
Proceedings of the ASME 2022 on
Packaging and Integration of Electronic and Photonic Microsystems

INTERPACK2022
October 25-27, 2022, Garden Grove, CA

INTERPACK2022-96751

MACHINE LEARNING AND SIMULATION BASED TEMPERATURE PREDICTION
ON HIGH-PERFORMANCE PROCESSORS

Carlton Knox1,∗, Zihao Yuan1, and Ayse K.Coskun1

1Boston University, Boston, MA

ABSTRACT
Emerging thermal management policies for high-power pro-

cessors often rely on the temperature readings from on-chip dig-
ital thermal sensors. However, thermal sensors may not ac-
curately measure the maximum temperature on chip. This is
because thermal hot spots are typically located near important
CPU components, limiting the power and physical space avail-
able for thermal sensors. As a result, sensors usually need to be
placed some distance away from the hot spots. Additionally, on-
chip thermal sensors also operate within an error margin, which
could under/over-estimate the temperature readings. Prior meth-
ods introduced machine learning algorithms for predicting chip
temperatures trained with Infrared (IR) camera measurements of
the physical chip to construct accurate on-chip thermal profiles.
While such methods produce an accurate model, the thermal
imaging setup is expensive, and it can be time-consuming to col-
lect and process the temperature data for a physical chip. This
paper proposes a simulation-based method of using a machine
learning regression model to predict a chip’s full temperature map
based solely on the current power usage, core utilization, and
measured sensor temperatures. The proposed model is trained
and evaluated based on data generated from performance, power,
and thermal simulations for the Intel i7 6950× Extreme Edition
processor. When running a set of realistic benchmarks, this
model is able to accurately predict temperatures within a root
mean squared error (RMSE) of less than 0.25◦𝐶. The proposed
model’s accuracy is not affected by the placement of the thermal
sensors, and the maximum error resulting from the placement of
thermal sensors is less than 0.12◦𝐶. For a real-world applica-
tion, the proposed model can be trained based on realistic simu-
lation or measured temperature data, then be applied to predict
a chip’s temperature map in real-time. Using actual temperature
data measured from an IR camera is more accurate, but the IR
camera setup itself is expensive. Using simulation data to train
the machine learning model is low-cost and more practical than
temperature prediction based on an expensive IR camera.

∗Corresponding author

Keywords: Temperature prediction, Machine learning,
Linear regression, High-performance processor

NOMENCLATURE
𝐼𝑅 Infrared
𝑃𝐴𝐶𝑇 A standard cell level to architectural level parallel

compact thermal simulator
𝑆𝑛𝑖𝑝𝑒𝑟 A parallel, high-speed and accurate x86 simulator
𝑀𝑐𝑃𝐴𝑇 An integrated power, area, and timing modeling

framework for multicore and manycore architectures
𝑁𝐴𝑆 NASA Advanced Supercomputing
𝑏𝑡 Block Tri-diagonal solver
𝑐𝑔 Conjugate Gradient
𝑑𝑐 Data Cube
𝑒𝑝 Embarrassingly Parallel
𝑓 𝑡 Discrete 3D Fast Fourier Transform
𝑖𝑠 Integer Sort, random memory access
𝑙𝑢 Lower-Upper Gauss-Seidel solver
𝑚𝑔 Multi-Grid on a sequence of meshes
𝑠𝑝 Scalar Penta-diagonal solver
𝑢𝑎 Unstructured Adaptive Mesh
𝑇𝐷𝑃 Thermal design power (𝑊)
𝐶𝑉 Cross-validation
𝐿𝑂𝑂𝐶𝑉 Leave one out cross-validation
𝑅2 Coefficient of determination

1. INTRODUCTION
High chip temperatures have been a primary concern for

several decades. Localized hot spots resulting from these high
power densities not only decrease the lifetime of processors [1]
but also increase transistor delays as well as leakage power [2]. In
addition, the heterogeneity in on-chip heat distribution incurred
by these hot spots is expected to become more severe with the
integration of heterogeneous architectures on a single die, such
as a collection of CPUs, GPUs, accelerators, and FPGAs. To en-
hance reliability, researchers have proposed runtime policies that
use control knobs such as dynamic voltage and frequency scal-
ing, task scheduling, and thread migration (e.g., [3]). Modern

