sampling interval is set to 3.33 µs, and the end time is set

to 666 µs (total of 200 steps). We sweep the layer thickness from 100 µm to 100 nm and

show the simulation time results in Figure 3·9. The simulation time increases by more than

2880× when the chip thickness decreases from 100 µm to 100 nm. As we discussed in

Section 3.2, the reason behind this simulation time burst is the numerical instability issue

of RK4. Forward Euler methods provide high accuracy and simulation speed for non-stiff

equations, but for stiff equations (such as modeling thin layers in HotSpot), the simulation

time is extremely long (Distefano, 1968).

Unlike other compact thermal simulators, PACT supports various steady-state solvers

(e.g., KLU, SuperLU, and AztecOO) and transient solvers (such as Trapezoidal, Backward
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Figure 3·9: Transient simulation time of a two-layer chip stack.

Table 3.2: Information about available solvers in PACT.

Solver Type Mode Simulation type
KLU direct serial and parallel steady-state

KSparse direct serial and parallel steady-state
SuperLU direct serial and parallel steady-state
AztecOO iterative parallel steady-state

Belos iterative parallel steady-state
Backward-Euler implicit serial and parallel transient

Trap trapezoidal serial and parallel transient
Gear linear Multistep serial and parallel transient

Euler, and Gear) (Hutchinson et al., 2002). We list the information of available solvers in

PACT in Table 3.2. KLU, KSparse, and SuperLU are serial solvers. However, suppose

the users use parallel settings with these serial solvers. In that case, the thermal netlists

are evaluated and assembled in parallel, which is significantly more efficient compared to

only using a single processor to evaluate and assemble the netlist (Hutchinson et al., 2002).

These solvers comprehensively apply PACT to solve thermal netlists from various chip

architecture designs at different simulation granularities.

There is a speed trade-off among different solvers and simulation modes (parallel or

serial) in PACT (Hutchinson et al., 2002; Higham, 2002). The simulation mode, number
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of cores, problem size, and solver type determine the thermal simulation’s overall accu-

racy and running time. For example, TRAP (Heroux et al., 2005) is a hybrid solver of the

Backward Euler and the Trapezoidal method, and for the chip stack used in Figure 3·9 with

100 nm thickness, the simulation time of PACT using TRAP solver takes less than 29 sec-

onds. As another example, KLU is a direct solver that is used for single-core steady-state

simulation, while AztecOO is an iterative steady-state solver, and it outperforms KLU for

multicore simulations. For standard-cell-level thermal simulations, AzetcOO is preferred

since it enables parallel thermal simulations. For architecture-level thermal simulations,

KLU outperforms AztecOO mainly because the problem size is small, and the additional

communication cost of multicore processing is more significant than single-core simula-

tions. Another example is that for certain thermal netlists, using an iterative solver (e.g.,

AztecOO) to conduct steady-state simulations may result in a convergence error in PACT

(Hutchinson et al., 2002). In this case, PACT notifies the users of the convergence error

and suggests the users use a direct solver (e.g., KLU) instead.

Since the SPICE engine is designed from the ground up to be distributed-memory paral-

lel, all of these solvers support parallel simulation via OpenMPI (Hutchinson et al., 2002).

However, for existing compact thermal simulators such as HotSpot, 3D-ICE, and Ther-

malScope, the designers have not considered the standard-cell-level simulation problem

and how to utilize the benefits of multicore and multiprocessor simulations with a server

cluster to tackle this problem. Therefore, PACT can be parallelized to achieve notable

speedup compared to running thermal simulations via existing compact thermal simulators.

We discuss the comparison results between PACT and HotSpot for running standard-cell-

level thermal simulations for complex chip designs in Section 3.4.4.
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3.4 Experimental Results

This section demonstrates the advantages of running parallel thermal simulations with

PACT. We first run steady-state and transient simulations with large and complex realis-

tic 2D and monolithic 3D multiprocessor system on a chip (MPSoCs) and compare the

simulation speed to HotSpot. Then, we show thermal evaluation results against a PNoC

simulation framework with HotSpot to show the compatibility of PACT with respect to

popular architectural performance and power simulators. In addition, we validate the ac-

curacy of the liquid cooling via microchannels CTM integrated with PACT and compare

the simulation time to 3D-ICE. Finally, to validate the accuracy of PACT, we compare

the standard-cell-level steady-state and transient simulation thermal profiles to those ob-

tained using a FEM-based simulator, COMSOL. We also compare the simulation results of

HotSpot against COMSOL to show that PACT has the same accuracy as a popular state-

of-the-art compact thermal simulator. Since PACT is a parallel thermal simulator, we also

compare the simulation speed of PACT to HotSpot using parallel simulation mode. In ad-

dition, we also compare the accuracy and running time of PACT to Manchester Thermal

Analyzer (MTA) (Ladenheim et al., 2016).

PACT is written in Python, and we use Xyce 6.12 with OpenMPI 3.1.4 as our SPICE

engine for all the experiments (Hutchinson et al., 2002; OpenMPI, 2014). We perform

our simulations on the Massachusetts Green High-Performance Computing Center (MGH-

PCC). MGHPCC consists of hundreds of compute nodes, and each node has at least 128

GB of memory and two sockets. We run on nodes that contain two Intel Xeon E5-2680 v4

CPUs, each with 14 2-way hyper-threaded cores. We use at most four nodes (112 cores) in

each of our experiments.
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3.4.1 Speed Analysis with Complex 2D and Monolithic 3D ICs

We use PACT and HotSpot to simulate two large and complex chips to demonstrate the

applicability and advantages of PACT. We simulate a 256-core processor (2D IC) inspired

by the Intel SCC scaled to 22 nm (Eris et al., 2018), and a 33-layer monolithic 3D IC

adopted from recent work (Shukla et al., 2019). For the 256-core SCC-based chip, the core

architecture is based on the IA-32 core (Howard et al., 2011). We obtain power profiles of

a simulated SCC-based chip from recent work (Eris et al., 2018). For our simulations, we

select the power profile that results in the highest thermal gradient and chip temperature of

the SCC-based chip to extract the most interesting thermal profile of the chip. The selected

power profile has a hot spot power density of 216.6 W/cm2. We summarize the experimen-

tal setup in Table 3.3. We use the same medium-cost heat sink in both HotSpot and PACT

and report the simulation speed results in Table 3.4. We observe in these results that PACT

is favorable for solving standard-cell-level problems due to its ability to conduct parallel

thermal simulations. For the monolithic 3D chip, when the number of grids = 200×200,

PACT takes less than 19 minutes to finish both steady-state and transient simulations. On

the other hand, it takes HotSpot 3 hours to finish the steady-state simulation and more than

three days for transient. Another advantage of using PACT is that users are able to select

different types of solvers. We observe that the HotSpot numerical instability problem in

transient simulations is exaggerated for the thin layers in Mono3D (thickness < 1 µm),

which makes HotSpot and Forward Euler solver unsuitable for simulating thin layer chips.

For standard-cell-level thermal simulations such as Intel SCC-based chip, when compared

to HotSpot, PACT achieves a maximum speedup of 1.9× and 232× for steady-state and

transient simulations, respectively. The reason behind this speedup is that as the problem

size increases at a finer granularity, the direct steady-state solver (SuperLU) in HotSpot sig-

nificantly slows down due to its significant memory usage. However, PACT automatically

uses AztecOO, an iterative solver with parallel mode for finer grid resolutions to speed up
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the thermal simulations. For standard-cell-level thermal simulations with large and com-

plex chips, PACT outperforms HotSpot in terms of steady-state and transient simulation

times. Most importantly, since most of the runtime thermal management policies are based

on the transient behavior of the chip thermal profile, having a fast transient thermal simu-

lation is particularly important.

Table 3.3: Experimental setup of monolithic 3D chip and the SCC-based chip simula-
tions.

Chip Simulator # of Grids Step Size # of Steps # of Cores Solver
(row) (µs)

Mono3D
HotSpot 6.0 50,100,200 3.33 5 N/A SuperLU

PACT 50,100,200 3.33 5 8 AztecOO

SCC
HotSpot 6.0 256,512,1024 3.33 100 N/A RK4

PACT 256,512,1024 3.33 100 8 Trap

Table 3.4: Simulation results of the monolithic 3D chip and the SCC-based chip.

Simulations Chip # of Grids HotSpot PACT
running time running time

Steady-state
Mono3D

50×50 1min5s 59s
100×100 13min11s 5min54s
200×200 3hrs2min 15min53s

SCC
256×256 24.7s 23s
512×512 3min19s 2min15s

1024×1024 26min32s 13min55s

Transient
Mono3D

50×50 >3 day 2min23s
100×100 >3 day 6min21s
200×200 >3 day 18min48s

SCC
256×256 21min45s 1min1s
512×512 5hr38s 5min20s

1024×1024 >3 day 18min33s

3.4.2 Full System Simulation of 2.5D Systems with PNoC

We obtain the power profiles from running the original PNoC simulation framework (using

HotSpot as the thermal simulator) with multithreaded applications from HPCCG (Edwards

et al., 2008), UHPC (Campbell et al., 2012), and NAS parallel benchmarks (Bailey et al.,

1991) with a different number of thread combinations. And compare PACT’s simulation

results to the results generated using the original PNoC simulation framework. For the
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transient power traces, we collect the average power value every 100 million instructions.

We summarize the experimental setup in Table 3.5. The detailed model, architecture, pol-

icy, and experimental setup can be found in previous work (Narayan et al., 2019; Narayan

et al., 2020). Since MRRG temperatures directly determine the heat power, we only com-

pare the temperature results of PACT to HotSpot. Figure 3·10 shows the thermal maps of

application bt with 96 threads simulated using both the original PNoC simulation frame-

work and the PNoC simulation framework with PACT. Note that, MRRG is placed on the

interposer layer. PACT thermal maps are almost identical to the thermal maps generated

using HotSpot. We also show the transient simulation results compared to HotSpot in Fig-

ure 3·11. Table 3.6 shows the maximum and average temperature difference for these two

PNoC simulation frameworks across all the experiments. As we see in the table, compared

to the original PNoC simulation framework, the PNoC simulation framework with PACT

has less than 1% maximum temperature difference, which demonstrates that PACT is also

compatible with popular architecture-level performance and power simulators.

Table 3.5: Experimental setup of PNoC simulations.

Applications bt, f t, hpccg, is, lu, mg, shock, sp

VF Settings V = 0.85 V , f = 533 MHz

Average Core Power 0.83 W

# of threads 48,96

# of grids 64×64

Performance Threshold 10 %

# of cores in PACT 1

Solver in PACT KLU

Heat Sink Medium cost heat sink

# of instructions 10 billion

3.4.3 Liquid Cooling via Microchannels Simulation Results

To investigate the accuracy of the liquid cooling via microchannels model in PACT, we

directly compare the steady-state and transient simulation results against 3D-ICE, which
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Figure 3·10: Thermal maps for running application bt with 96 threads and 10% per-
formance constraint using original PNoC simulation framework and PNoC simulation
framework using PACT. MRRG is on the interposer layer. The number of grids used in
the simulation is set to 64×64.

has already been validated against real prototypes (Sridhar et al., 2014). We select a liquid

cooling chip stack as shown in Figure 3·12(a) and model it in both PACT and 3D-ICE.

We summarize the validation setup in Table 3.7. Note that, we set the grid resolution to

1000×5 for these experiments and use the same setup in PACT and 3D-ICE. While 3D-

ICE does not allow for arbitrary granularities in the liquid microchannel layer, especially

for the liquid microchannels, PACT does support arbitrary grid resolutions for the whole

liquid cooling chip stack, including the liquid microchannel layer. We summarize the sim-

ulation results of PACT and 3D-ICE in Figure 3·13. ∆T is the temperature difference be-

tween the temperature of the current step and the coolant inlet temperature. For steady-state
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Figure 3·11: Transient temperature results for running application hpccg with 96
threads and 10% performance constraint using original PNoC simulation framework
and PNoC simulation framework using PACT. The number of grids used in the simula-
tion is set to 64×64. The left image shows the average power traces and the right image
shows the average temperature traces.

Table 3.6: PNoC simulation results.

# of threads Apps Max diff (◦C) Avg diff (◦C)

bt 0.08 <0.05
ft 0.08 <0.05

hpccg 0.47 0.15
48 is 0.11 <0.05

lu 0.34 0.09
mg 0.02 <0.05

shock 0.12 <0.05
sp 0.41 0.09

bt 0.31 0.08
ft 0.37 0.16

hpccg 0.67 0.19
96 is 0.35 0.05

lu 0.19 <0.05
mg 0.38 0.16

shock 0.55 0.21
sp 0.61 0.27

and transient simulations, PACT shows a maximum temperature difference of 0.41◦C and

1.12◦C, respectively. Compared to 3D-ICE, PACT shows up to 1.6× and 2.05× speedup
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Figure 3·12: (a) The front view of the chip stack and (b) the microchannel layer thermal
map (power density = 100W/cm2 and coolant velocity of 0.5 m/s).

for steady-state and transient simulations. We also observe that 3D-ICE does not consider

the initial matrix factorization time into account when reporting the emulation time. Given

the fact that the time it takes to factorize a matrix is included for PACT and is also one of

the main contributing factors in PACT’s runtime, PACT achieves an even higher speedup

when compared to 3D-ICE. The main reason for this speedup is that PACT supports paral-

lel thermal simulation. Figure 3·12(b) shows the microchannel layer thermal map in PACT

(power density = 100W/cm2 and coolant flow velocity = 0.5 m/s). The temperature of the
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coolant increases as the coolant flows across the chip, which results in a higher tempera-

ture at the outlet. This trend is expected since the coolant absorbs heat as it flows along

the microchannel. Accuracy comparison of PACT’s liquid cooling model against another

validated recent model (Kaplan et al., 2019) also shows very similar results of only up to

0.09◦C maximum temperature difference.

Table 3.7: Validation setup of liquid cooling via microchannels simulations.

Chip Length 5 mm

Chip Width 250 µm

Channel Length 5 mm

Channel Width 50 µm

Wall Width 50 µm

Heat Sink fixed-air convection HTC heat sink

Air Convection HTC 0.01 W/m2K

# of Grids 1000×5

Uniform power densities 12.5,25,50,100 W/cm2

Flow Velocities 0.5,1.0,1.5,2.0 m/s

Step Size 3.33 ms

# of Steps 100

# of Cores in PACT 8

Steady-state Solver in 3D-ICE 2.2.6 SuperLU

Transient Solver in 3D-ICE 2.2.6 Backward-Euler

Steady-state Solver in PACT AztecOO

Transient Solver in PACT Trap

3.4.4 Standard-Cell-Level Validation of PACT against COMSOL and HotSpot

To validate the accuracy of PACT, we compare the steady-state and transient simulation

results to COMSOL and HotSpot using different numbers of grids. We summarize the

validation setup in Table 3.8. The detailed statistics of the MPSoCs from OpenROAD are

shown in Table 3.9. To ensure standard-cell-level thermal simulation, the grid resolution

should depend on the number of standard cells, standard cell size, and design complexity.

Based on the MPSoCs we used in the experiments, a grid resolution of equal or higher
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Figure 3·13: Liquid cooling via microchannels simulation results. The top image shows
the maximum temperature difference for each power profile when coolant flow velocity
= 0.5, 1, 1.5, and 2 m/s. The bottom image shows the transient temperature curve of
PACT and 3D-ICE when power density = 100 W/cm2 and liquid flow velocity = 0.5
m/s. This case shows the maximum temperature difference between PACT and 3D-
ICE.

than 256×256 should be used to simulate the standard-cell designs. Utilization is defined

as the ratio of the area of standard cells, macros, and the pad cells to the area of the chip

minus the area of the sub floorplan. Higher utilization indicates more logic is packed into

a smaller area, which in turn results in higher power density. To show the scalability of

PACT, the MPSoCs in our test set have different power values and chip sizes. The steady-

state thermal maps (256×256) of the MPSoCs from OpenROAD are shown in Figure 3·14.

These thermal maps indicate that the maximum chip temperature across all cases is close
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to 90◦C, and the maximum thermal gradient is around 9◦C. We also show the thermal

maps and error map of PicoSoC with 95% utilization simulated using HotSpot, PACT, and

COMSOL in Figure 3·15. The steady-state grid temperature validation results are shown in

Figure 3·16. We observe that in comparison to COMSOL, PACT has maximum, average,

and minimum grid temperature errors of 2.77%, 1.76%, and 0.89%, respectively, which

demonstrates the accuracy of PACT’s steady-state simulation. The error is calculated with

respect to COMSOL by dividing the grid temperature difference (◦C) by the maximum on-

chip temperature reported by COMSOL. Figure 3·16 also shows the accuracy results for

HotSpot with respect to COMSOL. As we see in the figure, when compared to COMSOL,

PACT and HotSpot have similar maximum, average, and minimum errors.

Table 3.8: Validation setup of HotSpot, COMSOL, and PACT.

Simulator COMSOL HotSpot 6.0 PACT

# of grids 256×256

Solver FEM-based solver SuperLU, RK4 KLU, AztecOO, Trap

Heat Sink fixed-air convection HTC heat sink

Air Convection HTC 1e5 W/m2K

# of Cores in PACT 1

Step Size 3.33 ms

Total Step 30

Figure 3·14: PACT’s thermal maps for the MPSoCs from OpenROAD. The number of
grids used in the simulation is set to 256×256. Different utilization levels (shown next
to chip names) affect floorplan, chip size, and power density.
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Table 3.9: Statistics of the realistic MPSoCs from the OpenROAD benchmark set.

MPSoCs Avg PD(W/cm2) Freq(GHz) Util(%) # of standard cells Dimension (µm2)

PicoSoC 368 3 85 254815 1567×1577

PicoSoC 387 3 90 254815 1522×1534

PicoSoC 409 3 95 254815 1483×1493

Sparc 351 3 85 192871 1225×1244

Sparc 374 3 90 192871 1194×1198

Sparc 391 3 95 192871 1162×1176

Black_Parrot 319 3 85 71285 769×779

Black_Parrot 343 3 90 71285 748×752

Black_Parrot 362 3 95 71285 728×732

Swerv 311 3 85 63423 620×622

Swerv 326 3 90 63423 602×610

Swerv 338 3 95 63423 595×600

Figure 3·15: Thermal maps for PicoSoC with 95% utilization simulated using HotSpot,
PACT, and COMSOL. The rightmost image shows the error map of PACT when com-
pared to HotSpot. The number of grids used in the simulation is set to 256×256.

Next, we compare the steady-state simulation time of HotSpot and PACT using the

setup as shown in Table 3.8 with various numbers of cores (8, 16, 56, and 112). We also

include finer grid resolutions such as 512×512 and 1024×1024. We show the speedup of

PACT’s simulation time against HotSpot in Figure 3·17. We select KLU and AztecOO as

PACT’s solvers for parallel steady-state thermal simulations with multiple cores. As we

see in Figure 3·17, for steady-state simulations using 256×256 grids with a relatively small

number of cores (8 and 16), HotSpot is faster than PACT by as much as 2.3×. But note that

the simulation time is relatively short in these cases (22-134 seconds). The reason is that

since PACT is written in Python (and HotSpot is written in C), the front-end processing time

of PACT is longer than HotSpot. Another possible reason is that Xyce 6.12 (PACT’s SPICE
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Figure 3·16: Steady-state grid temperature validation results (utilization = 95%). MP-
SoCs with 95% utilization result in the highest maximum, average, and minimum grid
temperature error. The error is calculated with respect to COMSOL.

