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Abstract—Today’s Deep Neural Network (DNN) inference systems
contain hundreds of billions of parameters, resulting in significant
latency and energy overheads during inference due to frequent data
transfers between compute and memory units. Processing-in-Memory
(PiM) has emerged as a viable solution to tackle this problem by
avoiding the expensive data movement. PiM approaches based on
electrical devices suffer from throughput and energy efficiency issues.
In contrast, Optically-addressed Phase Change Memory (OPCM)
operates with light and achieves much higher throughput and energy
efficiency compared to its electrical counterparts.

This paper introduces a system-level design that takes the OPCM
programming overhead into consideration, and identifies that the
programming cost dominates the DNN inference on OPCM-based
PiM architectures. We explore the design space of this system and
identify the most energy-efficient OPCM array size and batch size. We
propose a novel thresholding and reordering technique on the weight
blocks to further reduce the programming overhead. Combining these
optimizations, our approach achieves up to 65.2× higher throughput
than existing photonic accelerators for practical DNN workloads.

Index Terms—optical computing, phase change memory,
processing-in-memory, deep neural networks

I. INTRODUCTION

Deep Neural Networks (DNNs) are commonly used today for
a variety of tasks such as image classification [1]–[3] and natural
language processing [4]. The size of the DNNs has grown over the
years, and current state-of-the-art DNNs contain hundreds of billions
of parameters [5]. Moving DNN parameters as well as the DNN
activation data between memory and compute causes large time
and energy overheads. Moreover, the gap between computation and
memory speed is continuously increasing, exacerbating the problem.

Processing-in-Memory (PiM) has emerged as a viable approach
to mitigate this data movement cost. Existing PiM architectures
incorporate various types of devices: DRAM [6], [7], ReRAM [8],
[9], Spin-Transfer Torque RAM (STT-RAM) [10], and Phase
Change Memory (PCM) [11]–[15]. DRAM-based PiM designs [6],
[7] perform computation across the DRAM cells, thus, avoiding
expensive data transfers between DRAM and compute. However,
DRAM requires frequent refreshing to maintain the stored
data, increasing power consumption. Both ReRAM [8], [9] and
STT-RAM [10] are non-volatile memory. They do not consume
power to maintain data storage, and offer higher throughput and
consume lower power than DRAM-based devices. However,
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ReRAM suffers from process variation challenges and endurance
issues, and STT-RAM has low storage density.

PCM-based PiM consumes lower power and provides higher
throughput compared to PiM based on other technologies [12].
PCM is also a non-volatile memory that does not consume power
to retain the stored data. Moreover, the multi-level capability of
a PCM cell achieves higher throughput compared to a 1 bit/cell
storage in DRAM; e.g., a PCM cell can store up to 6 bits/cell [16]
and perform analog computation on multi-bit data [12]. We can
access and perform computations in PCM cells using electrical
or optical signals. Electrically-addressed PCMs (EPCMs) [11]
offer higher storage density but have lower throughput [17] than
Optically-addressed PCMs (OPCMs). OPCM-based PiM systems
achieve high compute density (up to 162 TOPS/mm2 [12]), making
OPCM a promising solution for next-generation computing systems.

Recent works [12]–[15] have explored the idea of PiM using
OPCM. These works, however, focus on small OPCM arrays
such as 4×4 [13]. Moreover, these works evaluate their designs
using small DNNs (such as four 2× 2 kernels [12]), which can
easily fit in small OPCM arrays. So, in those works, one needs to
perform the expensive OPCM programming step only once, and
so they do not consider programming cost (programming latency
and energy are 2−3 and 4−5 orders of magnitude higher than
compute latency and energy, respectively) in DNN inference. In
contrast, state-of-the-art DNN models contain hundreds of billions
of parameters and, therefore, cannot fit in a single OPCM array. In
a practical scenario, we need to periodically program the OPCM
array, and the cost of this reprogramming should be considered in
the overall inference cost. In fact, the reprogramming latency and
energy can easily dominate the total latency and energy and become
bottlenecks. Therefore, to make OPCM-based PiM practical, we
need to reduce OPCM’s programming cost.