1 Copyright © 2022 by ASME



processors utilize digital thermal sensors to track the processor’s
temperature at various strategic locations to manage runtime tem-
peratures. However, on-chip thermal sensors may not accurately
measure the temperature profile and maximum temperature on-
chip. We identify three major challenges in accurately obtaining
the temperature profile and hot spot temperatures using thermal
sensors. First, because of the placing and routing difficulties,
thermal sensors may not be placed at the exact location of the hot
spots, leading to under-estimating the hot spot temperatures and
potentially changing the dynamic thermal runtime policy deci-
sion [4]. Second, the spatial and temporal fluctuations in thermal
hot spots due to workload behavior make tracking the hot spot
temperature on-chip particularly challenging [4, 5]. Third, on-
chip thermal sensors operate within an error margin, which could
under/over-estimate the temperature readings by ±1◦𝐶 [6, 7].

To reconstruct accurate on-chip thermal profiles, a recent
body of work has introduced using machine learning models to
predict chip temperatures trained with infrared (IR) camera mea-
surements of the physical chip [5, 8]. Other works investigate
how to intelligently place the thermal sensors on-chip to perform
accurate thermal profile monitoring via IR camera measurements
[4, 9]. While existing methods produce accurate temperature re-
sults, the expensive IR camera setup makes these methods hard to
implement broadly by the research community. In addition, addi-
tional steps of collecting and processing data from the IR camera
measurements make this method complex and time-consuming.
Previous work has also introduced a simulation-based method to
mitigate the inaccuracies of the on-chip thermal sensors based on
analytical models [6]. However, this method targets estimating
the temperature at locations of interest instead of regenerating
the full thermal profile. Predicting the full thermal map is es-
sential since being able to identify both the hot and cold spots
on-chip can benefit the runtime policies such as task allocation
and scheduling to achieve better chip performance under tem-
perature constraint [10]. In addition, the locations of interest
are challenging to determine, given the different behaviors of the
workload.

This paper proposes a simulation-based method of using a
machine learning regression model to predict a chip’s full tem-
perature profile based solely on the current total power usage of
the chip, workload-core mappings, and measured thermal sen-
sors temperatures. We train and validate the proposed machine
learning model based on data generated from architectural per-
formance, power, and thermal simulations of an Intel i7 6950×
processor. We observe that, using the proposed method with
simulation data, it is possible to train a highly accurate machine
learning regression model. In addition, the proposed simulation-
based method can generally be applied to many processor designs
without necessitating an expensive thermal camera setup. The
main contributions of the paper are as follows:

• We introduce a machine learning and simulation-based tem-
perature prediction method that accurately predicts the tem-
perature profiles of given chips. We evaluate the accuracy
and practicality of the proposed method using an Intel i7
6950× processor running with realistic benchmark applica-
tions. Intel i7 6950× is a ten-core desktop processor with a
thermal design power (TDP) of 140 𝑊 .

• We evaluate the impact of the location of the thermal sensors
on our proposed method’s accuracy. Experimental results
confirm that the thermal sensor placements have minimal
effect on the accuracy of the machine learning model, with
an RMSE of less than 0.12◦𝐶.

• Our results, including 5-fold CV, show that the machine
learning model trained with simulation data achieves high
accuracy with an RMSE of less than 0.07◦𝐶. The leave
one out cross-validation (LOOCV) results show that our
proposed method is able to predict accurate thermal maps
for unseen applications and the number of enabled cores,
with an accuracy loss of less than 0.25◦𝐶.

2. MODELING AND METHODOLOGY
In this section, we first provide an overview of our method-

ology for generating a realistic training dataset for the machine
learning model through architectural performance, power, and
thermal simulators. Then, we discuss the proposed linear regres-
sion machine learning model as well as the training and validation
methodologies. We use the Intel i7 6950× processor [11] as our
target processor and we run ten different applications from the
NAS parallel benchmarks [12]. The floorplan of the Intel i7
6950× is shown in Figure 1.

FIGURE 1: INTEL I7 6950× FLOORPLAN.