Figure 3·17: Steady-state and transient simulation times of PACT. The speedup of
PACT against HotSpot is shown on the y-axis. The speedup is computed as the ratio
of the simulation times of HotSpot and PACT. Negative values mean HotSpot is faster
than PACT for those cases.



51

Figure 3·18: Transient validation results. The number of grids used in the simulation is
set to 256×256. Due to the space limit, we only show the results that have the highest
transient temperature difference.

engine) uses a one-step DC analysis to perform operation point analysis, which slows down

the steady-state simulation. When the problem size is relatively small (e.g., 256×256),

using a large number of cores (e.g., 112) results in a high communication cost between

cores and nodes. This communication cost is a potential timing bottleneck (Hutchinson

et al., 2002) and may result in longer simulation times. For standard-cell-level problems

(e.g., 512×512 and 1024×1024), PACT results in shorter simulation times than HotSpot.

The maximum steady-state simulation speedup of PACT compared to HotSpot is 1.83×

(1024×1024 with 56 cores). Note that, using 112 cores for problem sizes of 512×512

and 1024×1024 also has a high communication cost issue and results in longer simulation

times than using 56 cores.

We also run steady-state simulations using PACT with KLU. For parallel simulation

using a serial solver like KLU, the thermal netlist is evaluated and assembled using multi-

ple processors, but only one processor is used to solve the netlist (Hutchinson et al., 2002).

However, AztecOO is a parallel iterative solver which uses multiple processors to evaluate,

assemble, and solve the thermal netlist. In Figure 3·17, where the thermal netlist is evalu-

ated and assembled with the KLU solver using multiple processors, PACT still achieves a

maximum speedup of 1.75× (1024×1024 with 56 cores) compared to HotSpot.

For transient validations, we create a step response for each MPSoC and compare the

grid temperature results against COMSOL and HotSpot. We run each transient thermal
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simulation with a step time of 3.33 ms and the total simulation time of 99.9 ms (total steps

of 30). We show the average grid temperature simulation results of Sparc, Black_Parrot,

Swerv, and PicoSoC in Figure 3·18. Compared to HotSpot, PACT has a maximum and

average temperature difference of 0.05% and 0.01% across all the experiments. Compared

to COMSOL, PACT has a maximum and average difference of 3.28% and 1.1%, respec-

tively. ∆T is the temperature difference between the temperature of the current step and

the ambient temperature. Since OpenSTA (Ajayi et al., 2019) lacks dynamic power traces,

we utilize the steady-state power profiles from OpenROAD and randomly apply ±15%

additional power values for each standard cell to create synthetic transient power traces.

We simulate both PACT and HotSpot using the same setup as shown in Table 3.8. The re-

sults are shown in Figure 3·19. We see that PACT temperature traces overlap with HotSpot

temperature traces. The steady-state and transient validation results indicate HotSpot and

PACT are at the same accuracy level..

Figure 3·19: Synthetic power traces for PACT and HotSpot simulations. Due to the
space limit, we only show the results that have the highest temperature difference.

We then compare the transient simulation time of HotSpot and PACT with cores = 8,



53

16, 56, and 112. For parallel transient thermal simulations with multiple cores, we select

TRAP as the solver of PACT. Figure 3·17 demonstrates that PACT outperforms HotSpot in

every test case. Since HotSpot uses the explicit adaptive RK4 method (4th order Forward

Euler), to ensure the accuracy of simulation results, adaptive RK4 needs to decrease the

minimum simulation step to satisfy the numerical stability constraint (Distefano, 1968).

On the other hand, PACT uses the TRAP solver (2nd order Backward Euler method) that

eliminates the numerical instability problem. PACT achieves a speedup of up to 186× when

compared to HotSpot (1024×1024 with 112 cores). We also observe that different grid

resolutions affect thermal netlist generation, hypergraph partition, and solver running time,

while chip size only affects thermal netlist generation time. Across all the standard-cell-

level simulations for the designs from OpenROAD, PACT’s total running time is dominated

by the hypergraph partition and solver running time. The thermal netlist generation time is

negligible.

3.4.5 Standard-Cell-Level Comparison of PACT against MTA

MTA (Ladenheim et al., 2016) is a thermal simulator that is able to perform standard-cell-

level thermal simulations. We compare PACT’s temperature results and simulation speed

for both steady-state and transient analysis to that of MTA 2.0 using full industrial designs

from OpenROAD. The experimental setup is almost the same as Table 3.8. We change the

transient step size to 3.33 µs with a total number of steps of 100. We also use the same

medium-cost heat sink in both PACT and MTA. We select the default mesh provided by

MTA, which results in 639920 degrees of freedom. To ensure a fair comparison, we set the

grid resolution in PACT to 256×256. For steady-state simulations in MTA, we use {mode

0}. Since MTA does not support adaptive mesh refinement for parallel thermal simulations,

we use {mode 2} to perform transient simulations with adaptive time step size. We carry

out linear heat model parallel thermal simulations with MPICH (Gropp et al., 1999). The

steady-state and transient maximum temperature differences are 0.45◦C and 0.83◦C. We
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average the simulation time for each MPSoC selected from OpenROAD as shown in Table

3.9 and present comparison in Figure 3·20. Compared to MTA, PACT achieves a maximum

speedup of 1.98× and 9.64× for steady-state and transient simulations, respectively. Since

MTA is a FEM-based thermal simulator and PACT is based on the compact thermal mod-

eling methodology, the complexity of solving the second-order heat equation is obviously

higher than solving the first-order thermal RC network. Even with an adaptive time step

size, PACT still achieves better simulation time than MTA.

Figure 3·20: Steady-state and transient simulation time of PACT and MTA.

3.5 Case Study: Modeling Diamond Heat Spreaders Using PACT

To further demonstrate the applicability and extensibility of PACT, we perform a case study

on using PACT to model and evaluate the lab-grown diamond heat spreaders.
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3.5.1 Introduction

Existing cooling solutions such as forced air cooling via fans or traditional pin-fin heat

sinks are often not sufficient to mitigate these high power density hot spots efficiently and

lead to over/under-cooling, affecting system design cost and power. The cooling perfor-

mance is relatively low for passive cooling methods such as pin-fin heat sink. However,

for active cooling methods such as forced air cooling via fans and liquid cooling, the sys-

tem requires additional cooling power (fan power and liquid pumping power). It’s hard

to optimize the existing cooling solutions at design time and runtime to achieve both high

computing performance for processors and energy efficiency for the cooling methods. Lab-

grown diamond heat spreaders have the potential to provide better cooling performance

compared to traditional copper heat spreaders due to the high thermal conductivity, the

ability to directly bond them on silicon, no additional cooling power needed, and allow for

an ultra-thin silicon layer (Jagannadham, 1998; Zhou et al., 2012). However, lab-grown

diamond heat spreader thermal models are usually developed and simulated using FEM-

based multiphysics simulators (e.g., COMSOL and ANSYS (COM, 1998; Madenci and

Guven, 2015)). Such commercial simulators are computationally expensive and experi-

ence long solution times along with large memory requirements (Yuan et al., 2019a; Yuan

et al., 2019b), which results in simulation timing overhead for parametric studies and ther-

mal evaluations for lab-grown diamond heat spreaders with real-world high-performance

processors. Due to the aforementioned modeling challenges using commercial FEM-based

simulators, none of the existing works have evaluated the thermal behavior of lab-grown

diamond heat spreaders on real-world high-performance processors running realistic ap-

plication benchmarks. We use PACT to compare the cooling performance of lab-grown

diamond heat spreaders against traditional copper heat spreaders using real-world high-

performance processors. To demonstrate the cooling advantages of lab-grown diamond

heat spreaders, we select three different real-world high-performance processors (Intel i7
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6950×, IBM Power9, and PicoSoC) and compare the cooling performance in terms of max-

imum temperature reductions and thermal gradient reductions between lab-grown diamond

heat spreaders and traditional copper heat spreaders. We also carry out several paramet-

ric studies to demonstrate the impact of cooling performance of lab-grown diamond heat

spreaders with different chip thicknesses and cooling packages.

3.5.2 Materials and Methods

In this section, we first discuss the models of processors and interconnects we build for the

steady-state and transient simulations. Next, we illustrate our methodology for collecting

transient power traces from realistic application benchmarks.

Processor Model

We build three different real-world processor models in PACT. Intel i7 6950× (Sima, 2018)

is a desktop processor, IBM Power9 processor (Sadasivam et al., 2017) is a server proces-

sor, and PicoSoC (Ajayi et al., 2019) is a mobile processor. For Intel i7 6950× and IBM

Power9, we model the processors based on the reported architecture-level floorplan and

thermal design power (TDP) (220 W for IBM Power9 and 140 W for Intel i7 6950×). For

PicoSoC, we directly utilized the coordinates and power values of the standard cells to gen-

erate standard-cell-level power maps using OpenROAD (Ajayi et al., 2019). We assume an

extreme power case for PicoSoC with an operating frequency of 3 GHz and a total power

of 9 W . For Intel i7 6950× and IBM Power9, we create 5 different chip stacks to com-

pare the cooling performance of lab-grown diamond heat spreaders and traditional copper

heat spreaders. Figure 3·21 shows the chip stacks for Intel i7 6950× and IBM Power9.

Since PicoSoC is a mobile chip, using heat sinks is not possible with mobile chips due

to size/volume constraints, and package temperature constraints are typically stricter com-

pared to desktop and server processors. In this case, we build five additional chip stacks

with no heat sinks and thermal interface material (TIM) (no TIM2) for PicoSoC as shown
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in Figure 3·22. Besides, the TIM1 layer is relatively thinner than the desktop and server

processors. We assign a fixed-air convection HTC on top of the chip stacks to represent the

forced-air cooling via fans package. Chip stack 1 is used to mimic the real-world proces-

sor with a copper heat spreader, and chip stack 3 represents a real-world processor with a

lab-grown diamond heat spreader (TCdiamond1 = 7.28(T )(−1.42)MW/mK). Chip stack 2 is

used to directly compare the cooling performance of the copper heat spreader and diamond

heat spreader. Note that, one of the advantages of lab-grown diamond heat spreaders is that

they are able to be directly bonded to the silicon with an ultra-thin TIM layer (or no TIM

layer is needed). In contrast, traditional copper heat spreaders require a thick TIM layer

(Liang et al., 2017; Liang et al., 2018; Liang et al., 2019). Comparing chip stack 1 and 3

is more realistic than comparing chip stack 1 and chip stack 2. Chip stack 4 represents a

real-world processor with a higher thermal conductivity lab-grown diamond heat spreader

(TCdiamond2 = 10.9(T )(−1.42)MW/mK). Chip stack 5 mimics the processor with an ultra-

thin processor layer (silicon layer). The floorplans of Intel i7 6950× and IBM Power9 are

shown in Figure 3·23. Since PicoSoC is a standard-cell design, the floorplan of PicoSoC is

very similar to a mesh.

Figure 3·21: Chip stacks for IBM Power9 and Intel i7 6950×.
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Figure 3·22: Chip stacks for PicoSoC.

Figure 3·23: Intel i7 6950× and IBM Power9 floorplans.

Interconnect Model

To mimic the realistic interconnects in the real chips, we add additional interconnect metal

layers to the chip stacks and assign additional dynamic power to represent the power deliv-

ery network’s power consumption. Figure 3·24 shows the layer stack of the interconnect

model we added to the chip stack. We assume the flip-chip design and the processing layer

is in between the heat spreader and interconnect model. Since metal layers 1-8 are local

interconnects, we abstract metal 1-8 layers into one layer and assign a joint thermal re-

sistivity of 75% copper and 25% silicon oxide to reduce the simulation problem size to

this abstract layer. For metal 9 and 10 layers, since these metal layers are used for global
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connection, we use these two layers to build a power delivery network. The floorplans for

metal 9 and 10 layers are shown in Figure 3·25. The golden lines represent the metal lines,

and the rest of the layer consists of silicon oxide. To further reduce the simulation problem

size, for desktop processor and server processor chip stacks as shown in Figure 1, metal 9

and 10 layers metal width and pitch are set to 200 µm and 400 µm. For mobile processors,

to ensure simulation accuracy, metal 9 and 10 layers metal width and pitch are set to 20

µm and 40 µm. The total power consumption of the interconnect layers is assumed to be

10% of the total chip power (Adhinarayanan et al., 2016). Since Metal 9 and 10 are power

delivery network layers, they are assumed to consume 40% of the interconnect power. For

metal 1-8, each layer is assumed to consume 7.5% of the interconnect power.

Figure 3·24: The layer stack of the interconnect model.

Figure 3·25: Power delivery network model.
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Realistic Power Traces Collection

To carry out transient simulations for Intel i7 6950× with realistic power traces, we first

use architecture-level performance simulators such as Sniper (Carlson et al., 2011) to run

realistic application benchmarks and then input the program metrics to the power simulator,

McPAT (Li et al., 2009), to collect the power traces. The power traces are calibrated using

the reported TDP, and the collected power traces are sent to PACT to carry out transient

simulations. We select the parallel applications from NAS parallel benchmarks (Bailey

et al., 1991) and choose different mapping policies to map different applications to different

cores to study the multi-program and multi-threaded workload scenarios. For PicoSoC,

since the standard-cell design lacks dynamic power traces, we utilize the steady-state power

values of PicoSoC and randomly applied -15% or +15% additional power values for each

standard cell and create synthetic transient power traces. Since IBM Power9 uses Power

instruction set architecture (ISA) and architecture-level performance simulators such as

Sniper have better support for ×86 ISA and less support for RISC ISA such as Power ISA.

We only carry out steady-state simulations for IBM Power9.

3.5.3 Results and Discussions

In this section, we first validate the accuracy of the thermal models in PACT. Then we

demonstrate the steady-state and transient cooling performance comparison results of tra-

ditional copper heat spreaders and diamond heat spreaders. Last but not least, we show the

parametric study results of the chip thickness and cooling packages. Note that the compact

thermal modeling methodology always places the temperature node at the center of the

bottom surface of the layer. When we are demonstrating and discussing the temperature of

the silicon layer, we are always referring to the temperature of the heat source.
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Validation of the Model

We use the following chip stacks as shown in Figure 3·26 to validate the steady-state accu-

racy of the thermal models in PACT. The silicon layer has a dimension of 2400×2475 µm2.

A 1600×1650 µm2 hot spot is placed at the center of the silicon layer with a heat flux of

265 W/cm2. The silicon layer consumes a total power of 7 W . And the rest of the layer

consumes no power. We build all three chip stacks in ANSYS and PACT and directly com-

pare the simulation accuracy. The simulation grid resolution in PACT is set to 100×100.

The maximum steady-state temperature difference between PACT and ANSYS is 0.51◦C

(chip stack 1). It takes a maximum of 6.97 seconds to run the steady-state simulations in

PACT for the chip stacks shown in Figure 3·26 with a parallel configuration of 4 cores. We

Figure 3·26: Chip stacks for steady-state validation.

use the chip stacks and die floorplan as shown in Figure 3·27 to validate the transient sim-

ulation results. The total chip area is 50×50 µm2, and the die contains seven power lines

colored in red. Each power line is 1 µm wide and 30 µm long. Each power line consumes

a uniform power of 120 µW . We switch on and off all the power lines at frequencies of 1,

10, 100, and 1000 Hz for 1 second to validate the transient simulation results accuracy of

PACT against ANSYS. The simulation grid resolution is set to 100×100, and the minimum

transient solver step size is set to 0.1 ms. When compared to ANSYS, the maximum tran-
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sient error is 0.35◦C (chip stack 1 @ 1000 Hz). It takes a maximum of 5.93 minutes to run

the transient simulation in PACT for the chip stacks shown in Figure 3·27 with a parallel

configuration of 4 cores.

Figure 3·27: Chip stacks and die floorplan for transient validation.

Steady-State Comparisons

In this subsection, we compare the steady-state simulation results for the IBM Power9, In-

tel i7 6950×, and PicoSoC using the chip stacks as shown in Figures 3·21 and 3·22. For

IBM Power9 and Intel i7 6950×, we use a grid resolution of 400×400 with grid sizes of

68.5×63.3 µm2 and 36.7×42 µm2, respectively. For PicoSoC, since it’s a standard-cell de-

sign with a fine granularity power map and floorplan, we select to use a high grid resolution

of 1024×1024 with a grid size of 1.46×1.46 µm2. The grid resolution is selected based on

the size of the smallest functional unit of the processor. The selected grid size is similar

to the smallest functional unit of the processor. Since Intel i7 6950× and IBM Power9

have architecture-level floorplans, the grid resolution is relatively coarse compared to the

standard-cell-level floorplan of PicoSoC. Based on cooling packages recommended by In-

tel, we use a high air convection HTC of 30 KW/m2K. For IBM Power9 and PicoSoC,

we use air convection HTCs of 20 KW/m2K and 1 KW/m2K. The convection HTC values
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are adopted from previous work (Wei et al., 2012). We obtain the steady-state power map

of Intel i7 6950× by running Sniper and McPAT with applications bt, cg, dc, ep, f t, is,

lu, mg, sp, and ua from NAS parallel benchmarks and average the transient power traces.

The steady-state power map has been calibrated to the reported TDP from Intel. For IBM

Power9, we use the reported TDP and power breakdown from previous work (Sima, 2018)

to calculate the power values for core, L3 cache, Nest, I/O, and DDR4 memory controller.

We extract the steady-state power map of PicoSoC by running the OpenROAD project and

the interface between OpenROAD and PACT. Figures 3·28, 3·29, and 3·30 show the steady-

state heat map comparisons of Intel i7 6950×, IBM Power9, and PicoSoC with chip stacks

1 and 3. Chip stack 1 is the more realistic chip stack with a traditional copper heat spreader,

and chip stack 3 is a realistic chip stack with a relatively lower diamond thermal conduc-

tivity lab-grown diamond heat spreader. Chip stack 2 is just for direct cooling performance

comparison of the heat spreaders, assuming that the traditional copper heat spreaders are

able to be directly bonded to the silicon layer. We show the Intel i7 6950×, IBM Power9,

and PicoSoC steady-state layers 0-5 simulation results for all the chip stacks in Tables 3.10,

3.11, and 3.12. Layers 0, 1, and 2 are the metal 10, 9, and 1-8 layers, respectively. Layer 3

is the silicon layer, and layer 4 is the TIM layer placed above the silicon layer. Layer 5 is

the heat spreader/diamond layer. The maximum steady-state simulation time of PACT for

these high-performance chips is 259 seconds.

