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Abstract—Monolithic 3D (MONO3D) integration provides per-
formance and power efficiency benefits over 2D circuits and, thus,
is a potent technology for the design of Deep Neural Network
(DNN) accelerators with enhanced energy efficiency. However,
high IC temperatures are major challenges for the design of
MONO3D systems. To this end, this paper focuses on designing
temperature-aware MONO3D DNN accelerators. We propose a
new automated method, called TREAD-M3D, that provides a
near-optimal MONO3D DNN accelerator architecture in terms
of systolic array size, SRAM organization, partition across 3D
layers, and operating frequency, for a given DNN, optimization
goal, and temperature constraint. TREAD-M3D incorporates
circuit- and architecture-level models to evaluate the power
and performance characteristics of different partitions. Our
method reveals valuable insights and enables tradeoff analysis
for achieving high energy efficiency in MONO3D systolic arrays.
In comparison to recent works that adopt a fixed partition choice
to design MONO3D DNN systems, TREAD-M3D yields up to
22% higher energy efficiency. Using TREAD-M3D, we further
demonstrate that temperature unawareness not only leads to
infeasible configurations due to temperature violations but also
over-estimates energy-delay-product benefits by up to 24%.

Index Terms—Monolithic 3D, systolic arrays, temperature
optimization, deep neural networks, energy efficiency

I. INTRODUCTION

Monolithic 3D (MONO3D) technology, out of the sev-
eral 3D integration technologies such as die-stacked 3D or
package-on-package [1], has emerged as a promising tech-
nology to enhance the power and performance character-
istics of ICs [2]–[4]. In MONO3D, two or more thin de-
vice layers (or tiers) are sequentially fabricated with a thin
dielectric in-between, achieving dense vertical connections
using nanometer-scale monolithic inter-tier vias (MIVs). Fig.
1 shows a chip stack for a two-tier MONO3D IC using flip-
chip packaging. Unlike the through silicon vias (TSVs) in die-
stacked 3D technology (referred to as TSV3D in this paper),
MIVs have a negligible keep-out-zone. These features enable
a lower form factor in MONO3D, resulting in chip footprint
savings and shorter interconnects. These wirelength savings
result in a 9% to 20% power savings at iso-performance
[5], [6], thus, improving power efficiency. MONO3D also
supports partitioning at diverse granularities (i.e., transistor-
, gate-, and block-level) that can be leveraged to design an
energy-efficient system [2], [6]. However, even though the
thin tiers and dielectric layer enable effective vertical heat
dissipation in MONO3D systems, hot spots may still appear
across neighboring tiers [7], [8]. Thus, temperature is a critical
design issue in MONO3D systems and must be considered
while designing these systems to maintain thermal integrity.

Many application domains are expected to benefit from
the energy efficiency promise of MONO3D [8]. Deep neural
network (DNN) inference one such application with growing

Fig. 1: Flip-chip packaging for a two-tier MONO3D IC.

significance. Due to the rapid growth of mobile applications
that rely on DNN inference (e.g., drones and phones), the
demand for mobile DNN accelerators has increased tremen-
dously to achieve low latency and energy efficiency (e.g., [9]–
[13]). Due to energy and chip footprint limitations, mobile
systems require area- and energy-efficient DNN accelerators.
Consequently, for a given chip footprint, MONO3D accel-
erators can potentially comprise more processing elements
(PEs), compared to 2D, thus, improving compute density and
inference latency. In addition to the power/area constraints in
mobile accelerators, absence of advanced cooling techniques
make temperature a major design challenge as well.

Systolic arrays are used for DNN inference in mobile sys-
tems due to their high throughput without increasing memory
bandwidth requirements [14], [15]. As shown in Fig. 2, a
systolic array consists of a homogeneous 2D network of
PEs, where a PE is a Multiply-and-Accumulate (MAC) unit
with internal registers. The left edge PEs in systolic arrays
read input feature map (IFMAP). The top edge PEs read
filters. At every clock cycle, these inputs are read from their
respective SRAMs. This input data is processed, stored in
internal registers, and transferred to the neighboring PEs in
the next cycle. PEs along the bottom edge of the systolic
array write back the output feature map (OFMAP) to OFMAP
SRAM. Since the SRAMs are accessed very frequently by
the systolic array, interconnect power savings between systolic
arrays and SRAMs offered by MONO3D technology can have
a substantial impact on overall energy efficiency.

Recent research in mobile DNN accelerators focuses on
improving energy efficiency by compressing the inputs or
by replacing expensive off-chip DRAM accesses [9], [16].
Circuit-level optimization has also led to low-power mobile
MONO3D systems [17], [18]. It is important to note that aside
from the power and area constraints in mobile accelerators,
absence of advanced cooling techniques make temperature
a major design challenge as well. However, none of these
works considers temperature. Consequently, we propose a
method to design temperature-aware MONO3D systolic DNN
accelerators. Our method optimizes MONO3D systolic arrays
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Fig. 2: A sample 16 PE systolic array with its simplified
MONO3D layout for Partition A (SRAMs on systolic array)
and Partition B (systolic array and SRAMs split across two
layers). Active PEs are red, while idle PEs are gray.

by tuning their size, SRAM organization, MONO3D partition1,
and operating frequency for a given DNN. The effective control
of these knobs is enabled by the cross-layer performance and
power models that we develop in this work. This new method
is a significant improvement over our prior work that conducts
temperature-aware optimization with coarse-grained estimates
and, thus, may overlook the benefits offered by MONO3D and
converge to sub-optimal designs [19]. The main contributions
of this work over our prior work [19] are as follows:

• We introduce MONO3D-specific cross-layer performance
and power models for PEs, SRAMs, and interconnects for
various partition options. These models enable evaluation
of and comparison among MONO3D and 2D systems.

• We build an automated method to design TemperatuRE-
Aware systolic DNN accelerators for MONO3D, called
TREAD-M3D. TREAD-M3D optimizes a MONO3D
systolic array for a desired objective, such as energy
efficiency, aiming DNNs used for image recognition.
We integrate our MONO3D-specific models in TREAD-
M3D to enable navigation through the design space under
user-specified performance and thermal constraints.

• Using TREAD-M3D, we demonstrate interesting in-
sights among MONO3D partition choices and compar-
isons to 2D integration, and also the importance of
considering thermal awareness in the design of mobile
systolic arrays. We also extend TREAD-M3D to find a
single generic accelerator architecture optimized for mul-
tiple DNNs studied in this paper for various objectives.

In comparison to recent works that utilize only one partition
choice, TREAD-M3D generates configurations with up to
22% higher energy efficiency. On relaxing the thermal con-
straint across all partition choices, TREAD-M3D efficiently
explores the design space and outputs MONO3D configu-
rations with 21% smaller footprint savings and 8% lower
energy. Using TREAD-M3D, we also show that temperature
unawareness over-estimates MONO3D efficiency benefits by

1In this work, different partition choices describe different systolic array
and SRAM organization between MONO3D layers.

Labels Systolic array with SRAMs
A1 20 × 22, (16, 16, 16) KB SRAMs
A2 40 × 40 (64, 16, 128) KB SRAMs
A3 64 × 64, (32, 32, 512) KB SRAMs
A4 124 × 130, (512, 1024, 1024) KB SRAMs
A5 144 × 120, (512, 1024, 1024) KB SRAMs
A6 182 × 192, (2048, 2048, 2048) KB SRAMs

TABLE I: Systolic arrays for motivational examples.

