
Guiding Hardware-Driven Turbo with Application
Performance Awareness

Daniel C. Wilson∗†, Asma H. Al-rawi∗, Lowren H. Lawson∗, Siddhartha Jana∗,
Federico Ardanaz∗, Jonathan M. Eastep∗, Ayse K. Coskun†

∗Intel Corporation,†Boston University
Email: ∗{asma.h.al-rawi, lowren.h.lawson, siddhartha.jana, federico.ardanaz, jonathan.m.eastep}@intel.com,

†{danielcw, acoskun}@bu.edu

Abstract—Parallel programming across many CPU cores offers
many challenges in software design, such as mitigating perfor-
mance or efficiency loss in applications that reach synchroniza-
tion points at varying times across the CPU cores. Existing
solutions often aim to resolve this through clever optimizations in
application design, or by reacting to the imbalance by throttling
the CPU core frequency of the early-finishing cores at application
run time.

In this work, we propose a method to rebalance bulk-
synchronous MPI applications by selectively speeding up the late-
finishing cores throughout application run time. This algorithm
makes use of the new Intel® Speed Select Turbo Frequency feature
that enables software to guide the hardware toward increasing the
turbo frequency limits of some cores in exchange for decreased
turbo frequency limits in other cores. We demonstrate up to 40%
energy reduction and 17% execution time reduction in a highly-
imbalanced, compute-bound benchmark application and up to
21% energy reduction with 5% execution time reduction in an
imbalanced real-world application.

Index Terms—energy-aware systems, power management

I. INTRODUCTION

While computers continue to integrate into bigger and faster
data centers, their global contribution to power consumption
increases. Data centers consumed an estimated 3% of the
global energy supply in 2021, twice as much as in the previous
decade [1]. Efficiency improvements in data centers range
from facility planning, to cluster job management, to chip
design and software. We propose a method to guide a CPU’s
power management decisions for better high-performance
computing (HPC) application performance, and to improve
energy efficiency of servers as a result.

CPU designers have found several ways to make more effi-
cient use of power-density-constrained systems [2], including
Turbo Boosting to let a CPU temporarily achieve up to a
maximum frequency when a single core is active [3]. When
all cores are active, they are constrained to a lower all-core
turbo frequency, which is applied uniformly across cores even
when heterogeneous frequency limits are desired.

A. Heterogeneous Turbo Frequency Limits

The Ice Lake family of Intel CPUs supports new features
that allow a subset of cores to reach increased turbo frequen-
cies even when all cores are active [4]. Intel® Speed Select

Development of the GEOPM software package has been partially funded
through contract B609815 with Argonne National Laboratory.

Count of Cores Configured As High-Priority
M

ax
 A

ch
ie

va
b

le
 F

re
q

u
en

cy
All None

All-Core Turbo Frequency Limit

High-Priority Limit

Low-Priority Limit

Fig. 1. SST-TF allows a user to exchange lower all-core turbo frequency limits
on some cores for increased limits on other cores. The actual frequency limit
trade-offs vary by part and can be read from the CPU.

Technology Core Power (SST-CP) lets a user specify a priority
level for each core in a CPU package, to guide the processor’s
throttling decisions when it cannot grant requested operat-
ing frequencies to all cores. Intel® Speed Select Technology
Turbo Frequency (SST-TF) extends SST-CP by restricting low-
priority cores to a lower operating frequency, allowing the
high-priority cores to achieve a higher turbo frequency limit
while maintaining CPU design constraints. Since the high-
priority turbo frequency limit depends on the number of high
priority cores, illustrated in Fig. 1, priority configuration of
one core influences the performance of all other high-priority
cores. We propose a technique to configure these features
to reduce energy consumption and improve performance in
imbalanced bulk-synchronous parallel (BSP) applications.

B. Inefficiency Due to Application Imbalance

BSP applications include iterative solvers and simulators
common to HPC workloads. Many processes independently
solve local problems and halt at synchronization points until
all processes reach those points. If processes reach a syn-
chronization point at different times, then the application is
imbalanced, reducing efficiency due to halted processes.

Workload imbalance may result from hardware and software
causes that are not known in advance, such as hardware varia-
tion [5] and application input-driven behavior [6]. Applications
often partition their work to address imbalance (examples in
Section III-C). Middleware solutions often allocate computing
resources to match the needs of a running application [7], [8],

Time → Iteration End
Networking TimeNon-Networking Time

Lagger Process

Leader Process

Fig. 2. Leading and lagging processes in an iteration of a bulk-synchronous
loop. Leader processes have the shortest execution time per iteration in their
compute phases of work. Lagger processes have the longest execution time
in their compute phases.

seeking to minimize energy consumption with minimal per-
formance degradation. However, prior work is still constrained
by uniform turbo frequency limits even when a system is not
constrained by power and thermal design limits.