2.1 Training Data Preparation
In order to generate realistic temperature data for the Intel

i7 6950×, we first use the architectural power and performance
simulators, Sniper [13], and McPAT [14], to simulate power us-
age for a set of realistic benchmark applications. We use Sniper
because it uses interval-based simulation to model long-running
benchmarks while being much faster than cycle-accurate simula-
tion [13]. McPAT simulates the proportional power utilization of

2 Copyright © 2022 by ASME



FIGURE 2: DIAGRAM OF THE MACHINE LEARNING MODEL.

the CPU core and uncore components (e.g., prior work reported
less than 25% error [14]). To ensure our machine learning model
is accurate for any workload or configuration of the CPU, we
must ensure that the model has seen a wide range of workloads
and applications. To generate this realistic set of training data,
we select ten applications from the NAS parallel benchmarks: 𝑏𝑡,
𝑐𝑔, 𝑑𝑐, 𝑒𝑝, 𝑓 𝑡, 𝑖𝑠, 𝑙𝑢, 𝑚𝑔, 𝑠𝑝, and 𝑢𝑎. We map the application to
a different number of cores (1-10) with different workload-core
mapping policies for each application. For example, we can map
application 𝑐𝑔 to 5 cores with a workload-core mapping policy
of cores 1, 3, 4, 8, and 9. There are 1023 possible workload-core
mappings for a ten-core CPU for each application. Note that we
only consider running one application for Intel i7 6950× at a time.
If a core does not receive any workload, we set the core to an idle
state. We select a random subset containing 36 workload-core
mappings to generate the training data.

We run all ten applications from the NAS parallel bench-
marks in Sniper for each workload-core mapping and then run
McPAT to simulate the power usage. Finally, we extract the power
traces, which contain the power values for CPU components such
as cores, cache, and IO controllers, from the McPAT. We use
PACT [15, 16] as the thermal simulator. PACT is a SPICE-based
compact thermal simulator that demonstrates a maximum error
of 2.77% for steady-state simulation when compared to finite-
element method-based simulators such as COMSOL. The power
traces generated using Sniper and MCPAT can be used directly as
inputs to PACT. The original power traces generated from Sniper
and McPAT are transient. To simplify the inputs of the machine
learning model, we average the power traces over the time steps for

each application and workload-core mapping to generate steady-
state power profiles. The total number of the generated power
profiles is 360. The power profiles are then scaled based on the
TDP of Intel i7 6950×, which is 140𝑊 , to keep the model within
a realistic range. To scale the power profile, we first take the max-
imum total power of all the power profiles. We then calculate the
scaling factor by dividing the TDP by the maximum total power
of all the power profiles and then multiply all the function blocks
power values by this scaling factor. The resulting scaled power
profiles are used as the inputs to PACT and the machine learning
model.

In order to simulate the thermal behavior of the chip in PACT,
we need to model the floorplan and power profile of the chip.
The floorplan of the chip describes the dimensions, locations,
and thermal material properties of the CPU’s physical functional
blocks (e.g., CPU cores or cache blocks). The input power profile
for each simulation run describes the power utilization of each
functional block. PACT first divides the power profile into a
power grid matrix using a predefined grid resolution. It then uses
this information to simulate the amount of heat generated by each
grid and block and the heat flow between the CPU and cooling
layers. For this dataset, we create the power traces with Sniper
and McPAT, average and scale the power traces into steady-state
power profiles, and then run PACT simulation in steady-state grid
mode with a grid resolution of 64×64 and an ambient temperature
of 45◦𝐶. We select 64×64 as the grid resolution so that the
temperature data points have a significantly finer granularity than
the architectural block size. The output of the PACT simulation
for each run is a 64×64 temperature grid matrix. This way, each

3 Copyright © 2022 by ASME



power profile corresponds to a single temperature grid matrix.
For the cooling method, we use PACT’s medium-cost heat sink
[15], which has a size of 40×40 𝑚𝑚2, and a heat spreader with a
size of 20×20 𝑚𝑚2. The chip layer has a thickness of 0.1 𝑚𝑚 and
a physical dimension of 14.6×16.8𝑚𝑚2. For our set of 360 power
profiles, we run the same chip stack using each power profile in
PACT to generate 360 corresponding temperature grid matrices
to be used in our machine learning model.

2.1.1 Machine Learning Model. The goal of our machine
learning model is to predict the full temperature grid matrix (tem-
perature profile) of a CPU based on the power and temperature
metrics available at system runtime. The model’s input values
are the total power usage of the chip at the time of prediction, the
temperature values reported by on-chip thermal sensors, and the
CPU workload-core mapping, a binary value based on one-hot
encoding for each core that represents whether that core is in use.
For example, if cores 1, 2, 3 and 7 are in use, the corresponding
values would be 0, 1, 1, 1, 0, 0, 0, 1, 0, 0. The model’s out-
put data is an array of temperature values corresponding to the
64×64 temperature grids. For the temperature values reported
by on-chip thermal sensors, we randomly select ten temperatures
from the temperature grid matrix obtained by performing thermal
simulation on each power profile and report these temperatures
as the readings from thermal sensors. The flow diagram of the
temperature profile prediction is shown in Figure 2.