To this end, in this paper we make the following contributions:
• We provide a full system-level design of an OPCM-based PiM

architecture that explicitly accounts for programming of the
OPCM cells for performing DNN inference. To the best of our
knowledge, we are the first to identify that the programming
overhead dominates the DNN inference time and energy on
OPCM, and the first to present a solution for this issue.

• We investigate the impact of OPCM array size and batch size
on latency and energy efficiency in OPCM-based PiM and
identify the optimal OPCM array size and inference batch size
that achieve the highest energy efficiency in DNN inference,
considering the programming cost.979-8-3503-1175-4/23/$31.00 ©2023 IEEE



• We present a novel thresholding and reordering technique to
reduce the OPCM programming overhead further. Our method
applies thresholding to limit the number of OPCM cells that
we should reprogram. It also reorders the programming of the
matrix blocks to the OPCM array in a way that minimizes the
number of OPCM cells we need to reprogram.

We evaluate the proposed OPCM-based PiM system using
practical DNN workloads, including VGG-11 [1], AlexNet [2],
ResNet-50 [3], and BERT-Large [4]. Our solution achieves 4918×
higher IPS and 41.3% worse IPS/W than Eyeriss v2 [18], and 4.5×
higher IPS and 1.2× higher IPS/W than TPU v3 [19]. Compared to
photonic accelerators ADEPT [20] and Albireo-C [21], our solution
has lower IPS/W. However, our system still achieves 2.3× and
65.2× higher IPS than ADEPT and Albireo-C, respectively.

II. OPCM BACKGROUND

The basic building block of the OPCM design is an optical
waveguide with embedded Ge2Sb2Te5 (GST), as shown in Figure 1.
The ratio between the amorphous and crystalline areas of the GST
cell determines the device transmittance, which is encoded into
multiple bits. Both the amorphous and the crystalline states are non-
volatile. Therefore, the data is stored permanently, allowing its use
as an optical multi-bit memory [22]. Experimental demonstrations
have achieved up to 64 deterministic states in a GST cell, which
allows storing up to 6 bits/cell [16]. Given these properties and
developments, GST cells have been used as a platform for optical
in-memory computing [23] by realizing scalar-scalar multiplications
that map a multiplicand to the GST transmittance (i.e., stored in
memory) and the multiplier to the amplitude of an input pulse.

To change the phase state of the GST cell and, thus, to modulate
the transmission of the waveguide, electrical or optical pulses create
the transition-triggering heat stimuli. Electrical switching uses a
variety of waveguide-embedded microheaters to electro-thermally in-
duce the reversible phase transitions. Researchers have demonstrated
switching energies as low as 5.55 nJ and 860.71 nJ to amorphize and
crystallize, respectively, using graphene microheaters [24]. Optical
switching, on the other hand, uses the optical absorption of GST
to trigger the amorphization or crystallization using pulses inside
the waveguide. This method consumes less energy at the GST
cell; 460 pJ for amorphization and 140 pJ for crystallization [22].
However, in a large architecture, the optical pulses must be routed
through a switching network, which imposes the need for energy-
hungry phase-shifters. Alternatively, dedicated couplers can be used
to reach each GST cell, an optical solution that requires a large
footprint and complicated experimental setups [12]. Even though
electrical programming consumes more energy per switching event,
the scalability, compatibility with microelectronics, and form factor
make it a more suitable solution for setting the optical transmission
of the GST array. Therefore, for optimized DNN inference oper-
ations, we assume electrical programming for efficiently writing
the GST array weights and optical addressing for high-throughput
General Matrix Multiply (GEMM) operations [13], [24].

III. RELATED WORK

Moving data between memory and compute units causes
significant overhead, and PiM is a potential solution to this problem.

Fig. 1. Optical waveguide with embedded GST. The transmitted light is correlated
to the phase state of GST, which can be controlled optically using pump pulses or
electrically using fast electro-thermal heating in waveguide-integrated microheaters.