C. Key Contributions

Our goal is to improve efficiency in imbalanced HPC
applications by speeding up critical-path cores and slowing
down other cores without increasing the CPU’s power limit.

Prior works (discussed in Section V) improve the efficiency
of imbalanced bulk-synchronous parallel workloads by throt-
tling the frequency of CPUs that do not reside on an iteration’s
critical path. This work also increases the achievable frequency
of CPUs on the critical path, by using application performance
awareness to influence the configuration of SST-CP and SST-
TF. Through the work in this paper, we observe energy
reductions of up to 40% in a benchmark that also exhibits
up to 17% reduction in execution time.

Our key contributions are:
• Guidance for using performance-guided turbo in software

power management algorithms and application work re-
balancers.

• An algorithm that balances bulk synchronous HPC appli-
cations by leveraging software-driven critical-path detec-
tion and awareness of hardware-imposed CPU frequency
trade-offs.

• An evaluation of the energy and performance opportuni-
ties from rebalancing bulk-synchronous parallel MPI ap-
plications solely with P-State (voltage-frequency levels)
control or with SST-TF, and from using both together.

In this paper, we describe an algorithm that improves effi-
ciency by using application awareness to guide power manage-
ment decisions while executing imbalanced applications. We
evaluate performance and energy effects on benchmarks and
a real-world application and discuss takeaways for application
imbalance and power management algorithms.

II. ALGORITHM

Our proposed algorithm exchanges turbo frequency limits
across CPU cores to balance a bulk-synchronous application.
We balance the time spent outside of MPI function calls in
an application, shown as non-networking time in Fig. 2. We
refer to processes as leaders or laggers when they reach the

Select Target Time

Assign Core Frequencies

Monitor CPU Cores

Mean Frequency
Peak Frequency

CPU's SST-TF Properties

Previous Frequency Limit

Non-Network Time

each sampling period

each new epoch

Resolve Mispredictions

Fig. 3. The algorithm’s data flow consists of monitoring and misprediction
resolution in each sampling period, as well as predictive rebalancing whenever
a new epoch is detected.

synchronization point early or late, respectively. We guide
CPU’s power management unit with priority hints to balance
leaders and laggers.

We insert a function call in the application’s main outer
loop of computations to measure performance. Each time this
function is called across all processes in the application, the
algorithm’s epoch count increments. The algorithm reduces
time between epochs by enabling higher turbo frequencies on
the CPU cores that spend the most non-networking time per
epoch.

The algorithm initializes all cores as high priority with no
frequency limits to start the application with baseline perfor-
mance. After initialization, a control loop samples program
state once every 5 ms, empirically selected as a period that
has low impact to our applications under test. When a new
epoch is detected, the algorithm sets controls based on pre-
dicted performance trade-offs. In case of mispredictions due
to changes in application behavior, controls are also adjusted in
any sampling period that detects unexpected application state.
The overview of these components is shown in Fig. 3. Each
component is described in the following subsections.

A. Monitor CPU Cores

Every sampling period, we update a running counter of time
spent in non-networking regions of the application. We use the
PMPI profiling interface for MPI applications to measure time
spent in MPI functions.

We monitor IA32_APERF and IA32_MPERF model-
specific registers (MSRs) to compute achieved CPU fre-
quencies as documented in our target processor’s software
development manual [9]. Average achieved frequency between
two points in time is calculated as:

fachieved = fbase ∗
APERFt −APERFt−1

MPERFt −MPERFt−1
(1)

An epoch’s peak achieved frequency is approximated as
the maximum observed frequency between any two sampling
periods within the epoch. The mean achieved frequency is
calculated from the first sample of the monitored epoch and
the first sample of the next epoch.

SST-TF Frequencies

SSE AVX2 AVX512

H
P

 C
or

es

of Cycles in
Non-Networking Regions

Core 1

Core N

argsort

Most

Least

Evaluate each row in the active columna

b Infer critical path for each evaluation

HP1
HP2
HP3

LP

(HPn)+1

Each High-Priority
Frequency

Low Priority
Frequency

Low-priority core
with the most cycles

Time HPn = Max
Most Cycles × HPn frequency
((HPn)+1) Core's Cycles × LP frequency

c Select SST-TF configuration with least time
Target balancing time = Min(all critical path times)

Fig. 4. Target time selection searches for the SST-TF configuration that is
estimated to minimize the time spent in an application’s critical path. HPn
bins indicate the available SST-TF high-priority core counts. LP refers to the
low-priority SST-TF properties.

B. Select Target Time

When a new epoch is observed in a sample, we select a
new target non-networking time for upcoming epochs based on
awareness of application performance and hardware frequency
trade-offs. The steps to select a target time are described below
and depicted in Fig. 4.