Based on our observations from Figures 3·28, 3·29, and 3·30 and Tables 3.10, 3.11, and

3.12, replacing the traditional copper heat spreaders with lab-grown diamond heat spread-

ers achieves at least 12.49◦C (IBM Power9 chip stacks 1 and 3) and 1.89◦C (PicoSoC chip

stacks 1 and 3) maximum temperature and thermal gradient reductions, respectively. For

Intel i7 6950× and IBM Power9 with lab-grown diamond heat spreaders, the maximum

temperatures on-chip are less than 81◦C. The throttling temperature for mobile proces-

sors is around 70-80◦C (depends on the specific model of processor), with lab-grown dia-
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mond heat spreaders, the maximum temperature of PicoSoC is less than 76◦C. The above

temperature reductions are mainly because the thermal conductivity of diamond is higher

than copper, and the diamond heat spreaders are able to be directly bonded to the silicon

layer, which results in lower vertical thermal resistance. In addition, we also observe that

the temperature and thermal gradient reductions are highly correlated with the chip stack

thickness. For Intel i7 6950× and IBM Power9, when switching the diamond thermal con-

ductivity from 7.28(T )(−1.42)MW/mK to 10.9(T )(−1.42)MW/mK (chip stacks 3 and 4),

the maximum temperature of the chip barely changes. The reason is that the thick TIM

and silicon layers dominate the vertical thermal resistance of the chip stack. Using a high

thermal conductivity diamond heat spreader cannot significantly benefit the temperature

reductions. Whereas, for PicoSoC, the chip stack is much thinner than Intel i7 6950× and

IBM Power9. When comparing PicoSoC chip stacks 3 and 4, we observe a maximum

temperature reduction of 3.69◦C. In addition, when we scale the silicon layer thickness

to 5 µm, the maximum temperature and thermal gradient reductions increase to 19.76◦C

(PicoSoC chip stacks 1 and 5) and 15.69◦C (IBM chip stacks 1 and 5), respectively. The

hot spot locations and the number of hot spots also affect the maximum temperature and

thermal gradient reductions. For Intel i7 6950× and PicoSoC, since the hot spots are gath-

ering in the silicon layer, we observe maximum temperature reductions of 13.75◦C and

13.21◦C (chip stack 1 and chip stack 3), respectively. However, for IBM Power9, the hot

spots are spread, and that’s why the temperature reduction is lower than Intel i7 6950× and

PicoSoC. In summary, compared to traditional copper heat spreaders, lab-grown diamond

heat spreaders achieve maximum steady-state temperature and thermal gradient reductions

of 19.76◦C and 15.69◦C, respectively.

Transient Comparisons

Next, we carry out transient simulations for Intel i7 6950× and PicoSoC. We use chip

stacks 1 and 3 as shown in Figures 3·21 and 3·22. For Intel i7 6950×, we obtain the tran-
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Table 3.10: Intel i7 6950× steady-state results. ID stands for chip stack identification
number. Tmax stands for maximum temperature (◦C) and ∆T stands for temperature
gradient (◦C).

Layer 0 1 2 3 4 5
Tmax(ID1)(◦C) 84.64 84.64 84.60 84.54 81.13 70.43
Tmax(ID2)(◦C) 77.77 74.77 74.73 74.67 71.08 71.07
Tmax(ID3)(◦C) 70.89 70.89 70.85 70.79 67.00 66.99
Tmax(ID4)(◦C) 70.47 70.47 70.44 70.37 66.56 66.55
Tmax(ID5)(◦C) 66.76 66.76 66.72 66.66 66.63 66.62
∆T (ID1)(◦C) 17.50 17.50 17.46 17.43 14.98 7.35
∆T (ID2)(◦C) 11.10 11.10 11.06 11.04 8.36 8.35
∆T (ID3)(◦C) 5.39 5.39 5.35 5.32 2.31 2.31
∆T (ID4)(◦C) 4.72 4.72 4.69 4.65 1.59 1.59
∆T (ID5)(◦C) 1.81 1.81 1.77 1.75 1.72 1.71

Table 3.11: IBM Power9 steady-state results. ID stands for chip stack identification
number. Tmax stands for maximum temperature (◦C) and ∆T stands for temperature
gradient (◦C).

Layer 0 1 2 3 4 5
Tmax(ID1)(◦C) 92.82 92.82 92.82 92.80 89.12 77.58
Tmax(ID2)(◦C) 82.59 82.59 82.59 82.57 78.23 78.22
Tmax(ID3)(◦C) 80.33 80.33 80.33 80.31 75.70 75.69
Tmax(ID4)(◦C) 80.10 80.10 80.10 80.08 75.45 75.44
Tmax(ID5)(◦C) 75.58 75.58 75.58 75.56 75.53 75.51
∆T (ID1)(◦C) 14.03 14.03 14.03 14.01 11.59 3.97
∆T (ID2)(◦C) 8.32 8.32 8.32 8.33 5.05 5.04
∆T (ID3)(◦C) 5.11 5.11 5.11 5.09 1.40 1.38
∆T (ID4)(◦C) 4.72 4.72 4.72 4.72 0.98 0.98
∆T (ID5)(◦C) 1.14 1.14 1.14 1.13 1.11 1.09

Table 3.12: PicoSoC steady-state results. ID stands for chip stack identification number.
Tmax stands for maximum temperature (◦C) and ∆T stands for temperature gradient (◦C).

Layer 0 1 2 3 4 5
Tmax(ID1)(◦C) 88.89 88.89 88.88 88.65 84.61 78.68
Tmax(ID2)(◦C) 83.10 83.10 83.09 82.86 78.78 78.69
Tmax(ID3)(◦C) 75.68 75.68 75.67 75.44 69.35 69.25
Tmax(ID4)(◦C) 71.99 71.99 71.98 71.75 68.66 68.56
Tmax(ID5)(◦C) 69.13 69.13 69.12 68.95 68.69 68.57
∆T (ID1)(◦C) 3.92 3.93 3.94 3.87 2.43 0.34
∆T (ID2)(◦C) 2.30 2.31 2.32 2.24 0.42 0.38
∆T (ID3)(◦C) 2.03 2.05 2.06 1.98 0.12 0.07
∆T (ID4)(◦C) 2.00 2.03 2.04 1.95 0.09 0.04
∆T (ID5)(◦C) 0.40 0.41 0.43 0.41 0.17 0.06
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Figure 3·28: Steady-state heat map comparisons of Intel i7 6950× (Chip stacks 1
and 3).

Figure 3·29: Steady-state heat map comparisons of IBM Power9 (Chip stacks 1 and 3).

Figure 3·30: Steady-state heat map comparisons of PicoSoC (Chip stacks 1 and 3).
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sient power traces by running applications bt, cg, and f t from NAS parallel benchmarks.

The transient power traces have been calibrated to the reported TDP from Intel. We run 10

billion instructions for each application and collect power values per 10 million instructions

to extract the application power traces. We select different application mapping policies to

study the transient thermal behavior of traditional copper heat spreaders and lab-grown di-

amond heat spreaders. The selected application mapping policies are as follows: (i) we

run most power-hungry applications bt and f t consecutively, and applications are mapped

to all ten cores, (ii) we run application f t for two iterations. In the first iteration, cores 8

and 9 remain idle, and in the second iteration, cores 4 and 5 are idle, (iii) we run appli-

cations f t (high power) and cg (low power) for two iterations. In the first iteration, each

application is mapped on a column of cores, and in the second iteration, applications are

mapped as a checkerboard. The transient temperature plots of the Intel i7 6950× silicon

layer are shown in Figure 3·31. The maximum transient simulation time of PACT for these

real-world high-performance chips with realistic applications is 22 minutes. Plots (A) and

(C) indicate that the maximum transient temperature reductions of lab-grown diamond heat

spreaders go up to 26.73◦C. In addition, the temperature reductions of the diamond heat

spreaders depend on the application behavior and application mapping policy. As we see

in plots (A), (B), and (C), using different application mapping policies for application f t

results in different maximum temperatures. For plot (B), leaving cores 4 and 5 idle results

in a lower maximum temperature than making cores 8 and 9 idle. As shown in Figures 3·23

and 3·28, cores 4 and 5 are placed at the center of the chip and result in the highest hot spot

temperatures. Leaving cores 4 and 5 idle is similar to adding white spaces to the hot spot

region to decrease the hot spot temperatures. For plot (C), since the checkerboard mapping

policy help spread the lateral heat, the second iteration results in significantly less temper-

ature than the first iteration. For PicoSoC, since the standard-cell design lacks dynamic

power traces, we utilize the steady-state power values of PicoSoC and randomly applied
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-15% or +15% additional power values for each standard cell and create synthetic transient

power traces. The transient temperature plots of PicoSoC are shown in Figure 3·31. We

still observe a maximum temperature reduction of 18◦C for mobile chip setup. These tran-

sient simulation comparison results show that lab-grown diamond heat spreaders’ transient

cooling performance advantages over traditional copper heat spreaders are even more than

the steady-state thermal simulations. For steady-state simulations, we average the power

values of the applications in NAS parallel benchmarks, which results in relatively lower

steady-state power values than transient power values. In addition, we haven’t considered

mapping policies in the steady-state simulations. As we see in the transient temperature

plots, mapping policies also impact the maximum temperature reductions.

Figure 3·31: Transient temperature plots for Intel i7 6950× and PicoSoC.



69

Parametric Study of Chip Thickness

This subsection studies the cooling performance of lab-grown diamond heat spreaders with

different chip thicknesses. We select Intel i7 6950× with chip stacks 1 and 3 as shown

in Figure 3·21, and the chip thickness is selected to be 5, 50, 100, 250, 500, and 750

µm. The lab-grown diamond thermal conductivity is set to 7.28(T )(−1.42)MW/mK. We

obtain the steady-state power map of Intel i7 6950× by running Sniper and McPAT with

the most power-hungry applications bt and f t from NAS parallel benchmarks and average

the transient power trace. The steady-state power map has been calibrated to the reported

TDP from Intel. The steady-state maximum temperature results are shown in Figure 3·32.

Decreasing the thickness of the silicon layers helps lower the chip stack’s vertical thermal

resistance. However, in the meantime, it also prevents spreading the lateral heat across

the silicon layer. For chip stack 1, the thick TIM layers dominate the vertical thermal

resistance, and varying the silicon layer thickness does not affect the maximum temperature

much. Whereas for chip stack 3, diamond heat spreaders have lower thermal resistance and

are able to be directly bonded to the silicon. We observe a maximum temperature reduction

of 4.62◦C (thickness = 5 µm vs. 750 µm) by lowering the silicon layer thickness.

We then conduct a parametric study of silicon layer thickness for transient simulations

of Intel i7 6950× chip stacks 1 and 3. We run most power-hungry applications bt and f t

consecutively, and applications are mapped to all ten cores. The transient power traces

have been calibrated to the reported TDP from Intel. We show the transient simulation

parametric study results in Figures 3·33 and 3·34. We observe a similar trend as the steady-

state thickness parametric study. For chip stack 1, decreasing the thickness of the silicon

layer does not affect the maximum temperatures because of the tradeoff between vertical

and lateral thermal resistance. Whereas for chip stack 3, decreasing the thickness of the

silicon layer results in a maximum temperature reduction of 6.53°C (thickness = 5 µm

vs. 750 µm). Based on the steady-state and transient parametric studies of the silicon
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layer thickness, we show that using a thinner silicon layer achieves an even better cooling

performance than a thick silicon layer for lab-grown diamond heat spreaders.

Figure 3·32: Steady-state silicon layer thickness parametric study results for Intel i7
6950×.

Figure 3·33: Intel i7 6950× chip stack 1 silicon layer thickness transient parametric
study results.

Parametric Study of Cooling Packages

Next, we study the cooling performance of lab-grown diamond heat spreaders with different

heat sinks. We select Intel i7 6950× with chip stacks 1 and 3 as shown in Figure 2, and the
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Figure 3·34: Intel i7 6950× chip stack 3 silicon layer thickness transient parametric
study results.

heat sink is selected to be the fixed-air convection heat sink, single-phase liquid cooling via

microchannels, and medium-cost heat sink adopted from HotSpot (Skadron et al., 2003).

We set the air convection HTC to 30 KW/m2K for the fixed-air convection heat sink. We set

the size and thickness of the medium-cost heat sink to 0.4×0.4 mm2 and 1 mm, respectively.

The heat sink is made of copper. The convection resistivity and heat capacity are set to 0.21

K/W and 140.4 J/K. We calculate the convection resistivity based on the air convection

HTC of 30 KW/m2K, which is the same as the fixed-air convection heat sink. For liquid

cooling via microchannels, the selected material properties are shown in Table 3.13. The

selected coolant velocity and the Reynolds number indicate the type of fluid flow is laminar.

We obtain the steady-state power map of Intel i7 6950× by running Sniper and McPAT with

the most power-hungry applications bt and f t from NAS parallel benchmarks and average

the transient power trace to represent the steady-state power map. The steady-state power

map has been calibrated to the reported TDP from Intel.

We show the steady-state silicon layer heat maps in Figure 3·35 and parametric study

results in Figure 3·36. By replacing the fixed-air convection heat sink with a medium-cost
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Table 3.13: Liquid cooling via microchannels material properties.

Coolant Water

Thermal resistivity 1.647 mK/W

Specific heat capacity 4.181 MJ/m3K

Inlet temperature 27◦C

Fluid density 998 Kg/m3

Dynamic viscosity 0.000889 Pa · s
Coolant velocity 0.5,1.0,1.5,2.0,2.6 m/s

Reynolds number 37.4,74.8,112,195

Number of microchannels 146

Microchannel width 50 µm

Wall width 50 µm

Wall material Silicon

Microchannel Height 100 µm

Microchannel Hydraulic Diameter 66.67 µm

Figure 3·35: Steady-state heat maps for parametric study of cooling packages. Liquid
flow velocity is set to 2.6 m/s.

heat sink, we observe a maximum temperature reduction of 9.66◦C (ID1_Fixed_Air vs.

ID1_Medium_Cost). This is mainly because the size of the heat sink is larger than the chip

stack and therefore enhances the lateral heat transfer. For liquid cooling via microchannels,

as the liquid flow velocity increases, liquid cooling via microchannels becomes the best
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cooling package with a maximum temperature reduction of 12.71◦C (ID1_Fixed_Air vs.

ID1_Liquid @ 2.6 m/s). However, when considering the thermal gradients, the medium-

cost heat sink performs better than liquid cooling via microchannels as shown in Figure

3·35. Since liquid absorbs heat as it flows along the channel, the temperature difference

between the inlet and outlet is one of the major reasons for the high thermal gradient.

Another reason is the thermal resistivity difference between the liquid and wall, which

causes the high lateral thermal gradient compared to the medium-cost heat sink. We use

Figure 3·36: Intel i7 6950× silicon layer steady-state cooling package parametric study
results (maximum temperature).

the same setup for the three types of aforementioned cooling packages for the transient

parametric study. We run most power-hungry applications bt and f t consecutively, and

applications are mapped to all ten cores to obtain the transient power traces. The transient

power traces have been calibrated to the reported TDP from Intel. The transient temperature

plots are shown in Figure 3·37. We observe a higher maximum temperature reduction of

liquid cooling via microchannels against the other two heat sinks than steady-state results.

The maximum temperature reduction against the fix-air convection heat sink is 14.13◦C.

This is due to the high specific heat capacity of the water compared to silicon and copper. In
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summary, among these three types of heat sinks, liquid cooling via microchannels provides

the highest cooling performance and results in the lowest maximum temperature on-chip.

Figure 3·37: Intel i7 6950× silicon layer transient cooling package parametric study
results.
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Chapter 4

Modeling Emerging Cooling Methods via
Machine Learning

4.1 Introduction

Two-phase cooling with VCs is attractive as it offers many advantages over the other tech-

niques: (i) it reduces thermal gradients, (ii) the evaporator in VCs removes heat passively

and saves pumping power (in contrast to liquid cooling via microchannels), and (iii) it has

a higher cooling efficiency (Thome, 2010; Bulut et al., 2019). In this technique, the phase

change from liquid to vapor occurs inside an enclosure called VC. The bottom surface of

the VC has a porous wick that sustains thin-film evaporation supplied by passive, capillary-

driven flow (Bulut et al., 2019).

Having fast and accurate thermal models is essential for processors to enable power-

efficient cooling optimization. Researchers have developed fast models for various cooling

methods, including liquid cooling via microchannels and hybrid cooling (of liquid cooling

and TEC) (Sridhar et al., 2014; Kaplan et al., 2017). To select and optimize a cooling so-

lution for a given chip and power profile, a fast thermal modeling approach is needed for

two-phase VCs with micropillar wick evaporators. Simulations for two-phase VCs are typ-

ically carried out using CFD modules in COMSOL and ANSYS (e.g., (Bulut et al., 2019)).

However, these tools are computationally expensive and experience long solution times

along with large memory requirements (Yuan et al., 2019b). These limitations make CFD

tools unsuitable for modeling the cooling technique and realistic processor architectures

and applications.
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This chapter presents modular CTMs of two-phase VCs with micropillar wick evap-

orators and two-phase VCs with hybrid wick evaporators to enable speedy and accurate

steady-state and transient analysis of two-phase VCs cooling on realistic chip designs. We

also introduce an ML-based temperature-dependent HTC simulation framework to model

two-phase cooling technologies for processor cooling and discuss an ML and simulation-

based methodology to predict accurate thermal maps based on readings from ob-chip ther-

mal sensors.

4.2 Two-Phase VCs with Micropillar Wick Evaporators CTM

4.2.1 Background on VCs

The schematic of a VC is shown in Figure 4·1 (a). On the bottom side of VC, there is an

evaporator that consists of a thin porous wick. The evaporator is placed directly on top

of the heat source (i.e., the processor). As the saturated coolant flows within the porous

wick, the coolant absorbs the heat generated by the chip and evaporates. Above the VC, a

condenser (e.g., a heat sink) condenses the saturated vapor back to the liquid phase. The

condensed liquid is recirculated in the VC by the additional wicking structures along its

sidewalls (Bulut et al., 2019). Fabrication and implementation details of VCs can be found

in previous works (Hsieh et al., 2012; Bulut et al., 2019). VCs have been shown to achieve

significant cooling performance on electronic devices (Bulut et al., 2019) and are already

being used as cooling solutions for CPUs, and GPUs (Bulut et al., 2019). Two primary

metrics determine the performance in VCs: (i) HTC, and (ii) dry-out heat flux. HTC is

the rate of heat transfer per unit temperature difference between the evaporator and the

environment. Dry-out heat flux refers to the thermal limit of a two-phase device, beyond

which the coolant ceases to exist in two phases and instead is found in only vapor phase.

Micropillar wick evaporators have improved cooling efficiency and enhanced dry-out heat

flux due to their high capillary pumping budget and extended menisci evaporation area (Wei
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et al., 2018; Adera et al., 2016).

Figure 4·1: (a) VC structure view, (b) micropillar wick side view, and (c) micropillar
wick side view overall view.

4.2.2 Compact Modeling Methodology

The entire system including the VC is divided into small grid cells. The default grid cell

is shown in Figure 4·2 (a). This figure shows that the virtual temperature node, which

represents the temperature of the grid cell, is placed on the bottom surface. The micropillar

wick evaporator is modeled as a separate layer placed directly above the processing layer.

In Figure 4·2 (b), we demonstrate how the grid cells of the two layers are connected in

the model. We assume that inside the VC there is only saturated vapor and all the liquid is

contained in the wicking structures and evaporator as shown in Figure 4·1 (b). To model the

saturated vapor conditions, we place an additional virtual temperature node on top of each

micropillar wick layer grid cell as shown in Figure 4·2 (b). The temperature of this node

is set to the saturated temperature of the coolant, Tsat , and therefore, depends on coolant

properties and pressure inside the VC. The micropillar wick layer along with Tsat nodes
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represent the VC. Since we assume that Tsat is maintained at a constant temperature, we do

not need to model a condenser.

Figure 4·2: (a) Default grid cell and (b) proposed grid cells for modeling two-phase
VCs with micropillar wick evaporators.