In Figure 2, the inputs and outputs of the machine learn-
ing model can be represented as matrices 𝑋 and 𝑌 , where 𝑋 is a
combination of on-chip thermal sensors measurements, total chip
power, and binary CPU workload-core mapping, and𝑌 represents
the output temperature grid matrix (e.g., 64×64 temperature grid
matrix). Since we predict temperature values based on thermal
sensors readings and the chip’s total power, we select a linear
regression model, where each independent predictor models a
temperature grid node. Each predictor comprises a set of co-
efficients corresponding to each input value and a constant. In
the linear regression model, the output 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 can be directly
calculated using Θ𝑋 + 𝑏, where Θ is the coefficient parameters
matrix, and 𝑏 is the matrix of constant parameters. The input
on-chip thermal sensors measurements can be extracted from the
PACT output temperature grid matrix by using the temperatures
at the grid locations of the thermal sensors. We evaluate the ac-
curacy of the linear regression model for a range of ten randomly
selected thermal sensor locations used as input in the next section.

We use the Scikit Learn library for Python and the Linear-
Regression class for our model training and evaluation. We train
the model by splitting the simulation data into training and testing
data and then evaluating the trained model’s accuracy with the
testing data. To validate the model’s accuracy, we first perform
a 5-fold CV, where the data is split evenly into five randomized
buckets. For each bucket, we train the model using the other
80% of the data, test using that 20% set of data, and record the
accuracy for each fold. To split and evaluate the data, we use
Scikit Learn’s cross_val_score function with cv set to 5. Lastly,
we perform LOOCV on our model to evaluate its accuracy by ex-
cluding applications and core allocations from the training data.
We divide the dataset into buckets based on the applications or
the number of enabled cores to run the application, then perform

n-fold CV. This LOOCV aims to test if the model is still accurate
for the applications and workload-core mappings that were not
included in the training set, ensuring that the machine learning
model can be trained without extensive applications and datasets,
and be applied generally. The results of these cross-validations
are in the next section.

3. RESULTS AND DISCUSSION
In this section, we validate the power scaling of the sim-

ulation data used for training our model and the model itself.
We evaluate the model’s performance based on different cross-
validation methods and discuss how qualitative properties of the
dataset, such as average power, affect the model’s accuracy.

3.0.1 Training Data Evaluation. As detailed in the previ-
ous section, the training data for the machine learning model is
generated through the combined use of the architectural perfor-
mance and power simulators, Sniper and McPAT, and the thermal
simulator PACT. With Sniper and McPAT, we are able to simu-
late the relative power utilization of the different CPU functional
blocks. However, since McPAT lacks awareness of some of the
implementation details of the CPU architecture, the outputs from
McPAT may not reflect realistic power values [17]. Therefore,
the McPAT outputs have to be calibrated to reflect the TDP of the
Intel i7 6950× chip. We show the unscaled power values directly
collected from McPAT in Figure 3. The chip’s total power with
ten cores can go to nearly 350 𝑊 , which is unrealistic for a ten-
core desktop processor. To calibrate the power, we scale all of
the steady-state power profiles using the same scaling factor dis-
cussed in the previous section, such that the resulting maximum
total power matches the chip’s TDP, in this case, 140𝑊 as shown
in Figure 4.

FIGURE 3: ORIGINAL TOTAL CHIP POWER FROM MCPAT, SPLIT
BY THE NUMBER OF ENABLED CORES. EACH POINT REPRE-
SENTS AN INDIVIDUAL RUN, WITH A SPECIFIED BENCHMARK AP-
PLICATION AND WORKLOAD-CORE MAPPING.

To analyze the total power of each application, we average
the total powers over the number of enabled cores and split them
by application as shown in Figure 5. We observe that most of the
NAS parallel benchmark applications result in an average power

4 Copyright © 2022 by ASME



FIGURE 4: SCALED TOTAL CHIP POWER, SPLIT BY THE NUM-
BER OF ENABLED CORES. EACH POINT REPRESENTS AN INDI-
VIDUAL RUN, WITH A SPECIFIED BENCHMARK APPLICATION AND
WORKLOAD-CORE MAPPING.

FIGURE 5: AVERAGE POWER OF EACH APPLICATION IN THE NAS
PARALLEL BENCHMARKS.

range of 20-40𝑊 . Whereas 𝑏𝑡 and 𝑓 𝑡 are high power applications
and result in high average power of more than 50𝑊 . Applications
𝑐𝑔 and 𝑖𝑠 are relatively low power applications.