The performance risks of poor target time selection are
asymmetric. Over-targeting harms performance but under-
targeting merely misses opportunities while achieving baseline
performance. The algorithm mitigates risk in time selection
by ensuring that at least one core is not throttled in each
CPU package. Target time is selected from the expected non-
network time on unthrottled reference cores.

Expected non-network time is determined from the expected
frequency of the reference core, which depends on the turbo
license level (i.e., the SSE, AVX2, and AVX512 frequency
limits reported by the SST-TF interface). The reference core’s
achievable frequency also depends on the total count of cores
configured as high priority in SST-TF. We search for an SST-
TF configuration of CPU core priorities that minimizes the
expected critical path execution time.

The SST-TF configuration search begins with a target time
equal to the non-network time of the reference core. We iterate
over each of the high-priority core counts that result in a
different maximum achievable frequency (i.e., each row in
part (a) of Fig. 4). We estimate the critical path time at each
stepping point (part (b)), and select the SST-TF configuration
with the least estimated non-networking time (part (c)).

The critical path may move to a different core if the formerly
most-lagging core speeds up significantly. Our goal is not to
maximize the frequency of the former most-lagging core, but
to minimize the time of the new most-lagging core. To achieve

that goal, each critical path time is approximated as the greater
of times spent in the expected most-lagging high-priority core
and the most-lagging low priority core. We apply a simplifying
assumption that the most-lagging cores are those with the most
non-networking compute cycles, and that the inverse of their
non-networking time scales linearly with frequency, as defined
below.

Testimated,core = Tmeasured ∗
fmeasured,core

fexpected,core
(2)

C. Estimating Achievable Frequency

The time estimates described in Section II-B assume that
we know the maximum frequency that each core can achieve.
The achievable frequency of each core depends both on how
many cores are configured as high priority, and on which turbo
license level (i.e., SSE, AVX2, AVX512) primarily limits our
achievable frequency. The high priority core count is known
because we configure the core priorities in each iteration of the
algorithm. For the current high-priority core count, we look
up the maximum achievable frequencies of each license level,
as reported in the SST-TF programming interface. We assume
that our workload’s license level is the nearest one greater
than the core’s maximum frequency in the previous epoch. A
workload may execute with a mix of license levels within an
epoch, but this assumption allows us to avoid over-restricting
frequency limits during bursts of license levels with higher
achievable frequencies.

D. Assign Core Frequencies

We compute a set of per-core desired frequencies that are
expected to make each core spend the target non-networking
time in the coming epoch. This computation applies the same
linearity assumption as eq. (2). We scale the previous epoch’s
average measured frequency by the ratio of measured non-
networking time to desired non-networking time, biased higher
by the length of the sampling period with respect to the desired
time. The added bias exists to reduce the risk of performance
loss due to the impacts of noise over a small count of samples.
The desired frequency is calculated as:

fdesired,core = fmeasured,core ∗
Tnon net,core

Tdesired
∗
(
1 +

Tperiod

Tdesired

)
(3)

Target time selection in Section II-B assumes that there is
always at least one unthrottled core. We ensure that invariant
by scaling the highest-limited core frequency all the way to
the processor’s maximum frequency. The remaining cores are
assigned lower frequencies based on how much less time they
spent in non-networking regions of code.

The desired frequency is controlled by either P-States, or
SST-TF, or both in combination. Desired frequencies between
P-States are rounded up to the next P-State, then applied via
the IA32_PERF_CTL MSR. When SST-TF is in use, the
desired frequencies are used to guide the selection of core
priorities for use in the SST-CP interface.

We select a high-priority SST-CP class of service for a core
if the desired frequency exceeds the expected low priority
frequency (using the license level inference method described

TABLE I
SYSTEM PROPERTIES

Operating System CentOS Linux 7, Kernel 5.10.0
CPU Model Intel Xeon Gold 6338T
CPU Packages Per Node 2
Cores Per CPU Package 24
Thermal Design Power 165 W
Min Frequency Limit 0.8 GHz
Base Frequency 2.1 GHz
Max All-Core Turbo Frequency 2.7 GHz
Max Single-Core Frequency 3.4 GHz

in Section II-B). Otherwise, a low priority class of service is
selected. In the SST-CP interface, priorities range from 0 to
3, with 0 as the highest priority. We use priorities 0 and 3
for high and low priority, respectively. The interface allows
us to specify ranges of desired frequencies for each priority
level. We conservatively set the low-priority level’s limit to
the CPU’s base frequency. SST-TF may enforce a lower limit,
depending on workload properties. We set the high-priority
level to allow the entire turbo range of frequencies.

E. Resolve Mispredictions

Mispredictions of target time and target frequencies may oc-
cur from simplifying assumptions about application behavior
and due to rapid changes in application imbalance. We detect
and react to those cases in each control period.