24% and lead to thermal violations. TREAD-M3D also yields
10% lower power and 50% footprint savings w.r.t. 2D ICs.

The rest of the paper starts with a motivation for
temperature-aware optimization framework to design efficient
MONO3D systolic arrays. Section III presents related work
on systolic arrays, MONO3D thermal issues, and MONO3D
DNN inference accelerators. Section IV describes TREAD-
M3D, followed by results in Section V. Finally, we conclude
and discuss future work in Sections VI and VII, respectively.

II. A MOTIVATIONAL EXAMPLE

This section compares 2D and MONO3D configurations
to motivate the need for temperature-aware optimization for
MONO3D mobile systems. For simplicity, we only focus on
one type of MONO3D partition. We introduce other MONO3D
partition choices later in Section IV-A. The MONO3D config-
urations in this section are comprised of SRAMs in the upper
tier and a systolic array in the bottom tier (see Fig. 1). In 2D,
the SRAM and systolic array are placed adjacently in one tier.
Table I shows six configurations, sorted by their footprint, for
this motivational example. We select six configurations, listed
in Table I, from our design space using a coarse grid sampling
for this motivation example. Our complete design space is
detailed in Sec. V-A. For this study, we select VGG11 as our
target DNN. We use three frequency levels (600, 800, and
1,000 MHz), a performance constraint of 10% loss in inference
latency from 60 frames per second (fps) [20], and two thermal
constraints (70◦C and 80◦C) to capture the importance of
temperature. We evaluate two objectives: minimizing chip
power and energy-delay-area-product (EDAP). Note that the
best configuration not only has the least objective value, but
also satisfies the performance and temperature constraints.
Figs. 3a and 3b show the deviation of VGG11’s inference
latency from 60 fps and steady state temperatures, respectively,
for each Ai at the three frequencies. E.g., A1 at 600 and
800 MHz does not satisfy the latency constraint due to small
number of PEs, or A1 violates 80◦C in MONO3D at 1,000
MHz. Missing bars in Fig. 3 imply that the systolic array is
unable to operate at that frequency due to long wire lengths.
For example, A6 has a missing bar in Figure 3a at 1,000
MHz. However, the design space can comprise hundreds of
thousands of configurations due to several control knobs,
such as DNN of interest, systolic array size, array aspect
ratio, SRAM size, operating frequencies, MONO3D partition
choices, etc. Thus, exhaustively identifying configurations that
satisfy constraints for each DNN is not feasible.

Figs. 3c, 3d, and 3e show the normalized EDAP, power,
and power density with respect to the least values among
all six configurations, respectively. Fig. 3d shows that A1 at
1,000 MHz has the lowest power and satisfies all constraints
in 2D. However, the same configuration results in thermal
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violation in MONO3D technology due to 1.9× higher power
density resulting from footprint reduction. Similarly, for EDAP
efficiency (or, minimum EDAP), Fig. 3c shows that A3 at
1,000 MHz is the most efficient in 2D technology. However,
under a tight 70◦C constraint, A3 results in a thermal violation
in MONO3D. On the other hand, on relaxing the constraint to
80◦C, A3 executes safely. Thus, not only 2D and MONO3D
may have different optimal configurations, but varying the
thermal constraint may lead to a different optimum point
in MONO3D. Furthermore, finding optimal configurations is
often non-trivial in a vast design space due to (i) continuously
emerging state-of-the-art DNNs with competitive accuracies,
different topologies and compute/memory requirements, (ii)
limited thermal headroom in mobile systems, (iii) desired
constraints and objectives for a chip architect/designer, and
(iv) numerous possible values for the multiple control knobs
discussed above (e.g., frequency, array size, etc.). Also, a fine-
grained grid search or exhaustive search may be infeasible
and time consuming to find optimized points. Hence, it is
important to develop a temperature-aware optimization frame-
work to traverse through the design space efficiently, evaluate
performance, power, and thermal characteristics for a subset of
the design space for a DNN of interest, and converge to near-
optimal configurations for 2D or MONO3D technologies.

III. RELATED WORK

Systolic DNN accelerators. Several works have proposed
techniques for increasing efficiency of systolic arrays due to
their growing use for DNN inference. For example, Asgari et
al. propose pruning methods to reduce memory accesses and
achieve higher energy efficiency in sparse DNN inference [21],
[22]. Liu et al. combine sub-arrays of PEs into larger Tensor-
PEs to improve data re-use and achieve 2× power efficiency
in mobile systems [23]. Li et al. replace off-chip DRAM
with emerging on-chip memory technologies to achieve 2×
energy efficiency in mobile systolic arrays [9]. There exists
another body of work that focuses on DNN and hardware
co-design for higher energy efficiency [24], [25]. All these
works target 2D arrays. Kung et al. introduce tiled systolic
architecture vertically interfaced with a memory die using
TSVs for high memory bandwidth, and thus, resulting in
significant latency improvement over 2D [16]. However, the
effect of temperature on such systems has not been assessed.
Another work demonstrates a need for thermal awareness in
the design of TSV3D systolic array chiplets in a multi-chip
module for a multi-DNN workload [26].

Thermal integrity in MONO3D systems. Several works
have investigated thermal issues in MONO3D systems and
proposed appropriate remedies. For example, optimizing the
power delivery network can improve thermal conductivity and
lead to reduction in on-chip temperature [27], [28]. Iqbal et
al. propose the use of nano pillars for extracting heat from se-
lected hot spot regions [29]. Such techniques improve thermal
conductivity, which allows effective heat removal via the heat
spreader/sink. Lee et al. demonstrate MONO3D benefits over
2D for high-performance ICs when using emerging cooling
techniques [30]. In another work, Samal et al. show that

tight inter-tier vertical thermal coupling with negligible lateral
flow of heat exists in MONO3D ICs and build a non-linear
regression model for temperature estimation of the tiers [31].
None of these works target thermal integrity in mobile systems
that are area, power, and thermally constrained.

MONO3D DNN accelerators for inference. On the
MONO3D front, power and performance benefits offered by
this technology have led to an increasing interest in design-
ing DNN accelerators. Chen et al. propose an accelerator
architecture with resistive RAMs (ReRAMs), multiple layers
of carbon nanotube field-effect transistors (CNFETs) based
ADC/DAC for the ReRAMS, and CNFETs-based SRAMs.
The CNFETs based logic and memory structures result in
a higher power efficiency, in comparison to CMOS, thus
improving performance per watt in DNN inference [32]. Yu et
al. introduce an architecture with ReRAM memory tiers inter-
faced with an accelerator tier using MIVs. The high density
MIVs provide high memory bandwidth resulting in significant
energy savings in DNN inference [33]. Chang et al. investigate
partitioning choices to design a post-layout two-tier MONO3D
ASIC (with MAC units and memory blocks) for speech recog-
nition DNN models and show significant performance/power
improvements [18]. However, none of these works considers
temperature awareness, which can be a major issue especially
with multiple layer stacking. Furthermore, these works do not
find optimal architectures for DNN workloads. A recent work
proposes a variant of output stationary dataflow to utilize
the vertical dimension in MONO3D systolic arrays, where
each tier has private SRAMs [34]. A 12-tier 3D systolic
architecture is shown to have a 9.14× speed up over 2D in
high-performance systems such as servers. The 3D systolic
arrays are shown to not have major thermal issues because
high-performance systems are usually equipped with powerful
cooling solutions. The authors, however, have not modeled
temperature-dependent leakage, which can be non-negligible
due to strong inter-tier thermal coupling in MONO3D systems
[7], [35], and thus, have an impact on the thermal behavior of
the system. Also, the DNNs considered in their work may not
be high-power DNNs. We later demonstrate in this paper that
DNNs like VGG11 or Faster R-CNN are limited by thermal
headroom. Another work models different options of stacking
multiple layers of systolic array and SRAM layers to achieve
better performance than 2D systolic arrays [36]. However, they
do not have a performance model in place to measure the effect
of stacking options on frequencies or wirelengths. Nor do they
investigate SRAM partitions or determine optimal and efficient
systolic architecture for DNNs of interest. In summary, these
works do not provide a systematic method that i) effectively
explores the design space of MONO3D systems, ii) considers
thermal issues, and iii) evaluates improvements over 2D DNN
accelerators. Our proposed method enables these missing
features through circuit- and architecture-level power and
performance models that are scalable across systolic array
sizes and determines optimal MONO3D systems for given
objectives and thermal constraints.