Next, we show the temperature results obtained by running
PACT with all the steady-state training power profiles. In Fig-
ure 6, we show the average temperatures for applications and
split them by the number of enabled cores. Note that we run
PACT with the ambient temperature set to 45◦𝐶. The average
temperature increases as we increase the number of cores to run
the application. This is because of the total power increase as
we increase the number of enabled cores, as shown in Figure 4.
We also show the average temperature for the number of enabled
cores to run the applications in Figure 7. Applications 𝑏𝑡 and
𝑓 𝑡 result in the highest average temperatures, and applications 𝑐𝑔
and 𝑖𝑠 have the lowest average temperatures. The average temper-
atures generally follow the trend of their average power behaviors,
as shown in Figure 5. However, since other factors such as the

hot spots’ locations and power densities also affect the average
temperature, higher average powers may result in lower average
temperatures (e.g., applications 𝑑𝑐 and 𝑙𝑢).

FIGURE 6: AVERAGE TEMPERATURES FOR APPLICATIONS (◦C ),
SPLIT BY THE NUMBER OF ENABLED CORES USED. EACH POINT
REPRESENTS AN INDIVIDUAL RUN, WITH A SPECIFIED CORE DIS-
TRIBUTION AND BENCHMARK APPLICATION.

FIGURE 7: AVERAGE TEMPERATURES (◦C ) FOR THE NUMBER
OF ENABLED CORES TO RUN THE APPLICATIONS, SPLIT BY AP-
PLICATION AND SORTED IN ASCENDING ORDER BY AVERAGE
POWER. EACH POINT REPRESENTS AN INDIVIDUAL RUN, WITH
A SPECIFIED NUMBER OF ENABLED CORES AND WORKLOAD-
CORE MAPPING.

3.0.2 Validation of the Machine Learning Model. Since
our machine learning model uses a random sample of ten tem-
peratures from the temperature grid matrix as the temperature
values reported by on-chip thermal sensors (input to the model),
we need to show that the model’s accuracy is not affected by the
randomness of the thermal sensor placements. To test the effect
of the randomly selected thermal sensor locations on the model’s
accuracy, we evaluate the model’s R2 score and RMSE across
a wide range of random thermal sensor placements. For each
random sample of ten thermal sensor readings, we split the data
into training and testing data using a 80/20 train-test ratio with

5 Copyright © 2022 by ASME



the same random state. Using Scikit Learn, we achieve this with
the train_test_split function with the random state set to 144. We
show the histograms of R2 score and RMSE in Figures 8 and 9.
As a result, we observe that the locations of the thermal sensors
on the chip can affect the model’ accuracy by at most 0.12◦𝐶.
This accuracy loss indicates that our proposed machine learning
model’s accuracy is invariant to the placements of the thermal
sensors. We use the thermal sensor placement corresponding to
the median error for the remaining model validation results as
shown in Figure 10.

FIGURE 8: HISTOGRAM OF R2 SCORE DISTRIBUTION ACROSS
300 DIFFERENT THERMAL SENSOR PLACEMENTS USED AS IN-
PUT TO THE MODEL.

FIGURE 9: HISTOGRAM OF RMSE DISTRIBUTION ACROSS 300
DIFFERENT THERMAL SENSOR PLACEMENTS USED AS INPUT
TO THE MODEL.

The results of the 5-fold CV with the selected thermal sensors
locations are shown in Table 1. The 5-fold CV results show that
the proposed linear regression model has a high coefficient of
determination with the lowest R2 score of 0.9996. In addition,
the model itself is accurate with the highest RMSE of 0.0695◦𝐶,
and a maximum absolute error of 1.3948◦𝐶. We demonstrate the
comparison of the golden heat map and the predicted heat map
using the machine learning model for the worst-case accuracy of

FIGURE 10: THE SELECTED THERMAL SENSOR PLACEMENT.
RED MARKERS INDICATE THERMAL SENSORS.

the 5-fold CV experiments in Figure 11. We can observe that
the hot spot on the predicted heat map has a lower temperature
than the hot spot on the golden heat map. The application that
results in the highest accuracy loss, in this case, is 𝑓 𝑡. There
are two reasons behind this accuracy loss. First, application 𝑓 𝑡

is the highest power application, with an average power of more
than 60 𝑊 . The majority of the applications we used to train the
machine learning regression model have average power within
the range of 20-40 𝑊 , which means our model is more likely
to learn the power and thermal trends of these medium power
applications. Second, as shown in Figure 4, when the number of
enabled cores to run the application is one, the total power of the
chip is less than 30 𝑊 . Therefore, predicting the heat map for
the highest power application and lowest power workload-core
mappings results in the highest validation accuracy.