We assign silicon properties to the processing layer grid cells and represent the lateral

and vertical thermal resistance, respectively, of each cell as RSilicon as shown in Figure 4·2

(b). In the micropillar wick layer, determining the vertical thermal resistance of each grid

cell is complicated because the coolant exists in two phases. We use a previously estab-

lished relationship between the HTC and the thermal resistance of a grid cell to represent

the vertical thermal resistance of a micropillar grid cell, RMP (Sridhar et al., 2014; Yuan

et al., 2019b). Micropillar wick HTC is highly dependent on the coolant, VC pressure, and

micropillar wick geometry (micropillar height, diameter, and pitch as shown in Figure 4·1

(c)) (Bulut et al., 2019). We use a COMSOL model to extract the HTCs of a wide range

of micropillar geometries, coolants, and VC pressures. This COMSOL model is detailed

in a prior work (Vaartstra et al., 2019). In this COMSOL model, the authors separate the

CFD simulation into the fluid and heat transfer domains. By coupling these two domains,

they iteratively obtain the temperature distribution. They use the Young-Laplace equation

to relate the curvature of the liquid-vapor interface to local pressure. In addition, they also

use Darcy’s law and a volumetric loss function to model fluid flow in a uniform porous
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medium and the evaporative flux, respectively. Furthermore, they parametrically derive the

permeability and HTC for each micropillar wick geometry. The extracted HTCs are stored

in HTC lookup tables for various coolants and geometries. For simplicity, we assume a

flat evaporation surface in our model instead of a menisci evaporation surface as shown

in Figure 4·1 (b). The flat evaporation surface is a conservative assumption that is widely

used to define and simplify the liquid-vapor interface (Wei et al., 2018). This assumption

enables us to employ a uniform HTC across the micropillar wick layer.

Compared to other state-of-the-art compact modeling methodologies (Sridhar et al.,

2014; Sridhar et al., 2013b; Kaplan et al., 2017), the distinctions of our CTM are as fol-

lows: i) our proposed CTM models two-phase cooling in VCs, a passive cooling technique

that requires no cooling power on the evaporator side; ii) we place the virtual temperature

node at the bottom of the VC grid cells to model heat transfer happened on the evaporator

and since there is no pumping power at the evaporator side, there is no need for voltage-

controlled current sources; and iii) since the HTC is stored in a lookup table, our modeling

methodology can be generalized to model different two-phase cooling devices.

4.2.3 Dry-out Heat Flux Analytical Model

One major concern while designing VCs is to prevent dry-out. Dry-out heat flux for square

chips is defined in Equations (4.1) and (4.2) (Adera et al., 2016). The coolant and micropil-

lar parameters are listed in Table 4.1.

q′′dry−out = (40/3)ψMcosθrec (4.1)

M =
σlvρlhlv

µl
(4.2)

ψ is a dimensionless function of micropillar geometry that lumps the effect of the geom-

etry on heat transfer capacity (Adera et al., 2016). M is a figure of merit for the coolant. We

use the above equations to calculate the dry-out heat flux, q′′dry−out . Since the dry-out heat
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flux is sensitive to micropillar geometry and chip dimensions (Bulut et al., 2019), we next

perform parametric studies on the impact of the chip dimensions and micropillar geometry

on dry-out heat flux.

Table 4.1: Coolant and micropillar parameters.

h Height of micropillar
d Diameter of micropillar
i Pitch of micropillar wick

Pbg Background power density
Phs Hot spot power density
ρl Liquid density
hlv latent heat of vaporization
µl Dynamic viscosity
q′′ Heat flux

q′′dry−out Dry-out heat flux
θrec Receding contact angle for fluid-solid pair

p Pressure
κ Permeability of the wick

Tsat Saturated temperature of the coolant
σlv Surface tension
∆T Thermal gradients across the chip

MGopt Optimal micropillar geometry
Pcooling Cooling power

Ths Hot spot temperature
Tlimit User-defined temperature limit

u Liquid flow velocity
I TEC current

4.2.4 Parametric Study

Recall that high HTC and high dry-out heat flux deliver a better cooling performance of

two-phase cooling in VCs. To understand the relationships among the HTC, dry-out heat

flux, micropillar geometries, and chip sizes, we perform parametric studies using a COM-

SOL model (Vaartstra et al., 2019). Across all studies, we use a coolant, R134a, at Tsat

of 50◦C under 13.2 bar pressure and vary the chip size from 4 mm2 to 100 mm2. In the

first study, we vary the micropillar height (h) from 20 µm to 70 µm, with diameter (d) and

pitch (i) set to 10 µm and 20 µm, respectively. Figure 4·3 (a) shows the inverse relationship

between HTC and dry-out heat flux as micropillar height changes. The dry-out heat flux

increases with increasing micropillar height because the wick becomes more permeable,



81

which lowers the viscous resistance to capillary flow. On the other hand, HTC decreases

with increasing micropillar height since the liquid film becomes thicker, thus increasing

conduction resistance. In the second study, we vary i from 60 µm to 150 µm, with h and

d set to 55 µm and 10 µm, respectively. The results of this simulation are shown in Fig-

ure 4·3 (b), in which we observe that as the pitch increases, both dry-out heat flux and HTC

decrease. In this particular regime, the loss of capillary pumping budget due to increasing

the pitch is more significant than the increase in permeability. Therefore, increasing the

pitch leads to an earlier dry-out. The HTC decreases with the increasing pitch because

the solid fraction (c = pi
4

(d
i

)2) diminishes, forcing more heat to conduct through the liquid

film. In the third study, we fix h to 50 µm and i to 30 µm, and vary d from 5 µm to 17 µm.

We observe that both the dry-out heat flux and HTC increase with increasing micropillar

diameter. This is because a larger diameter leads to a higher capillary pumping budget that

increases the dry-out heat flux. In contrast, the increase in the solid fraction is favorable for

conduction, thus enhancing the HTC. Based on the above studies, we see that both the HTC

and dry-out heat flux have nontrivial relationships with different geometry parameters. As

a result, we need an optimal micropillar geometry to enhance the cooling performance of

two-phase VCs.

4.2.5 Validation of the Proposed Model

We model a 2×2 mm2 chip with a thickness of 100 µm in COMSOL and HotSpot to validate

the accuracy of our proposed CTM. We run two sets of simulations in COMSOL: (i) pro-

cessing layer with a uniform power density and (ii) processing layer with a non-uniform

power density with a 500 × 500 µm2 hot spot placed at the center. Each simulation set

has three different micropillar wick geometries and two coolants: water and R134a. In

these validation experiments, since water has a better HTC than R134a, to ensure the maxi-

mum temperatures are less than 85◦C, we select higher power densities for water and lower

power densities for R134a. In the experiment with uniform power density, we set the power
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Figure 4·3: Parametric study for different micropillar wick geometries. Dry-out heat
flux is shown on the right axes.

density equal 100 W/cm2 for water and 20 W/cm2 for R134a. In the non-uniform power

density simulations, we set the background power density to 50 W/cm2 for water and 20

W/cm2 for R134a. The hot spot power density is set to 100, 200, and 300 W/cm2 for water

and 25, 50, and 75 W/cm2 for R134a. To prevent extremely high chip temperatures, we re-

duce the Tsat of water to 50◦C by setting the pressure inside VC to 0.124 bar. As for R134a,

we set its Tsat to 50◦C under 13.2 bar pressure. For each COMSOL simulation, we use 592

nodes to simulate the fluid domain and 1106 nodes to simulate the heat transfer domain.

Among all the simulation cases, it takes a minimum of 4 iterations to converge and finish

the simulation. We model the same chip in HotSpot using the grid model and use 64×64

grids to compute the steady-state temperatures. The simulation time of the COMSOL CFD

model is 45 seconds, while it only takes 0.21 seconds to simulate our proposed CTM. Ta-

ble 4.2 compares the temperatures obtained in the above simulations. For both uniform and

non-uniform simulations, the proposed model achieves high accuracy with both the max-

imum and average errors less than 0.5◦C for water and 1.25◦C for R134a while achieving

a speedup of 214× when compared to COMSOL CFD simulations. Typical accuracies for
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CTMs of various cooling technologies range from 89.9% to 97.3% (Kaplan et al., 2017;

Sridhar et al., 2014; Sridhar et al., 2013b). Our proposed CTM provides a 98.5% accu-

racy which is similar to the approaches mentioned above. These simulations show that our

model significantly reduces simulation time with only a small tradeoff in accuracy.

Table 4.2: Comparison between proposed CTM and COMSOL.

Simulations Coolant Pbg Phs {h,d,i} Avg error (◦C) Max error (◦C)

Uniform Power
Water

100 100 {30,12,36} 0.20 0.19
100 100 {40,16,48} 0.22 0.21
100 100 {50,20,60} 0.25 0.25

R134a
20 20 {30,12,36} 0.65 0.71
20 20 {40,16,48} 0.75 0.77
20 20 {50,20,60} 0.80 0.82

Non-uniform Power
Water

50 100 {30,12,36} 0.23 0.23
50 200 {40,16,48} 0.31 0.26
50 300 {50,20,60} 0.49 0.45

R134a
20 25 {30,12,36} 0.99 1.1
20 50 {40,16,48} 1.02 1.12
20 75 {50,20,60} 1.04 1.24

Table 4.3: Structural properties and simulation parameters.

Processing layer thickness 750 µm
Microchannel height 200 µm

Microchannel width (same as wall width) 50 µm
TEC layer thickness 100 µm

Packaging layer (bulk silicon) 40 µm
higher power density chip size 20 × 20 mm2

Intel SCC core size 1.129 mm2
lower power density chip size 18 × 14.1 mm2

4.2.6 Cooling Performance Evaluation

To evaluate the cooling performance of two-phase VCs with micropillar wick evaporators,

we run thermal simulations to compare its cooling performance and cooling power with

liquid cooling via microchannels and microchannel-based two-phase cooling. The simu-

lated chip is 20×20 mm2 large with a 500×500 µm2 hot spot placed at the center. The

background power density is set to 50 W/cm2, and the hot spot power density varies from

100 to 2000 W/cm2. For a fair comparison, we select water as a coolant with a saturated

temperature of 50◦C (pressure = 0.124 bar). We vary the liquid flow velocity from 0.5 to

2.6 m/s (Sridhar et al., 2014) and mass flow velocity from 100 to 560 kg/m2s (Kandlikar,
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2002). We sandwich the liquid microchannel layer between the processing and packaging

layers. Structural properties of liquid cooling via microchannels and microchannel-based

two-phase cooling are shown in Table 4.3. Table 4.4 shows the optimal micropillar ge-

ometries selected by the optimization flow along with the estimated pumping power for

liquid-cooling via microchannels and microchannel-based two-phase cooling. Figure 4·4

shows the simulation results when liquid flow velocity is set to 2.6 m/s and mass flow

velocity is set to 560 kg/m2s. Two-phase VCs achieve lower hot spot temperature when

compared to liquid cooling via microchannels. Since microchannel-based two-phase cool-

ing is an active microfluidic two-phase cooling method, it provides higher hot spot tem-

perature reductions than two-phase VCs. Most importantly, two-phase VCs provide higher

reductions on thermal gradients by up to 11.78◦C in comparison to liquid cooling via mi-

crochannels, and 1.5◦C in comparison to microchannel-based two-phase cooling, without

additional pumping power on the evaporator side.

Figure 4·4: Comparison of cooling performance of two-phase VCs with micropillar
evaporators (VC), liquid cooling via microchannels (liquid), and microchannel-based
two-phase cooling (two-phase) when flow velocity = 2.6 m/s and mass flow velocity =
300 kg/m2s. Results are normalized to liquid cooling when Phs = 2000 W/cm2.

Table 4.4: Optimal geometries (h, d, i) of two-phase VCs and estimated pumping power
of liquid cooling via microchannels and microchannel-based two-phase cooling (G =
560 kg/m2s).

Phs (W/cm2) 100 200 300 500 1000 1500 2000
MGopt (µm) 20,10,5 25,10,5 30,10,5 30,10,5 35,10,5 45,10,5 45,10,5

u (m/s) 0.5 1 1.5 2.6
Ppump (W ) 0.17 0.66 1.5 4.5

G (kg/m2s) 100 300 560
Ppump (W ) 0.2 0.41 1.14
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4.3 Two-Phase VCs with Hybrid Wick Evaporators CTM

As we discussed in Section 4.2.4, the heat removal ability of the VC is often dominated

by the evaporator (Bulut et al., 2019). An evaporator with a higher HTC is desired to

reduce the thermal resistance of the VCs. However, such high-HTC evaporators often

suffer from low critical dry-out heat flux (Bulut et al., 2019; Ju et al., 2013). These two

metrics are typically conflicting with each other, and it is challenging to maximize HTC

while enhancing dry-out heat flux (Bulut et al., 2019). In this section, we focus on a hybrid

wick evaporator (of nanoporous membrane and microchannels) as shown in Figure 4·5 that

improves both HTC and dry-out heat flux. The microchannel and membrane geometries

can be varied independently so as to enhance the permeability of the microchannels and the

heat transfer from highly conductive solids (the substrate, microchannels, and nanoporous

membrane) to the liquid-vapor interface.

Figure 4·5: A hybrid wick evaporator cross-section view.

4.3.1 Compact Modeling Methodology

We abstract both the nanoporous membrane and the microchannel layers into a hybrid

wick layer to build a CTM. The whole chip stack is shown in Figure 4·6 (a). We divide

the whole chip into grids. For the processing layer, the grid cell structure is shown in

Figure 4·6 (b). Thermal resistance along the north, south, east, west, and vertical directions

are represented using silicon properties, i.e., Rsilicon. As for the hybrid wick layer, the grid
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cell is shown in Figure 4·6 (c). We represent lateral thermal resistances using Rsilicon and

the vertical thermal resistance, Rhybrid , stands for the inverse of the heat conduction from

the hybrid wick to the saturated vapor. We add an additional virtual temperature node on

top of the hybrid wick grid cell to represent the saturated vapor. We consider steady-state

and a predetermined VC pressure. In this way, we do not need to model the heat sink on top

of the VC. Instead, we use a previously established relationship between HTC and thermal

resistance to define Rhybrid (Sridhar et al., 2014; Yuan et al., 2019a). In addition, we assume

the VC itself only contains saturated vapor at a constant temperature (Vaartstra et al., 2019;

Lu et al., 2016). From the COMSOL model discussed in the next section, we extract

HTC correlations for various nanoporous membranes and microchannel geometries. For a

specific hybrid wick geometry, we use its corresponding HTC correlation to determine the

Rhybrid value.

Figure 4·6: (a) The chip stack of the processing layer and two-phase VCs with hybrid
wick evaporators, (b) processing layer grid cell, and (c) hybrid wick layer grid cell.
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4.3.2 COMSOL Model

We determine the resistance of the hybrid wick layer by solving for its effective HTC via fi-

nite element calculations using COMSOL. The simulated domain consists of a nanoporous

silicon membrane, a silicon microchannel, and the coolant. Due to device symmetry, we

only need to simulate one microchannel, and we can additionally limit the domain to two

dimensions by considering the channels to be infinitely long. We neglect convection in

the liquid phase since the Peclet number is small (Lu et al., 2016). Constriction resistance

between the substrate and the hybrid wick is accounted for by including 1 µm of the silicon

substrate in the simulation domain. The thermal conductivities of the silicon and the work-

ing fluid, as well as the resistance to evaporation posed by the liquid-vapor interface, are

temperature-dependent properties. Thus, the effective HTC of the hybrid wick is dependent

on temperature in addition to geometry and the vapor conditions.

We calculate the HTC by imposing an inward heat flux (q′′) at the bottom of the do-

main and an evaporative boundary condition at the top of the membrane, except where the

membrane is supported by the microchannel, which is set as an insulated boundary. The

evaporative boundary condition is modeled using a numerical solution to the Boltzmann

transport equation, which governs the flux of vapor molecules from the liquid-vapor inter-

face to the far-field vapor (Sone, 2000). We utilize the numerical Direct Simulation Monte

Carlo (DSMC) data and prescribed boundary conditions from recent work to model the

evaporative boundary condition (Lu et al., 2019). We extract the average temperature at

the substrate-hybrid wick interface (Tb) from the temperature distribution determined by

COMSOL, from which the effective HTC of the hybrid wick is calculated by Fourier’s

Law (HTC = q′′/(Tb −TSat)), where TSat is the temperature of the far-field vapor. We ob-

tain HTC as a function of Tb by imposing a range of heat fluxes on the hybrid wick for each

fixed set of geometries and vapor conditions. This COMSOL model has been validated

against the experimental results presented in a recent work (Hanks et al., 2018).
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4.4 An ML-Based Thermal Simulation Framework for Emerging Two-Phase Cool-
ing Technologies

Two-phase cooling thermal models are usually designed by calculating the temperature-

dependent HTC (Sridhar et al., 2013b; Thome, 2010; Lu et al., 2016; Vaartstra et al., 2019).

In these models, pre-computed temperature-dependent HTC correlations embedded in the

simulation framework are functions of temperature and cooling parameters (e.g., coolant

type, flow velocity, saturation temperature, and structural parameters such as microchannel

width and height, micropillar height, diameter, and pitch (Sridhar et al., 2013b; Vaartstra

et al., 2019; Yuan et al., 2019a)). The HTC correlations are derived either based on in-

house prototypes or using CFD modules in COMSOL and ANSYS (Vaartstra et al., 2019;

Bulut et al., 2019). HTC correlations based on prototypes are generally not applicable to

the same cooling method with different cooling parameters or will likely result in accuracy

loss (Sridhar et al., 2013b). Commercial simulation tools (e.g., COMSOL and ANSYS),

on the other hand, are computationally expensive and experience long design and simula-

tion times as well as large memory requirements. To enable cooling design exploration and

optimization, there is a need for a fast and generalized temperature-dependent HTC simu-

lation framework that applies to a wide range of cooling parameters for the same two-phase

cooling technology while maintaining the desired accuracy.

We introduce an ML-based temperature-dependent HTC simulation framework to model

two-phase cooling technologies for processor cooling. This framework enables fast and ac-

curate simulations with a wide range of cooling parameters for the same two-phase cooling

technology. To demonstrate our proposed framework’s speedup and accuracy, we integrate

the CTM for two-phase VCs with hybrid wick evaporators (of nanoporous membrane and

microchannels) into our proposed simulation framework.
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4.4.1 A Temperature-Dependent HTC Simulation Framework

The HTC of the hybrid wick evaporator is highly dependent on the temperature distribu-

tion(Lu et al., 2016). To precisely calculate the temperature distributions of the hybrid

wick layer and the processing layer, we implement a temperature-dependent HTC simula-

tion framework for the two-phase VCs with hybrid wick evaporators CTM. The simulation

flow is shown in Figure 4·7. We divide the simulation flow into two domains: (i) the

“update HTC” domain, which takes the HTC correlation from a lookup table generated

by the COMSOL model for a specific nanoporous membrane and microchannel geome-

try, and then updates the HTC value for each hybrid wick layer grid cell, based on both

the HTC correlation and temperature distribution, and (ii) the “heat conduction” domain,

which takes the HTC distribution, calculates the Rhybrid for the corresponding hybrid wick

layer grid cell, and then carries out the thermal simulation to generate a new temperature

distribution to pass it to the “update HTC” domain. The simulation framework iteratively

solves for the HTC and temperature distributions until the temperature distribution con-

verges (temperature difference of < 0.1◦C).

4.4.2 An ML-Based Temperature-Dependent HTC Simulation Framework

In the original temperature-dependent HTC simulation framework, the HTC correlation

of each hybrid wick geometry within a valid range is generated from COMSOL simula-

tions. The naming convention and valid range of hybrid wick geometry parameters are

shown in Table 4.5 (Lu et al., 2016). Figure 4·5 shows the structure of a hybrid wick.