By performing computation inside the memory cells, PiM reduces
the data movement overhead and improves the throughput and
energy efficiency. PiM architectures based on DRAMs [6], [7]
are promising, but they suffer from high latency due to charg-
ing/discharging of the capacitance [6], which also results in higher
energy consumption. The latency of a single operation in DRAM-
based PiM architectures can take almost 28 ns and requires at least
3 nJ of energy because of the activation, read/write, and precharge
processes [7]. Furthermore, the technology scaling for DRAM is
slowing down. Considering the increase in the amount of data to
be processed, this scalability issue becomes more critical [25].

ReRAM-based PiM architectures are being actively explored,
and their nonvolatile nature makes ReRAMs a favorable candidate
for implementing PiM designs [8], [9]. STT-RAM [10] is also a
non-volatile memory that shows great potential to accelerate DNN
inference. Both ReRAM and STT-RAM achieve higher throughput
and energy efficiency compared to DRAM-based PiM system.
However, ReRAM suffers from process variation challenges and
endurance issues, and STT-RAM has a low storage density. They
are also fundamentally limited by the energy-throughput tradeoff.

PCM is another type of device that has gained attention as a
suitable candidate for PiM. EPCM devices [11] are accessed with
electrical signals, while OPCM devices are accessed with optical
signals. When programming the PCM cells, existing designs use
either electrical switching [15], or optical switching [12], [14].

In contrast to DRAM, both OPCM and EPCM are fully passive
and do not need power to retain data. Their multi-level capability
provides higher throughput, and their analog computing approach
consumes less power than digital computing [15]. We argue that
OPCM is a better choice to accelerate DNN inference. Compared to
EPCM whose frequency is limited by energy, OPCM can operate at
high frequency (up to 25GHz) to provide extremely high throughput.
Thus, in this paper, we focus on OPCM-based PiM architectures.

IV. OPCM-BASED PIM DESIGN AND OPERATION

In this section, we first describe the architecture of our proposed
OPCM-based PiM system and the dataflow for mapping DNN
inference to that system. Then, we discuss the microarchitecture of
the OPCM array and how it performs GEMM operations. Finally,
we present the thresholding and reordering technique for the DNN
weights to reduce the PCM programming overhead during inference.

A. Full System Architecture and Dataflow

1) System Architecture: Figure 2 shows our proposed 2.5D-
integrated OPCM-based PiM system that consists of the host proces-



sor chiplet, DRAM chiplet, OPCM chiplet containing multiple cross-
bar arrays for GEMM operations, the CMOS chiplet for electrical-
optical and optical-electrical (E-O-E) conversions and non-GEMM
operations (referred to as “E-O-E + non-GEMM” chiplet hence-
forth), and the laser source chiplet. The non-GEMM operations in-
clude inter-block accumulation, non-linear activation functions, pool-
ing, and batch normalization. In addition, the E-O-E + non-GEMM
chiplet contains SRAM arrays for storing inter-block accumulation
outputs and buffering the data received from/sent to the DRAM. The
host processor chiplet is connected to the “E-O-E + non-GEMM”
chiplet using electrical links embedded in the interposer. The DRAM
chiplet and the laser source chiplet are connected to the “E-O-E +
non-GEMM” chiplet using optical links embedded in the interposer.
The laser source is also connected to the DRAM chiplet using optical
links embedded in the interposer. Prior to performing the DNN
inference operations, it is more efficient to program the weights in
the OPCM array electrically than optically; however, during DNN
inference, it is more efficient to perform the GEMM operations
with OPCM than EPCM, which uses optical links [13], [24]. So the
“E-O-E + non-GEMM” chiplet connects to the OPCM array through
both electrical and optical links embedded inside the interposer.