FIGURE 11: HEAT MAP COMPARISON FOR THE WORST CASE.
THE LEFT HEAT MAP IS THE GOLDEN HEAT MAP, AND THE RIGHT
HEAT MAP IS THE PREDICTED HEAT MAP.

Lastly, to validate that the model training methodology can
be applied to various use cases and configurations, we perform
LOOCV on both the benchmark applications and the number of
enabled cores to run the applications. For the applications, we

6 Copyright © 2022 by ASME



TABLE 1: 5-FOLD CROSS-VALIDATION RESULTS.

5-fold CV Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
R2 Score 0.9997 0.9996 0.9997 0.9997 0.9997
RMSE 0.0678 0.0695 0.0657 0.0669 0.0688

Max Absolute Error 1.0438 1.3948 0.9891 1.0464 0.8308

split the data into ten buckets based on the type of the benchmark.
Then we train the model using nine buckets, leaving one out for
validation. This CV is repeated for each bucket, measuring the
model’s accuracy with respect to each application. The LOOCV
for the number of enabled cores is similar. We split the data
based on the number of enabled cores (core counts) to run the
application. Then, we train the model for each core using the data
containing the rest of the core counts, then test the accuracy on
the left out one. We show the LOOCV results on applications in
Figures 12 and 13. The comparison of the golden heat map and
the predicted heat map for the worst case when the number of
enabled cores equal to 5 is shown in Figure 14. The application
that causes the highest accuracy loss for five cores is 𝑓 𝑡. The
reason is that most of the applications we used to train the machine
learning model are medium power applications (average power
within 20-40 𝑊). However, suppose we train the model without
high power applications (e.g., 𝑏𝑡 or 𝑓 𝑡). In that case, our model
predicts high power applications heat maps less accurately and
results in an RMSE error of less than 0.25◦𝐶, and a maximum
absolute error of 1.2◦𝐶.

FIGURE 12: AVERAGE LOOCV R2 SCORES ON APPLICATIONS.

In addition, for lower power applications 𝑐𝑔 and 𝑖𝑠, the RM-
SEs are also relatively high. Meanwhile, the applications 𝑚𝑔,
𝑒𝑝, 𝑑𝑐, 𝑠𝑝, 𝑢𝑎, and 𝑙𝑢 have lower errors. This trend indicates
that this model is generally able to predict CPU temperatures for
application workloads not seen in the training data. However,
the training data should include the upper and lower extreme
applications in terms of power and temperature to get the best
accuracy.

We perform similar LOOCV on the number of enabled cores
to run the applications. This time, we split the data into buckets
based on the number of enabled cores and train the model using
all but one of these buckets. We demonstrate the LOOCV on the
number of enabled cores in Figures 15 and 16. We also illustrate

FIGURE 13: LOOCV RMSES ON APPLICATIONS. EACH POINT REP-
RESENTS AN INDIVIDUAL RUN, WITH A SPECIFIED NUMBER OF
ENABLED CORES AND WORKLOAD-CORE MAPPING.

FIGURE 14: HEAT MAP COMPARISON FOR THE WORST CASE
WHEN THE NUMBER OF ENABLED CORES IS EQUAL TO 5. THE
LEFT HEAT MAP IS THE GOLDEN HEAT MAP, AND THE RIGHT
HEAT MAP IS THE PREDICTED HEAT MAP.

the comparison of the golden heat map and the predicted heat
map for the worst case when the number of enabled cores equal
to ten in Figure 17. Note that the CPU cores in the right column
are 1-2◦𝐶 hotter than the cores in the left column. This is because
the cores in the right column are close to the center of the chip
compared to the left, which result in a higher temperature hot
spot. The application that results in the highest RMSE for ten
cores case is 𝑙𝑢. The LOOCV on the number of enabled cores
results in a maximum absolute error of less than 1.14◦𝐶.

