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Nobody ever figures out what life is all about, and it doesn’t matter. Ex-
plore the world. Nearly everything is really interesting if you go into it
deeply enough.

Richard Feynman
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ABSTRACT

Today’s supercomputers and cloud systems run many data-centric applications

such as machine learning, graph algorithms, and cognitive processing, which have

large data footprints and complex data access patterns. With computational capac-

ity of large-scale systems projected to rise up to 50GFLOPS/W , the target energy-

per-bit budget for data movement is expected to reach as low as 0.1pJ/bit, assuming

200bits/FLOP for data transfers. This tight energy budget impacts the design of

both chip-scale networks and main memory systems. Conventional electrical links

used in chip-scale networks (0.5−3pJ/bit) and DRAM systems used in main memory

(> 30pJ/bit) fail to provide sustained performance at low energy budgets. This the-

sis builds on the promising research on silicon-photonic technology to design system

architectures and system management policies for chip-scale networks and main mem-

ory systems. The adoption of silicon-photonic links as chip-scale networks, however,
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is hampered by the high sensitivity of optical devices towards thermal and process

variations. These device sensitivities result in high power overheads at high-speed

communications. Moreover, applications differ in their resource utilization, resulting

in application-specific thermal profiles and bandwidth needs. Similarly, optically-

controlled memory systems designed using conventional electrical-based architectures

require additional circuitry for electrical-to-optical and optical-to-electrical conver-

sions within memory. These conversions increase the energy and latency per memory

access. Due to these issues, chip-scale networks and memory systems designed using

silicon-photonics technology leave much of their benefits underutilized.

This thesis argues for the need to rearchitect memory systems and redesign net-

work management policies such that they are aware of the application variability

and the underlying device characteristics of silicon-photonic technology. We claim

that such a cross-layer design enables a high-throughput and energy-efficient unified

silicon-photonic link and main memory system. This thesis undertakes the cross-

layer design with silicon-photonic technology in two fronts. First, we study the vary-

ing network bandwidth requirements across different applications and also within

a given application. To address this variability, we develop bandwidth allocation

policies that account for application needs and device sensitivities to ensure power-

efficient operation of silicon-photonic links. Second, we design a novel architecture of

an optically-controlled main memory system that is directly interfaced with silicon-

photonic links using a novel read and write access protocol. Such a system ensures

low-energy and high-throughput access from the processor to a high-density memory.

To further address the diversity in application memory characteristics, we explore

heterogeneous memory systems with multiple memory modules that provide varied

power-performance benefits. We design a memory management policy for such sys-

tems that allocates pages at the granularity of memory objects within an application.
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Chapter 1

Introduction

We currently live in an age of unprecedented amounts of data. Data is ubiquitous.

Generation over generation, human ingenuity to store data has advanced exponen-

tially, beginning with the ancient cave paintings to the Voyager Golden Record to a

flash drive that is the size of a thumb. Our ability to develop means to store and

process data has been a major driving force behind societal advancement.

With the digital revolution in the 21st century, the ability to efficiently generate,

process, and store this data is becoming critical across many sectors. Computational

genomics is a field that is fast progressing towards extreme data-centric computing.

Since the inception of the Human Genome Project in 2003 to map the entire human

genomic sequence, the genomic data has been doubling every 11 months and is ex-

pected to surpass the total data requirements of Youtube and Twitter by 2025 (Cirillo

and Valencia, 2019). As another example, a year of particle collisions at the Large

Hadron Collider generates about one million petabytes (Hesla, 2012). Scientists now

record only part of the raw data, but imagine the level of our understanding of the

universe if they had the means to store the entire raw data. As a final example, to

study the interaction between humans and computers, natural language processing

models have seen major breakthroughs in linguistics, artificial intelligence, and cryp-

tography techniques. In 2019, Nvidia released a model, Megatron, with 8.5 billion

parameters (Nvidia, 2019), while Microsoft developed Turing-NLG with 17 billion

parameters (Microsoft, 2019). The GPT-3 model developed by OpenAI in 2021 uses
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174 billion parameters and requires 350GB of memory (Floridi and Chiriatti, 2020).

It seems inevitable that we will reach levels of petabytes of data per day within the

next decade.

Rapid proliferation in application datasets and their computational complexity

has been pushing the demand for denser integration of compute cores and memory

modules on a single chip. Manycore chips are already a big part of modern supercom-

puters and data centers. Mellanox’s TILE-Gx72 is a 72-core system-on-chip that is

used in intelligent networking, multimedia, and cloud applications (Mellanox, 2015).

Intel’s Xeon Phi series integrates up to 72 cores and multiple memory modules in a

single chip (Sodani, 2015; Bradford et al., 2017), while AMD’s EPYC processor fam-

ily integrates 64 cores in a single chip (Lepak et al., 2017). The emergence of GPUs

for machine learning and AI applications have yielded chip designs with thousands of

lightweight cores. Nvidia’s Turing GPUs have more than 4000 CUDA cores (Nvidia,

2018) and AMD’s Navi/RDNA GPUs have more than 2500 cores (AMD, 2019).

The data-centric nature of emerging applications is pushing the design focus of

manycore systems from how fast tasks can be executed to how fast data can be moved

and how efficiently data can be accessed from memory systems. This has prompted

the design of cost-effective and energy-efficient integration of compute cores, memory

modules, and chip-scale networks in computer systems that serve supercomputers,

data centers, and cloud systems. Critical design challenges in such dense manycore

chips arise from 1 how fast the communication network can service requests among

the different compute units and memory units, 2 how fast data can be read from

and written to the memory unit, and 3 what degree of parallelism is offered by the

network system and the memory unit in servicing these requests.