2) Dataflow of DNN Inference: The host processor chiplet
executes the DNN-based application. When executing the DNN
inference part of the application, the processor uses Application
Programming Interfaces (APIs) to transfer the control to the control
logic in the “E-O-E + non-GEMM” chiplet. Given that an OPCM
cell requires an area of 30 × 30 µm2 [12], and DNNs contain
hundreds of billions of parameters, it is not practical to build an
OPCM array that is large enough to fit an entire DNN at one time.
For example, VGG-11 has 133 million parameters and requires an
OPCM array with an area of 239,400 mm2, which is impractical.
To perform DNN inference on the OPCM chiplet, we process the
DNN layer by layer. For each layer, we apply the standard blocking
technique [12], which breaks down the large matrix into smaller
blocks and processes one block at a time. We have multiple OPCM
crossbar arrays in the OPCM chiplet that run in parallel. For every
OPCM array, the control logic first reads a weight block of a layer
from DRAM using optical links, saves it in the SRAM buffer in the
“E-O-E + non-GEMM” chiplet, and programs it into the OPCM array
using electrical links. The control logic then reads the inputs to this
block from DRAM and feeds them to the OPCM array via optical
links. Note that the inputs get converted from the electrical domain
to the optical domain in the DRAM and are then routed directly
to the OPCM array. The OPCM array performs GEMM operation
in the optical domain. The output of the OPCM array is routed to
the “E-O-E + non-GEMM” chiplet, where the data is converted
into the electrical domain and fed to the digital logic performing the
non-GEMM operations, including inter-block accumulation and non-
linear operations. When the OPCM array is performing operations
on one block, the control logic loads the next block to be processed
into the SRAM buffer in a pipelined fashion. The above operations
are repeated for all blocks in every layer. Once the operations for
a layer finish, the results are transferred back to DRAM, and these
results serve as the input for the following layer. After all the layers
of the DNN are executed, the inference result is written back into
the DRAM and is accessible to the host processor. The traditional

Fig. 2. Architecture of an OPCM-based computing system.
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communication between the host processor chiplet and the DRAM
chiplet is through the “E-O-E + non-GEMM” chiplet.

B. OPCM Array Architecture

The OPCM chiplet consists of multiple OPCM crossbar arrays
for GEMM computation and the programming circuitry for setting
the state of each OPCM cell. The OPCM crossbar array (see
Figure 3) is based on the Photonic Tensor Core [12], which consists
of row waveguides, column waveguides, bridging waveguides,
and Directional Couplers (DCs). We deposit the phase change
material (e.g., GST) on top of every bridging waveguide. The DCs
connect the horizontal and vertical waveguides through the bridging
waveguide. The split ratio of the DC is carefully designed such
that the horizontal DCs split the light from a row evenly into every
column, and the vertical DCs combine the attenuated light received
from every row in a single column [12].

C. GEMM operations in OPCM

1) GEMM Operation: We follow the standard scheme to perform
GEMM operations in OPCM [12]. Consider two matrices, matrix A
that isP×M and matrixB that isM×N . To multiplyA andB, as-
sume we have an OPCM array of M rows and N columns. We map
matrixB to that OPCM array. To perform the matrix-matrix multipli-
cation, we split the matrix A into P 1×M vectors and then perform
P matrix-vector multiplications (MVMs) in the OPCM array. Below
we describe the matrix multiplication with a concrete example.

To understand the matrix-matrix multiplication process, assume
A is a 2×3 matrix and B is a 3×3 matrix. So M=3, N=3, P=2
(see Figure 3). Assume we have a 3×3 OPCM array. Elements of
the matrix B are electrically programmed into the PCM cells of the
OPCM array. Then three elements of the first row of matrix A (i.e.,
a11, a12, and a13) are converted into the optical domain (each ele-
ment is mapped to a unique wavelength), and then these three optical
signals are routed into the three rows of the OPCM array. Each opti-
cal signal is split equally across the three columns and routed into the



bridging waveguides. As the optical signal passes through the bridg-
ing waveguide, it is attenuated by the PCM material on the bridging
waveguide and then coupled into the column waveguide. This attenu-
ation process performs the multiplication operations. At the output of
the first column, we get three products in three different wavelengths–
a11×b11, a12×b21 and a13×b31. These three products are accumu-
lated using a photodetector, i.e., y11=a11b11+a12b21+a13b31 to
give us the first element of the first row of the product matrix. Sim-
ilarly, the second column and the third column of the OPCM array
give us the second element and third element of the first row of the
product matrix. Then we similarly send the second row of matrix A
through the OPCM array to get the second row of the product matrix.