We store these HTC correlations in a lookup table. Generating a 4096-entry lookup ta-

ble using COMSOL takes more than 24 hours. If we select 10 cases for each parameter

(a total 1 million entries), the generation time is 786 days. In this case, the HTC corre-

lation lookup table pre-computing time for the hybrid wick geometry is the bottleneck of

this temperature-dependent HTC simulation framework. In addition, even if we have a
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Figure 4·7: Temperature-dependent HTC simulation framework and our proposed ML-
based temperature-dependent HTC simulation framework.

finer granularity HTC lookup table for one specific geometry range, we cannot run thermal

simulations for a comprehensive range of the hybrid wick geometries. To enable thermal

simulations for a wide range of valid hybrid wick geometries, we propose an ML-based

temperature-dependent simulation framework as shown in Figure 4·7. We add additional

ML regression models for different coolants to replace the HTC lookup table compared

to the original temperature-dependent simulation framework. The selection of the ML re-

gression model depends on the two-phase cooling method and the cooling parameters. We

select the random forest regression model for two-phase VCs with hybrid wick evapora-

tors. The inputs of the ML regression model are {t,d p,φ,AR,SF,w,TSat −TCur,coolant}

(see Table 4.5). The output of the ML model is an HTC value. During each iteration, the

thermal simulation engine generates a new temperature distribution and passes it to the ML

regression model to predict the HTC value based on the temperature distribution, hybrid

wick geometry parameters, coolant saturation temperature, and coolant type.
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Table 4.5: Hybrid wick geometry parameters and valid range.

Symbol Parameters Valid range
t Nanoporous membrane thickness 250-1000 nm

d p Membrane pore diameter 50-200 nm
φ Membrane porosity 0.2-0.8

AR Microchannel aspect ratio 0.5-2
SF Microchannel wall solid fraction 0.1-0.4
w Microchannel width 2-8 µm

TSat Coolant saturation temperature 50◦C
TCur Current temperature of the grid NA

4.4.3 Validation of the ML Model

Before validating the ML-based temperature-dependent HTC simulation framework, we

first perform cross-validation (CV) of the ML regression model to show that our regression

model accurately predicts HTC for various hybrid wick geometries and coolants. For each

hybrid wick geometry parameter range shown in Table 4.5, we select the minimum value,

25 percentile value, 75 percentile value, and the maximum value as our training and testing

geometry parameters. There is a total number of 4096 geometries. We use COMSOL to

generate the temperature-dependent HTC correlations for these 4096 geometries for three

different coolants. For each temperature-dependent HTC correlation, we range TCur −TSat

from 0 to 40◦C with a step of 1◦C to generate the golden HTC data. The total HTC data size

for all the three coolants is 163840. For each coolant, we do k-fold CV to show that our

ML regression model is capable of predicting HTC for arbitrary hybrid wick geometries.

We use the training data to train a random forest model with a number of trees equal to 100

for each coolant. We also test with various ML models, including support vector regres-

sion (SVR), neural network regression (NNR), decision tree, gradient boosting regression

(GDR), etc. Since random forest results in the best accuracy, we only report the regression

accuracy results of random forest regression. We show the worst-case scenario results from

the k-fold CV for each coolant in Table 4.6. As we observe from the table, our ML model

successfully predicts HTC for an extensive selection of valid hybrid wick geometries.
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Table 4.6: Worst-case results from the k-fold CV tests. MAE stands for mean absolute
error, RMSE stands for root mean square error. The errors are normalized with respect
to the golden HTC data.

5-fold
Coolant MAE RMSE R2
Water 0.11% 0.16% 99.95%

R245fa 0.41% 0.76% 99.92%
R141b 0.17% 0.31% 99.94%

3-fold
Coolant MAE RMSE R2
Water 0.13% 0.19% 99.93%

R245fa 1.1% 2.1% 99.91%
R141b 0.8% 1.2% 99.92%

4.4.4 Validation of the ML-Based Temperature-Dependent HTC Simulation Frame-
work

Next, we perform an accuracy and speedup comparison among the ML-based HTC simula-

tion framework, temperature-dependent HTC simulation framework, and COMSOL model

using various chip power profiles and hybrid wick geometries. Both the temperature-

dependent HTC simulation framework and ML-based temperature-dependent HTC simula-

tion framework are integrated into PACT. We model a 2 mm × 2 mm chip with a thickness

of 100 µm in COMSOL, the ML-based framework, and the original temperature-dependent

framework. We run two sets of simulations for each floorplan as shown in Figure 4·8: (i)

processing layer with a uniform power density, and (ii) processing layer with a non-uniform

power density with 500×500 µm2 hot spots. Each simulation set uses three different hy-

brid wick geometries as shown in Table 4.7 and three different coolants. We train the ML

regression model with 4096 geometries described in the previous section. The three valida-

tion geometries are excluded from the training set. For uniform power density tests, we use

100 W/cm2 and 200 W/cm2. For non-uniform power density tests, we set the background

power density to 50 W/cm2 and hot spots power density to 100, 500, and 1000 W/cm2 (Lu

et al., 2016). The COMSOL model uses 428 nodes to compute the temperature distribu-

tion, while we use 16×16×3 nodes in our modeling tool to simulate the temperature. We

compare the average simulation runtime of COMSOL, temperature-dependent HTC simu-

lation framework, and ML-based temperature-dependent HTC simulation framework. For

uniform power density validation tests, the maximum and average errors of the ML-based
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temperature-dependent HTC simulation framework are less than 0.46◦C and 0.24◦C, re-

spectively. The accuracy results for non-uniform validation tests are shown in Figure 4·9.

Compared to the COMSOL model, the temperature-dependent HTC simulation framework

has a maximum error of 1.34◦C with an average speedup of 22×. The maximum error and

average error of our proposed ML-based temperature-dependent HTC simulation frame-

work are 2.59◦C and 0.98◦C, respectively and the average speedup is 21×. Note that the

accuracy results include all of the validation floorplans and geometries. Since we replace

the temperature-dependent HTC correlation lookup table with ML regression models, the

simulation speedup and accuracy are expected to decrease. However, our proposed model

still achieves good accuracy and speedup when compared to the COMSOL model. Most

importantly, our proposed ML-based temperature-dependent HTC simulation framework

enables accurate thermal simulations with valid and comprehensive geometries.

Figure 4·8: Floorplans used in validation. Dimensions are in mm.

Table 4.7: Hybrid wick geometries for validation tests.

Geometry t d p φ AR SF w
1 450 120 0.4 2 0.25 4
2 300 100 0.2 1 0.2 5
3 700 150 0.45 0.6 0.1 8
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Figure 4·9: Non-uniform power profile maximum and average temperature error vali-
dation results. PDHs stands for hot spot power density.

4.5 Improved ML-Based Simulation Framework for Two-Phase VCs

In Sections 4.3 and 4.4, we propose a ML-based temperature-dependent HTC simulation

framework for two-phase cooling technologies and create two-phase VCs with hybrid wick

evaporators’ steady-state CTM to demonstrate the speedup and accuracy compared to CFD

simulation. For the two-phase VCs with hybrid wick evaporators CTM, we assume the VC

itself only contains saturated vapor at a constant temperature to simplify modeling the va-

por core and condenser. Therefore, the ML-based temperature-dependent HTC simulation

framework has not considered the vapor core and condenser simulation. In addition, both

the proposed ML-based simulation framework and CTM only support steady-state simu-

lation, whereas dynamic thermal management policies often rely on the chip’s transient

temperature. In this section, we extend our two-phase VCs with hybrid wick evaporators

CTM and ML-based temperature-dependent HTC thermal simulation framework to support

thermal simulations for vapor core and condenser. We also introduce modeling of transient

temperature behavior for two-phase VCs. The naming conventions of the parameters used

in this section are listed in Table 4.8.
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Table 4.8: Naming conventions of the parameters.

Rsilicon Silicon thermal resistance
Rhybrid Hybrid wick vertical thermal resistance

w Width of the grid cell
l Length of the grid cell
h Height of the grid cell

Rvapor,lat Lateral thermal resistance of vapor core
Rvapor,vert Vertical thermal resistance of vapor core
Rcond,lat Lateral thermal resistance of condenser
Rcond,vert Vertical thermal resistance of condenser
Tambient Ambient temperature
Csilicon Thermal capacitance of silicon
Cvapor Thermal capacitance of vapor core

ρ Density
φ Porosity

Cpv Specific heat of vapor
Tv Local vapor temperature
R Gas constant

Tc,i Temperature at the condenser/vapor interface
σ Accommodation coefficient

hlv Latent heat of vaporization
Pv Vapor core pressure
tv Thickness of vapor core
µv vapor viscosity
Tv Average temperature in the vapor core

φcond Porosity of the condenser wick
ksolid,wick Thermal conductivity of the solid material used for the condenser wick

kliquid Thermal conductivity of liquid

4.5.1 Improved Compact Modeling of the Two-Phase VCs

The whole chip stack is shown in Fig. 4·10 (a). We divide the whole chip into grids as in

prior work (Yuan et al., 2019a). For the processing layer, the grid cell structure is shown in

Fig. 4·10 (b). Thermal resistance along the north, south, east, west, and vertical directions

are represented using silicon properties, i.e., Rsilicon. To build the hybrid wick evaporator

CTM, we abstract both the nanoporous membrane and the microchannel layers into a hy-

brid wick layer. The hybrid wick grid cell is shown in Fig. 4·10 (c). We represent lateral

thermal resistances using Rsilicon and the vertical thermal resistance, Rhybrid , stands for the

inverse of the heat conduction from the hybrid wick to the saturated vapor. We consider a

predetermined VC pressure and use a previously established relationship between HTC and

thermal resistance to define Rhybrid (Sridhar et al., 2014; Yuan et al., 2019a). Since ther-
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mal resistance is inversely proportional to the cross-section area and HTC (Sridhar et al.,

2013a), the vertical thermal resistance is represented using Equation (4.3):

Rhybrid =
1

HTC ·w · l
, (4.3)

where w and l are the width and length of the grid cell, respectively. We extract HTC corre-

lations for various nanoporous membranes and microchannel geometries from a COMSOL

model in a previous work (Lu et al., 2016). For a specific hybrid wick geometry, we use its

corresponding HTC correlation to determine the Rhybrid value.

Figure 4·10: (a) The chip stack of the processing layer and two-phase VCs with hybrid wick
evaporators, (b) processing layer grid cell, (c) hybrid wick layer grid cell, (d) vapor core grid
cell, and (e) condenser grid cell.

Compact Modeling of the Vapor Core

On top of the hybrid wick layer, we place a vapor core layer to simulate the thermal be-

havior of the heated vapor inside VC as shown in Figure 4·10 (d). We adopt a compact

modeling method of vapor core from a recent work (Baraya et al., 2020). The lateral ther-
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mal resistance of the vapor core (Rvapor,lat) is defined as follows:

Rvapor,lat,EW =
12R2µvTv

3

h3
lvP2

v t2
v l

, (4.4)

Rvapor,lat,NS =
12R2µvTv

3

h3
lvP2

v t2
v w

, (4.5)

where Rvapor,lat,EW is the Rvapor,lat on the east-west direction and Rvapor,lat,NS is the Rvapor,lat

on the north-south direction. The vertical thermal resistance of the vapor core (Rvapor,vert)

is represented using Equation (4.6):

Rvapor,vert =
RT 2

v
√

2πRTc,i

X h2
lvPv

. (4.6)

X is calculated using the following expression:

X =
ωσ

σ+(1−σ)ω
, (4.7)

where ω is defined as 32π

32+9π
.

Compact Modeling of the Condenser

To simulate the condensing process of the heated vapor back to liquid. We add a condenser

layer on top of the vapor core layer as shown in Figure 4·10 (e). The condenser layer

consists of a porous wick to help cool the heated vapor (Baraya et al., 2020). Rcond,lat and

Rcond,vert are defined using Equations (4.8), (4.9), and (4.10):

Rcond,vert =
1

ksolid,wickwl
, (4.8)

Rcond,lat,EW =
1

(φcondkliquid +(1−φcond)ksolid,wick)tvl
, (4.9)

Rcond,lat,EW =
1

(φcondkliquid +(1−φcond)ksolid,wick)tvw
. (4.10)
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The lateral thermal resistance of the condenser is a joint thermal resistance of the solid

wick and liquid. Rcond,lat,EW and Rcond,lat,NS represent the Rcond,lat on the east-west and

north-south directions, respectively. Rcond,vert is defined using the thermal resistivity of the

solid material used for the condenser wick.

Transient Modeling of the VC

To model the transient behaviors of the two-phase VCs with hybrid wick evaporators, we

define the thermal capacitance for each layer. For the processing layer, the thermal capaci-

tance is CSilicon. For the hybrid wick and condenser layer, the thermal capacitance is defined

as the joint thermal capacitance of the solid and the liquid based on the porosity of the wick,

φ. For the vapor core layer, the thermal capacitance is defined as Cpv. Cpv is a temperature-

dependent parameter. We train a quadratic regression model to predict the value of Cpv and

use that model in the improved ML-based temperature-dependent simulation framework

discussed in the next section.

4.5.2 Improved ML-Based Temperature-Dependent HTC Simulation Framework

Compared to the two-phase VCs with hybrid wick evaporators CTM discussed in Sec-

tion 4.3, we add additional modeling of the vapor core and condenser, which increases

the simulation complexity. The vapor viscosity (µv) and thermal capacitance (Cpv) are

temperature-dependent parameters and need to be simulated using CFD simulations. The

original ML-based temperature-dependent simulation framework discussed in Section 4.4

only considers adding the ML regression model for HTC prediction. Whereas in this im-

proved ML-based temperature-dependent simulation framework, we add additional linear

and quadratic regression models to predict the µv and Cpv during each iteration as shown in

Figure 4·11.
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Figure 4·11: Improved ML-based temperature-dependent simulation framework.

4.5.3 Cooling Performance Evaluation of Two-Phase VCs on Realistic Mobile Sys-
tem

Two-phase VCs are widely used for high-performance computing systems with tight power

and thermal budget, such as high-performance mobile systems (e.g., ROG Phone 3, Razer

Phone 2, and Sony Xperia Pro). This section evaluates the cooling performance of the

improved two-phase VCs with hybrid wick evaporators on realistic mobile systems us-

ing the improved CTM and ML-based temperature-dependent simulation framework. We

use PicoSoC as a mobile processor and use OpenROAD (Ajayi et al., 2019) to generate

the steady-state standard-cell-level power map. We assume an extreme power case for Pi-

coSoC with the operating frequency of 3 GHz and total power of 9 W to mimic the gaming

workload. We create two chip stacks. The first one directly places a copper heat spreader

on top of the processing layer, and the second one place a VC on top of the processing layer.

For both chip stacks, the processing layer has a thickness of 100 µm. For the copper heat

spreader, the thickness is set to 1 mm while the thickness of the VC is 200 µm. Since the

standard-cell design lacks dynamic power traces, we utilize the steady-state power values
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of PicoSoC and randomly applied -15% or +15% additional power values for each standard

cell and create synthetic transient power traces. We show the steady-state and transient re-

sults in Figures 4·12 and 4·13. For both steady-state and transient, the mobile chip with VC

outperforms the traditional method (copper heat spreader) by at most 11%, demonstrating

the cooling performance of using VC as the cooling method on the mobile system.

Figure 4·12: Steady-state heat maps.

Figure 4·13: Transient comparison results.

4.6 Predicting Thermal Profiles via ML

High chip temperatures have been a primary concern for several decades. Localized hot

spots resulting from these high power densities not only decrease the lifetime of pro-

cessors (Srinivasan et al., 2003) but also increase transistor delays as well as leakage
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power (Saini and Mehra, 2012). In addition, the heterogeneity in on-chip heat distribution

incurred by these hot spots is expected to become more severe with the integration of het-

erogeneous architectures on a single die, such as a collection of CPUs, GPUs, accelerators,

and FPGAs. To enhance reliability, researchers have proposed runtime policies that use

control knobs such as dynamic voltage and frequency scaling, task scheduling, and thread

migration (e.g., (Sheikh et al., 2012)). Modern processors utilize digital thermal sensors

to track the processor’s temperature at various strategic locations to manage runtime tem-

peratures. However, on-chip thermal sensors may not accurately measure the temperature

profile and maximum temperature on-chip. We identify three major challenges in accu-

rately obtaining the temperature profile and hot spot temperatures using thermal sensors.

First, because of the placing and routing difficulties, thermal sensors may not be placed at

the exact location of the hot spots, leading to under-estimating the hot spot temperatures

and may change the dynamic thermal runtime policy decision (Reda et al., 2011). Second,

the spatial and temporal fluctuations in thermal hot spots due to workload behavior make

tracking the hot spot temperature on-chip particularly challenging (Sadiqbatcha et al., 2022;

Reda et al., 2011). Third, on-chip thermal sensors operate within an error margin, which

could under/over-estimate the temperature readings by ±1◦C (Sharifi and Rosing, 2010;

Long et al., 2008).

To reconstruct accurate on-chip thermal profiles, a recent body of work has introduced

using ML models to predict chip temperatures trained with infrared (IR) camera measure-

ments of the physical chip (Zhang et al., 2022; Sadiqbatcha et al., 2022). Other works

investigate how to intelligently place the thermal sensors on-chip to perform accurate ther-

mal profile monitoring via IR camera measurements (Reda et al., 2011; Nowroz et al.,

2010). While existing methods produce accurate temperature results, the expensive IR

camera setup makes these methods hard to implement broadly by the research commu-

nity. In addition, additional steps of collecting and processing data from the IR camera



102

measurements make this method complex and time-consuming. Previous work has also

introduced a simulation-based method to mitigate the inaccuracies of the on-chip thermal

sensors based on analytical models (Sharifi and Rosing, 2010). However, this method

targets estimating the temperature at locations of interest instead of regenerating the full

thermal profile. Predicting the full thermal map is essential since being able to identify

both the hot and cold spots on-chip benefits the runtime policies such as task allocation

and scheduling to achieve better chip performance under temperature constraint (Chrobak

et al., 2008). In addition, the locations of interest are challenging to determine, given the

different behaviors of the workload.

This section proposes a simulation-based method of using a ML regression model to

predict a chip’s full temperature profile based solely on the current total power usage of the

chip, workload-core mappings, and measured thermal sensors temperatures. We train and

validate the proposed ML model based on data generated from architectural performance,

power, and thermal simulations of an Intel i7 6950× processor. We observe that using

the proposed method with simulation data trains a highly accurate ML regression model.

In addition, the proposed simulation-based method is generally applied to many processor

designs without necessitating an expensive thermal camera setup.

4.6.1 Methodology

In this section, we first overview the methodology for generating a realistic training dataset

for the ML model through architectural performance, power, and thermal simulators. Then,

we discuss the proposed linear regression ML model as well as the training and validation

methodologies. We use Intel i7 6950× processor (Sima, 2018) as our target processor and

running ten different applications from the NAS parallel benchmarks (Bailey et al., 1991).