Our prior work shows performance versus temperature
tradeoffs in systolic arrays for only one MONO3D partition:
SRAMs monolithically grown on top of systolic arrays [19].
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(a) Latency deviation. (b) Steady state temperatures.

(c) Normalized EDAP. (d) Normalized chip power.

(e) Normalized power density.

Fig. 3: A motivational example with VGG11 at three frequencies. Normalization (red dotted lines) is done with respect to
the minimum value among the six configurations. (a) %Difference in inference latency with respect to 60 fps. Positive bars:
worse latency, negative bars: smaller latency. Ais with y-axis values >10 violate the performance constraint. (b) Steady state
temperatures. (c) Normalized system EDAP with respect to A3 at 1,000 MHz. Best configurations differ in 2D (A3 at 1,000
MHz) and MONO3D (A5 at 800 MHz) under a tight thermal budget of 70◦C. (d) Normalized total chip power with respect to
A1 at 600 MHz. Best configurations differ in 2D (A1 at 1,000 MHz) and MONO3D (A2 at 600 MHz) due to thermal issues
even at a relaxed thermal constraint of 80◦C. (e) Normalized power density with respect to A5 at 600 MHz.

It assumes fixed frequency levels across all systolic arrays
and adopts a coarse-grained MONO3D power model common
across all DNNs and systolic array architectures, and thus, may
lead to sub-optimal choices. Furthermore, it lacks appropriate
performance and power models needed for comparison with
2D and other MONO3D partition choices. In this work, we
introduce cross-layer models that determine the maximum
operating frequency levels for DNN inference on systolic ar-
rays and estimate power for varying DNN topologies, systolic
arrays, and MONO3D partition choices. In addition, they also
allow comparison of 2D and MONO3D partition choices w.r.t.
various optimization goals, unlike our prior work.

IV. TREAD-M3D

This section introduces TREAD-M3D, its cross-layer mod-
els, MONO3D-partitioned accelerators, and the optimizer. Fig.
4 shows an overview of TREAD-M3D with its five phases
(P1-P5). TREAD-M3D takes a DNN topology (i.e., layer-
wise description of a DNN including #filters, #channels,
input/filter size, and strides), MONO3D partition choices,
design constraints (e.g., bounds on systolic array), perfor-

mance/thermal constraints, and optimization goal as inputs,
and outputs the optimal configuration in P5 after multiple it-
erations through P1-P4. An optimization goal is a metric that
is minimized: power, energy, energy-delay-product (EDP), etc.
Our temperature-aware optimizer starts in P1, by randomly
selecting an accelerator configuration for initialization (Ci). Ci

comprises a systolic array and three SRAMs using a MONO3D
partition, and also satisfies the user-defined constraints. The
optimizer then evaluates performance, power, and temperature
characteristics of Ci using cross-layer models in P2-P4. In
each iteration, the P2-P4 outputs are sent to P1 to select a
new configuration for next iteration. After multiple iterations,
the optimizer converges to a near-optimal configuration in P5.

A configuration C is first evaluated for performance in
P2 as follows: TREAD-M3D performs (i) architecture-level
SRAM optimization to meet the bandwidth requirement for
DNN inference on C, (ii) architecture-level analysis to gen-
erate compute cycles and other performance metrics, (iii)
circuit-level interconnect delay optimization between systolic
array and SRAMs, (iv) circuit-level modeling to determine the
highest operating frequency freqmax for C, and (v) random
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Fig. 4: TREAD-M3D overview.

Fig. 5: SRAM partitioning styles: Wordline partition reduces
wordline capacitance but duplicates wordline drivers. Bitline
partition reduces bitline capacitance but adds muxes and sense
amplifiers. Both result in latency reduction.

selection of a frequency freqsys(≤ freqmax) for the current
iteration. The latency is calculated with freqsys. A higher
freqmax implies more frequency choices for faster inference.
Note that freqmax for given systolic array and SRAM sizes
depends on wire length and thus, can vary between different
partition choices (explained in Sec. IV-C). P3 generates power
traces for C at freqsys using (i) architecture-level systolic
array and SRAM power estimation, and (ii) circuit-level in-
terconnect power optimization between SRAM and systolic
array. P4 then computes steady state temperature, and back-
propagates the temperatures to P3 for leakage estimation. P3
and P4 operate in a loop until temperature converges (i.e.,
the difference between consecutive thermal simulations is ≤
1◦C for both SRAMs and PEs). The optimizer iterates through
P1-P4 until it can no longer find a better configuration, and
converges in P5. The rest of the section first describes the
partitions and optimizer, followed by our cross-layer models.

A. MONO3D-partitioned Systolic Arrays

In this work, we assume a mature MONO3D process in
which the characteristics of upper and bottom tiers are similar.
This assumption has also been adopted in other MONO3D
state-of-the-art works [37], [38]. In addition, specific processes
that limit the temperature to sub-600◦C for the manufacturing
of the upper tiers have been reported to achieve similar
characteristics in the top and bottom tiers [39]. Fig. 2 shows
the three two-tier (realistic number of tiers due to low thermal
budget during fabrication and limited yield) MONO3D parti-
tions that this work investigates: Partition A, Partition Bbitline,

and Partition Bwordline. Partition A is a two-tier block-level
partitioned system with 2D SRAMs monolithically grown on
top of the systolic array. In this case, the read/write latencies
generated by CACTI are the same as that in 2D because
there is no change in the SRAM block design, an assumption
also used by Guler et al. [40]. We note that SRAM latencies
become the bottleneck in configurations with large SRAMS
(≥ 1 MB). Hence, we also investigate Partition B, where the
SRAM sub-arrays2 are partitioned into two tiers either along
wordlines (Partition Bwordline) or bitlines (Partition Bbitline),
as shown in Fig. 5. Partition B reduces SRAM access latency
since the latency is limited by wordline/bitline delay [41]. The
systolic array in Partition B is folded into two tiers from the
center (see Fig. 2). Splitting the SRAM peripheral circuitry
across two tiers is another approach for partitioning [42], but
this approach is not considered in this work as we primarily
focus on splitting the data array for low latency.