As a result, we observe that the overall error of the model
does not vary significantly in terms of the number of enabled
cores, with a maximum RMSE of less than 0.25◦𝐶. The chip’s
temperature map depends not only on the number of cores that
runs the applications but also on the workload-core mapping poli-
cies. In this case, different workload-core mapping polices affect
the overall temperature, and hence the accuracy variation result
from the number of enabled cores is not significant. When train-
ing the proposed model, including the full range of workloads
would ensure good accuracy when predicting temperatures. The
above 5-fold CV and LOOCV results confirm the accuracy and
practicality of the machine learning regression models. In ad-
dition, our proposed method can take actual temperature data
either from actual on-chip thermal sensors readings or IR camera

7 Copyright © 2022 by ASME



FIGURE 15: AVERAGE LOOCV R2 SCORES ON ENABLED CORES.

FIGURE 16: LOOCV RMSES ON ENABLED CORES. EACH POINT
REPRESENTS AN INDIVIDUAL RUN, WITH A SPECIFIED BENCH-
MARK APPLICATION AND WORKLOAD-CORE MAPPING.

FIGURE 17: HEAT MAP COMPARISON FOR THE WORST CASE
WHEN THE NUMBER OF ENABLED CORES IS EQUAL TO 10. THE
LEFT HEAT MAP IS THE GOLDEN HEAT MAP, AND THE RIGHT
HEAT MAP IS THE PREDICTED HEAT MAP.

measures as a replacement for simulation-based training data.

4. LIMITATIONS AND FINAL REMARKS
This paper introduces a machine learning and simulation-

based method to generate a full temperature map based on the

total chip power, on-chip thermal sensors measurements, and
workload-core mappings. Compared to existing work, the pro-
posed method is low-cost and accurate. We demonstrate that the
placements of the thermal sensors do not affect the accuracy of
the proposed method and machine learning model. 5-fold CV
results prove that the RMSE of the machine learning linear re-
gression model is less than 0.07◦𝐶. We also perform LOOCV
on the applications and core mappings. Results confirm that the
machine learning model is able to accurately predict the temper-
ature profile of previously unseen applications and the number of
enabled cores with a maximum RMSE of less than 0.25◦𝐶.

Note that, in this paper, we select the linear regression model
as our machine learning model to predict the temperature maps
because it results in good prediction accuracy (a maximum RMSE
of less than 0.25◦𝐶) and low simulation time overhead of less than
50`𝑠. For chip stacks with emerging integration (e.g., die-stack
3D or monolithic 3D) and cooling technologies (e.g., liquid cool-
ing and two-phase cooling), a more complex machine learning
regression model can be used to replace the current linear regres-
sion model to achieve better prediction accuracy if needed.

We identify several limitations of our work as follows:

• First, we only consider a single highly parallel workload
running on the chip at a time, which may limit the power
variations among CPU cores. In our future work, we will
collect power data of running different applications on the
chip at the same time and add these data to the training and
testing datasets.

• Second, the current methodology of predicting temperature
profiles using the machine learning model only supports
the prediction of steady-state heat maps. In contrast, in
reality, the control knobs of runtime thermal control policies
such as thermally-aware dynamic voltage frequency scaling
often rely on the instantaneous temperature readings of the
thermal sensors. Therefore, the proposed method needs to
be extended to support transient heat map prediction.

• Third, we assume that the number of thermal sensors inte-
grated into the Intel i7 6950× equals 10. In our future work,
we plan to investigate the number and locations of the ther-
mal sensors on-chip that achieve more accurate temperature
readings and the best cost-effectiveness.

ACKNOWLEDGEMENT
This paper has been partially funded by the NSF CRI (CI-

NEW) grant #1730316/1730003/1730389, the NSF CCF grant
#1910075/1909027, and Boston University’s Undergraduate Re-
search Opportunities Program.

REFERENCES
[1] Srinivasan, Jayanth, Adve, Sarita V, Bose, Pradip, Rivers, Jude and Hu,

Chao-Kun. “Ramp: A model for reliability aware microprocessor design.”
IBM research report .

[2] Saini, Pushpa and Mehra, Rajesh. “Leakage power reduction in CMOS
VLSI circuits.” International Journal of Computer Applications Vol. 55
No. 8.

[3] Sheikh, Hafiz Fahad, Ahmad, Ishfaq, Wang, Zhe and Ranka, Sanjay. “An
overview and classification of thermal-aware scheduling techniques for
multi-core processing systems.” Sustainable Computing: Informatics and
Systems Vol. 2 No. 3 (2012): pp. 151–169.

