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Abstract
Developers use logs to diagnose performance problems in

distributed applications. But, it is difficult to know a pri-

ori where logs are needed and what information in them is

needed to help diagnose problems that may occur in the future.

We summarize our work on the Variance-driven Automated

Instrumentation Framework (VAIF), which runs alongside

distributed applications. In response to newly-observed per-

formance problems, VAIF automatically searches the space of

possible instrumentation choices to enable the logs needed to

help diagnose them. To work, VAIF combines distributed trac-

ing (an enhanced form of logging) with insights about how

response-time variance can be decomposed on the critical-

path portions of requests’ traces.

1 Introduction

Logs are the de-facto data source engineers use to diag-

nose performance problems in deployed distributed applica-

tions. However, it is difficult to know a priori where logs

are needed to help diagnose problems that may occur in

the future [16, 32–34]. Exhaustively recording all possible

distributed-application behaviors is infeasible due to the re-

sulting overheads. As a result of these issues, distributed

applications can contain lots of log statements, but rarely

the right ones in the locations needed to diagnose a specific

problem [16, 33]. New performance problems cannot be diag-

nosed quickly because the detailed logs needed to locate their

sources are not present.

Diagnosing problems observed in deployment requires cus-

tomizing logging choices during runtime. Two sets of comple-

mentary techniques allow for such customization: dynamic

logging and automated control of logging choices. The former

allows developers to insert new logs in pre-defined [4, 9, 16]

or almost arbitrary locations [11] of an application. But, it

can result in high diagnosis times because engineers must

manually explore the vast space of possible logging choices

to locate the source of the problem. Only after doing so can

they identify the root cause and fix it.

To reduce diagnosis times, researchers have developed au-

tomated techniques to choose the needed logs [3,7,13,34,35].

However, they focus on correctness problems, not perfor-

mance, or are designed for individual processes, not dis-

tributed applications. For example, Log20 [34] helps diag-

nose non-fail-stop correctness problems by enabling logs to

differentiate unique code paths. However, fast code paths

need not be differentiated for performance problems, and

slow ones need additional logs to further pinpoint the prob-

lem source. Log2 [7] identifies which logs provide insight into

performance problems in individual processes. Its value is

diminished for distributed applications because it is unaware

of slow requests’ workflows—i.e., the application processes

involved in servicing them.

In Toslali et al. [27], we presented the Variance-driven

Automated Instrumentation Framework (VAIF). It is a log-

ging framework that automatically enables the logs needed to

diagnose performance problems in request-based distributed

applications. We found that the combination of three insights

about the critical-path sections of requests workflows, dis-

tributed tracing (an enhanced form of logging), and requests’

performance variance made VAIF possible.

The insights are as follows. First, in many distributed appli-

cations, requests whose workflows are expected to have simi-

lar critical paths should perform similarly [21]. If they do not—

i.e., they exhibit high response-time variance—the expecta-

tion is incorrect, and there is something unknown about their

critical paths. This unknown behavior may be performance

problems, such as slow functions, resource contention, or

load imbalances. Second, distributed tracing captures graphs

(traces) of requests’ workflows with resolution equal to the

number of logging points in the application. (Distributed trac-

ing calls log points tracepoints.) Third, high response-time

variance can be localized to sources of high variance within

critical-path portions of requests’ workflow traces, giving

insight into where more tracepoints must be enabled to ex-

plain the unknown behavior. For problems that manifest as

consistently-slow requests instead of high variance ones, a

similar process that focuses on high-latency areas of critical
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paths can be used.

VAIF is comprised of a distributed-tracing infrastructure

that allows tracepoints to be enabled or disabled and control

logic that decides where to enable tracepoints based on the

performance-variation insights. It uses various search strate-

gies (e.g., binary search) to decide which tracepoints to enable.

During normal operation, VAIF operates identically to dis-

tributed tracing today and generates traces with a default level

of tracepoints enabled. When developers must diagnose why

requests are slow, they “push a button” and VAIF automati-

cally explores which additional tracepoints must be enabled to

locate the problem source(s). Similar to dynamic instrumenta-

tion, VAIF’s approach reduces the burden of deciding which

logs to enable a priori. It also eliminates the manual effort

required to search the space of possible tracepoint choices.

We implemented two prototype VAIFs for OpenStack [18]

and HDFS [26] by modifying their existing tracing implemen-

tations. In both applications, we found that our prototypes

can enable tracepoints to locate the sources of real and syn-

thetically injected sources of variance and latency. We found

that many real sources of variance and latency correspond to

bug reports in developer mailing lists. Our prototypes only

enabled 3-37% of the tracepoints they could enable to localize

these issues.

The rest of this paper summarizes Toslali et al. [27]. We

focus on motivating the need for automated instrumentation

frameworks (Section 2), VAIF’s design (Section 3), and a

short overview of our evaluation (Section 4).

2 Toward automated logging choices

This section introduces challenges in logging to help diagnose

performance problems. It derives requirements that any instru-

mentation framework should satisfy to address the challenges.