The prominent communication network in manycore chips relies on electrical link

technology, which provides a maximum bandwidth of 112Gb/s at 10−50pJ/bit (Wade
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et al., 2020; Pasricha and Nikdast, 2020). With roadmaps for on-chip bandwidth

suggesting upwards of 1Tbps (Kim and Kim, 2014), it is impractical that electrical

links can meet such demands due to their technological limitations, cost challenges,

and energy constraints. On the main memory front, DRAM is the conventional

technology used in most commercial servers and data centers. DDR4 DRAM provides

a capacity of tens of GB with a bit density of 0.14Gb/mm2 at 40pJ/bit for read/write

accesses. However, power consumption in DRAM, especially the leakage power, grows

substantially with technology scaling, with current DRAM consuming 40% of total

system power (Mutlu, 2018; Paul et al., 2015). Moreover, DRAM internal bandwidth

is not scaling at the same rate as application requirements. Thus, the challenges

in data movement and data access are forcing a paradigm shift in the network and

memory design to attain energy-efficient execution of data-centric applications.

This thesis explores emerging chip-scale network and memory system solutions

based on silicon-photonic link and optical integration technology. Device research

has demonstrated silicon-photonic links as high-bandwidth and low-latency fabrics

for chip-scale communication, and phase change materials with optical control as a

scalable and non-volatile memory technology. A key missing link has been adapting

such devices in manycore chips and developing the necessary architecture and system-

level solutions that are tailored to the optical properties of these devices. This thesis

claims that designing system architectures and management policies that are aware

of the application variabilities and device characteristics is essential towards achiev-

ing an energy-efficient unified “silicon-photonic link and optically-controlled memory”

system. To this end, this thesis develops runtime power-management policies for

silicon-photonic links, architectural designs to integrate optically-controlled phase

change memory with silicon-photonic links, and memory management policies for

improving the energy efficiency of heterogeneous memory systems.
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1.1 Designing Energy-efficient Silicon-Photonic Links

The rapid data growth and resulting compute and memory capacity in manycore

systems make data movement a significant burden in chip-scale networks. Using

conventional electrical links, an L1/L2 cache access on the same chip takes only

about 0.1− 0.2pJ/bit for data transfers, whereas the chip-scale data access to an L3

cache or main memory can often take up to 10 − 50pJ/bit (Pasricha and Nikdast,

2020). The latter energy numbers are 100× higher than the energy efficiency budgets

of supercomputers, cloud systems and data centers (Bergman, 2018). Enabling faster

data movement at improved energy-per-bit over the chip-scale networks is, therefore,

a key goal to address.

With advances in CMOS integration of silicon-photonics technology, chip-scale

networks using silicon-photonic links are being developed. In 2020, Ayar Labs com-

mercialized TeraPHY, a system that uses silicon-photonic links for chip-scale com-

munication, providing up to 2Tbps bandwidth, and that is currently integrated into

Intel’s Stratix10 FPGA (Wade et al., 2020). Mellanox, now part of Nvidia, devel-

oped an optical transceiver of data rates up to 500Gps for GPU-accelerated com-

puting (Rumley et al., 2017). Unlike electrical links, silicon-photonic links are able

to deliver bandwidths on the order of > 1Tbps at reduced latency and negligible

data-dependent power. Despite these promising benefits, silicon-photonic links suffer

from increased power overhead at higher data rates. This overhead results from laser

sources emitting optical signals and the power dissipated in electrical circuitry for se-

rialization, modulation, and filtering of optical signals. Furthermore, optical devices

such as MRRs are highly sensitive to thermal variations, requiring additional heating

power for thermal tuning. This power overhead increases the network energy-per-bit

for chip-scale communication. Figure 1·1 demonstrates the increasing energy-per-bit

of silicon-photonic links with increasing data rates (Bahadori et al., 2017b).
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Figure 1·1: Energy-per-bit consumption in silicon-photonic links with
increasing data rate (Bahadori et al., 2017b).

Power management in silicon-photonic links is a challenging task due to this direct

trade-off between bandwidth and energy. Using a cross-layer approach enables a

deeper understanding of the device-level sensitivities of optical devices, architectural

and design parameters, impact of system-level bandwidth requirements, power and

thermal profile, and implementation of the software stack. We, therefore, introduce

three primary techniques for energy-efficient operation of silicon-photonic links as

chip-scale networks:

1. Bandwidth allocation for silicon-photonic links: We proposeWAVEleng-

th Selection (WAVES ) policies for power-efficient execution of silicon-photonic

links. WAVES uses the bandwidth requirement of an application to activate the

minimum number of optical channels for that application. Our first WAVES

policy, Static Oracle-WAVES (SO-WAVES ) uses the average bandwidth re-

quirement for an application to select the number of optical channels (Narayan

et al., 2019). However, SO-WAVES does not account for the runtime dynamic

trends in application’s bandwidth requirement. Our PROactive WAVES pol-

icy (PROWAVES ) predicts the network activity for future application phases

using a time-series forecasting model to select the number of optical chan-

nels (Narayan et al., 2020b). Using graph and HPC workloads from standard
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benchmark suites, we demonstrate substantial power savings with SO-WAVES

and PROWAVES compared to a system that uses all of its optical channels.

2. MRR thermal remapping during runtime application execution: Due

to the high sensitivity of MRRs towards PV and TV, we develop a method

that accounts for the fabrication PV and chip-scale TV at each application

phase. This thesis models the low-level thermal control loop at the system-level

for the first time to capture the effects of TV-induced shifts and the resultant

heating power. Modeling the thermal control loop enables SO-WAVES and

PROWAVES to perform MRR remapping due to TV-induced shifts at applica-

tion runtime and activate the optimal set of optical channels with lowest heating

power (Narayan et al., 2020b).

3. Application instrumentation assisted bandwidth allocation: The com-

munication traffic in chip-scale networks highly depends on the software imple-

mentation of the application. Our proposed system-level policies, SO-WAVES

and PROWAVES, do not account for this dependence. We, therefore, design

a framework to perform application instrumentation at the software-level that

can assist our runtime WAVES policies to further improve the energy efficiency

of silicon-photonic links (Narayan et al., 2020a).

1.2 Designing Scalable and High-throughput Main Memory

In addition to data movement, the key factors affecting the energy efficiency of data-

centric applications are data storage and data access in the main memory. DRAM

has been the prominent main memory used in the majority of computing systems.