8 Copyright © 2022 by ASME



[4] Reda, Sherief, Cochran, Ryan and Nowroz, Abdullah Nazma. “Improved
thermal tracking for processors using hard and soft sensor allocation tech-
niques.” IEEE Transactions on Computers Vol. 60 No. 6 (2011): pp.
841–851.

[5] Sadiqbatcha, Sheriff I, Zhang, Jinwei, Amrouch, Hussam and Tan, Sheldon
X-D. “Real-Time Full-Chip Thermal Tracking: A Post-Silicon, Machine
Learning Perspective.” IEEE Transactions on Computers .

[6] Sharifi, Shervin and Rosing, Tajana Šimunić. “Accurate Direct and Indi-
rect On-Chip Temperature Sensing for Efficient Dynamic Thermal Man-
agement.” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems Vol. 29 No. 10 (2010): pp. 1586–1599. DOI
10.1109/TCAD.2010.2061310.

[7] Long, Jieyi, Memik, Seda Ogrenci, Memik, Gokhan and Mukherjee, Ra-
jarshi. “Thermal Monitoring Mechanisms for Chip Multiprocessors.” ACM
Trans. Archit. Code Optim. Vol. 5 No. 2. DOI 10.1145/1400112.1400114.
URL https://doi.org/10.1145/1400112.1400114.

[8] Zhang, Jinwei, Sadiqbatcha, Sheriff, O’Dea, Michael, Amrouch, Hussam
and Tan, Sheldon X-D. “Full-Chip Power Density and Thermal Map Char-
acterization for Commercial Microprocessors under Heat Sink Cooling.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems .

[9] Nowroz, Abdullah Nazma, Cochran, Ryan and Reda, Sherief. “Thermal
monitoring of real processors: Techniques for sensor allocation and full
characterization.” Design Automation Conference: pp. 56–61. 2010. IEEE.

[10] Chrobak, Marek, Dürr, Christoph, Hurand, Mathilde and Robert, Julien.
“Algorithms for temperature-aware task scheduling in microprocessor sys-
tems.” International Conference on Algorithmic Applications in Manage-
ment: pp. 120–130. 2008. Springer.

[11] Sima, Dezső. “Intel Core X-series (HED lines).” .

[12] Bailey, David H et al. “The NAS parallel benchmarks.” International
Journal of Supercomputing Applications Vol. 5 No. 3 (1991): pp. 63–73.

[13] Carlson, Trevor E, Heirman, Wim and Eeckhout, Lieven. “Sniper: Ex-
ploring the level of abstraction for scalable and accurate parallel multi-core
simulation.” ACM Proc. of International Conference for High Performance
Computing, Networking, Storage and Analysis: p. 52. 2011.

[14] Li, Sheng et al. “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures.” IEEE/ACM Proc. of
42nd Annual International Symposium on Microarchitecture (MICRO): pp.
469–480. 2009.

[15] Yuan, Zihao, Shukla, Prachi, Chetoui, Sofiane, Nemtzow, Sean, Reda,
Sherief and Coskun, Ayse K. “PACT: An Extensible Parallel Thermal Sim-
ulator for Emerging Integration and Cooling Technologies.” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems Vol. 41
No. 4 (2022): pp. 1048–1061. DOI 10.1109/TCAD.2021.3079166.

[16] Yuan, Zihao, Zhang, Tao, Van Duren, Jeroen and Coskun, Ayse K. “Efficient
Thermal Analysis of Lab-Grown Diamond Heat Spreaders.” International
Electronic Packaging Technical Conference and Exhibition, Vol. 85505: p.
V001T01A002. 2021. American Society of Mechanical Engineers.

[17] Lee, Wooseok, Kim, Youngchun, Ryoo, Jee Ho, Sunwoo, Dam, Gerstlauer,
Andreas and John, Lizy K. “PowerTrain: A learning-based calibration of
McPAT power models.” 2015 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED): pp. 189–194. 2015. IEEE.

9 Copyright © 2022 by ASME

https://doi.org/10.1109/TCAD.2010.2061310
https://doi.org/10.1145/1400112.1400114
https://doi.org/10.1145/1400112.1400114
https://doi.org/10.1109/TCAD.2021.3079166

	Abstract
	Nomenclature
	1 Introduction
	2 Modeling and Methodology
	2.1 Training Data Preparation
	2.1.1 Machine Learning Model


	3 Results and Discussion
	3.0.1 Training Data Evaluation
	3.0.2 Validation of the Machine Learning Model

	4 Limitations and Final Remarks
	Acknowledgement
	References