2) Handling negative weights and inputs: DNN weights are
usually signed; however, the intensity of light waves and the loss in
PCM cells are always non-negative. To support negative weights, we
need to decompose the weight matrix B into positive and negative
component matrices Bp and Bn, where bpij=max(0,bij) and bnij=
max(0,−bij). The final result of matrix multiplication then becomes
A×B=A×Bp−A×Bn [14], where the subtraction happens in
the electrical domain. With two 6-bit PCM cells [16] representing
the positive and negative components, we effectively achieve 7-bit
quantization. To support negative inputs, we need to offset the input
and include an extra column of precomputed weight references [13].

3) Mapping DNN to OPCM: DNNs include a variety of layers,
including convolution and fully-connected layers. The operations
in these layers can be mapped to GEMM operations. We use a
weight-stationary approach for performing these GEMM operations.
The blocking approach requires us to program the weights within a
block onto the OPCM array, perform multiplication using that block,
then repeat this process for another block. Unfortunately, for large
DNNs, the cumulative latency of programming all the blocks into
the OPCM array is on the order of seconds, and cumulative energy
is on the order of joules. This is because we need to re-program
the OPCM array frequently due to its small capacity compared to
large DNN weights. For example, a 64×64 array is programmed at
least 30,000 times during one inference of the four example DNNs.
The programming time and energy are 2−3 orders of magnitude
and 4− 5 orders of magnitude larger than the time and energy
for performing a single inference (more details in Section V-B,
see Figure 4). Effectively, this reprogramming overhead cancels
OPCM’s performance and energy advantages for DNN inference.
Therefore, we need to reduce the programming cost of OPCM.

D. OPCM Programming Cost Reduction

1) Choosing Batch Size and Array Size: One way to reduce the
programming cost is to use large batch sizes during inference. After
we program a block of a matrix into the OPCM array, the same block
can operate on all the inputs in a batch. This way, we can amortize
the time and energy overhead of programming the OPCM array
across the large batch. However, the intermediate memory required
to perform the accumulations between blocks increases proportion-
ally with batch size, which poses an upper bound for the batch size.

For example, Figure 5 (a) shows the IPS/W for VGG-11 with
various batch sizes and array sizes. It is clear that in terms of
performance per unit power, array size = 64 yields the highest
IPS/W, and the larger the batch size, the better the IPS/W.
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Fig. 4. Ratio of programming cost to computation cost for one inference, with 16
arrays each of size 64×64. The time and energy spent on programming the OPCM
cells are 2−3 and 4−5 orders of magnitude higher than that on computation only,
showing that programming cost dominates the inference performance and energy.

Figure 5 (b) shows the SRAM required for inter-block accumulation
for different batch sizes and OPCM array size combinations. SRAM
requirement increases with batch size and OPCM array size. For an
array size =64, the SRAM requirement reaches 392 MB at batch
size =4,096, taking up about 600 mm2 on GF22FDX technology
node. Further increasing the batch size would increase the IPS/W,
but the SRAM area will become prohibitively large. Therefore,
we need to choose the batch size and array size for each DNN to
maximize energy efficiency under an area constraint.

2) Block reordering to minimize state changes: We propose a
block reordering technique to reduce the energy required for pro-
gramming the OPCM array. This technique exploits the observation
that there exists a similarity between the elements across blocks.
Essentially, during inference, when programming a new block into
the OPCM array, not all OPCM cells need to be programmed. For
example, suppose the difference between the value of an element
at a specific position in the new block and the value of an element
at that same position in the current block is less than a certain
threshold, we don’t need to program the OPCM cell corresponding
to that element, i.e., we do not need to overwrite it. We can reuse
the old value as DNNs are tolerant to minor weight variations.

Moreover, when performing DNN inference, the blocks within a
layer can be mapped to the OPCM array in arbitrary order without
degrading inference accuracy. This provides a chance to further
reduce the programming cost as we can follow a block processing or-
der that minimizes the programming latency and energy for a given
layer. Figure 6 shows a toy example where the matrix is divided into
four blocks. We construct an undirected graph where each vertex
represents a block. Suppose block 1 is currently in the OPCM array,
and we now program block 2 into that array; the cost of this pro-
gramming, i.e., the number of cells to be overwritten, is denoted on
the edge between block 1 and block 2. There are 24 possible orders
in which the four blocks can be programmed into the OPCM array.
Out of the 24 possible orders, the 3→1→4→2 order has the least
latency and energy. We can use this order to minimize the program-
ming cost. Note that one needs to determine the order of using blocks
only once, and that can be done offline. The overhead of the control
logic for processing the blocks in non-sequential order is minimal.