Unfortunately, DRAM technology faces critical scaling challenges at sub 20nm nodes.

At lower technology nodes, leakage current in DRAM is higher, resulting in high

idle power in DRAM cells (Mutlu, 2013; Kang et al., 2014; Lefurgy et al., 2003).
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Figure 1·2: (a) DRAM technology scaling from 2005 to 2018 adapted
from (Bergal, 2019). (b) Price per GB of DRAM from 1991 to 2019,
according to the Objective Analysis graph (Hertz, 2021).

Moreover, DRAM cells uses capacitors to store charge, which leak charge over time

and require periodic refresh to rewrite the data. These challenges put a significant

burden on memory vendors working to scale down the technology nodes of memory

chips. Figure 1·2 shows that DRAM scaling and the price per DRAM capacity have

slowed down since 2010. To compound these issues, the limited memory bandwidth of

DRAM systems fails to meet the increased bandwidth demands arising from parallel

accesses of most data-centric applications.

We, therefore, need a main memory system that is amenable to technology scaling,

has high bit density, meets the high capacity and bandwidth demands of data-centric

applications, and uses low energy for memory accesses. NVM systems provide a scal-

able and non-volatile memory alternative with increased bit density and zero leakage

power. A promising class of NVMs are PCMs with electrical control (EPCMs) owing

to their higher reliability, increased bit density, and better write endurance (Bedeschi

et al., 2008; Burr et al., 2010; Wuttig et al., 2017; Nirschl et al., 2007). Though

EPCMs are highly scalable with increased bit density than DRAM, incur significant

performance and energy overhead. Recent advances in device research have demon-

strated phase change materials with optical control. These optically-controlled PCM

cells, OPCM cells, demonstrate significantly higher bit density per cell compared
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to other NVM cells, in addition to data non-volatility and high scaling. Moreover,

the OPCM cells provide the opportunity for direct access with silicon-photonic links,

thereby providing orders of magnitude higher memory bandwidth. Unfortunately, the

current memory architectures for DRAM and EPCM systems are designed for elec-

trical addressing and encounter major design challenges (such as increased latency,

high energy, thermal issues) when adapted for OPCM cells. A main memory system

using OPCM cells, therefore, requires a complete redesign of the microarchitecture,

read/write access protocol, and address mapping.

In addition to the high bandwidth requirements in data-centric applications, these

applications also exhibit significant diversity in their memory characteristics. For ex-

ample, a highly parallel video rendering application exhibits high memory parallelism,

while an iterative graph application exhibits very poor memory parallelism. Since

memory modules are primarily designed to optimize either latency, bandwidth or

power, a homogeneous memory system (such as DDRx, HBM, RLDRAM, LPDDRx,

etc.) falls substantially short of addressing the diverse memory characteristics of ap-

plications. It is, therefore, beneficial to design a heterogeneous memory system with

multiple memory modules, where different modules are optimized for different met-

rics. The performance of such a heterogeneous memory system is contingent on the

memory management policy that can allocate pages based on the heterogeneity in

memory characteristics within a given application.

The major contributions of this thesis towards designing an energy-efficient and

high-throughput main memory system focus on two fronts.

1. Architecting OPCM memory system with silicon-photonic links: This

thesis presents the first architectural design of a main memory system using

OPCM cells that is directly accessed using silicon-photonic links. Our pro-

posed COmbined System of Optical Phase ChangeMemory and Optical LinkS
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(COSMOS ) uses a novel read and write access protocol for accessing the mem-

ory cells in a multibanked OPCM array. COSMOS also uses an E-O-E control

unit to map the standard DRAM protocol commands, data and addresses into

optical signals to access the OPCM array. Owing to the increased bit density of

OPCM cells and the high-bandwidth-density of silicon-photonic links, COSMOS

demonstrates significant performance and energy benefits over EPCM systems.

Moreover, COSMOS is the first NVM system with comparable performance

and energy as DRAM systems, with increased bit density, higher scalability,

non-volatility and zero leakage power.

2. Memory management for heterogeneous memory systems: We demon-

strate that memory objects allocated in heap space exhibit substantial diversity

in their memory characteristics. To address this diversity, this thesis presents

MemoryObjectClassification andAllocation (MOCA) (Narayan et al., 2018).

MOCA uses the memory intensity and MLP of memory objects to classify their

memory characteristics, and uses this information at runtime to allocate them

in the appropriate memory module in a heterogeneous memory system.

1.3 Dissertation Organization

The remainder of the thesis begins with a background on silicon-photonic link tech-

nology and optically-controlled phase change memory cells, and a review of related

work in Chapter 2. Chapter 3 presents our system-level power-management policies

for reducing the photonic power in silicon-photonic links. Chapter 4 describes the ar-

chitecture of COSMOS, a non-volatile OPCM main memory system, where the mem-

ory cells are directly interfaced using silicon-photonic links. Chapter 5 presents our

memory management policy, MOCA, for heterogeneous memory systems. Chapter 6

concludes this thesis and discusses the open problems and future research directions.
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Chapter 2

Background and Context

This chapter starts with an introduction on 2.5D-integrated manycore systems as a

promising alternative to 2D and 3D-stacked systems. We discuss the challenges for

data-centric applications running on manycore systems arising from the limitations of

chip-scale networks and main memory. The chapter then introduces silicon-photonic

links as high-bandwidth-density and low-latency networks and reviews the existing

works on designing energy-efficient silicon-photonic links. We then present the opera-

tion of an optically-controlled PCM cell and its promise in designing a non-volatile and

high-throughput main memory that can be directly interfaced with silicon-photonic

links. Later, the chapter discusses heterogeneous memory systems with different

power-performance characteristics and the existing works on memory manegement in

such systems. The chapter concludes with an overview of the distinguishing aspects

of this thesis compared to the existing works.