The floorplan of the Intel i7 6950× is shown in Figure 3·23.
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Training Data Preparation

In order to generate realistic temperature data for the Intel i7 6950×, we first use the ar-

chitectural power and performance simulators, Sniper (Carlson et al., 2011) and McPAT

(Li et al., 2009), to simulate power usage for a set of realistic benchmark applications. To

ensure our ML model is accurate for any workload or configuration of the CPU, we must

ensure that the model has seen a wide range of workloads and applications. To generate this

realistic set of training data, we select ten applications from the NAS parallel benchmarks:

bt, cg, dc, ep, f t, is, lu, mg, sp, and ua. We map the application to a different number

of cores (1-10) with different workload-core mapping policies for each application. For

example, we map application cg to 5 cores with a workload-core mapping policy of 1, 3,

4, 8, and 9. There are 1023 possible workload-core mappings for a ten-core CPU for each

application. Note that we only consider running one application for Intel i7 6950× at a

time. If the application hasn’t been mapped to a core, we set the core to an idle state. We

select a random subset containing 36 workload-core mappings to generate the training data.

We run all ten applications from the NAS parallel benchmarks in Sniper for each

workload-core mapping and then run McPAT to simulate the power usage. Finally, we

extract the power traces from the McPAT. We use PACT (Yuan et al., 2022; Yuan et al.,

2021) as the thermal simulator. The power traces generated using Sniper and MCPAT are

used directly as inputs to PACT. The original power traces generated from Sniper and Mc-

PAT are transient. To simplify the inputs of the ML model, we average the power traces

over the time steps for each application and workload-core mapping to generate steady-

state power profiles. The total number of the generated power profiles is 360. The power

profiles are then scaled based on the TDP of Intel i7 6950×, which is 140 W , to ensure the

model stays realistic. To scale the power profile, we first take the maximum total power

of all the power profiles. We then calculate the scaling factor by dividing the TDP by the

maximum total power of all the power profiles and then multiply all the function blocks
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power values by this scaling factor. The resulting scaled power profiles are used as the

inputs to PACT and the ML model.

In order to simulate the thermal behavior of the chip in PACT, we need to model the

floorplan and power profile of the chip. The floorplan of the chip describes the dimensions,

locations, and thermal material properties of the CPU’s physical functional blocks (e.g.,

CPU cores or cache blocks). The input power profile for each simulation run describes

the power utilization of each functional block. PACT first divides the power profile into

a power grid matrix using a predefined grid resolution. It then uses this information to

simulate the amount of heat generated by each grid and block and the heat flow between

the CPU and cooling layers. For this dataset, we create the power traces with Sniper and

McPAT, average and scale the power traces into steady-state power profiles, and then run

PACT simulation in steady-state grid mode with a grid resolution of 64×64. The output of

the PACT simulation for each run is a 64×64 temperature grid matrix. In this way, each

power profile corresponds to a single temperature grid matrix. For the cooling method, we

use PACT’s medium-cost heat sink (Yuan et al., 2022), which has a size of 40×40 mm2, and

a heat spreader with a size of 20×20 mm2. The chip layer has a thickness of 0.1 mm and a

physical dimension of 14.6×16.8 mm2. For our set of 360 power profiles, we run the same

chip stack using each power profile in PACT to generate 360 corresponding temperature

grid matrices to be used in our ML model.

ML Model

The goal of our ML model is to predict the full temperature grid matrix (temperature pro-

file) of a CPU based on the power and temperature metrics available at system runtime.

The model’s input values are the total power usage of the chip at the time of prediction,

the temperature values reported by on-chip thermal sensors, and the CPU workload-core

mapping, a binary value based on one-hot encoding for each core that represents whether

that core is in use. For example, if cores 1, 2, 3 and 7 are in use, the corresponding values
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would be 0, 1, 1, 1, 0, 0, 0, 1, 0, 0. The model’s output data is an array of temperature

values corresponding to the 64×64 temperature grids. For the temperature values reported

by on-chip thermal sensors, we randomly select ten temperatures from the temperature grid

matrix obtained by performing thermal simulation on each power profile and report these

temperatures as the readings from thermal sensors. The flow diagram of the temperature

profile prediction is shown in Figure 4·14.

Figure 4·14: Diagram of the ML model.

In Figure 4·14, the inputs and outputs of the ML model are represented as matrices

X and Y , where X is a combination of on-chip thermal sensors measurements, total chip

power, and binary CPU workload-core mapping, and Y represents the output temperature

grid matrix (e.g., 64×64 temperature grid matrix). Since we predict temperature values

based on thermal sensors readings and the chip’s total power, we select a linear regression

model, where each independent predictor models a temperature grid node. Each predictor
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comprises a set of coefficients corresponding to each input value and a constant. In the

linear regression model, the output Ypredicted is directly calculated using ΘX +b, where Θ

is the coefficient parameters matrix, and b is the matrix of constant parameters. The input

on-chip thermal sensors measurements are extracted from the PACT output temperature

grid matrix by using the temperatures at the grid locations of the thermal sensors. We

evaluate the accuracy of the linear regression model for a range of ten randomly selected

thermal sensor locations used as input in the next section.

We use the Scikit Learn library for Python and the LinearRegression class for our model

training and evaluation. We train the model by splitting the simulation data into training

and testing data and then evaluating the accuracy of the trained model with the testing data.

To validate the model’s accuracy, we first perform a 5-fold CV, where the data is split into

five randomized buckets. For each bucket, we train the model using the rest of the data, test

using that set of data, and record the accuracy for each. Lastly, we perform leave one out

cross-validation (LOOCV) on our model to evaluate its accuracy by excluding applications

and core allocations from the training data. We divide the dataset into buckets based on the

applications or the number of enabled cores to run the application, then perform n-fold CV.

This LOOCV aims to test if the model is still accurate for the applications and workload-

core mappings that were not included in the training set, ensuring that the ML model can be

trained without extensive applications and datasets, and be applied generally. The results

of these CVs are in the next section.

4.6.2 Results and Discussions

In this section, we validate the power scaling of the simulation data used for training our

model and the model itself. We evaluate the model’s performance based on different CV

methods and discuss how qualitative properties of the dataset, such as average power, affect

the model’s accuracy.
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Training Data Evaluation

As detailed in the previous section, the training data for the ML model is generated through

the combined use of the architectural performance and power simulators, Sniper and Mc-

PAT, and the thermal simulator PACT. With Sniper and McPAT, we are able to simulate

the relative power utilization of the different CPU functional blocks. However, since Mc-

PAT lacks awareness of some of the implementation details of the CPU architecture, the

outputs from McPAT may not reflect realistic power values (Lee et al., 2015). Therefore,

the McPAT outputs have to be calibrated to reflect the TDP of the Intel i7 6950× chip. We

show the unscaled power values directly collected from McPAT in Figure 4·15. The chip’s

total power with ten cores goes to nearly 350 W , which is unrealistic for a ten-core desktop

processor. To calibrate the power, we scale all of the steady-state power profiles using the

same scaling factor discussed in the previous section, such that the resulting maximum total

power matches the chip’s TDP, in this case, 140 W as shown in Figure 4·16.

Figure 4·15: Original total chip power from McPAT, split by the number of enabled
cores.

To analyze the total power of each application, we average the total powers over the

number of enabled cores and split them by application as shown in Figure 4·17. We ob-

serve that most of the NAS parallel benchmarks applications result in an average power
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Figure 4·16: Scaled total chip power, split by the number of enabled cores.

range of 20-40 W . Applications bt and f t are high power applications and result in high

average power of more than 50 W , while applications cg and is are relatively low power

applications.

Figure 4·17: Average power of each application in the NAS parallel benchmarks.

Next, we show the temperature results obtained by running PACT with all the steady-

state training power profiles. In Figure 4·18, we show the average temperatures for applica-

tions and split them by the number of enabled cores. The average temperature increases as

we increase the number of cores to run the application. This is because of the total power
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increase as we increase the number of enabled cores, as shown in Figure 4·16. We also

show the average temperature for the number of enabled cores to run the applications in

Figure 4·19. Applications bt and f t result in the highest average temperatures, and applica-

tions cg and is have the lowest average temperatures. The average temperatures generally

follow the trend of their average power behaviors, as shown in Figure 4·17. However,

since other factors such as the hot spots’ locations and power densities also affect the av-

erage temperature, higher average powers may result in lower average temperatures (e.g.,

applications dc and lu).

Figure 4·18: Average temperatures for applications (◦C), split by the number of enabled
cores used.

Validation of the ML Model

Since our ML model uses a random sample of ten temperatures from the temperature grid

matrix as the temperature values reported by on-chip thermal sensors (input to the model),

we need to show that the model’s accuracy is not affected by the randomness of the thermal

sensor placements. To test the effect of the randomly selected thermal sensor locations on

the model’s accuracy, we evaluate the model’s R2 score and RMSE across a wide range of

random thermal sensor placements. We perform a 5-fold CV using the same random state

for the train test split for each random sample of the ten thermal sensors readings. We show
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Figure 4·19: Average temperatures (◦C) for the number of enabled cores to run the
applications, split by application and sorted in ascending order by average power.

the histograms of R2 score and RMSE in Figures 4·20 and 4·21. As a result, we observe

that the locations of the thermal sensors on the chip affect the model’ accuracy by at most

0.12◦C. This accuracy loss indicates that our proposed ML model’s accuracy is invariant to

the placements of the thermal sensors. We use the thermal sensor placement corresponding

to the median error for the remaining model validation results as shown in Figure 4·22.

Figure 4·20: Histogram of R2 score distribution across 300 different thermal sensor
placements used as input to the model.

The results of the 5-fold CV with the selected thermal sensors locations are shown in

Table 4.9. The 5-fold CV results show that the proposed linear regression model has a high
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Figure 4·21: Histogram of RMSE distribution across 300 different thermal sensor
placements used as input to the model.

Figure 4·22: Selected thermal sensor placement for our experiments. Red markers
indicate thermal sensors.

coefficient of determination with the lowest R2 score of 0.9996. In addition, the model

itself is accurate with the highest RMSE of 0.0695◦C. We demonstrate the comparison of

the golden heat map and the predicted heat map using the ML model for the worst-case
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accuracy of the 5-fold CV experiments in Figure 4·23. We observe that the hot spot on

the predicted heat map has a lower temperature than the hot spot on the golden heat map.

The application that results in the highest accuracy loss, in this case, is f t. There are two

reasons behind this accuracy loss. First, application f t is the highest power application,

with an average power of more than 60 W . The majority of the applications we used to

train the ML regression model have average power within the range of 20-40 W , which

means our model is more likely to learn the power and thermal trends of these medium

power applications. Second, as shown in Figure 4·16, when the number of enabled cores

to run the application is one, the total power of the chip is less than 30 W . Therefore,

predicting the heat map for the highest power application and lowest power workload-core

mappings results in the highest validation accuracy.

Table 4.9: 5-fold CV results.

5-fold CV Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
R2 Score 0.9997 0.9996 0.9997 0.9997 0.9997
RMSE 0.0678 0.0695 0.0657 0.0669 0.0688

Figure 4·23: Heat map comparison for the worst case. The left heat map is the golden
heat map, and the right heat map is the predicted heat map.

Lastly, to validate that the model training methodology can be applied to various use

cases and configurations, we perform LOOCV on both the benchmark applications and the

number of enabled cores to run the applications. For the applications, we split the data



113

into ten buckets based on the type of the benchmark. Then we train the model using nine

buckets, leaving one out for validation. This CV is repeated for each bucket, measuring the

model’s accuracy with respect to each application. The LOOCV for the number of enabled

cores is similar. We split the data based on the number of enabled cores (core counts) to

run the application. Then, we train the model for each core using the data containing the

rest of the core counts, then test the accuracy on the left out one. We show the LOOCV

results on applications in Figures 4·24 and 4·25. The comparison of the golden heat map

and the predicted heat map for the number of enabled cores equal to 5 is shown in Figure

4·26. The application that causes the highest accuracy loss for five cores is f t. The reason is

that most of the applications we used to train the ML model are medium power applications

(average power within 20-40 W ). However, suppose we train the model without high power

applications (e.g., bt or f t). In that case, our model predicts high power applications heat

maps less accurately and result in an RMSE error of less than 0.25◦C.

Figure 4·24: Average LOOCV R2 scores on applications.

In addition, for lower power applications cg and is, the RMSEs are also relatively high.

Meanwhile, the applications mg, ep, dc, sp, ua, and lu have lower errors. This trend indi-

cates that this model is generally able to predict CPU temperatures for application work-

loads not seen in the training data. However, the training data should include the upper and
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Figure 4·25: LOOCV RMSEs on applications.

Figure 4·26: Heat map comparisons for the worst case when the number of cores used
is equal to 5. The left heat map is the golden heat map, and the right heat map is the
predicted heat map.

lower extreme applications in terms of power and temperature to get the best accuracy.

We perform similar LOOCV on the number of enabled cores to run the applications.

This time, we split the data into buckets based on the number of enabled cores and train

the model using all but one of these buckets. We demonstrate the LOOCV on the number

of enabled cores in Figures 4·27 and 4·28. We also illustrate the comparison of the golden

heat map and the predicted heat map for the number of enabled cores equal to ten in Figure

4·29. The application that results in the highest RMSE for ten cores case is lu.
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Figure 4·27: Average LOOCV R2 scores on enabled cores.

Figure 4·28: LOOCV RMSEs on enabled cores.

Figure 4·29: Heat map comparison for the worst case when the number of enabled cores
is equal to 10. The left heat map is the golden heat map, and the right heat map is the
predicted heat map.
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Chapter 5

Optimizing Emerging Cooling Methods for
High-Performance Processors via Deep Learning

5.1 Introduction

As discussed in Chapters 2 and 4, conventional on-chip cooling solutions such as forced air

cooling via fans or pin-fin heat sink are often not sufficient to mitigate such high-power-

density hot spots and result in over/under-cooling. Emerging cooling technologies such

as liquid cooling via microchannels (Dang et al., 2010), TECs (Chowdhury et al., 2009),

two-phase VCs (Bulut et al., 2019), and hybrid cooling options (Yazawa et al., 2012) (e.g.,

of liquid cooling via microchannels and TECs) have the potential to provide better cooling

performance compared to the conventional cooling solutions. However, there is no obvious

winner in terms of cooling efficiency among all these emerging cooling technologies. These

potential solutions’ cooling performance and cooling power vary significantly based on the

cooling parameters (such as liquid flow velocity, evaporator design, TEC current, etc.)

(Yuan et al., 2019a; Yuan et al., 2020). The selection of the cooling technologies and the

cooling parameters also needs to consider the chip architecture, chip size, floorplan, and

the power profiles of the applications running on the given chip. To minimize the cooling

power while satisfying chip thermal constraints, there is a need for an optimization flow

that enables rapid and accurate selection of the optimal cooling solution and the associated

cooling parameters for a given chip and application profile.

A key enabler to such a cooling design optimization flow is a set of accurate and fast

models for various cooling technologies. A common approach towards this direction is
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using CTMs that model heat dissipation with an equivalent lumped circuit model (Pedram

and Nazarian, 2006). However, given the vast solution space of possible cooling solutions

(including possible hybrids) and cooling parameters, the optimal solution search time is

still prohibitively time-consuming with CTMs (Yuan et al., 2019a). In addition to cooling

design choice possibilities, the optimization flow needs to also account for the chip design

and power profile changes. In this case, using a simple grid search to find the optimal

cooling design for a small-sized chip floorplan and its typical power profile could take up

to days (Yuan et al., 2020).

This chapter first discusses the cooling parameters optimization flows for two-phase

VCs with micropillar wick evaporators via grid search and the cooling parameters opti-

mization flows for two-phase VCs with hybrid wick evaporators via multi-start simulated

annealing (MSA). Then it elaborates on using the covariance matrix adaptation evolution

strategy (CMA-ES) to select the most power-efficient cooling methods. Finally, it presents

cooling methods and cooling parameters optimization flow using DL models.

5.2 Two-Phase VCs Optimization Flows

5.2.1 Two-Phase VCs with Micropillar Wick Evaporators Optimization via Grid
Search

This optimization flow aims to find the optimal micropillar wick evaporator geometry that

results in the highest HTC while satisfying the dry-out constraint. Since the micropillar

wick geometry solution space is small, we use grid search to find the optimal geometry

as shown in Algorithm 1. We first calculate the dry-out heat flux for each micropillar

geometry and input combination. Then, if the geometry fails to provide a dry-out heat flux

greater than or equal to the maximum chip power density, we proceed to the next geometry.

Finally, among all the geometries that satisfy the dry-out heat flux, we pick the one that

results in the highest HTC.
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Algorithm 1: Micropillar Geometry Optimization Flow
Input : qdry−out Dry-out heat flux
Input : Qmax Hot spot power density on-chip
Input : HTC Heat transfer coefficient
Input : ψ Dimensionless function of micropillar geometry
Input : M Figure of merit for the coolant
Input : θrec Contact angle
Input : MG Micropillar geometry
Output: MGbest Optimized micropillar geometry

1 MGbest = None
2 for each MG in lookup table do
3 qdry−out = (40/3)ψMcosθrec
4 if qdry−out > Qmax then
5 if HTCMG > HTCMGbest then
6 MGbest = MG
7 else
8 next MG

9 else
10 next MG

5.2.2 Two-Phase VCs with Hybrid Wick Evaporators Optimization via MSA

The ultimate goal of this optimization flow is to find a hybrid wick geometry that minimizes

the hot spot temperatures while satisfying the dry-out constraint. We adopt the dry-out

heat flux formula from recent work and use this formula to define the dry-out limit (Lu

et al., 2016). For each hybrid wick geometry parameter, there is a range of values we can

select. Using the grid search to find the optimal geometry and coolant from a fine-grained

geometry and coolant solution space is time-consuming and inefficient. We propose an

MSA approach to speed up the searching time for the optimal hybrid wick geometry and

coolant.

Our proposed MSA algorithm is shown in Algorithm 2. The algorithm randomly selects

a hybrid wick geometry G and checks whether it satisfies the dry-out constraint by com-

paring it to the maximum power density PDMax (lines 2-6). If the dry-out heat constraint
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is satisfied, MSA runs the ML-based temperature-dependent HTC simulation framework

to get the maximum chip temperature TMax (line 7). The algorithm then randomly adds a

perturbation to one of the geometry parameters and makes a new geometry GNbr (line 9).

Next, MSA checks if GNbr is in the valid parameter range and also satisfies the dry-out

constraint (lines 11-13). If the constraints are met, MSA runs the ML-based simulation

framework for GNbr to get TMax_Nbr (line 14). If the GNbr results in a lower peak temper-

ature than G, the algorithm sets G to GNbr and TMax to TMax_Nbr (lines 15-17). Otherwise,

the algorithm sets G to GNbr based on the probability function (lines 18-20). The algorithm

terminates based on the numstart, energy E, and decay factor δ (lines 1, 8-9, and 21). It

also saves the best G and TMax into an array Opt (lines 22-23). For each type of coolant,

we execute this MSA algorithm and select the best geometry and coolant that result in the

minimum TMax.

To evaluate the efficiency of our proposed optimization flow, we compare the optimal

geometries, coolants, the corresponding peak temperatures, and the searching time of MSA

and grid search. We select the solution space for grid search to be 4096 hybrid wick ge-

ometries. For each geometry, we first compare the dry-out heat flux of the geometry to the

maximum power density PDMax. We then collect all the geometries that satisfy the dry-out

constraint and select the one that has the minimum peak temperature. We perform this grid

search for each coolant and pick the optimal coolant and the best hybrid wick geometry.

This grid search is coarse-grained because the solution space does not contain all valid

hybrid wick geometries.