B. Phase 1: Optimizer

1) Multi-start annealing (MSA) overview: MSA is an opti-
mization algorithm extensively used in search problems where
an objective function F (x) is minimized subject to some
constraints CS. Fig. 6 shows a flow diagram for MSA.
Multiple starts execute in parallel, with an annealer running
inside each start. Multiple starts increase the probability of
reaching the global minima than a single instance of the
annealer. Each annealer in MSA operates on the hill-climbing
principle but can select a worse configuration to escape a
local minima. Each annealer starts with randomly generating
a configuration that satisfies CS. At every iteration, the
annealer randomly generates a new configuration by tuning
its control knobs with uniform probability. If F (x) of the new
configuration is lower than the current one, it is accepted,
otherwise it is accepted based on Boltzmann probability
(Pr = exp−

∆F/(∆Favg · Tmsa)). ∆F is the difference between
F (x) of the current and new configurations, ∆Favg is the
running average of ∆F for the accepted configurations, and
Tmsa is the annealing temperature3 in that iteration. An initial
probability (Ps) decides the starting annealing temperature Ts

2By definiton, SRAM data arrays are organized in sub-arrays [41]
3Unitless variable in MSA that decides whether to accept a worse config-

uration.
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that is lowered after a fixed number of steps (N ) by a factor
α, with a total of numT distinct annealing temperatures. The
algorithm finally converges when Tmsa is sufficiently low to
not accept worse configurations.

2) Temperature-aware optimizer in TREAD-M3D: We
use an MSA-based optimizer to generate an optimal con-
figuration, for the user-specified optimization function, F (x)
(e.g., inference latency or power efficiency). This optimizer
takes the following user inputs as constraints: (i) bounds on
systolic array, (ii) maximum SRAM size, (iii) chip footprint
budget, (iv) latency overhead, and (v) temperature budget. The
optimizer uses MONO3D partitions, systolic array size, SRAM
organization, and clock frequencies (determined using the
performance model presented in Sec. IV-C) as control knobs
to find near-optimal architectures. As the annealing tempera-
ture decreases, the optimizer does not accept configurations
with worse F (x) and finally converges to a near-optimal
configuration by exploring a small fraction of the total design
space. MSA is also inherently scalable with increasing design
space because more starts can be launched in parallel for
design space exploration. After initial tuning of the annealing
parameters with known good results, it can be used to find
optimized configurations for various other DNNs.

C. Phase 2: MONO3D Performance Models

We design a high-performance PE using Synopsys Design
Compiler at 65 nm {794 MHz, 1.37 mW, 1028 µm2, 1.2
V} and scale it down to 22 nm {1 GHz, 0.25 mW, 121
µm2, 0.8 V} to utilize its latency, power, and area estimates
in our analyses [43]. We detail the MONO3D cross-layer
performance modeling approach below.

1) Architecture-level models: We use SCALE-Sim, a cycle-
accurate DNN simulator for systolic arrays, for architecture-
level simulations [44]. Inputs to SCALE-Sim are the DNN
topology, systolic array and SRAM sizes, dataflow, and
DRAM bandwidth. SCALE-Sim simulates a stall-free feed-
forward inference on 8-bit integer data, and outputs com-
pute cycles, DRAM cycles, average array utilization, and
DRAM/SRAM bytes transferred. We calculate the total in-
ference latency by adding compute time and DRAM time that
does not overlap with compute. We choose output stationary
(OS) dataflow for our analysis since SCALE-Sim has been
validated against an RTL model for OS [44].

For SRAM architecture-level modeling and optimization,
we use a popular SRAM simulator, CACTI-6.5 [41]. Both
bitline and wordline partitioning styles decrease the global
interconnect length within the SRAM (e.g., distance between
the predecoder and local wordline decoder of sub-arrays, or
length of select lines for MUXes) due to reduction in chip
footprint and lead to latency improvement [45]. We explicitly
consider the cost of duplicated blocks such as wordline drivers
or sense amplifiers [45] (unlike recent prior work on MONO3D
L1 caches partitioned across bitlines/wordlines [46]). For a
two-tier SRAM partition across wordlines/bitlines, we divide
the wordline/bitline capacitance of each sub-array by 2, which
reduces the access latencies since these lie on the critical path.
In wordline partition, we add drivers for each wordline in

the two tiers. Even though we have twice as many wordline
drivers, each driver now drives a smaller load as wordline
capacitance becomes half, and can potentially lead to power
savings [45]. For bitline partition, we add sense amplifiers to
both tiers for faster bitline access. However, this also increases
leakage due to the duplication. CACTI internally performs a
design space exploration to generate an energy-delay2 product
(ED2P)-optimized SRAM configuration for the desired parti-
tion. For instance, a 32KB SRAM may have dissimilar design
for the two partition styles (e.g., different number of banks
and/or block sizes). Thus, it is not straightforward to determine
which partition will be optimal for an iso-capacity SRAM
because (a) internal SRAM design may be different, (b) ED2P
is a lumped metric, and (c) thermal budget affects the power
density of the MONO3D SRAM that can be endured. Similar
observations are also cited in another 3D cache work [45]. We
ignore the area overhead due to MIVs due to their small size
[2], but add MIV’s delay (1.83 ps), dynamic energy (4.66e-7
nJ), and leakage (3.87e-5 mW) to the model [46].

TREAD-M3D first determines the minimum bandwidth
(bytes transferred per SRAM access) for each SRAM for OS,
and then generates an ED2P-optimized design (#banks, block
size) for each SRAM. E.g., for a 48×32 (rows×columns) sys-
tolic array, the bandwidths we model in CACTI for (IFMAP,
Filter, OFMAP) SRAMs are (64, 32, 32) bytes per SRAM
access, since SCALE-Sim assumes single-cycle SRAM access.
We round them off to the nearest powers of 2 due to SRAM
design constraints in CACTI. It is not straightforward to deter-
mine which MONO3D SRAM partition (bitline or wordline)
gives the lowest latency because a design optimized for ED2P
may not be necessarily optimized for latency [45].

2) Circuit-level models and optimization: TREAD-M3D
uses HSPICE and, without loss of generality, 22 nm PTM
models [47] for wirelength modeling. The interconnect delay
between the systolic array and SRAM is determined by the
Manhattan distance between them [48].

Since only the edge PEs read/write SRAMs, TREAD-M3D
first calculates the longest Manhattan distances between: (i)
left edge PEs and IFMAP SRAM, LI , (ii) top edge PEs and
Filter SRAM, LF , and (iii) bottom edge PEs and OFMAP
SRAM, LO, followed by the longest interconnect length
among them, i.e., Lmax = max(LI , LF , LO). TREAD-
M3D then runs HSPICE to determine the optimal number of
repeaters (i.e., CMOS inverter) that are inserted across Lmax

for minimum delay, DLmax [49], [50]. Note that we include
repeater insertion in HSPICE modeling to minimize delay
associated with data transfer. CACTI also internally inserts
repeaters to optimize the SRAM architecture.