The algorithm applies a simplifying assumption that each
epoch consists of a single networking region and a single non-
networking region. In reality, a single epoch may enter and
exit networking regions many times. By considering only the
aggregate time spent in the region of interest, we may miss
opportunities if significant time is spent in the intermediate
networking regions within an epoch. We mitigate this risk by
deprioritizing cores that are in a networking region for multiple
samples in a row. We only apply this heuristic when multiple
such samples are observed, based on performance evaluations
by Cesarini et al. [8].

If all the frequency-unlimited cores are in networking re-
gions for multiple samples, this may indicate either that we
are within an intermediate networking region or that we over-
restricted the frequency of our low-priority cores. In that case,
we remove the frequency restrictions applied to the cores that
are still in non-networking regions of code.

III. EXPERIMENTAL SETUP

A. Computing Environment

Our experiments require Intel Ice Lake or later CPUs that
support the Intel® Speed Select Technology - Turbo Frequency
feature. We use a single server with properties outlined in
Table I.

The processor reports its SST-TF frequency limits to the
user through a Linux driver [4]. Table II illustrates the
maximum all-core turbo frequency under different workload
types, as reported by the driver on our experimental platform.
The frequency limits of low-priority cores are constant across
different counts of high-priority cores.

TABLE II
SYSTEM PACKAGE SST-TF FREQUENCY LIMITS

Max Frequency (GHz)

High-Priority Core Count SSE AVX2 AVX512

up to 8 3.3 3.3 3.2
up to 12 3.0 3.0 2.9
up to 16 2.8 2.8 2.7

(Low Priority) 2.1 1.8 1.5

B. Measurement Tools

Measurement and control of our server are implemented
in the Global Extensible Power Manager (GEOPM) job
runtime [7]. GEOPM offers IO groups to sample and
control system state, and agents, which implement power
and performance management algorithms. GEOPM uses
msr-safe [10] to read and write MSRs in batch operations.

We introduce a new IO group to interact with SST-CP and
SST-TF from GEOPM, and we add a new frequency balancer
agent to balance imbalanced MPI applications using SST-
TF. The IO Group interacts with the SST driver [4]. We
grant the Linux CAP_SYS_ADMIN capability to our evaluated
applications so we can use this driver for our experiments.1

We use the existing monitor agent to measure baseline
energy and performance. This agent reads requested metrics
without modifying system power and performance controls.
We reserve one core to execute the monitoring infrastructure
separate from the applications in this work.

C. Applications

We evaluate how the power management policies respond
to imbalanced benchmarks from the NAS Parallel Benchmarks
suite [11], the Mantevo suite [12], and a micro-benchmark with
controllable imbalance. We evaluate a real-world application
in the form of a simulation in LAMMPS [6].

1) NPB IS: The NPB IS benchmark sorts a collection of
integers by partitioning numbers into buckets, which are sorted
in parallel before merging into the result. Imbalance manifests
when buckets end up with significantly different sizes after
partitioning the collection. The benchmark partially addresses
imbalance by combining small buckets in MPI processes.

2) NPB BT-MZ: The NPB BT-MZ benchmark solves a par-
tial differential equation by dividing the space into a mesh of
zones that can be solved in parallel, with periodic exchanges of
boundary values between neighboring zones. The benchmark
statically balances the work by bundling smaller zones in a
process. If the MPI process count is sufficiently large, there
may not be enough small zones to match the amount of work
performed by the larger zones, causing imbalance. We execute
class B, which exhibits high imbalance on our server.

3) Mantevo MiniFE: MiniFE serves as a proxy for the main
phases of unstructured finite element applications, with most of
its time spent performing sparse matrix multiplication. MiniFE

1Future work may configure the recently released geopmd service to enable
unprivileged access to individual components of the SST-TF interface.

1.0 GHz 1.5 GHz 2.0 GHz 2.5 GHz 3.0 GHz
CPU Frequency Limit

40%

60%

80%

100%

120%
Pe

rfo
rm

an
ce

 (%
 o

f B
as

el
in

e)
nas_is
lammps
nas_bt
minife
arithmetic_intensity_sse
arithmetic_intensity_avx2
arithmetic_intensity_avx512

Performance by Application

Fig. 5. Performance of selected benchmarks under various frequency limits.
Performance (inverse of execution time) is shown relative to performance at
the CPU’s base frequency.

is well-balanced by default, but it has a command-line option
to simulate imbalanced scenarios. We set this option to 50.

4) LAMMPS: LAMMPS (Large-Scale Atomic/Molecular
Massively Parallel Simulator) partitions its simulation space
into subdomains that are assigned to processes. Imbalance is
likely to surface when the input problem cannot be evenly
distributed among processes, or when particle density changes
throughout simulation. We simulate a collapsing water column
in a container with obstacles. The simulation begins in a
balanced state but rapidly changes the distribution of work
across CPUs as simulation progresses. The rapid changes in
this application’s imbalance are a motivating factor for the
adjustments described in Section II-E.