2.1 2.5D Manycore Computing Systems

The growing need for data-centric processing is driving the design of manycore chips

with hundreds of logic cores. The design of such a densely integrated manycore chip

in conventional 2D fabrication results in large die sizes and reduced manufactur-

ing yields, contributing to high fabrication costs (Gelsinger, 2001). Since the late

2000s, 3D integration has been explored as an alternative to 2D manycore chips. 3D-

integrated chips enable vertical stacking of multiples dies using dense TSVs, which
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provide high-bandwidth-density between multiple dies. However, the increased tran-

sistor density with vertical stacking leads to high power density and high chip tem-

peratures. Consequently, sophisticated cooling techniques and complex packaging

solutions for 3D-integrated chips contribute to increased costs (Kandlikar, 2014).

2.5D integration has gained popularity as an alternative technology to 2D and

3D integration. In 2.5D-integrated manycore chips, multiple smaller chiplets are in-

tegrated on a large interposer. 2.5D-integrated chips are more cost-effective than 2D

chips, as breaking down a large monolithic chip into multiple smaller chiplets im-

proves the manufacturing yield (Stow et al., 2016). 2.5D-integrated chips also result

in a lower power density than 3D-integrated chips, thereby resulting in lower chip

temperatures (Stow et al., 2016). 2.5D integration further decouples the design of

compute cores, accelerators (GPUs, APUs, etc.) and the memory systems (Kannan

et al., 2015). Such an approach enables flexible integration of homogeneous or hetero-

geneous dies. 2.5D integration has, therefore, become prominent in commercial chips

such as Xilinx Vertex 7 (Saban, 2011), Nvidia Tesla and Pascal GPUs (Hu et al.,

2018), ARM CoWoS (Lin et al., 2020) and AMD Fiji GPU series (Lee et al., 2016a).

Intel has also developed a 2.5D stacking technology called Embedded Multi-die In-

terconnect Bridge for their FPGA products (Mahajan et al., 2016) and Foveros for

their LakeField CPU (Ingerly et al., 2019).

2.1.1 Chip-scale Networks in 2.5D Manycore Systems

A critical performance bottleneck with integrating higher number of cores and chiplets

in 2.5D manycore systems arises from the data movement in the network. Such a

bottleneck could crop up due to several factors ranging from many-to-few network

patterns blocking critical packets (Li and Chen, 2020), non-uniformity of the trans-

mission data sizes (Shamim et al., 2019), redundancy of transmitted data, or local

congestions in the network blocking other packets (Liu et al., 2018). Increasing the



12

number of cores and chiplets in 2.5D manycore systems, therefore, demands an effi-

cient design of the chip-scale network. Vivet et al. design flexible and scalable system

network topologies between the chiplets using an active interposer (Vivet et al., 2020).

NoD is an independent network chiplet for 2.5D manycore chips that is responsible for

routing packets from a source router to a destination router (Ebrahimi et al., 2017).

Jerger et al. develop an asymmetric network-on-chip organization that accounts for

the various network attributes (Jerger et al., 2014). Though these works implement

efficient communication network designs, the basic fabric underneath such designs

uses electrical link technology that underperforms severely due to its constrained

bandwidth and long latencies.

2.1.2 Main Memory in 2.5D Manycore Systems

A primary benefit with 2.5D manycore chips is the integration of memory modules

on the same interposer as compute chiplets in contrast to 2D manycore chips that

have processors and memory as separate dies. An interposer-based design in 2.5D

chips also decouples the size of the processor chip from the memory stacks, which is

an issue with 3D-integrated memory-processor chips (Loh et al., 2015). As a result,

a larger size of memory chips can be integrated on the interposer. Current memory

chips provide fixed bandwidth per stack. Integrating multiple such memory modules

on an interposer increases the overall memory capacity as well as the peak memory

bandwidth of the system. As an example, the HBM has a data transfer rate of 1024

bits operating at 1GT/s, yielding a memory bandwidth of 128GB/s (JEDEC, 2013).

With 8 HBM stacks integrated on the interposer and exposed to the compute chiplets,

the total available bandwidth grows to 1TB/s (Loh et al., 2015).
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2.2 Silicon-Photonic Link Technology

Silicon-photonic links enable data transfers at the speed of light. Compared to conven-

tional electrical links, silicon-photonic links provide high-bandwidth-density at lower

latencies and negligible data-dependent power. Silicon-photonic links are, therefore,

emerging as a promising network solution in 2.5D manycore systems for data-centric

applications. The feasibility of on-chip integration of optical devices such as photodi-

odes, low-loss waveguides, grating couplers, and MRR modulators and filters through

slightly adapted or unmodified CMOS process has revolutionized the design of silicon-

photonic links (Virot et al., 2014; Cardenas et al., 2009; Wade et al., 2015; Bogaerts

et al., 2012).

With the maturity of silicon-photonic links for chip-scale communication, several

industrial and academic efforts have focused on designing 2.5D manycore systems

with such links. Oracle developed the Macrochip (Koka et al., 2010), which inte-

grates multiple manycore processors in a single package with silicon-photonic links,

yielding high inter-die communication bandwidth. Galaxy is a multi-chip architecture

that integrates multiple small chiplets through optical fibers and incorporates local

electrical signaling for near-communication and photonic waveguides for distant intra-

chiplet communication (Demir et al., 2014). Grani et al. implement a crossbar-based

PNoC using arrayed waveguide grating router on a silicon interposer and demonstrate

high bisection bandwidth at low energy-per-bit values (Grani et al., 2017).

2.2.1 Operation of WDM Silicon-Photonic Link

Figure 2·1 illustrates communication via a silicon-photonic link. A laser source emits

multiple optical signals with n different resonant wavelengths λ1, λ2, ..., λn. 1 An

optical fiber carries these n signals from the laser source to an on-chip waveguide,
1The laser source can be either off-chip or integrated on-chip. In our work, we consider off-chip

laser sources to simplify thermal management (Werner et al., 2017).
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Figure 2·1: An example WDM silicon-photonic link. An off-chip laser
emits 3 different optical signals. 3 MRRs at Tx modulate the data onto
these 3 optical signals, and 3 MRRs at Rx filter out the data from these 3
optical signals.

where optical coupling is achieved using grating couplers. Owing to WDM, multiple

optical signals, each with a distinct resonant wavelength, can coexist in the same

waveguide with minimal crosstalk. Prior works have demonstrated up to 32 optical

signals in a single waveguide, resulting in dense WDM and, consequently, higher

bandwidth density for on-chip communication (Lee et al., 2008).