3) Frequency generation: TREAD-M3D calculates the
highest possible frequency freqmax (assuming that the PEs,
SRAM access, and interconnect represent individual pipeline
stages), for the configuration, as shown in Eq. (1). It then
discretizes the frequencies between freqmax and a lower
bound in 50 MHz step size, inclusive of the bounds. We
assume 100 MHz as a safe lower bound so that all realis-
tic frequencies are considered. Finally, our optimizer selects
a discretized frequency (freqsys) with uniform probability,
calculates inference latency, and proceeds to P3. Note that
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Fig. 6: Flow diagram of MSA.

the upper tiers in MONO3D may suffer from degraded per-
formance, e.g., 10% [17]. This behavior may be captured by
the proposed framework by (i) adding a 10% degradation in
CACTI-generated latencies and/or MAC latency (depending
on which blocks are placed in the upper tier), and (ii) substitute
these degraded latencies in Eq. (1) to calculate the new max
frequency (freqmax,new). Upon running the optimizer, it uses
the equation to ensure that the frequencies are tuned between
100 MHz and freqmax,new.

freqmax = max(PE latency, SRAM latency, DLmax)
−1 (1)

D. Phase 3: MONO3D Power Models

P2 outputs are used in P3 to generate power traces.
1) Systolic array and SRAM: TREAD-M3D first uses av-

erage array utilization (Uav) to determine the number of active
PEs (rows×columns×Uav). It then calculates PE’s dynamic
power (DynPPE) at freqsys, as shown in Eq. (2). TREAD-
M3D also uses CACTI, configured using the optimized SRAM
parameters from P2, to calculate SRAM power. We also fit an
exponential PE leakage model using temperature and leakage
data points from our synthesized MAC model. For SRAM
leakage, in addition to the CACTI’s leakage output, we build
a linear interpolation model for SRAM leakage at a finer
granularity than CACTI’s default of 10 degrees [51]. Initial PE
and SRAM leakage are determined at ambient temperature4.

DynParray = #active PEs × DynPPE (2)

2) Systolic array-SRAM interconnect power: Typically ei-
ther PE latency or SRAM latency dominates in Eq. (1).
Therefore, interconnect parameters are reoptimized to save
power. Thus, TREAD-M3D again performs repeater inser-
tion (Optrepeater) for Lmax for power minimization such
that its delay ≤ freq−1

max. This way, TREAD-M3D finds
the corresponding optimal segment length (Opt SegLength).
For calculating interconnect power at freqsys, our proposed
method first runs HSPICE transient simulations, assuming
50% switching activity at freqsys, to compute dynamic power
for Opt SegLength, i.e., DynPOpt SegLength (includes wire
segment’s and repeater’s power). It then determines the aver-
age Manhattan distances between the active edge PEs (only
the edge PEs read/write to the SRAMs) and their respective
SRAMs (i.e., Lav,IFMAP , Lav,FMAP , and Lav,OFMAP ).
Next, it calculates the average dynamic power for each of the
average wire lengths (DynPwire,SRAMi), where SRAMi ∈
(IFMAP, Filter, OFMAP), as shown in Eq. (3). Finally, since
each PE operates on 8-bit data, the total interconnect power
(IntP ) is calculated, as shown in Eq. (4).

4Ambient temperature refers to the temperature inside a device [52].

DynPwire,SRAMi = DynPOpt SegLength × Lav,SRAMi

Opt SegLength
(3)

IntP = 8× {(#activePEsleft edge ×DynPwire,IFMAP )+

(#activePEtop edge ×DynPwire,F ilter)+

(#activePEsbottom edge ×DynPwire,OFMAP )}
(4)

E. Phase 4: MONO3D Temperature Models

TREAD-M3D creates compact thermal models (CTMs)
for the three partitions (Partition A, Partition Bbitline, and
Partition Bwordline) in HotSpot-v6.0 [53] for temperature esti-
mation in mobile systems. We adopt the validated MONO3D
CTM presented in our prior work, where the CTM has 32
layers [19]. A top view of Partition A and Partition B is shown
in Figure 2. The heat spreader thickness is set to 50 µm while
the heat sink is effectively removed by assigning it a negligible
thickness. For SRAM leakage estimation, Partition A uses the
HotSpot-generated temperature, while Partition B takes the
average across the two tiers for each SRAM. TREAD-M3D
updates the power traces with SRAM and array leakage and
re-estimates steady state temperature in HotSpot. This loop
continues until the temperature difference between consecutive
runs is ≤ 1◦C for SRAMs and PEs. Representative material
thicknesses and conductivities are from recent works [7], [31].

V. EXPERIMENTAL RESULTS

This section describes the experimental setup, followed by
optimizer’s accuracy and runtime analysis. We then analyze
the Pareto optimal front for energy versus latency at various
thermal constraints. This helps us to capture the effect of
temperature on energy, area, power, and frequency of the
Pareto optimal configurations. We also present optimization
results for various objectives. We then compare TREAD-
M3D to 2D and baseline MONO3D architectures. Finally,
we demonstrate that TREAD-M3D can be further used to
generate a single accelerator architecture to efficiently execute
the multiple DNNs studied in this paper.

A. Experimental setup

We study the effects of MONO3D on commonly used DNNs
for image processing [54]–[56]. We group them into two types:
(i) large DNNs with large input and filter size (i.e., higher
number of MAC operations) - VGG19, VGG16, VGG11,
Faster R-CNN, and ResNet50; and (ii) small DNNs with fewer
convolutional layers, smaller input size and filters (i.e., fewer
MAC operations) - MobileNet, DQN, GoogLeNet, and Tiny-
YOLO. Table II summarizes systolic array configurations in
our complete design space, DC. We set the lower bound on
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clock frequency to 100 MHz and upper bound to the frequency
determined by TREAD-M3D. In total, there are 263k unique
configurations per DNN in DC. For DRAM, we use LPDDR2
with a frequency of 400 MHz and energy consumption of 40
pJ/bit [57], [58]. We also explore three MONO3D partitions
and use HotSpot’s default ambient temperature of 45◦C (also
a commonly accepted value [52], [59]) and grid mode with
grid length = PE length for steady state analysis. To set
performance constraints for the DNNs, we set an acceptable
loss to 10% of the inference latency for a 60 fps camera [20],
i.e., 16.7 ms. Note that the MONO3D partition choices are
shown in Fig. 5 and described in Sec. IV-A.

B. Optimizer’s accuracy and runtime analysis

We select a small subset of the design space (DT) to
tune our optimizer. DT includes all architectures between a
smaller aspect ratio range of 0.98 to 1.02, while keeping the
other configuration settings the same. In total, DT contains
28k unique configurations per DNN, inclusive of the three
MONO3D partitions. We evaluate the optimizer’s accuracy
with two DNNs: VGG11 and GoogLeNet, and for several
optimization goals (i.e., chip power, energy, EDP, and EDAP).
Note that energy, EDP, and EDAP include both on-chip and
DRAM energy. To approach the globally optimal solution in
DT, we tune our optimizer by varying Ps, num T , α, N
for the various optimization goals discussed in Sec. IV-B1.
We initiate nine starts in parallel, where each start randomly
searches in a subset of the total configurations. We achieve
high accuracy with a deviation from global optima by ≤
3.84% by exploring only 20% of DT. The optimizer rejects
worse solutions near termination, hence verifying convergence.
The optimal settings of the optimizer are: Ps = 0.5, N =
100, numT = 6, and α = .84, .87, .83, and .91 for power,
energy, EDP, and EDAP optimization, respectively. Using
these optimal settings and same design space DT, we verify
our optimizer’s accuracy at two more ambient temperatures,
i.e., 25◦C [60] and 55◦C [61], to show that it is robust and not
over-tailored to specific experimental settings. The optimizer
converges by exploring only 20% of DT. Furthermore, the
deviation from the global optima, across all the four objectives,
at 25◦C and 55◦C is only up to 4.56% and 4.64%, respectively,
thus, showing that the optimizer is versatile enough for real-
life conditions with fluctuating temperatures.