In today’s DNNs, for a typical 64×64 OPCM array, we have up
to 50,000 blocks in a layer. The number of possible block processing
orders is up to 50,000!=10200,000. Performing an exhaustive search
to determine the order of processing the blocks is impractical, even
if the process is done offline. In fact, finding the minimum cost of
traversing all the vertices in a graph is a well-studied problem called
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Traveling Salesman Problem (TSP) [26], and there are various tools
to solve it. We use Google OR-Tools [27], a widely used library
for combinatorial optimization, to solve our TSP problem.

V. EVALUATION

A. Methodology

In this section, we evaluate the OPCM-based PiM in terms of its
performance and energy efficiency for performing DNN inference.
We limit the total number of OPCM crossbar cells to 256×256,
which is divided into multiple OPCM arrays. The OPCM array uses
electrical signals to program the PCM cells and optical signals to
perform GEMM operation. During GEMM operation, the power
consumption is primarily in the laser source and the E-O-E conver-
sion unit. The required laser power depends on the optical losses ex-
perienced by the optical signals as it passes through the OPCM array.
We assume the losses of the GST cell, waveguide crossing, and DC
are 0.6 dB, 0.0028 dB, and 0.01 dB, respectively, and the combined
quantum efficiency of the laser and photodetector is assumed to be
10% [12]. The OPCM array is a passive device with passive micro-
ring resonators (MRRs) [28] and does not consume any thermal tun-
ing power. The OPCM arrays perform MVM operations at 25 GHz.
We assume the programming energy of each cell to be the average
of amorphizing (5.55 nJ) and crystallizing (860.71 nJ), and it takes
400 ns to program the entire array [24]. Each crossbar cell occupies
an area of 30×30 µm2 [12], and the diameter of MRRs is 10 µm.

For the “E-O-E + non-GEMM” chiplet, we synthesize the
SRAM and electrical non-linear units in GF22FDX technology
node to get the power and area estimations. The ADC (which
also performs the O-E conversion) power and E-O power are
194 mW/channel and 1 pJ/bit, respectively, at 25 GHz [12]. DRAM
accesses are assumed to be 20 pJ/bit [29].

We choose the following four popular DNNs as workloads:
VGG-11 [1], AlexNet [2], ResNet-50 [3], and BERT-Large [4]. The

first three DNNs run image classification on the Imagenet dataset,
and BERT-Large runs a question-answering task on the SQuAD 1.1
dataset. All models are pre-trained with FP32 and quantized to 7-bit
precision (combining two 6-bit cells, as discussed in Section IV-C2).
We use Google OR-Tools [27] to solve the reordering problem, apply
thresholding to weights with in-house scripts, and then use PyTorch
to test the inference accuracy after thresholding and reordering.

B. Results

1) OPCM Programming Cost: We first focus on the OPCM
array’s programming overhead during a DNN inference. We
perform inference using four DNNs with the OPCM array size of
64×64 and observe the time and energy spent on programming
versus computation. As shown in Figure 4, the time and energy
spent on programming the OPCM cells for one inference operation
are 2−3 orders of magnitude and 4−5 orders of magnitude higher
than those for computing in the OPCM cells. This is because the
capacity of the OPCM array is at least 30,000× smaller than the
weights in the four DNNs, so we must reprogram it frequently.

2) Choosing Batch Size and Array Size: Using an extremely
large batch size is a straightforward way to amortize away the
programming cost per inference. From Figure 5 (a), it is evident
that array size = 64 yields the best energy efficiency, while the
larger the batch size, the better. However, the batch size is limited
by the SRAM capacity. Figure 5 (b) shows the minimum SRAM
requirement. As discussed earlier in Section IV-D1, with array size
=64 and batch size =4,096, the minimum SRAM required reaches
392 MB, which is a feasible design. We perform similar analyses
for all DNNs evaluated and find that array size =64 and batch size
=4,096 is the practical and most energy-efficient configuration.