In Figure 2·1, data is sent over the silicon-photonic link from Tx to Rx. MRRs are

used for data modulation at Tx and data filtering at Rx. An MRR utilizes a coupling

mechanism to access the optical signal in a waveguide. When the coupled optical

wave in an MRR builds up a round trip phase that is an integral multiple of 2π,

the MRR is in resonance with it and most of the optical power is diverted from the

waveguide to the MRR. A cascade of n MRRs are placed at Tx, each with a resonant

wavelength matching one of the n optical signals from the laser. A data packet is

first serialized and modulated by an MRR on to one of the optical signals. Similarly,

another data packet is serialized and modulated by another MRR on to a second

optical signal. The modulated optical signals traverse the silicon-photonic link to Rx.

At Rx, another set of n MRRs are placed, each of which resonates as the n optical

signals. Each MRR can filter out a modulated optical signal with matching resonant

wavelength from the waveguide. The filtered optical signal is then captured by a
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Figure 2·2: MRR sensitivity to TV and PV. MRRs are designed to
resonate at peak resonant wavelength of an optical signal. TV and
PV induces shifts in the MRR resonant wavelength. The MRRs are
supplied with heating power to tune back to laser wavelength.

photodetector (Lischke et al., 2015) that converts the optical signal into an electrical

signal. This electrical signal is amplified by a TIA, and read by a set of comparators

as either logic 0 or logic 1.

2.2.2 Device-level Characteristics

MRRs are typically fabricated using silicon, which has a high thermo-optic coeffi-

cient (1.86 × 10−4K−1) (Densmore et al., 2009). With changes in temperature, the

high thermo-optic coefficient induces variations in the refractive index of the MRR,

which in turn shifts the MRR resonant wavelength to a higher value, as shown in

Figure 2·2. As a result, the MRR moves out of resonance with its coupled optical

signal’s wavelength. Silicon MRRs have been demonstrated to have a high sensitivity

to TV, about 70− 100pm/K (Padmaraju and Bergman, 2014). With chip tempera-

ture gradients rising as high as 20− 25K, the MRR resonant wavelength shift due to
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TV becomes critically high. Moreover, the MRRs at Tx and Rx experience different

resonant wavelength shifts due to the on-chip thermal gradients. The resulting mis-

matches in the MRR resonant wavelengths at Tx and Rx, therefore, impact the link

integrity during data transmission in the silicon-photonic link.

Furthermore, the non-idealities associated with CMOS fabrication process intro-

duce variations in the thickness, width and roughness of the MRRs (Chen et al.,

2013). Krishnamoorthy et al. quantify the intrawafer and interwafer variations on

the resonant wavelengths of MRRs (Krishnamoorthy et al., 2011). Their study shows

that absolute resonances of MRRs cannot be controlled across the wafers or even

across reticles within a wafer. Due to variations in waveguide width, silicon thickness

and etch-depth non-uniformities, the effective refractive index of silicon changes. As

a result, the resonant wavelengths of MRRs shift significantly from the design intent,

as shown in Figure 2·2. Therefore, during the fabrication process of a die reticle, two

distant MRRs in the same die experience completely different shifts in their resonant

wavelengths. These PV-induced shifts further add to the TV-induced mismatches in

Tx and Rx MRR resonant wavelengths.

It is, therefore, critical to mitigate the effect of TV- and PV-induced resonant

wavelength shifts to ensure reliable communication using silicon-photonic links.

2.2.3 Thermal Management in Silicon-Photonic Links

Active control of MRR resonant wavelengths is carried out by thermally tuning an

MRR to the higher order resonant wavelength of an optical signal. Figure 2·2 shows

the thermal tuning of an MRR, which is achieved by controlled local heat injection

using resistive heaters inside the MRRs. These heaters supply energy to the MRRs

using Joule effect, thereby increasing the MRR temperature and right-shifting the

MRR resonant wavelength (Bahadori et al., 2017a). The MRR, thus, locks on to the

higher order wavelength of the optical signal in the wavelength spectrum.



17

Ctrl

PhotocurrentReference
Current -+

err Heater driving
current

Photodetector

Analog Thermal
Control Loop

MRR

Figure 2·3: An analog thermal control loop compares the photocurrent
with a reference current and drives a heater current to thermally tune an
MRR.

Thermal Control Loop

Thermal tuning with controlled local heat injection requires a closed-loop feedback

system that monitors the MRR resonance shift and the tuning required for an MRR

to lock on to an optical signal. As shown in Figure 2·3, this is done by measuring the

optical power on the drop port of the MRR with a photodetector. An analog control

compares the photocurrent to a reference current that is set based on the MRR

resonance. The error signal drives a heater current to thermally tune the MRR using

Joule heating. The heater maintains a fixed temperature within the MRR, so that

the MRR resonance remains fixed to the resonant wavelength of the optical signal.

Several design techniques exist for analog thermal control to close the feedback loop

and derive a heating level from the optical monitoring of the drop port (Rakowski

et al., 2015; Yu et al., 2015; Sun et al., 2016; Thonnart et al., 2018; Li et al., 2015).

Additionally, a second level of control is required to handle the large temporal

TV occurring at runtime. When the large TV introduces an increased shift in the

MRR resonant wavelength, thermally tuning the MRR to its original optical channel

requires a high heater power. Fortunately, with WDM, the resonant wavelengths

of optical channels are evenly spaced in the FSR as shown in Figure 2·4. It is,

therefore, possible to thermally tune MRR0 and lock it to λ1 instead of λ0. This
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Figure 2·4: (a) The thermal control loop maintains the 4 MRRs at
the resonant wavelength of 4 optical signals. (b) A large TV induces
a high MRR resonance shift, and the thermal control loop performs
thermal remapping to a new set of optical signals.

additional level of control enables the wavelength remapping of MRRs to a different

set of optical channels. During an application execution, when the chip temperature

increases close to the target MRR temperature, the analog thermal control forces a

remapping of MRRs to a different set of optical channels. These remappings between

n wavelengths are only possible if the heater efficiency is high enough that it can shift

by more than FSR/n with some margin. As remapping requires larger amounts of

thermally-controlled shifts, it is a relatively slow process of about 100µs, but occurs

less than once per second due to the thermal inertia of chips (Thonnart et al., 2018).