HSPICE simulations for each configuration take up to two
minutes to calculate delay and power with repeater insertion

Systolic arrays 16×16 to 256×256
Aspect ratio of 0.8 to 1.2
systolic arrays

SRAMs (8, 16, 32 ... 8192) KB
Frequency bounds 100 MHz to freqmax

in 50 MHz steps
White space allowed

(due to area mismatch 0.5%
between tiers)

Partition A
Partition choices Partition Bbitline

Partition Bwordline

TABLE II: Complete design space (DC).

optimization for the three SRAMs. SCALE-Sim and HotSpot
take 10-60 and 5-45 mins, respectively, depending on the chip
footprint and DNN. Large DNNs have a higher number of
MAC operations that lead to higher power dissipation and peak
temperatures (more active PEs), which increase temperature-
dependent leakage. Thus, these DNNs require up to 4-5
iterations to converge in HotSpot. Small DNNs require up to
2-3 iterations due to fewer MAC operations [62] and lower
chip power. Long simulation times are bottlenecks to perform
an exhaustive search in our large design space and demonstrate
the need for an optimizer. Compared to a brute force search,
we expect to see a reduction in search time by 80% because the
optimizer only traverses through 20% of the total design space.
Specifically, our design space consists of 6,175 unique systolic
array configurations between aspect ratio 0.8 to 1.2 and a total
of 263k HotSpot simulations (including various frequencies).
We perform our simulations on the Massachusetts Green High
Performance Computing Center (MGHPCC). We run each
simulation on an Intel Xeon E5-2680 v4 CPU node with 128
GB of memory. For instance, one VGG19 simulation (the
largest DNN in our work), on average, takes 30 minutes in
SCALE-Sim and 15 minutes in HotSpot. With 33 multi starts,
our optimizer takes 18 days to converge to a near optimal
solution. In contrast, exhaustive search will take 87 days if
we are running 33 searches in parallel.

C. Pareto optimal front

We now present interesting insights by running TREAD-
M3D under various temperature constraints. We use 80◦C
as a thermal constraint because it is a commonly accepted
constraint in commercial mobile devices [63], [64]. Typically,
the primary reason for having strict thermal constraints in mo-
bile applications is the leakage power. Note that we consider
temperature-dependent leakage power in this optimization
framework. In addition, considering that mobile devices can
range from mobile phones to tablets to drones etc. we also
present a Pareto optimal analysis for three thermal constraints:
70◦C (tight constraint), 80°C (commonly accepted constraint),
and 90◦C (relaxed constraint). The optimizer searches DC,
including the partition choices (Fig. 2), and outputs the Pareto
optimal frontier for a given DNN. Through this Pareto curve,
we capture interesting thermal effects on energy, inference
latency, systolic array size, and optimal MONO3D partition
choice. We initiate 33 parallel starts and increase the number
of perturbations to 250 per annealing temperature to achieve
convergence, while fixing the other annealing parameters. The
optimizer explores 20% of DC and converges near termination.
Fig. 7 shows the Pareto front obtained on running TREAD-
M3D for VGG16 for minimizing system energy at various
temperature constraints. Each column in the figure is a Pareto
front at a different temperature constraint, while the rows in
a column display the same front at iso-area, iso-frequency,
and iso-power, respectively. The x and y axes show inference
latency and system energy, respectively.

Figs. 7a, 7b, and 7c show that across all temperature
constraints, small footprints (< 2 mm2) contain few PEs
and, therefore, demand the least energy. Thus, the optimizer
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(a) T ≤ 70◦C, iso-area. (b) T ≤ 80◦C, iso-area. (c) T ≤ 90◦C, iso-area.

(d) T ≤ 70◦C, iso-frequency. (e) T ≤ 80◦C, iso-frequency. (f) T ≤ 90◦C, iso-frequency.

(g) T ≤ 70◦C, iso-power. (h) T ≤ 80◦C, iso-power. (i) T ≤ 90◦C, iso-power.

Fig. 7: Pareto optimal front for VGG16.

chooses high frequencies ≥ 800 MHz (Figs. 7d, 7e, 7f) to meet
the latency constraint due to the small array size. Furthermore,
at the tighter 70◦C constraint, Partition A is more energy-
efficient (note the absence of Partition B designs at 70◦C).
This is because small footprint in Partition B architectures
yield thermal violations due to the higher power density caused
by logic-on-logic integration. Pareto optimal architectures at
80 and 90◦C with lower latencies have larger footprints
(i.e., more active PEs) and predominantly follow Partition B.
This is because the optimizer utilizes the thermal slack and
selects SRAM partition to achieve higher frequencies (due to
reduction in the critical path latency), hence lower inference
latencies. We also observe that relaxing the thermal constraints
for VGG16 allows for Pareto optimal designs that are on
average 36% smaller (thus, fewer active PEs) with 54% higher
frequencies for minimizing system energy. Higher thermal
constraints can endure higher power density (Figs. 7h, 7b, 7i,
and 7c), hence permitting the DNNs to run on smaller arrays
≈ 2 mm2 with high frequencies ≥ 950 MHz at 90◦C, resulting
in 8% energy reduction. Across all DNNs, relaxing the thermal

constraint leads to an average of 21% footprint savings.

D. Optimization Results

We now demonstrate the utility of TREAD-M3D by show-
ing that its optimizer makes meaningful choices within the
vast design space (DC) and among those selects the best
configuration for the desired objective. We run TREAD-M3D
at two performance constraints of 5% and 10% loss in latency
and 80◦C thermal constraint, to optimize for power, EDAP,
EDP, and energy. Interestingly, we observe that at such a small
latency relaxation, TREAD-M3D finds better configurations
with up to 17% lower EDAP across all DNNs, as shown in
Fig. 8. The latency slack allows DNN execution on slower and
smaller systolic arrays, resulting in a better EDAP. Thus, our
optimizer can be effectively used for finding efficient solutions
by varying the performance constraint.

Table III lists the near-optimal choices for all nine DNNs,
at 80◦C and 10% loss in latency constraints. For minimizing
chip power, TREAD-M3D selects small systolic arrays with
footprint < 0.5 mm2. The optimizer selects Partition A for
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DNN Chip Power System Energy System EDP System EDAP