5) Arithmetic Intensity Micro-benchmark: Prior work in
cluster-wide rebalancing [13] introduces a set of micro-
benchmarks2 that trigger different workload-dependent fre-
quency limits, or license levels [14]. These micro-benchmarks
are executed in an imbalanced configuration with twice as
much work on 8 processes per CPU package so that only
the application’s 8 slowest-progressing processes need to be
configured as high-priority in SST-CP. If our algorithm places
at least one core in the wrong configuration, then the applica-
tion’s performance will be limited.

D. Measured Properties

We measure the imbalance and frequency sensitivity of each
application to establish our expectations for opportunities to
rebalance these workloads using performance-guided turbo.

1) Frequency Sensitivity: Fig. 5 shows the frequency sensi-
tivity of each application. We execute each application under
different CPU frequency limits. Performance is measured as
the inverse of the time spent in each application’s main com-
pute loop and compared to the performance of each application
with a frequency limit set to the CPU’s base frequency.

The drop in performance for IS near 2.0 GHz occurs be-
cause the power control unit selects a lower uncore frequency
setting when all cores are configured with low core frequency
controls. The algorithm ignores this behavior since it always
has at least one unthrottled core per CPU package.

Applications with peak performance near the all-core turbo
frequency limit may perform better with increased turbo limits.
As expected, IS and MiniFE benchmarks do not achieve

2https://github.com/dannosliwcd/arithmetic-intensity

is lammps bt minife sse avx2 avx512
Application

0%

20%

40%

60%

Im
ba

la
nc

e Monitor
P-States
SST-TF
Combined

Imbalance by Application

Fig. 6. Imbalance of the selected benchmarks under monitor-only runs
and under frequency-controlled runs. Frequency control is evaluated with P-
States only, SST-TF only, or a combination of the two controls. 0% indicates
perfectly balanced, 100% indicates a lack of concurrent work. Error bars
indicate the 95% confidence interval over 5 trials.

much improved performance beyond the processor’s base
frequency; they are documented to be more memory-sensitive
applications. The varying level-off points of the frequency-
sensitive applications result from multiple effects: first, they
spent different amounts of frequency-sensitive time on their
critical paths, and second, the different vectorization types
have different all-core turbo frequency limits [3].

2) Imbalance: We calculate imbalance similar to prior work
in load imbalance detection [15], as Tmax−T̄

Tmax
∗ n
n−1 for the time

T each CPU core spends in non-networking sections of code,
over n CPUs used by the application. 0% imbalance indicates
a perfectly-balanced application where all processes completed
their work in the same amount of time, whereas 100% means
that a single process performed all the work.

Fig. 6 shows the measured imbalance of each applica-
tion. The applications with greater imbalance offer more
opportunity for rebalancing. If they are not CPU-frequency-
bound, as shown in Fig. 5, then we can only expect energy
savings. Otherwise, we also expect opportunities to improve
performance with guided turbo.

IV. RESULTS

Each application responds differently to each of the three
frequency-control variants described in Section II. One variant
only applies the desired frequency control setting through P-
States. Another only configures SST-CP classes of service with
SST-TF enabled. Lastly, a combined variant applies both sets
of controls. These are all compared to baseline performance
from monitoring-only runs, as described in Section III-B.

A. Achieved Frequencies

Fig. 7 shows achieved core frequencies in each application.
The monitored runs of most applications are able to achieve
the system’s all-core turbo frequency of 2.7 GHz, while the
other policies achieve varied ranges of core frequencies.

P-States alone often cannot increase peak frequency even
when they heavily throttle some of the cores, as in nas_bt,
since all-core turbo is already achievable. But the runs with
SST-TF successfully increase the peak achievable frequency.

The AVX512 micro-benchmark is frequently throttled due to
voltage regulator design constraints, so it spends a significant

is lammps bt minife sse avx2 avx512
Application

0 Hz

1 GHz

2 GHz

3 GHz

Fr
eq

ue
nc

y All-Core Turbo
Monitor
P-States
SST-TF
Combined

CPU Core Frequencies by Application

Fig. 7. Distributions of average frequency across CPU cores and across time
in monitor-only runs and under frequency-control variants of the algorithm
described in Section II.

is lammps bt minife sse avx2 avx512
Application

-10%

0%

10%

Ti
m

e
Sa

vi
ng

s

P-States
SST-TF
Combined

Time Savings by Application

Fig. 8. Time savings for imbalanced applications under different frequency-
control variants of the algorithm described in Section II. Savings are relative
to monitor-only runs. Error bars indicate the 95% confidence interval over 5
trials.

amount of samples at lower frequencies. While the upper
end of achieved frequencies is lower with the P-State-only
approach, the distribution is shifted such that the cores on the
critical path are throttled less often.