System-level Management

The analog thermal control to thermally tune the MRRs is an effective thermal man-

agement technique in silicon-photonic links. However, such device-level techniques

do not account for the runtime characteristics of workloads. There is a strong diver-
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sity in workloads’ runtime bandwidth and resource utilization that result in highly

workload-specific power and thermal profiles. The heating power for MRR thermal

tuning is, therefore, a strong function of the system architecture and runtime ap-

plication behavior. Prior work on system-level management focuses on cross-layer

optimization methodologies that model device and design-level thermal management

strategies under different system-level constraints.

RingAware (Zhang et al., 2014), Therma (Beigi and Memik, 2016) and Fre-

qAlign (Abellán et al., 2017) employ thread allocation and migration to reduce the

thermal variations around communicating MRRs. Aurora (Li et al., 2015) encom-

passes a cross-layer approach at the device, system and OS-level to control the ther-

mal tuning power. LIBRA (Thakkar and Pasricha, 2018) uses a reactive technique

at device-level and a proactive thread migration policy at system-level to reduce the

impact of TV- and PV-induced MRR resonant shifts.

2.2.4 Bandwidth Allocation in Silicon-Photonic Links

In addition to the heating power for MRR thermal tuning, the power consumed in

the laser sources and the circuitry for E-O and O-E conversion form a major portion

of the overall photonic power. A high density of multiplexed optical signals is used in

WDM silicon-photonic link to deliver increased bandwidth for data-centric applica-

tions. Consequently, the photonic power increases linearly with the number of optical

signals in the silicon-photonic link (Bahadori et al., 2016). It is, therefore, critical to

address the trade-off between achieving high bandwidth and reducing photonic power

consumption and ensure sub-pJ operation at > 1Tbps on-chip bandwidths.

System-level bandwidth allocation techniques are implemented by assigning op-

tical channels depending on the bandwidth requirements of applications. Several

studies perform bandwidth allocation in different contexts by enabling a higher num-

ber of channels for maximum aggregated bandwidth (Bahadori et al., 2016), or via
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optimized wavelength allocation in silicon-photonic links based on application task

graph (Luo et al., 2018), or using an arbitration-free shared-channel silicon-photonic

link (Zulfiqar et al., 2013), among others. Winkle et al. design a learning-based

technique using silicon-photonic link utilization to determine the optimal number

of channels (Van Winkle et al., 2018). Chen et al. perform runtime bandwidth

allocation on clos and butterfly network topologies based on latency at each applica-

tion phase (Chen and Joshi, 2013). R-3PO is a reconfigurable 3D-integrated silicon-

photonic network that monitors the bandwidth availability and performs runtime

reconfiguration of network bandwidth (Morris et al., 2012).

A key missing aspect in these bandwidth allocation policies arises from a lack

of characterization models of MRR device-level sensitivities. The thermal control

loop uses a continuous mechanism to monitor the TV and PV sensitivities of on-chip

MRRs. A large temperature drift during an application execution results in a major

shift in MRR resonant wavelength and, therefore, requires MRR remapping to a new

set of optical channels. This remapping provides the opportunity to remap to a new

set of optical channels that result in minimal thermal tuning power. The prior works

for bandwidth allocation do not model the thermal control loop, leaving an open

opportunity to incorporate MRR remapping to reduce the thermal tuning power.

2.3 Optically-controlled Phase Change Memory

Though silicon-photonic links enable high-bandwidth and low-latency chip-scale net-

work designs, the system performance is still hampered by internal bandwidth and

latency of main memory systems. With DRAM technology facing critical scaling chal-

lenges at lower technology nodes (Kim et al., 2010; Kim and Popovici, 2018), memory

vendors and academic researchers are focusing their efforts towards developing non-

volatile and scalable memory systems. Non-volatile memories such as memresistor



21

Melting
temperature

Crystalline
temperature

Te
m
pe
ra
tu
re

Time
Crys0 CrysnCrys1

RESET

SET

Figure 2·5: Operating principle of a GST element. RESET: The
GST element is heated to its melting temperature and rapidly cooled
to change to a-GST. SET: The GST element is heated to its crystalline
temperature and gradually cooled to change to c-GST.

arrays, spin-transfer torque magnetic RAM, NAND Flash memory, and PCM have

emerged as promising non-volatile alternatives to DRAM (Rho et al., 2017; Kwon

et al., 2015; Lee et al., 2009; Kim et al., 2019; Zhang et al., 2019; Bhattacharjee

et al., 2017). PCMs outperform many other NVM candidates owing to their higher

reliability, increased bit density, and better write endurance (Bedeschi et al., 2008;

Burr et al., 2010; Wuttig et al., 2017; Nirschl et al., 2007). In this section, we first

study the properties of phase change materials. We then look at the operation and

challenges of conventional electrically-controlled PCM cells. We contrast OPCM cells

to EPCM cells and present promising opportunities to design high-throughput and

scalable main memory systems using OPCM technology.

2.3.1 Properties of Phase Change Materials

Phase change materials typically exist in a fully-amorphous state or a fully-crystalline

state with high stability. These states have distinct electrical (resistance) and optical

properties (refractive index), which can be used to map the data bit to the state of

the material, i.e. logic 0 to amorphous and logic 1 to crystalline state (Ovshinsky,

1968; Wuttig and Yamada, 2007; Burr et al., 2010). We can rapidly switch between
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the two states using electrical heating (Raoux et al., 2014; Choi et al., 2012) or high

intensity optical pulses (Zhang et al., 2017; Tanaka et al., 2012; Ríos et al., 2015).