DQN

22 × 20 Systolic Array
(16, 16, 16) KB
Partition Bbitline

100 MHz

50 × 44 Systolic Array
(256, 32, 16) KB
Partition A
800 MHz

112 × 118 Systolic Array
(16, 2048, 8) KB
Partition Bwordline

1000 MHz

38 × 34 Systolic Array
(128, 16, 16) KB
Partition Bwordline

700 MHz

Faster R-CNN

22 × 22 Systolic Array
(8, 16, 32) KB
Partition Bbitline

450 MHz

96 × 108 Systolic Array
(512, 1024, 8) KB
Partition Bwordline

800 MHz

234 × 216 Systolic Array
(8192, 64, 8) KB
Partition Bwordline

602 MHz

52 × 44 Systolic Array
(256, 64, 8) KB
Partition Bbitline

800 MHz

GoogLeNet

20 × 22 Systolic Array
(16, 16, 16) KB
Partition Bbitline

200 MHz

64x54 Systolic Array
(256, 256, 8) KB
Partition Bwordline

750 MHz

236 × 212 Systolic Array
(8, 8, 8192) KB
Partition Bwordline

602 MHz

52 × 44 Systolic Array
(256, 64, 8) KB
Partition Bwordline

800 MHz

MobileNet

22 × 20 Systolic Array
(16, 16, 16) KB
Partition Bbitline

150 MHz

64 × 62 Systolic Array
(512, 36, 16) KB
Partition A
950 MHz

114 × 118 Systolic Array
(2048, 64, 8) KB
Partition Bwordline

1000 MHz

40 × 40 Systolic Array
(128, 64, 16) KB
Partition Bwordline

1000 MHz

ResNet50

22 × 22 Systolic Array
(16, 8, 32) KB
Partition A
500 MHz

68 × 76 Systolic Array
(512, 256, 8) KB
Partition A
750 MHz

158 × 184 Systolic Array
(4096, 64, 8) KB
Partition Bwordline

877 MHz

52 × 46 Systolic Array
(256, 64, 16) KB
Partition Bbitline

800 MHz

Tiny-YOLO

22 × 20 Systolic Array
(16, 16, 16) KB
Partition Bwordline

300 MHz

88 × 102 Systolic Array
(1024, 256, 16) KB
Partition Bbitline

950 MHz

168 × 172 Systolic Array
(4096, 32, 8) KB
Partition Bbitline

925 MHz

52 × 44 Systolic Array
(128, 128, 64) KB
Partition Bbitline

950 MHz

VGG11

28 × 28 Systolic Array
(32, 8, 64) KB
Partition A
600 MHz

96 × 112 Systolic Array
(1024, 512, 64) KB
Partition A
1000 MHz

246 × 208 Systolic Array
(8192, 128, 8) KB
Partition Bwordline

602 MHz

64 × 54 Systolic Array
(256, 256, 8) KB
Partition Bwordline

950 MHz

VGG16

36 × 34 Systolic Array
(64, 16, 64) KB
Partition A
750 MHz

96 × 112 Systolic Array
(1024, 512, 64) KB
Partition A
900 MHz

248 × 216 Systolic Array
(8192, 512, 8) KB
Partition Bwordline

600 MHz

64 × 54 Systolic Array
(256, 256, 8) KB
Partition Bwordline

900 MHz

VGG19

34 × 36 Systolic Array
(64, 16, 64) KB
Partition A
1000 MHz

96 × 112 Systolic Array
(1024, 512, 64) KB
Partition A
1000 MHz

252 × 212 Systolic Array
(8192, 512, 16) KB
Partition Bwordline

600 MHz

64 × 54 Systolic Array
(256, 256, 8) KB
Partition Bwordline

850 MHz

TABLE III: TREAD-M3D near-optimal designs at 80◦C: Systolic array, SRAMs (IFMAP, Filter, OFMAP), MONO3D partition,
and frequency.

Fig. 8: %Improvement when the latency constraint is mini-
mally relaxed from 5% to 10%. SystemEnergy shows negligi-
ble improvement.

VGGNets because the corresponding Partition B (logic-on-
logic) configurations lead to thermal violations due to higher
power density from high array utilization. Also, since the
VGGNets are the largest out of all nine DNNs, TREAD-M3D
selects higher frequencies to meet the latency constraint due
to the small array size.

For minimizing energy, TREAD-M3D selects, on average,
12× larger arrays executing at 3× higher frequencies than the
power-optimized arrays. The selections for VGGNets predom-

inantly follow Partition A due to the thermal and power density
issues discussed above. Interestingly, for EDP optimization,
it selects Partition B for all DNNs that are, on average, 6×
larger in size than the energy-optimized selections. This is
because: (i) larger arrays reduce compute cycles (more active
PEs), and (ii) Partition B supports higher operating frequencies
than Partition A due to SRAM partition, thus resulting in lower
latencies. Finally, for EDAP optimization, TREAD-M3D
selects small systolic arrays operating at higher frequencies (≥
700 MHz), as shown in Table III, to minimize area, latency,
and energy. Note that since a smaller footprint will have fewer
PEs, it selects the higher frequencies to minimize latency.

E. Comparison to 2D

TREAD-M3D not only selects near-optimal designs for
various objectives, but also enables the exploration of intricate
tradeoffs, as discussed below, which is not supported by our
prior work [19]. To this end, we compare the near-optimal de-
signs in MONO3D to those in 2D, all generated by TREAD-
M3D, for all nine DNNs in DC. We set the constraints to
80◦C and 10% loss in latency. In our analysis, 2D floorplan
resembles Partition A with the two tiers placed laterally to form
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a 2D system. We observe that power savings resulting from
power-optimized near-optimal MONO3D configurations are,
on average, ≈10% across all nine DNNs. While MONO3D
configurations result in an average of 45% savings in intercon-
nect power due to reduced footprint, a 12◦C (average) higher
temperature results in 38% greater leakage than in 2D config-
urations. The effective average power savings reduce to 10%
because in MONO3D configurations leakage contributes to 12-
18% of the total chip power, while the interconnect power
contributes to only 4-10%. This also demonstrates that leakage
cannot be ignored in characterizing MONO3D systems. For
EDAP -optimized configurations, MONO3D configurations
are, on average, 55% more efficient. Specifically, MONO3D
configurations produce, on average, 6% lower energy, 50%
footprint savings with 20% longer latencies than 2D. Since
2D configurations exhibit lower leakage than MONO3D due
to small vertical thermal resistance, the 2D configurations
are operating at higher frequencies, thus resulting in lower
latencies compared to MONO3D.

F. Baseline Comparison

To demonstrate the importance of temperature-aware opti-
mization for MONO3D systems, we compare TREAD-M3D
to the following baselines at 80◦C and 10% loss in latency: (i)
Partition A choices only, i.e., SRAM blocks monolithically in-
tegrated on systolic array [19], [33], [36], and (ii) temperature-
unaware optimization [18], [33], [65]. For the first baseline,
we run TREAD-M3D for only Partition A (TREAD-M3DPA)
and compare its near-optimal selections to those listed in Table
III. For the second baseline, we run TREAD-M3D without
the thermal constraint (TREAD-M3Dw/o T ) and compare the
near-optimal configurations to those listed in the table.

Unlike some recent works [19], [33], [36] that consider
only Partition A, TREAD-M3D incorporates performance,
power, and thermal models to evaluate SRAM partitions across
bitlines and wordlines to gain improvement in SRAM latency
and power. Fig. 9 shows the impact of considering various
partitions on different objectives. Positive bars denote that
TREAD-M3D generates better configurations than TREAD-
M3DPA. TREAD-M3D outputs have lower chip power by
up to 19%. These savings primarily come from 7%-20%
lower SRAM power in Partition B configurations due to re-
duction in wordline/bitline capacitance. For system EDP and
system EDAP, TREAD-M3D generates near-optimal config-
urations that are 17% and 22% more efficient, respectively.
These savings primarily arise from reduction in latency and
wirelength resulting from SRAM partition. However, system
energy shows negligible savings because LPDDR2 energy
is ≈80% of the total system energy and thus, reduction in
energy coming from partition choices is insignificant. Thus,
we observe that a comprehensive optimization method should
consider various partition choices to optimize for objectives
under the user-defined constraints.

Next, we present a comparison with thermally-unaware
methodology. To generate near-optimal thermally-unaware
configurations, we use our method without the thermal con-
straint (TREAD-M3Dw/o T ). Fig. 10 shows the minimum and

Fig. 9: TREAD-M3DPA versus TREAD-M3D. Positive val-
ues indicate better TREAD-M3D configurations. The Sys-
temEnergy bar shows negligible difference because it is dom-
inated by DRAM energy.