3) Using Thresholding and Reordering: Next, we evaluate the
effectiveness of the thresholding and reordering technique. Figure 7
shows the programming cost reduction for different thresholds.
For each threshold value, we find the mapping order with the
maximum programming cost saving. With only reordering (i.e.,
threshold = 0), we observe a 27.8% − 29.7% reduction in the
programming cost across the four DNNs. As we increase the
threshold, the savings increase. We observe up to 62.2%−77.6%
reduction in programming energy for threshold =16.

The thresholding approach can, however, introduce errors in the
weights and might cause accuracy degradation. Figure 8 shows
the accuracy metrics for various thresholds. “f” means the accuracy
of the float-point model, and “0” means only quantization and
no thresholding applied. The figure shows that all DNNs can
tolerate small thresholds without having a significant accuracy
drop. With less than 5% accuracy loss, the thresholding and
reordering approach can achieve 42.9%, 46.5%, 47.4%, and 45.2%
programming cost reduction for AlexNet, VGG-11, ResNet-50, and
BERT-Large, respectively.

4) Comparison with Related Work: In Table I, we compare our
OPCM-based PiM solution against the results reported by previous
works, including Eyeriss v2 [18], TPU v3 [19], ADEPT [20], and
Albireo-C [21]. Our solution achieves 4.5× higher IPS and 1.2×
higher IPS/W than TPU v3, and 4,918× higher IPS but 41.3%
worse IPS/W than Eyeriss v2. Compared with photonic accelerators,
ADEPT, and Albireo-C, our solution has lower IPS/W. However,



TABLE I
PERFORMANCE AND ENERGY EFFICIENCY OF OPCM-BASED PIM ARCHITECTURE

This work Eyeriss v2 [18] TPU v3 [19] ADEPT [20] Albireo-C [21]

Configuration Array size 64×64, 16 arrays, 25 GHz,
batch size 4096, 7-bit quantization ASIC ASIC Photonic Photonic

Model VGG-11 BERT ResNet-50 AlexNet AlexNet ResNet-50 AlexNet AlexNet
Threshold∗ 6 7 4 5

IPS 91,493 10,162 148,166 501,629 102 32,716 217,201 7,692
IPS/W 26.05 0.76 21.55 102.64 174.8 18.18 7476.78 344.17

∗ Thresholds are chosen to achieve maximum programming cost savings with less than 5% accuracy loss.
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Fig. 7. Reduction in programming energy after thresholding and reordering for
64×64-sized blocks. A threshold of “0” means we quantize the model to 7-bit
precision and do not use thresholding. With reordering alone and no thresholding
(i.e., threshold =0), we observe a 27.8%−29.7% reduction in the programming
cost. Using a larger threshold leads to even more reduction. The thresholding and
reordering technique can reduce the programming cost by 42.9%−47.4% with
less than 5% accuracy loss (See Figure 8).
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Fig. 8. Accuracy after thresholding and reordering for 64×64 blocks. “f” on the
X-axis corresponds to the original FP32 model, and a threshold of “0” means we
quantize the model to 7-bit precision and do not apply thresholding. All these four
DNNs can tolerate a threshold of at least 4 without a significant accuracy drop.

it still achieves 2.3× and 65.2× higher throughput than ADEPT,
and Albireo-C, respectively.

VI. CONCLUSION

The performance of DNN inference is limited by the data
movement cost. To tackle this problem, we propose a complete
OPCM-based PiM system architecture, which combines the OPCM
array with photonic links. In the OPCM-based PiM system, the
OPCM programming cost dominates. We propose to use three
techniques - strategically choosing the batch size, reordering the
blocks during matrix multiplication, and using thresholding when
updating the OPCM array, to amortize the programming cost.
Using our approach, we achieve 42.9%, 46.5%, 47.4%, and 45.2%
programming energy reduction for AlexNet, VGG-11, ResNet-50,
and BERT-Large, respectively.
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