It describes how these requirements can be met by combining

distributed tracing with control logic that focuses on requests’

response-time variance.

2.1 Challenges

Past research has identified three challenges with logging that

curtail its value for localizing problems. Such localization

identifies the areas first or most affected by problems, giving

developers strong starting points for their diagnosis efforts [8].

The challenges are: 1) No perfect one-size-fits-all logs leading

to a tussle between informativeness and cost (e.g., overhead),

2) Extremely large log search spaces, and 3) Data overload

leading to a needle-in-the-haystack problem.

These challenges must be addressed separately for cor-

rectness and performance problems as logging for these two

classes have different goals. Logging for correctness must

identify the first divergence from normal execution that leads

to problematic regions in the code [3, 31, 33, 35]. In compar-

ison, logging for performance must identify regions of the

code or resource conditions that lead requests to be slow.

No perfect one-size-fits-all instrumentation. Past research

argues that the logs needed to localize the source of one prob-

lem may not be useful for others [16, 28, 33, 34]. The lack

of one-size-fits-all logs leads to a tussle to identify which

log statements are most helpful and should be enabled by de-

fault. For example, Zhao et al. [34] state that Hadoop, HBase,

and Zookeeper have been patched over 28,821 times over

their lifetimes to add, remove, or modify static log statements

embedded in their code. They also point out that the 2,105

revisions that modify logs’ verbosity levels reflect the tussle

between a desire to balance overhead and informativeness

of log statements. This challenge results in the following

requirement:

R1 Logging frameworks must allow logs to be enabled se-

lectively by developers during runtime or must auto-

matically enable logs in response to problems observed

during runtime.

Extremely large logging search spaces. Assume a dis-

tributed application that allows log points to be enabled at

every function’s entry, exit, and exceptional return. (This is

similar to the distributed applications used by Mace et al. [16]

and Erlingsson et al. [9].) Here, the possible locations where

log statements can be enabled is a function of the number of

procedures in the applications’ code base and the number of

machines on which the application executes. Even modestly-

sized distributed applications can have search spaces with

100s or 1000s of possible log points.

To address this scalability challenge, we refine R1 to require

logging frameworks to automatically enable tracepoints. We

add a requirement stating that frameworks must automatically

narrow down the search space when exploring new problems.

R2 Automated Logging frameworks must be capable of nar-

rowing down the search space when exploring which

logs are needed to localize a newly-observed problem.

The needle-in-a-haystack problem. Existing logging infras-

tructures capture voluminous amounts of data. For example,

Facebook’s Canopy, a distributed-tracing infrastructure cap-

tures 1.16 GB/s of trace data and individual traces contain

1000s of tracepoints [12]. Problem diagnosis, even when the

needed instrumentation is present, is as difficult as finding a

needle in a haystack [20].

This challenge is partially addressed by R1 and R2. To

avoid the needle-in-haystack problem for cases where there

may be multiple problems in the application simultaneously,

we add the following requirement.

R3 Automated logging frameworks must be capable of ex-

plaining their logging decisions.
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Algorithm VAIF control logic

1: procedure HYPOTHESIZE(search, mdtry, req_types)

2: init hyp(req_types) ⊲ Hypothesis tree

3: init t ps_enabled ⊲ Enabled tracepoint list

4: init prev ⊲ (+) Hypothesis nodes created in last cycle

5: init t ps ⊲ Trace points enabled in this cycle

6: init ct ⊲ Congestion Tracker

7: cv← 0.1 ⊲ CV threshold

8: cs← 95 ⊲ Consistently-slow threshold

9: enable(mdtry)

10: for ;; do ⊲ Start Cycle

11: while ct.congested_danger() do

12: sleep(cycle_time)

13: end while

14: traces← collector.get_new_traces()

15: hyp.add_traces(traces)

16: search.key_value(prev)

17: prev.make_empty() ⊲ Only this cycle’s results

18: cv_gs, cv_nodes← hyp.id_high_cv(cv)

19: cs_gs, cs_nodes← hyp.id_high_cs(cs)

20: t ps.add(helper(cv_gs, cv_nodes, prev, VAR))

21: t ps.add(helper(cs_gs, cs_nodes, prev, LAT ))

22: enable(t ps, t ps_enabled)

23: sleep(cycle_time)

24: end for

25: end procedure

26: procedure HELPER(groups, hyp_nodes, prev, type)

27: init t ps ⊲ Chosen tracepoints

28: for i = 1 . . . length(groups) do

29: t p← search.find((groups[i], type)

30: prev.add(hyp_nodes[i].add_child(+ t p))

31: hyp_nodes[i].add_child(∼ t p)

32: t ps.add(t p)

33: end for

34: return t ps

35: end procedure

assigned to them, trace edge-latency distributions, and the

number of requests assigned to each group. Tracepoints en-

abled by VAIF on behalf of other paths or trees are removed

from traces before grouping. Such processing allows VAIF

to measure the effects of each hypothesis independently w/o

interference from other hypotheses. Always-on tracepoints

are not removed as VAIF does not make hypotheses about

them.