As for MSA, we set the initial energy E to 1, the decay factor δ to 0.9, and minimum

energy EMin to 0.01. num_start and iter are set to 10 and 100, respectively. We use three

different floorplans (see Figure 5·1) with a background power density PDBg of 50 W/cm2

and hot spot power density PDHs of {100, 500, 1500, 2000} W/cm2. In all of the experi-

ments, our proposed optimization flow selects combinations of coolant and geometry that
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result in lower temperatures (average 0.67◦C and maximum 1.78◦C) compared to the se-

lections made by grid search. Most importantly, the maximum and average searching and

simulation times for 4096 solutions grid searches are 19 and 6.67 hours, respectively. How-

ever, the maximum and average simulation times of our proposed MSA are 2.05 and 1.57

hours, respectively. Our proposed MSA’s maximum and average speedup are 9.4× and 4×,

respectively, which means our proposed optimization flow is more efficient than the grid

search. We also observe that the dry-out limit is highly correlated with the chip size and

the number of hot spots. If the chip size is larger and there are a larger number of hot spots,

only water meets the dry-out constraint. R245fa and R141b generally have better HTC than

water, but they suffer from low critical dry-out heat flux. R245fa and R141b can be used as

coolants for small-size chips and fewer hot spots.

Figure 5·1: Experimental floorplans. Dimensions are in mm.

5.3 Emerging Cooling Methods Optimization via CMA-ES

This optimization flow aims to select the best cooling method and its cooling parameters for

a target chip and its power profile while minimizing the cooling power under a temperature

constraint. We incorporate liquid cooling via microchannels, hybrid cooling (of liquid

cooling via microchannels and TEC), and two-phase VCs with micropillar and hybrid wick

evaporators as cooling solution candidates. These cooling methods have been shown to
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Algorithm 2: Multi-Start Simulated Annealing
Initialize: E, iter, δ, num_start, EMin

1 while num_start > 0 do
2 randomly select hybrid wick geometry G
3 calculate dry-out heat flux QDry_G(Lu et al., 2016)
4 if QDry < PDMax then
5 continue

6 else
7 run thermal simulation using G and get TMax
8 while E > EMin and iter > 0 do
9 randomly select a neighbor geometry GNbr

10 iter -= 1
11 if GNbr in valid parameter range then
12 calculate dry-out heat flux QDry_Nbr (Lu et al., 2016)
13 if QDry < PDMax then
14 run thermal simulation using GNbr and get TMax_Nbr
15 if TMax_Nbr < TMax then
16 G = GNbr
17 TMax = TMax_Nbr

18 else if Random(0,1)< TMax_Nbr−TMax
TMax∗E then

19 G = GNbr
20 TMax = TMax_Nbr

21 E = E ∗δ

22 Save G and TMax into an array Opt
23 num_start -= 1

24 Pick the best G from Opt based on TMax

achieve higher cooling performance than the traditional heat sink and forced air cooling

via fan (Yazawa et al., 2012; Sridhar et al., 2014; Bulut et al., 2019). In addition, they

are also compatible with processor cooling. We adopt the CTMs for liquid cooling via

microchannels and hybrid cooling from recent works (Kaplan et al., 2017; Sridhar et al.,

2013b).

min αPcooling,norm +β(max(Ths −Tlimit ,0),norm ) (5.1)

The objective function of our optimization is to minimize the cooling power under

a temperature constraint (Equation (5.1)). The cooling power for liquid cooling via mi-
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Figure 5·2: Proposed optimization flow.

crochannels (i.e., the pumping power) is calculated based on the pressure drop along the

channel and the liquid volumetric flow rate (Coskun et al., 2009), while TEC cooling power

is the difference between heat absorbed and rejected on the cold and hot sides. The max-

imum attainable liquid flow velocity and TEC current are set to 2.6 m/s and 7 A, respec-

tively, owing to system constraints (Sridhar et al., 2014; Chowdhury et al., 2009). In Equa-

tion (5.1), the cooling cost is normalized with respect to the maximum cooling power (i.e.,

u = 2.6 m/s and I = 7 A). The difference between hot spot temperature (Ths) and temper-

ature limit (Tlimit) is normalized with the user-defined maximum on-chip temperature, i.e.,

Tlimit . α is the user-specific weight factor with no unit, and β is the penalty weight that we

set to a large value to prevent violation of the temperature constraint. We set α = 0.05 and

β = 0.95 according to our system. For two-phase VCs with micropillar wick evaporators

and hybrid wick evaporators, we need to add the dry-out constraints that prevent dry-out

by ensuring that the dry-out heat flux of the selected wick geometry is greater than or equal

to the hot spot power density. In addition to that, we also incorporate micropillar geometry

constraints (h/i ≥ 0.2, 0.06 < d/i < 0.6) and hybrid wick evaporator constraints as shown

in Table 4.5.
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Our proposed optimization flow is shown in Figure 5·2. We divide the optimization flow

into two parts. The first part determines the micropillar geometry and hybrid wick geometry

with the highest HTC under the dry-out constraint. We then simulate the chip using two-

phase VCs with micropillar wick and hybrid wick evaporators. We select two-phase VCs as

the optimal technique if a wick geometry satisfies the temperature constraint. The reason is

that VC is a passive cooling device that requires no additional power on the evaporator side.

Otherwise, we use CMA-ES to find the optimal {u, I} pair for hybrid cooling and optimal

I for liquid cooling via microchannels (see Table 4.1). CMA-ES is a stochastic, derivative-

free sampling method that does not require a numerical objective function to converge to

an optimal solution. The pseudo-code of our CMA-ES implementation for hybrid cooling

is shown in Algorithm 3.

The optimization flow then enters the second part when the first part fails to find a wick

geometry that satisfies the temperature constraint. In each iteration, the algorithm first

samples the {u, I} pairs based on a multivariate normal distribution and then runs thermal

simulations for hybrid cooling with those sample points (lines 2-4). Next, all the {u, I}

pairs are sorted in increasing cost (line 5). In lines 6-7, the algorithm assigns a weight vec-

tor w to the {u, I} pairs to update the mean of the sampling distribution (Auger and Hansen,

2012). This step ensures that the sampling distribution for the next iteration moves closer

to the {u, I} pair that gives the minimum cost in the current iteration (Auger and Hansen,

2012). Next, the algorithm updates the evolution paths, pc and pσ, which conceptually

stand for the search paths in the CMA-ES algorithm (lines 8-9). It then updates the co-

variance matrix and step-size based on the pc and pσ. All the update functions (updatepσ
,

updatepc , updateC, and updateσ ) used in this algorithm are adopted from a recent work

(Auger and Hansen, 2012). After maxiter number of iterations, the algorithm generates the

optimal {uopt_hybrid, Iopt_hybrid} pair that results in the minimum cost (line 13) along with its

corresponding on-chip temperature, Ths_opt_hybrid . Similarly, we apply CMA-ES algorithm
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to liquid cooling via microchannels to get the optimal Iliquid , Ths_opt_liquid . We compare

Ths_opt_hybrid and Ths_opt_liquid to Tlimit , respectively, and select the cooling solutions that

satisfy the temperature constraint. Finally, we compare the cooling power of the selected

solutions to output the one with the minimum cooling power as the optimal choice.

Algorithm 3: CMA-ES
Input : Number of samples per iteration, λ

Input : Objective function (Equation (5.1)), cost
Input : Maximum number of iterations, maxiter
Initialize: Sampling distribution mean, µ
Initialize: Step-size, σ

Initialize: Covariance matrix, C = Identity matrix
Initialize: Cumulation for σ and C, pσ = 0, pc = 0
Initialize: k = 0

1 while k < maxiter do
2 for i in 1...λ do
3 {u, I}i = N (µ,σ2C)
4 costi = Thermal Simulation({u, I}i)

5 Sort {u, I} based on increasing cost (objective function)
6 µ

′
= µ

7 µ = ∑
λ/2
i=1(wi{u, I}i)

8 pσ = updatepσ
(pσ,σ

−1C−1/2(µ = µ
′
)

9 pc = updatepc(pc,σ
−1(µ = µ

′
, ||pσ||)

10 C = updateC(C, pc,({u, I}1 −µ)/σ, ...,({u, I}λ −µ)/σ)
11 σ = updateσ(σ, ||pσ||)
12 k++

13 Generate {uopt_hybrid, Iopt_hybrid},Pcooling_opt_hybrid , and Ths_opt_hybrid based on the
last iteration simulation results

To demonstrate the optimization results of the proposed optimization flow, We select

three floorplans with a various number of hot spots and hot spot power densities as shown

in Figure 5·3. For each of the floorplan, we set the background power density to 50 W/cm2

with hot spot power densities of {100,300,1000,1700,2000} W/cm2. We use the aforemen-

tioned emerging cooling methods as heat sinks or inter-layer cooling methods. The on-chip

maximum temperature limit (temperature constraint) is set to 65◦C. The detailed experi-
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mental setup can be found in the previous work (Yuan et al., 2020; Yuan et al., 2019a).

To select the optimal cooling solutions and cooling parameters, we use CMA-ES, MSA,

and grid search to select the optimal cooling parameters for the aforementioned emerging

cooling technologies (Yuan et al., 2020; Yuan et al., 2019a). We summarize the results in

Figure 5·4.

As shown in Figure 5·4, since two-phase VCs are passive cooling methods (no addi-

tional power is needed on the evaporator side), for relatively low power density (100, 300,

and 1000 W/cm2), two-phase VCs with hybrid wick evaporators completely beat other

cooling methods. Note that, compared to the hybrid wick, the micropillar wick evaporator

cannot provide enough HTC on the evaporator side to cool down the chip due to the low

dry-out limit. Liquid cooling via microchannels are not able to provide enough power to

remove the high heat flow generated by the chip. Since hybrid cooling has finer control

over the cooling power and cooling ability, hybrid cooling always results in lower cool-

ing power compared to only using TEC. For high power density (1700 and 2000 W/cm2),

since hybrid cooling and TECs aim to remove the hot spot heat, hybrid cooling is the op-

timal cooling method in these cases. We also carry out experiments with a temperature

constraint of 90◦C. Still, since two-phase VCs with hybrid wick evaporators are passive

cooling methods, they beat other emerging cooling technologies in terms of cooling effi-

ciency. Since two-phase VCs with hybrid wick evaporators and hybrid cooling (of liquid

cooling via microchannels and TECs) achieve the optimal cooling efficiency among all the

aforementioned cooling technologies. Therefore, we only discuss the optimization flow for

these two cooling technologies in the next section.

5.4 Emerging Cooling Methods Optimization via DL

The existing cooling optimization methods (CMA-ES and MSA) have two main issues: (i)

need to run a significant number of thermal simulations, which results in large simulation



126

Figure 5·3: Synthetic chip floorplans.

Figure 5·4: Results for on-chip temperature constraint = 65◦C. The format for two-
phase VCs with hybrid wick evaporator is {coolant, hot spot temperature, cooling
power}. The format for hybrid cooling is {liquid flow velocity, TEC current, hot spot
temperature, cooling power}.

time, and (ii) there is no guarantee that the selected cooling method and its cooling param-

eters are optimal. The accuracy of the optimization result selected by CMA-ES and MSA

is determined by the sample size and the number of iterations (Yuan et al., 2020; Yuan

et al., 2019a). Using the DL model, specifically, the CNN regression model, to predict

the optimal cooling solution and its cooling parameters could be the solution to these two

issues. A DL regression model is able to learn the intrinsic information among the chip

designs and the cooling solutions and then efficiently generate the optimal cooling solution

and the cooling parameters, given a specific chip floorplan and power profile. This section

demonstrates a step towards this goal by using a multi-output CNN regression model to
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estimate the best cooling method and its cooling design and technology parameters. This

CNN-based optimization flow requires the CNN regression model to be sufficiently modu-

lar for all chip floorplans and power profiles. If the input chip floorplan and power profile

change, the predicted cooling solution and the cooling parameters should still maintain the

desired accuracy.

5.4.1 Overall CNN Optimization Architecture

Figure 5·5: DL-based cooling optimization flow.

The overall CNN optimization architecture is shown in Figure 5·5. Given an arbitrary

chip power map, the optimization flow standardizes the power map into a 10×10 power

density matrix. The power density matrix is used as the input to the hybrid cooling and

two-phase VCs CNN architectures to predict the optimal cooling parameters for these two

cooling technologies, respectively. The optimization flow then conducts thermal simula-

tions for the input power map using hybrid cooling and two-phase VCs with hybrid wick

evaporators as the cooling method and compares the hot spot temperatures and the cooling

cost to determine the optimal cooling method and its cooling parameters.

As the solution space of this cooling optimization problem is continuous instead of dis-

crete, the optimization results found by black-box optimization methods (e.g., exhaustive
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search, simulated annealing, or others) can only be near-optimal since they require dis-

cretizing the optimization inputs. Therefore, unless an accurate mathematical formula is

created for such an optimization problem, the accuracy of the optimization methods will

always depend on the input granularity, and the outputs are only near-optimal. It is not pos-

sible to create an accurate mathematical formula for this particular cooling optimization

problem to solve it analytically; thus, we consider the output of our proposed DL-based

optimization framework as optimal given the constraints. The accuracy of the proposed

optimization flow depends on the granularity of the training data in the cooling parameter

solution space.

5.4.2 Training Data Preparation

The CNN architectures shown in Figure 5·5 require a massive amount of data to optimize

the parameters within the neural network to improve the performance of the model. One

major challenge of building a CNN architecture is preparing the training data. Since real

processors’ power maps are hard to obtain, we generate a comprehensive training dataset

using statistical distribution. We select a 5 mm × 5 mm chip and divide the chip uniformly

into 10×10 power density grids. To generate comprehensive and realistic power density

maps, we choose to use Gamma distribution to generate power density for each power

density grid randomly. The reason we use gamma distribution to generate random power

density maps are as follows: (i) obtaining real processors’ power maps is hard, (ii) using

real processors’ power maps may let the CNN architectures overfit the training power maps

of the chips, (iii) training power density maps may not cover corner cases, and iv) the gen-

erated power density value should be positive and most generated values should within the

background power density range of 50-200 W/cm2. The largest power density value that

the selected Gamma distribution generates is 2000 W/cm2. We then apply data augmen-

tation techniques to rotate and flip the power density maps to increase the training data

size.
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The total number of power density maps we generated is 90000. For each generated

power density map, we need to know the optimal cooling parameters of using hybrid cool-

ing and two-phase VCs with hybrid wick evaporators. For hybrid cooling, we apply TEC

units to the power density grids that have values of more than 200 W/cm2. The microchan-

nel width is set to be 50 µm. We use Equation 5.1 as the optimization objective function and

run grid searches to determine the optimal liquid flow velocity and TEC current for each

power density map. We select water, R245fa, and R141b as the coolants for two-phase

VCs with hybrid wick evaporators. We directly run grid searches with a finer granularity

for each power density map to determine the optimal cooling parameters for each coolant.

5.4.3 Hybrid Cooling CNN Architecture

The hybrid cooling method combines the liquid microchannel and TEC layers into one

chip stack. But since they are completely different cooling methods with different cooling

performance and cooling power, the liquid flow velocity and TEC current are indepen-

dent. In this case, we create two branches in this CNN architecture, and each branch is

responsible for predicting the optimal values for either liquid flow velocity or TEC current.

Both branches share the same input layer and have the same number of layers and param-

eters. However, since this is a multi-output CNN, the loss for each branch is different. To

achieve the best regression accuracy, we build different multi-output CNN architectures

with different kernel sizes, number of filters, number of convolutional layers, number of

fully connected layers, and with or without batch normalization layer, and select the one

that has the highest validation accuracy. Table 5.1 shows the details of three alternative

CNN architectures of hybrid cooling. To evaluate the accuracy of the CNN alternatives, we

divide the 90000 training power density maps into the training set and validation set. The

total number of training power density maps is set to 72000, and the validation set is set to

18000. All the input power matrices are normalized with respect to the mean and standard

derivation of the training data. We show the accuracy results of three CNN alternatives in
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Table 5.2. We use the Adam optimizer to train these multi-output CNN architectures, and

the loss function is selected as the mean square error (MSE). As we observe from Table 5.2.

Model_1 is overfitting with the data since the validation accuracy is at least 3.5% lower than

the training accuracy. To prevent overfitting, we add additional dropout layers and increase

the dropout rate to 0.5. However, the model accuracy and R2 scores start to decrease below

85%. In this case, we decide to lower the complexity of the model by using fewer convo-

lutional layers and fully connected layers, which results in model_2. The accuracy and R2

score of model_2 show that the model and the data are not closely correlated since the R2

scores are below 90%. To improve the model accuracy and R2 score, we add additional

fully connected layers with additional neurons and result in model_3. As we observe from

the results of model_3, the accuracy and R2 scores are higher than other alternatives, and

the model itself is not overfitted. Therefore, we choose model_3 (as shown in Figure 5·6) as

our hybrid cooling CNN regression model. In addition, we also experiment with different

activation functions such as ReLU, Hyperbolic tangent, and Leaky ReLU. We compare the

accuracy and R2 score of model_3 with ReLU, Hyperbolic tangent, and Leaky ReLU. To

ensure the predicted parameter is greater than 0, we set the activation function of the last

activation layer to be ReLU. We summarize the results in Table 5.3. Since ReLU achieves

the highest accuracy and R2 score, so we select ReLU as our activation function for all the

model’s activation layers in model_3.

Table 5.1: Details parameters for hybrid cooling CNN alternatives.

# of Conv2D # of Batch normalization # of Dropout # of Dense Kernel Sizes

Model_1 6 6 2 8 4×4

Model_2 2 2 2 2 5×5

Model_3 2 0 2 6 5×5
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Figure 5·6: Optimal hybrid cooling CNN architecture.

Table 5.2: Accuracy results for different hybrid cooling CNN regression alternatives.

Model_1 Model_2 Model_3
Velocity Current Velocity Current Velocity Current

Training Accuracy 94% 95% 89.9% 90.5% 98.9% 98.5%

Validation Accuracy 89% 91.5% 88.8% 89.8% 97.7% 97.9%

Validation R2 90% 91% 88% 89% 93.2% 96%

5.4.4 Two-Phase VCs with Hybrid Wick Evaporators CNN Architecture

Since two-phase VCs with hybrid wick evaporators have six different cooling parameters,

there are six different branches for this cooling technology. In addition, since different
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Table 5.3: Accuracy results for different activation functions. Accuracy and R2 score
are averaged for liquid flow velocity and current.

ReLU Hyperbolic Tangent Leaky ReLU

Validation accuracy 97.8% 95.6% 96.9%

R2 94.6% 93.3% 93.7%

coolant has different cooling properties, it’s not realistic to train only one CNN model to

predict both the optimal cooling parameters and the coolant. To solve this problem, we

train different multi-output CNNs for different coolants and conduct thermal simulations

at the end to find out the optimal coolant and its cooling parameters. Compared to hybrid

cooling CNN architecture, two-phase VCs with hybrid wick evaporators CNNs also need

to consider the dry-out effect. To improve the prediction accuracy, we add additional con-

volutional layers in each branch, and the number of filters in each convolutional layer is

doubled compared to hybrid cooling CNN architecture. We also build different CNN alter-

natives for each two-phase VCs with hybrid wick evaporators CNN with different coolants.