B. Execution Time Savings

Time savings are summarized in Fig. 8. We see improve-
ment in each of the imbalanced application configurations,
with one case showing potential for future enhancement.

All three of the arithmetic intensity micro-benchmarks are
able to achieve nearly the same performance improvement
with SST-TF because their frequency-sensitive critical paths
have about 2.5x as much work as the rest of their processes,
and they operate in the highest-frequency SST-TF configura-
tion for the duration of their runs. Although the BT-MZ class B
input results in more imbalance than the amount configured in
the micro-benchmarks, we do not seize additional performance
improvement since we are already achieving the maximum-
allowed frequency under this server’s SST-TF properties.

P-State-only control of LAMMPS is the only case with sig-
nificant performance degradation. The degraded performance
comes from the rapidly-changing imbalance in that applica-
tion, where around 8 application epochs execute between each
algorithm sampling period. For example, the algorithm may
observe little to no non-networking time on a CPU core in one
period, so it assigns a low frequency limit to that core. But
new work may shift to that core by the next period, impacting
the performance of multiple epochs in the meantime. Although

is lammps bt minife sse avx2 avx512
Application

0 Hz

1 GHz

2 GHz

3 GHz

Fr
eq

ue
nc

y All-Core Turbo
Monitor
P-States
SST-TF
Combined

Critical Path Frequencies by Application

Fig. 9. Distributions of average achieved CPU core frequency for cores that
spend the most non-networking time in each iteration of the application.

the combined algorithm variant has the same limitation, it is
able to mitigate the performance loss by speeding up the cores
that are consistently given a lot of work by the application.

The P-State-only variant avoids performance degradation
in all the applications that exhibit steady imbalance. This is
expected since most of the applications reach the all-core turbo
frequency without throttling any cores. The AVX512 micro-
benchmark exhibits performance improvement because it is
often throttled when all cores are in the high-power-consuming
region of interest. The P-State-only solution throttles the leader
cores, creating headroom for the lagger cores to achieve higher
frequencies. The SST-TF and combined algorithm variants
achieve more performance improvement because they enable
higher peak frequencies in the lagging cores’ region of interest.

Fig. 9 shows achieved frequencies on critical-path cores
across application iterations. In the AVX512 example, we see
that proactive throttling enables us to increase the average
frequency on critical-path cores. Furthermore, SST-TF enables
greater peak frequency on critical paths.

In Section III-D1, we observe that MiniFE benchmark is
insensitive to higher frequencies above the processor’s base
frequency. However, increased peak turbo frequencies on the
application’s critical path does offer some performance im-
provement opportunities for MiniFE. This benchmark spends
a significant amount of time in sparse matrix vector multi-
plication regions of code. While those regions are typically
non-compute bound, they can exhibit moderate temporal lo-
cality as values in the vector are repeatedly accessed for the
computation. This indicates that there may be performance
opportunities for selectively higher turbo frequencies in im-
balanced applications even if they do not appear to be largely
core-frequency-sensitive at a high level.

C. Energy Savings

Energy savings in Fig. 10 result from both power reduc-
tions and performance improvements. The P-State-only variant
reduces energy despite showing little to no execution time
improvement in Fig. 8, indicating power-based savings. The
additional energy savings on the combined variant are from the
reduction in execution time that comes with higher achievable
frequencies.

The BT-MZ benchmark shows greater energy savings than
the other evaluated applications due to its heavy imbalance. We

is lammps bt minife sse avx2 avx512
Application

0%

10%

20%

30%

40%
En

er
gy

 S
av

in
gs

P-States
SST-TF
Combined

Energy Savings by Application

Fig. 10. Energy savings for imbalanced applications under different
frequency-control variants of the algorithm described in Section II. Savings are
relative to monitor-only runs. Error bars indicate the 95% confidence interval
over 5 trials.

execute the benchmark’s class B input, which cannot be evenly
distributed across all application processes on our server. The
most-lagging process receives about 4 times as much work
as the process that finishes each iteration first. As a result,
many of the cores executing this application can be throttled
to very low frequencies. We observed that BT-MZ did not
achieve more performance improvement than the imbalanced
micro-benchmarks in Section IV-B because we were already
executing the application’s critical path at the maximum-
allowed SST-TF frequency. However, we do observe greater
energy-saving opportunity through throttling the non-critical-
path CPU cores.

A useful takeaway from this comparison is that compute-
bound, imbalanced applications stand to reduce their energy
consumption by making use of performance-guided turbo.
Although the less compute-bound imbalanced applications
are able to achieve most of their energy savings from P-
State throttling alone, we are able to convert some energy
savings back to performance improvement when bursts of
turbo utilization may improve performance.

D. High-Level Results Takeaways

We see a few takeaways with respect to the impact of turbo
guidance in power management algorithms as well as with
respect to the applications where such algorithms may benefit.