3.2.2 Control logic

Algorithm VAIF control logic shows the pseudocode. We

describe important aspects below. See Toslali et al. [27] for

details about supported search strategies (search. f ind()) and

how the search space is constructed.

Initialization (lines 2-9). HYPOTHESIZE() is initialized with

a search strategy (search), statistical thresholds for identify-

ing high variance and consistently slow groups (cs and cv), a

set of mandatory tracepoints that must be enabled for VAIF to

work (mdtry), and tracepoints that indicate the start and end

of monitored request types’ execution (req_types). Manda-

tory tracepoints include the concurrency and synchronization

points listed in the search space and those in req_types. VAIF

initializes the hypothesis forest with root nodes correspond-

ing to the start tracepoints in (req_types) and enables the

mandatory tracepoints if they are not always-on ones.

Checking for congestion (lines 11- 13). The congestion

tracker is consulted to check if any tracing agents’ queue

occupancies over 50%. HYPOTHESIZE() sleeps until this con-

dition ceases to hold.

Consuming new traces (lines 14- 15). New critical-path

traces observed in the interval between the previous cycle and

the current one are added to the hypothesis forest’s leaf nodes.

The leaf to which to add a trace is identified by matching its

tracepoints to hypothesis-tree paths. Once the leaf node is

identified, the trace is processed to remove extraneous trace-

points and connect surrounding edges. Finally, the trace is

added to the group that matches its (processed) critical path.

Key/value pairs (line 16). Groups are analyzed to determine

if key/value pairs in tracepoints that were enabled in the pre-

vious cycle are correlated with groups’ response times. The

search space is consulted to identify the subset of the cor-

related keys that have also been specified by developers in

the search space. Tracepoint names are augmented with these

keys and the developer-specified bin ranges for them. (Names

of tracepoints specified in the hypothesis nodes are not mod-

ified.) Remaining correlated keys are surfaced in affected

groups’ hypothesis nodes.

Identifying potential problems (lines 18-19). Leaves of the

hypothesis tree are analyzed to identify which ones contain

problematic groups. These are ones with the most number of

groups that exceed the CV or CS threshold (cv_gs and cs_gs)

respectively. Groups must contain enough samples for statis-

tical confidence to be considered (30 in our implementation).

Generating new hypotheses (lines 20-21). The search strat-

egy is called to suggest tracepoints to enable for problem-

atic groups (search. f ind()). The strategy uses group’s edge-

latency distributions to decide where a new tracepoint should

be enabled. For a high CV group, it chooses the edge that con-

tributes most to the overall variance. For a consistently-slow

group, it chooses the edge with the largest mean latency. New

nodes are created in the hypothesis forest to test inclusion or

absence of the selected tracepoints in future traces.

Enabling tracepoints and sleeping (lines 22-23). The en-

abled tracepoint list is updated with the tracepoints selected

by the search strategy and is replicated to the tracing agents.

The control loop sleeps for a pre-determined duration to allow

new traces to be gathered.

Stopping condition for problematic groups. The most gran-

ular tracepoints are already enabled within edges that account
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for the majority (≥50%) of overall variance or latency.

4 Diagnosing problems with VAIF

This section presents a case study of how we used VAIF to

identify various performance problems in OpenStack. Open-

stack is a widely-used distributed application for managing

clouds. We use the OpenStack Stein release. Our cluster con-

sists of 9 Compute and 1 Controller node. VAIF enables one

tracepoint per cycle per hypothesis node. For a more compre-

hensive set of experimental evaluation, we refer readers to

Toslali et al. [27].

Unpredictable performance of VM LIST requests. All

instances on OpenStack can be listed using the command

VM LIST. Matching the slowest trace to the hypothesis for-

est shows that the request’s latency emanates from three

edges. This trace’s group shows high CV (0.2), and the en-

abled tracepoints constitute 63% of all variance and 60%

of the latency. We further examine the code corresponding

to those three edges and find the following; 1) two edges

(keystone_post&get) correspond to where identity service

(keystone) is utilized for authentication token, 2) the third

edge corresponds to a function (get_all) that constitutes 2000

LoC and performs numerous DB lookups to get every in-

stance, including deleted ones. We corroborate these findings

in the bug reports ( [1, 2]), which state that VM List experi-

ences latency variations due to a) the token table getting large

in identity service, and b) the function not being able to scale

well with the number of VMs and users. In this case, VAIF

helps diagnose performance problems by isolating latency

to (1) a specific service and operation and (2) an inefficient

function. The latter case also provides an insight to developers

as inefficient tracing (i.e., more tracepoints can be added to

the 2000 LoC).

5 Summary

It is difficult to know where logs must already be enabled

to help debug performance problems that may occur in the

future. This paper presents the design of VAIF, which com-

bines distributed tracing and variance-based control logic to

automatically explore which tracepoints to enable.
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