Fig. 10: Range of steady state temperatures obtained by
TREAD-M3Dw/o T across all DNNs. The dashed lines repre-
sent thermal constraints.

maximum steady state temperatures of near-optimal configura-
tions generated by TREAD-M3Dw/o T for various objectives
across all DNNs. The figure shows that the thermally-unaware
configurations can be infeasible due to thermal violations
at various thermal constraints shown using dashed lines.
These violations would either lead to system throttling or
even shut down at very high temperatures. Thus, ignoring
temperature not only may lead to sub-optimal DNN execution
but also over-estimation of MONO3D benefits because in
reality, the system may be throttled. We discuss this fur-
ther in Fig. 11, which compares objective values between
TREAD-M3Dw/o T outputs and TREAD-M3D outputs in
Table III at various thermal constraints. Negative bars imply
over-estimation of MONO3D benefits by TREAD-M3Dw/o T

due to ignoring temperature. Note that both TREAD-M3D
and TREAD-M3Dw/o T selections result in similar system
energy values. As discussed in the above section, this is
primarily due to LPDDR2’s contribution in system energy.
Across all objectives, the over-estimation is maximum at
70◦C (longest bars). As we relax the thermal constraint,
the difference also reduces due to more available thermal
headroom. This shows that temperature-aware optimization
plays a critical role in MONO3D systems, especially at tight
thermal constraints. We make some interesting observations
between TREAD-M3Dw/o T outputs and TREAD-M3D out-
puts. E.g., for minimizing chip power, TREAD-M3Dw/o T

selects up to 68% smaller footprint configurations because
fewer PEs will consume lower power. For EDP minimization,
TREAD-M3Dw/o T selects larger systolic arrays operating at
higher frequency levels (≥ 900 MHz) since EDP emphasizes
latency. For EDAP , TREAD-M3Dw/o T selects configura-
tions that are smaller in footprint but operating at higher
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Fig. 11: TREAD-M3Dw/o T versus TREAD-M3D. Nega-
tive values indicate worse TREAD-M3D configurations than
TREAD-M3Dw/o T .

frequencies, to minimize both latency and footprint by up
to 48% and 63%, respectively. However, several of the near-
optimal configurations generated by TREAD-M3Dw/o T lead
to thermal violations, albeit small objective values, and thus,
are rejected by TREAD-M3D. Thus, we demonstrate that
ignoring temperature in the optimization flow not only leads
to infeasible configurations due to thermal violations, but also
over-estimates benefits coming from MONO3D systolic arrays.

G. Generic Accelerator for DNN inference
We extend TREAD-M3D to demonstrate that our optimizer

is capable of generating a single MONO3D accelerator that can
efficiently execute the 9 DNNs studied in this paper. A single
accelerator may be desirable if there is a need to run several
DNNs on a single mobile system. To this end, we update the
objective function in our optimizer to minimize the Euclidean
distance (ED) for the desired objective from the near-optimal
configurations for each DNN, as shown below in Eq. (5).

Minimize ED =

√√√√ 9∑
1

(OptV alDNNi − ConfigV alDNNi)2 (5)

, where OptV alDNNi is a near-optimal objective (power,
energy, EDP , or EDAP ) of a DNNi and ConfigV alDNNi

refers to the same objective when DNNi executes on another
configuration. Using TREAD-M3D, we get a near-optimal
configuration for each objective (Table IV). All of these
configurations meet the 10% loss in latency and 80◦C thermal
constraints. Fig. 12 shows the relative degradation with respect
to the near-optimal configurations at 80◦C. We observe a
maximum of 2.8× degradation in power minimization. This is
primarily due to the small DNNs such as MobileNet or DQN.
that otherwise run on small array and low frequencies to min-
imize power (Table III) now execute on larger arrays at higher
frequencies because the former leads to thermal/performance
violation for the other DNNs (e.g., VGGnets). For the other
objectives, a common accelerator shows an average degrada-
tion of up to 1.4×. Note that TREAD-M3D can also be used
in the absence of information on each DNN’s near-optimal
configuration. In this case, we can update the optimizer’s
implementation such that as it explores the design space,
it keeps track of the best constraint-satisfying configuration
explored so far for each DNN, and substitutes them into
OptV alDNNi to calculate the objective function.

Fig. 12: Average degradation of generic accelerator architec-
tures selected by TREAD-M3D with respect to the individual
near-optimal configurations.

Objective Function Configuration

Chip Power

44 × 52 Systolic Array
(64, 128, 128) KB

Partition A
550 MHz

System Energy

126 × 112 Systolic Array
(1024, 1024, 1024) KB

Partition A
800 MHz

System EDP

246 × 208 Systolic Array
(8192, 128, 8) KB
Partition Bwordline

600 MHz

System EDAP

64 × 54 Systolic Array
(256, 256, 8) KB

Partition Bwordline

800 MHz

TABLE IV: TREAD-M3D near-optimal selections for a
generic accelerator at 80◦C: Systolic array, SRAMs (IFMAP,
Filter, OFMAP), MONO3D partition, and frequency.

VI. CONCLUSION

We propose TREAD-M3D, a method to determine
thermally-safe near-optimal MONO3D configuration for de-
sired objectives and to enable intricate tradeoff analysis in
a vast design space. Compared to a baseline that uses a
fiixed MONO3D integration of SRAMs on top of systolic
arrays, we show, using TREAD-M3D, that other partitioning
choices can provide greater benefits in certain cases. For
instance, Partition B is more suitable for optimizing EDP
and EDAP due to latency improvement arising from SRAM
partition, while Partition A is more suitable for DNNs with
high systolic array utilization for power efficiency due to logic-
on-memory integration. In addition, Partition A configurations
are thermally-safe to run DNNs with high array utilization at
tight thermal constraints, e.g., 70◦C, due to the limited thermal
headroom, albeit ≈8% less energy efficient than Partition B.
Our optimizer is also capable of generating configurations with
17% lower EDAP at a tolerable relaxation in inference latency,
which otherwise is not straightforward to determine. Using
TREAD-M3D, we also demonstrate that thermally-unaware
configurations can over-estimate EDP efficiency benefits in
MONO3D by up to 24% at tight thermal constraints. Finally,
we extended the utility of TREAD-M3D to find a single
accelerator configuration designed to run all the DNNs. Such
an accelerator is on average 2.4× less efficient than the near-
optimal configurations optimized for each DNN individually.
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VII. DISCUSSION AND FUTURE WORK

This work aims to understand the pros and cons offered by
MONO3D technology when applied to DNN systolic arrays.
The reported results can help make an informed decision
as to where MONO3D is the right technology for such a
system. Note that the additional cost incurred by the increased
processing steps may be counterbalanced by the increased
area that a 2D system will require to achieve comparable
performance with MONO3D. For instance, to match the low
latency in MONO3D due to higher frequency resulting from
SRAM partition, 2D technology may need a larger systolic
array to reduce compute cycles. In this case, yield will also
decrease for 2D systems, thereby reducing the cost difference
between 2D and MONO3D manufacturing.

TREAD-M3D currently contains tools/models for evalu-
ating specific partition choices for systolic arrays. It is suffi-
ciently flexible if the user chooses different tools, provided the
tools can evaluate the computational and memory attributes of
DNNs executing on systolic arrays. Similarly, TREAD-M3D
can be adopted to design different accelerator architectures.
However, new performance and power models are needed to
support different DNN acceleration architectures in MONO3D
that can generate the data needed by our optimizer to converge
to near-optimal points, which we leave as future work.
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