1) Power Management Algorithms: The algorithm variants
discussed in this paper utilize the same core rules to determine
critical path and to select the CPU core frequency limits.
Although the same decisions are applied across variants, there
are differences in behavior by applying different combinations
of P-State control and SST-TF configuration.

The P-State-only approach is typically limited to reducing
energy consumption while limiting performance degradation.
However, in cases where application performance is limited by
power constraints (power-bound) such as the AVX512 micro-
benchmark, proactively throttling some cores enables speedups
on other cores. Aside from workloads that are naturally power-
bound, this may be useful for algorithms intended to rebalance
applications on power-capped systems.

The SST-TF-only approach improves performance by in-
creasing the peak turbo frequency on an application’s critical

path. Our algorithm applies a conservative limit to the low-
priority cores. As a result, the SST-TF-only approach responds
to the rapidly-changing CPU demands of the LAMMPS exper-
iment with less risk to performance degradation. However, the
conservative approach leaves behind more imbalance (Fig. 6)
compared to the solutions with more aggressive throttling
on the low-priority end, and ultimately leaves some energy
savings on the table.

2) Applications: Our experiments cover applications with
multiple characteristics of imbalance. We have the greatest
opportunity when the critical path is co-located on a CPU
package with non-critical paths that can be slowed down.
Some applications (e.g., LAMMPS) have application-level
work rebalancers that are aware of the hardware topology. On
systems capable of performance-guided turbo configuration,
application-level rebalancers could consider how to spread any
unresolved imbalance across CPU packages if it is not in
conflict with other resource-oriented rebalancing objectives.

V. RELATED WORK

We introduce a method to combine P-State frequency con-
trol with mixed turbo frequency limits in a CPU package,
in order to improve performance in imbalanced applications.
Related works in P-State control, turbo boosting, and applica-
tion imbalance explore a variety of techniques to mitigate the
effects of imbalance but do not leverage performance trade-
offs of user-configurable limits to CPU frequency boosting.

A. P-State Control

Countdown [16] throttles frequency when in a long-lasting
network region. This and some of its related works use non-
MPI time as a metric of interest when making decisions, as
we do here. Later work [8] separately models slack time,
networking wait time, and networking copy time. The model is
used to balance the non-networking time and to select efficient
configurations for networking code through frequency control.

Other works, such as Cuttlefish [17] and EAR [18], search
for core and uncore frequency limits that achieve efficiency
objectives in one or more regions of an application, based on
the region’s sensitivity to those limits. Our work assumes a
simple linear relationship between performance and frequency.
Future iterations may seek to model region-specific sensitivity
to achieve energy savings in already-balanced workloads.

B. Turbo Boosting

Recent work demonstrates how SST-BF can be used to give
high base frequencies to cores running higher-priority work-
loads [19]. SST-BF exchanges base frequency on platform-
defined sets of CPU cores, whereas SST-TF exchanges turbo
frequency ranges on user-defined sets of CPU cores. Our
solution targets servers running one bulk-synchronous HPC
workload at a time, where we define core priorities to adjust
for existing imbalance.

The Poseidon algorithm [20] increases turbo frequencies of
OpenMP workloads by packing work into a smaller number of
cores, allowing unused cores to enter deeper C-States so the

remaining active cores can achieve higher turbo frequencies.
Instead of controlling the load on each core, our solution in-
fluences achievable core frequency through core prioritization.

Wamhoff et al. improve efficiency in multi-threaded work-
loads by throttling threads that are waiting for locks to speed
up threads that hold locks [21]. Our work similarly aims to
increase achievable frequency on the critical path, but on bulk-
synchronous MPI applications. Our work both increases the
achieved critical-path frequency by proactive throttling, and
increases the peak achievable frequency with SST-TF.

C. Application-Level Work Balancing

Applications often rebalance their own work. For example,
the NPB benchmarks evaluated in these experiments statically
balance their work by decomposing the problem into many
smaller sub-problems of varying size and distributing the sub-
problems across processes to balance the work per process. For
example, the LAMMPS application distributes sections of its
simulation space across MPI processes by recursive coordinate
bisection [6]. The balancer can be invoked dynamically as part
of input script configuration.

VI. CONCLUSION

In this work, we present an algorithm that combines applica-
tion performance awareness with knowledge of hardware fre-
quency limit trade-offs to reduce energy and increase perfor-
mance in imbalanced bulk-synchronous MPI workloads. Our
evaluations with online sampling-based profiling show energy
reductions up to 40% with performance improvements of up
to 17% in highly-imbalanced and compute-bound benchmarks.
We also demonstrate up to 21% energy reduction accompanied
by 5% performance improvement in a real-world application
that exhibits compute-bound imbalance.