Chalcogenides (e.g. S, Se or Te) are well-known phase change materials that ex-

hibit high contrast in electrical properties and optical properties of the two states (Wut-

tig and Yamada, 2007). Ge2Sb2Te5 (GST) is a chalcogenide that has been widely

explored due to its long data retention time (up to years), nearly zero leakage power,

and nanoscale size (Wuttig and Yamada, 2007; Lyeo et al., 2006; Rios et al., 2014).

Moreover, it is also possible to partially crystallize GST to an intermediate state be-

tween the fully-amorphous and the fully-crystalline state with high reproducibility.

These partially crystalline states have unique distinguishable electrical and optical

properties, enabling multi-level storage capabilities (Bedeschi et al., 2008; Nirschl

et al., 2007).

The operating principle of a GST element is shown in Figure 2·5. RESET opera-

tion results in the amorphization of the GST element, and SET operation results in

crystallizing the GST element. We refer to GST in amorphous state as a-GST and

GST in crystalline state as c-GST. The GST element is RESET by heating it above

its melting temperature (∼ 600oC (Yamada et al., 1991)), where the material loses

its crystalline state and transforms into an unordered state. The material is then

rapidly cooled to retain its amorphous state. The GST element is SET by heating

it to the crystallization temperature (100 − 150oC (Yamada et al., 1991)). The ma-

terial is maintained at this temperature to enable atomic reordering. The heating

energy applied to the GST material is slowly released to gradually cool down the

material and induce crystal growth. The rate of energy release determines the partial

crystallization state of the GST material.
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2.3.2 Issues with an Electrically-controlled PCM Cell

The structure of an EPCM cell is similar to that of a DRAM cell (Lee et al., 2009).

The cell consists of 1 access transistor and 1 GST element. The read and write (SET

or RESET) operations are performed by passing different currents through the cell.

EPCM cells, however, suffer from critical issues that limit the adoption of EPCM

systems as a main memory alternative to DRAM systems. 1 EPCM cells utilize

the resistance values of GST element at different states to distinguish the states.

However, the resistance of a-GST and c-GST drifts over time (Li et al., 2012; Karpov

et al., 2007). Due to this drift, we need a larger noise margin, which limits the MLC

capability to 2bits/cell. 2 EPCM cells have longer SET latencies, which increases

the write latency compared to DRAM cells. The long write latencies slow down the

critical read requests by 2 − 3×, thereby impacting the performance of data-centric

applications. 3 Furthermore, RESET operation of EPCM cells requires large drive

current to amorphize the GST element (Lee et al., 2009). The power consumed

in the charge pumps to supply the current is 5× higher than DRAM cells, which

severely impacts the energy efficiency of EPCM systems (Kim et al., 2019). 4 Phase

change materials such as GST suffer from wearout due to repeated switching of states.

Typically, EPCM cells can endure about 107 − 108 (Qureshi et al., 2009a) writes

before wearing out, compared to DRAM cells (> 1015 (Chang et al., 2016b)). Hence

the average lifetime of EPCM systems is a critical concern.

Prior works on designing EPCM systems have focused on addressing the long write

latencies, high RESET energies and low write endurance. Some of these techniques

to hide long write latencies and reduce RESET energy include fine-grained power

budgeting (Jiang et al., 2012a), write truncation (Jiang et al., 2012b), dynamic write

consolidation (Xia et al., 2014), logical decoupling and mapping (Yoon et al., 2014),

proactive SET (Qureshi et al., 2012), partition-aware scheduling (Song et al., 2019),
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double-XOR mapping (Du et al., 2013) and boosting rank parallelism (Arjomand

et al., 2016). Promising techniques to enhance the write endurance include rotation-

based wear leveling (Qureshi et al., 2009a), process variation-aware leveling (Dong

et al., 2011; Zhao et al., 2014), and writeback minimization and endurance man-

agement (Ferreira et al., 2010). Despite these promising design strategies, memory

systems designed using EPCM cells are still not a viable alternative to DRAM due

to their lower system performance and increased energy-per-bit.

2.3.3 Operation of an Optically-controlled PCM Cell

Figure 2·6 shows the structure of an OPCM cell, where the GST is integrated on

a waveguide (Ríos et al., 2015; Li et al., 2019). An OPCM cell consists of only a

GST element, and does not use a separate access transistor like in an EPCM cell.

The waveguides are fabricated using a Si3N4 layer deposited over a SiO2 layer (Li

et al., 2020). The GST layer is covered with a layer of Indium-Tin-Oxide to pre-

vent oxidation. The optical signals to read and write the OPCM cell lie in the C

band (1530nm−1565nm) and L band (1565nm−1625nm) of the telecommunication

spectrum (Li et al., 2020).

Optical 
signal

GST

(a)

Si3N4

SiO2

GST

ITO

(b)

Figure 2·6: (a) 3D view of a GST-based PCM cell that is controlled
using optical signals. (b) Cross-sectional view of OPCM cell, where the
GST deposited on a Si3N4 waveguide.
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Write and Read Operation of OPCM Cell

The write operation of an OPCM cell, i.e., either SET or RESET, is performed by

passing an optical signal along the waveguide. The optical signal is coupled to the

GST element and the energy of this signal triggers a state transition. For RESET

operation, an optical pulse of 180pJ is passed through the GST element for 25ns (Li

et al., 2019). For SET operation, an optical pulse of 130pJ is passed through the GST

element for 250ns (Li et al., 2019). Optical pulses of varying energies between 60 −

130pJ can be applied to transition the GST element to a desired partially crystalline

states (Li et al., 2019).

The contrast in the refractive indices of a-GST (3.56) and c-GST (6.33) enables

readout of stored data in the GST element (Michel et al., 2014). When an optical

signal is passed through the GST element, the higher refractive index of c-GST results

in an increased optical absorption by the GST element. Rios et al. demonstrate that

c-GST absorbs 79% of the input optical signal and allows transmission of only 21%

of the optical signal (Ríos et al., 2015). In contrast, a-GST transmits 100% of the

optical signal. The partial crystalline states allow transmission between 100% and

21% (Ríos et al., 2015). The data is, therefore, read out by sending sub-ns optical

pulses through the GST element and measuring the transmitted optical intensity.