We summarize 9 CNN alternatives’ parameters in Table 5.4. For each CNN alternative, we

change the Dropout layers from 6 to 36 and the dropout rate from 0.25 to 0.5 to prevent

overfitting. After each Convolutional layer, we add batch normalization to stabilize the

training process and improve the training time. After all the convolutional layers, we add

one Max Pooling layer to decrease the problem size. We use RMSprop as the optimizer

with a learning rate of 0.001, and the loss function for each branch is set to MSE. To evalu-

ate the accuracy of the CNN alternatives, we divide the 90000 training power density maps

into the training set and validation set. The total number of training power density maps is

set to 72000, and the validation set is set to 18000. All the input power matrices are nor-

malized with respect to the mean and standard derivation of the training data. We show the

average accuracy results of these CNN alternatives for cooling parameters in Table 5.5. We

always start with the most complex model, and we aim to simplify the CNN by using fewer

convolutional layers and fully connected layers. We select model_3 as our final two-phase
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VCs with hybrid wick evaporators CNN model for each of the coolants. We also select the

activation functions to be ReLU, Hyperbolic tangent, and leaky ReLU. Since ReLU results

in the highest accuracy, we set ReLU as our activation function for all the activation layers.

Table 5.4: Detailed parameters for two-phase VCs with hybrid wick evaporators CNN
alternatives.

Coolants # of Conv2D # of Batch normalization # of Dropout # of Dense Kernel Sizes

Model_1 Water 36 36 36 18 4×4

Model_2 Water 6 6 6 6 5×5

Model_3 Water 12 12 6 18 5×5

Model_1 R141b 36 36 36 18 4×4

Model_2 R141b 6 6 6 6 5×5

Model_3 R141b 12 12 6 18 5×5

Model_1 R245fa 36 36 36 18 4×4

Model_2 R245fa 6 6 6 6 5×5

Model_3 R245fa 12 12 6 18 5×5

Table 5.5: Accuracy results for different two-phase VCs with hybrid wick evaporators
CNN regression alternatives.

Water R141b R245fa
Model_1 Model_2 Model_3 Model_1 Model_2 Model_3 Model_1 Model_2 Model_3

Training Accuracy 99.5% 96% 98.9% 98.5% 95.8% 99.3% 99.5% 95.3% 98.5%

Validation Accuracy 95.8% 95.7% 98.8% 96.7% 93.4% 98.83% 94.8% 92.7% 97.7%

Validation R2 95.7% 93.2% 98.6% 95.7% 92.1% 98.3% 95.7% 93.2% 98.1%

5.4.5 Results and Discussions

In this section, we first discuss the validation results of the proposed CNN architectures.

Next, we demonstrate the efficiency of using our proposed DL-based cooling optimization

flow against existing cooling optimization methods on realistic MPSoCs from OpenROAD

(Ajayi et al., 2019) and IBM Power9 processor (Sadasivam et al., 2017).
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Validation of the Proposed CNN Architectures

To validate the accuracy of the CNN architectures discussed in the previous section. We

divide the 90000 training power density maps into the training and validation sets. The

total number of training power density maps is set to 72000, and the validation set is set to

18000. All the input power matrices are normalized with respect to the mean and standard

derivation of the training data. We summarize the validation MSE, mean absolute error

(MAE), and R2 score in Table 5.6. For two-phase VCs with hybrid wick evaporators,

since each coolant has its own CNN architecture, we average the error of two-phase VCs

with hybrid wick evaporators’ geometries for each coolant. As we observe from Table 5.6,

our proposed CNN architectures can properly learn patterns to predict the optimal cooling

parameters for each type of cooling technology. Compared to two-phase VCs with hybrid

wick evaporator CNN, hybrid cooling CNN has higher MSEs and MAEs with lower R2

scores. The reason is that hybrid cooling is more complex because of the optimization

objective function. Hybrid cooling CNN also needs to consider cooling power, making the

prediction more complicated and less accurate. Whereas in two-phase VCs with hybrid

wick evaporators, there is no additional cooling power at the evaporator side.

Table 5.6: Validation results of the proposed CNN architectures.

Metrics Liquid flow velocity TEC current t d p φ AR SF w

MSE 2.3% 2.1% 0.9% 0.6% 2.5% 0.7% 1% 2.1%

MSE 5.3% 4.7% 2% 1.5% 4% 2% 2% 4%

R2 93.2% 96% 96% 99.3% 99.2% 99.2% 99.3% 98.5%

Optimization Results for Realistic MPSoCs

To demonstrate the predicted accuracy and search time improvements on realistic chips

of our proposed optimization flow against existing cooling optimization methods (Yuan

et al., 2020; Yuan et al., 2019a), we select realistic high power density MPSoCs from

OpenROAD (Ajayi et al., 2019) with different chip sizes, floorplans, and power profiles
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to test the proposed DL-based cooling optimization framework. We compare the optimal

results predicted using our proposed CNN architectures and optimization flow against MSA

and CMA-ES from previous work with a temperature constraint of 90◦C. The statistics of

the realistic MPSoCs from the OpenROAD have listed in Table 3.9. For each MPSoC, we

first map the power profiles into 10×10 power density maps. We then use Equation (5.2) to

standardize the power density maps with respect to the training power density maps:

PDnew = (PDoriginal −µtraining)/stdtraining +b. (5.2)

µtraining is the mean power density of the training dataset, stdtraining is the standard deriva-

tion of the training power density dataset, b is the bias which is defined as the ratio of the

testing MPSoCs dimension over the training chip dimension.

For each cooling parameter, we calculate the average and max error for all MPSoCs

and coolants and plotted the percentage error in Figure 5·7. The AvgError and Maxerror are

defined as shown in Equation (5.3):

AvgError = (∑ ppred − pbase)/(#o f MPSoCs×#o f coolants),

MaxError = max(∑ ppred − pbase), (5.3)

where ppred is the predicted parameter by our proposed CNN architectures, and pbase is the

parameter generated using the baseline method (CMA-ES and MSA). Both CMA-ES and

MSA have been validated against grid search in previous work (Yuan et al., 2020; Yuan

et al., 2019a). We choose the baseline method to be CMA-ES and MSA instead of grid

search because we seek to have a fast design exploration and simulation time for the base-

line method, which would further show the simulation speed improvement of our proposed

CNN architectures. Since the coolant is only water for hybrid cooling, #o f coolants equals

1. For two-phase VCs, the #o f coolants is set to 3 because there are three available coolants

(water, R245fa, and R141b). As we see in Figure 5·7, our proposed CNN architectures suc-
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cessfully predict optimal cooling parameters for hybrid cooling and two-phase VCs with

hybrid wick evaporators with a maximum error of less than 4%. Since PicoSoC with 95%

utilization has the highest power density, we also show the predicted parameters using our

proposed CNN architectures and baseline parameters generated using the baseline methods

of PicoSoC in Table 5.7.

Figure 5·7: CNN architectures accuracy results.

Table 5.7: Predicted parameters using our proposed CNN architectures and baseline
parameters generated using the baseline methods for PicoSoC.

Methods Coolant I(A) q(m/s) t(nm) d p(nm) φ AR s f w(µm)

CNN Water 7 2.57 0.97 0.17 0.30 1.92 0.34 7.63

Baseline Water 6.98 2.57 0.99 0.175 0.29 1.85 0.33 7.56

Figure 5·8 shows the optimization results correlation plots for all MPSoCs. The pro-

posed DL-based cooling optimization flow is able to find a similar optimal cooling solution

and its cooling parameters with maximum temperature and cost difference of 0.7◦C and

0.01 W compared to existing methods. Note that the tested MPSoCs have different chip di-

mensions compared to the training chip size we are using, demonstrating that our proposed

CNN architectures are able to predict the optimal cooling parameters for any given chip

size and power profile. For large-size chips such as PicoSoC, Sparc, and Black_parrot, the

optimal solution is always two-phase VCs with hybrid wick evaporators because it does
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not consume additional power on the evaporator side. Two-phase VCs with hybrid wick

evaporators cannot efficiently spread the heat across the chip for smaller chips with high

power density. That is the reason for Swerv MPSoCs, the optimal cooling solution is hy-

brid cooling. In addition, all the predicted geometries are within the valid range, and all

the two-phase VCs with hybrid wick evaporators’ geometries satisfy the dry-out constraint.

The average search time for the baseline method (MSA and CMA-ES) is 1.57 hours, while

it only takes the proposed DL-based cooling optimization flow 50 seconds at most to predict

the optimal cooling method and its cooling parameters. Our proposed DL-based cooling

optimization flow achieves a maximum of 140× speedup compared to existing optimiza-

tion methods. In addition, the training time for hybrid cooling CNN is 13.3 minutes (21

seconds per epoch) and the maximum training time for two-phase VCs CNN is 18 minutes

(56 second per epoch). The worst-case training and inference time is calculated based on

Equation (5.4):

Timeworst = max(Hybridtrain +Hybridin f er,max(VCtrain +VCin f er)), (5.4)

where Hybridtrain and Hybridin f er are the training time and inference time for hybrid cool-

ing, respectively. VCtrain is the training time for two-phase VCs CNN architectures with

different coolants. VCin f er is the inference time for two-phase VCs CNN architectures with

different coolants. The worst-case training and inference time for the proposed CNN archi-

tectures is 18.83 minutes, and the overall speedup compared to the baseline method is 5×.

Optimization Results for the IBM Power9 Processor

To further investigate the prediction accuracy of the proposed CNN optimization architec-

tures, we model the IBM Power9 high-performance processor with a total chip power of

190 W (Sadasivam et al., 2017). The floorplan of the IBM Power9 processor is shown
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Figure 5·8: The correlation plots of the maximum temperatures and cooling costs pre-
dicted using the proposed optimization flow against the baseline methods’ results. Base-
line methods stand for the combination of MSA and CMA-ES. CNN stands for the
proposed CNN architectures and optimization flow. All the data are normalized to the
maximum value.

in Figure 3·23 and the power breakdown is shown in Table 5.8. We compare the opti-

mal results predicted using our proposed CNN architectures and optimization flow against

the baseline method (MSA and CMA-ES) with a temperature constraint of 90◦C. We use

Equation (5.2) to standardize the power density maps with respect to the training power

density maps. The comparison results are shown in Table 5.9. The maximum cooling pa-

rameter difference is less than 3.8◦C. Since the dry-out heat flux is negatively correlated

with the chip size, the dry-out heat flux decreases dramatically as the chip size increases.

In this case, both proposed CNN architectures and baseline methods cannot find optimal

cooling parameters for two-phase VCs to optimize the maximum temperature under 90◦C.

Therefore, the optimal cooling solution has to be hybrid cooling. We also observe that,

for a small chip with fewer hot spots, compared to the power consumption of the chip, the

cooling cost is not significant. However, there will be more liquid microchannels and TEC

units for high-power chips with large chip sizes and more hot spots (such as IBM Power9).
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Therefore, the cooling cost starts to become significant. As shown in Table 5.9, the cooling

power is around 10% of the total chip power.

Table 5.8: IBM Power9 processor power breakdown.

Components Core(total) Cache Nest I/O DDR4

Power(W ) 133 20.9 9.5 15.2 11.4

Table 5.9: IBM Power9 processor optimal cooling parameters, maximum temperature,
and cooling power.

Methods Coolant I(A) q(m/s) Tmax(
◦C) Powercooling(W )

CNN Water 7 2.59 89.9 19.50

Baseline Water 7 2.6 89.88 19.83



140

Chapter 6

Conclusions and Future Work

Existing on-chip cooling solutions are not sufficient to mitigate high-power-density hot

spots and can result in over/under-cooling. Emerging cooling solutions such as liquid cool-

ing via microchannels, TECs, and two-phase cooling can achieve better cooling perfor-

mance against existing cooling solutions. To facilitate design exploration and optimization

for emerging cooling solutions, in this thesis, we first discuss a parallel compact thermal

simulator, PACT, to enable fast and accurate parallel thermal simulations. We then demon-

strate the potential of combining compact modeling methodology and ML to speed up the

thermal simulation speed for two-phase cooling. Finally, we present a novel DL-based

cooling solution and cooling parameters optimization flow to select the optimal cooling

solution and corresponding cooling parameters for any chip floorplan and power profile.

6.1 Enabling Fast and Accurate Parallel Thermal Simulations with PACT

Thermal analysis is an essential step that enables the co-design of the computing system

(i.e., ICs and computer architectures) with the cooling system (e.g., heat sink). Existing

thermal simulation tools are limited by several major challenges that prevent them from

providing fast solutions to large problem sizes necessary to conduct standard-cell-level

thermal analysis or to evaluate new technologies or large chips. We present PACT that

enables fast and accurate standard-cell-level to architecture-level steady-state and transient

thermal simulations to overcome these challenges. PACT can be easily extended to support

emerging integration and cooling technologies and is compatible with popular architecture-
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level performance and power simulators. To demonstrate the extensibility of PACT, we

integrate two types of heat sinks, a model for layers with heterogeneous materials and a

CTM for liquid cooling via microchannels in PACT. We also use PACT to build a PNoC

simulation framework with Sniper and McPAT to show compatibility. In addition, we

also create an interface between PACT and OpenROAD that can be used to evaluate the

thermal behavior of full industrial designs. Compared to COMSOL, PACT has a maximum

temperature error of 2.77% for steady-state and 3.28% for transient simulation. Compared

to HotSpot, PACT can achieve up to 232× speedup.

The current version of PACT only supports the cuboid grid. Other grid shapes, such as

circular (helpful in simulating round heat pipes), can only be approximated using several

cuboid grids. However, this process can be done manually for one circular grid and auto-

mated for all the grids across the design. Also, the current version of PACT does not support

an adaptive grid (non-uniform grid), and this feature can be added in the later versions of

PACT.

Currently, PACT does not envision the quantum effects on the nanometer scale (40-300

nm (Varshney et al., 2019)). To guarantee the simulation accuracy of PACT, the minimum

grid size has to be higher than 300×300 nm2. For sub-14 nm technology, users have to

combine several normal cells into one grid node to conduct thermal simulations. Other-

wise, the thermal dissipation will be dominated by the ballistic transportation of acoustical

phonon, and the overall simulation accuracy will be affected (Varshney et al., 2019). An

open design problem for PACT is to consider the quantum effect in the nanometer scale

and use the Boltzmann transport equation to model nanometer-scale phonon effects.

Because of the fast simulation speed and the high extensibility of PACT, users can

use PACT to develop a co-design and co-optimization flow for the computing system and

cooling system. Depending on the design target and optimization object function, the co-

design and co-optimization flow can either achieve better energy efficiency and cooling
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cost-effectiveness or higher computing performance within the temperature limit.

6.2 Modeling Emerging Cooling Methods via Machine Learning

Two-phase cooling technologies are attractive because of the high heat transfer rate com-

pared to traditional cooling methods. However, existing thermal models for two-phase

cooling often include CFD simulations, which incur large memory requirements and long

simulation time. In this thesis, we present ML-enabled fast and accurate compact thermal

modeling methodologies for two-phase VCs. We first elaborate on CTMs for two-phase

VCs with micropillar and hybrid wick evaporators. We validate our proposed model against

COMSOL, and our proposed model achieves a maximum error of less than 1.25◦C and a

speedup of up to 214× compared to COMSOL models. We next introduce an ML-based

temperature-dependent HTC simulation framework for two-phase cooling. This framework

can enable fast and accurate thermal simulations for two-phase cooling technology with a

wide range of cooling parameters. Compared to COMSOL, our simulation framework with

CTM achieves a 21× speedup with an average accuracy loss of less than 0.98◦C. We extend

the ML-based simulation framework by modeling a real VC, supporting additional ML re-

gression models, and adding transient modeling ability. Finally, we introduce a systematic

way of predicting temperature profiles based on on-chip digital thermal sensor readings via

ML. The proposed approach achieves an accuracy of 99.98% with minimal overhead.

Future directions in this area include validating the proposed ML-based simulation

framework against real two-phase cooling test vehicles, evaluating the temperature pro-

file prediction methodology using real chips, and supporting transient heat map prediction

using ML.

First, the current ML-based temperature-dependent HTC simulation framework has

been validated against the COMSOL model. The training data of the ML regression models

in the framework are collected from the simulations of the COMSOL model. The proposed
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framework needs to be validated against actual two-phase cooling test vehicles to demon-

strate the practicability of the CTMs and ML-based simulation framework.

Second, the current temperature profile prediction method is simulation-based. The

training data are collected from architectural performance, power, and thermal simulators.

The proposed ML models need to be evaluated on an actual chip to demonstrate their

applicability. In addition, some calibration methods may need to be included to obtain a

more accurate temperature profile predicted using the proposed method when evaluating

on real chips.

Third, the current methodology of predicting temperature profiles using ML only sup-

ports the prediction of steady-state heat maps. In contrast, in reality, the control knobs of

runtime thermal control policies such as thermally-aware dynamic voltage frequency scal-

ing often rely on the instantaneous temperature readings of the thermal sensors. Therefore,

the current method needs to be extended and support transient heat map prediction.

6.3 Optimizing Emerging Cooling Methods for High-Performance Processors via
Deep Learning

Various emerging cooling methods, such as liquid cooling via microchannels, TECs, two-

phase VCs, and hybrid cooling options, have been designed to efficiently remove heat from

high-performance processors. Selecting the optimal cooling solution for a given chip and

determining the optimal cooling parameters for that solution to achieve high efficiency are

open problems. These problems are, in fact, computationally expensive due to the massive

space of possible solutions. We introduce a DL-based cooling optimization flow for emerg-

ing cooling technologies to address this design challenge. We demonstrate the efficiency of

using DL techniques to optimize the cooling technologies against existing work. Our pro-

posed CNN architectures and DL-based cooling optimization flow can successfully predict

the optimal cooling solution and cooling parameters with a maximum error of less than 4%

and a maximum speedup of 140×.
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Future directions in this area include building a more comprehensive cost function,

determining the optimal cooling solution and cooling parameters more broadly for new

integration methods, using finer granularity power density maps to train more accurate

CNN architectures, and designing deep runtime reinforcement learning control policies for

emerging cooling solutions.

First, the cost function we used for this DL-based cooling optimization flow only con-

siders the cooling performance and cooling power. Whereas in reality, the manufacturing

cost of the cooling method is also one crucial factor. The current cost function can be

improved by including the manufacturing cost of the cooling solution. In addition to that,

to further improve the prediction accuracy, the CNN architectures can be modified to take

other design parameters such as chip sizes and layer thickness into consideration. These

parameters will be used as the input to the CNN.

Second, our proposed DL-based cooling optimization flow is not comprehensive enough

to cover emerging integration technologies, such as 3D ICs with arbitrary layer configura-

tions. Our current flow applies if the 3D IC layer configurations (i.e., which blocks are

allocated on which layers) match the layer configurations available in the training data. For

using the proposed CNN optimization architecture for arbitrary 3D IC designs, the CNN

regression models have to be retrained as needed to maintain the desired accuracy. The

layer partitioning configurations can be considered as inputs to the CNN regression models

to tackle this limitation in future work.

Third, the power maps we used to train the CNN architectures are coarse granularity

(10×10). To achieve a better accuracy, a more fine granularity power map can be used to

train the CNN architectures. To optimize both the training accuracy and training time, there

needs to be a systematic way to simultaneously select the power map’s optimal granularity

to satisfy the training accuracy and training time requirements.

Finally, we only consider design time cooling optimization. However, the power density
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matrix may change during runtime due to the application behavior. Deep reinforcement can

potentially predict the optimal cooling parameters at runtime efficiently. The future work

of DL-based cooling optimization flow includes developing deep reinforcement learning-

based runtime cooling parameter control policies for emerging cooling technologies such

as liquid cooling via microchannels, TECs, and hybrid cooling.
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