Our evaluation of the results discusses further opportunities
for improvement to the algorithm, and highlights takeaways
that may be useful to other designers of algorithms in ap-
plications and in software power management. The presented
algorithm locally balances cores in an individual server, but
future work may extend the algorithm to balance across
multiple servers.

REFERENCES

[1] “ACM TechBrief: Computing and climate change,” ACM Technology
Policy Council, Nov. 2021.

[2] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen
of the coming dark silicon apocalypse,” in DAC Design Automation
Conference 2012, 2012, pp. 1131–1136.

[3] “Optimizing performance with Intel® Advanced Vector Extensions,”
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf,
Sep. 2014.

[4] S. Pandruvada. (2020) Intel(R) speed select technology user guide.
[Online]. Available: https://www.kernel.org/doc/html/latest/admin-
guide/pm/intel-speed-select.html

[5] A. Marathe, Y. Zhang, G. Blanks, N. Kumbhare, G. Abdulla, and
B. Rountree, “An empirical survey of performance and energy efficiency
variation on intel processors,” in Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing, ser. E2SC’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3149412.3149421

[6] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,” Comp.
Phys. Comm., vol. 271, p. 108171, 2022.

[7] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible
open power manager: A vehicle for hpc community collaboration
on co-designed energy management solutions,” in High Performance
Computing, J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds.
Cham: Springer International Publishing, 2017, pp. 394–412.

[8] D. Cesarini, A. Bartolini, A. Borghesi, C. Cavazzoni, M. Luisier, and
L. Benini, “Countdown slack: A run-time library to reduce energy
footprint in large-scale mpi applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 11, pp. 2696–2709, 2020.

[9] “Intel® 64 and ia-32 architectures software developer’s
manual, volume 3b: System programming guide, part 2,”
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html, Apr. 2022.

[10] M. J. McFadden, K. S. Shoga, S. Brink, B. L. Rountree, T. Patki,
C. Cantalupo, D. Guttman, B. Geltz, and B. Allen, “msr-safe,” aug
2019. [Online]. Available: https://doi.org/10.11578/dc.20200513.3

[11] “NAS parallel benchmarks,” https://www.nas.nasa.gov/software/npb.html,
Jan. 2022.

[12] P. S. Crozier, H. K. Thornquist, R. W. Numrich, A. B. Williams, H. C.
Edwards, E. R. Keiter, M. Rajan, J. M. Willenbring, D. W. Doerfler,
and M. A. Heroux, “Improving performance via mini-applications.” 9
2009. [Online]. Available: https://www.osti.gov/biblio/993908

[13] D. C. Wilson, S. Jana, A. Marathe, S. Brink, C. M. Cantalupo, D. R.
Guttman, B. Geltz, L. H. Lawson, A. H. Al-rawi, A. Mohammad et al.,
“Introducing application awareness into a unified power management
stack,” in International Parallel and Distributed Processing Symposium
(IPDPS), 2021.

[14] “Intel® 64 and ia-32 architectures optimization reference manual,”
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html, Feb. 2022.

[15] L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in Euro-Par 2007
Parallel Processing, A.-M. Kermarrec, L. Bougé, and T. Priol, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 150–159.

[16] D. Cesarini, A. Bartolini, P. Bonfà, C. Cavazzoni, and L. Benini,
“Countdown: A run-time library for application-agnostic energy
saving in mpi communication primitives,” in Proceedings of the 2nd
Workshop on AutotuniNg and ADaptivity AppRoaches for Energy
Efficient HPC Systems, ser. ANDARE ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3295816.3295818

[17] S. Kumar, A. Gupta, V. Kumar, and S. Bhalachandra, “Cuttlefish:
Library for achieving energy efficiency in multicore parallel programs,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3476163

[18] J. Corbalan, O. Vidal, L. Alonso, and J. Aneas, “Explicit uncore
frequency scaling for energy optimisation policies with ear in intel archi-
tectures,” in 2021 IEEE International Conference on Cluster Computing
(CLUSTER), 2021, pp. 572–581.

[19] P. Veitch, J. J. Browne, and C. MacNamara, “Resource tuning for energy
efficient slicing,” in 2021 24th Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN), 2021, pp. 100–104.

[20] S. M. Marques, T. S. Medeiros, F. D. Rossi, M. C. Luizelli, A. C. S.
Beck, and A. F. Lorenzon, “Synergically rebalancing parallel execution
via DCT and turbo boosting,” in 2021 58th ACM/IEEE Design Automa-
tion Conference (DAC), 2021, pp. 277–282.

[21] J.-T. Wamhoff, S. Diestelhorst, C. Fetzer, P. Marlier,
P. Felber, and D. Dice, “The TURBO diaries: Application-
controlled frequency scaling explained,” in 2014 USENIX
Annual Technical Conference (USENIX ATC 14). Philadel-
phia, PA: USENIX Association, Jun. 2014, pp. 193–204.
[Online]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/wamhoff