MLC Capability of OPCM Cells

In OPCM cells, the read operation uses the distinct refractive index of each state

to determine the stored value. Unlike the resistance value used in EPCM cells, re-

fractive index experiences minimal or no drift over time (Li et al., 2019; Ríos et al.,

2015). This enables designing OPCM cells with higher number of stable partially

crystalline states having unique refractive indices. Thus, each OPCM cell supports

higher bits/cell than an EPCM cell. Prior works have demonstrated that it is possible

to reliably program the GST element using optical signals to contain more than 34
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unique partially crystalline states (Li et al., 2019; Youngblood et al., 2019), which

corresponds to 5 bits/cell. Using a higher capacity MLC enables the read and write

operation of a higher number of bits per access for the same number of processor-to-

memory links, thereby increasing the memory throughput. Theoretically, an OPCM

with 4 bits/cell provides 2× higher peak memory throughput than a typical EPCM

with 2 bits/cell. With OPCM cells projected to support 8 bits/cell in the near future,

we can obtain 4× higher peak memory throughput than an EPCM with 2 bits/cell.

2.3.4 High-throughput Access with Silicon-Photonic Links

Section 2.2 introduces the promise of silicon-photonic links as high-bandwidth-density

networks in manycore systems. Silicon-photonic links have been extensively explored

for high-bandwidth and low-energy communication between processor and memory

in prior works. Beamer et al. design a joint silicon-photonic link and electro-photonic

DRAM design to provide high internal bandwidth (Beamer et al., 2009). However,

the O-E-O conversion in such DRAM designs adds to the latency overhead. An

OPCM system with silicon-photonic links presents the opportunity for optical signals

to directly read/write the OPCM cells, eliminating the O-E-O conversion overhead.

Despite OPCM cells suffering from long SET latencies similar to EPCM cells, the

increased MLC capability and direct access using dense WDM silicon-photonic links

increase the peak memory throughput.

2.4 Memory Management in Heterogeneous Memory Systems

Traditionally, computing systems consist of homogeneous memory modules as the

primary main memory. The key attributes of main memory are its power, band-

width, latency, non-volatility, scalability and area density. An ideal main memory sys-

tem should be highly scalable and non-volatile, provide high bandwidth (> 1TBps)

at low latency (< 10ns), low energy-per-bit (< 10pJ/bit) and high area density
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(> 50MB/mm2). Unfortunately, due to the trade-off between these metrics, there is

not a single memory module that can provide all the above features. Heterogeneous

memory systems consisting of multiple memory modules are, therefore, becoming

prominent in a wide variety of systems from embedded systems to modern data cen-

ters and cloud systems (Phadke and Narayanasamy, 2011; Chatterjee et al., 2012;

Sodani, 2015; Kannan et al., 2017; Olarig et al., 2003; Avissar et al., 2001; Gai et al.,

2016). This section introduces the academic works and industrial products using

heterogeneous memory systems and then discusses the state-of-the-art techniques for

memory management in such systems.

2.4.1 Heterogeneous Memory Systems

To cater to the wide diversity in application memory requirements, memory vendors

provide memory modules with different performance and power characteristics. For

example, RLDRAM is a memory type optimized for low access latency, which makes

it ideal for switch and router applications (Toal et al., 2007). However, the static

and dynamic power consumption of RLDRAM is 4− 5× higher than a DDR3/DDR4

module, and the bandwidth is lower. On the other hand, LPDDR reduces power

consumption substantially, but has higher access latency and lower bandwidth; thus,

it is attractive for mobile platforms (Rho et al., 2017). HBM is an innovative memory

technology that stacks multiple DRAM layers vertically, where layers are connected by

TSVs. HBM2.0 boasts of more channels per device, smaller page sizes per bank, wider

activation windows and a dual command line for simultaneous read and write (Lee

et al., 2016b). These features distinguish HBMs to provide performance and power

improvements in case of bandwidth-sensitive workloads. Moreover, as we saw from

Section 2.3.2, NVM systems such as EPCM are superior over DRAM-based systems in

terms of higher scalability, lower leakage power and non-volatility. However, they suf-

fer from long write latencies and high write energies, which renders them impractical
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as primary main memory modules.

In spite of the promising memory technologies, there is no single memory module

that can provide the the ideal benefits of non-volatility, high area density, lowest la-

tency, highest bandwidth, and lowest power consumption at the same time. Therefore,

homogeneous memory systems are often not sufficient in an era of diverse compute-

and memory-intensive workloads. Motivated by performance-power trade-off among

various memory modules for diverse workloads, heterogeneous memory systems have

been proposed to improve performance and energy efficiency of computing systems.

Several prior works design heterogeneous memory systems consisting of either on-

chip scratchpad memory (Shen et al., 2016; Peón-quirós et al., 2015) or 3D-stacked

memory (Meswani et al., 2015; Tran et al., 2013; Dong et al., 2010). Heterogeneous

memory systems have also been proposed for reduced data processing in cloud com-

puting (Gai et al., 2016; Kannan et al., 2017). Hybrid memory systems with DRAM

and NVM systems have been widely explored due to the additional benefits of scala-

bility and data persistence obtained using these NVM modules (Dulloor et al., 2016;

Pavlovic et al., 2013; Khouzani et al., 2016). Commercial products such as Intel’s

Knights Landing processor (Sodani, 2015) and Knights Mill processor (Bradford et al.,

2017) have an on-chip HBM together with an off-chip DDR4, and AMD Radeon Fury

X (Macri, 2015) consists of an interposer with an HBM stack along with DDR3 mem-

ory. In 2015, Intel unveiled its Optane memory line based on 3D-Xpoint technology,

which has high density similar to DRAM, but with additional benefits of scalability

and data persistence (Hady et al., 2017).

2.4.2 Page Allocation in Heterogeneous Memory Systems

With multiple memory modules in a heterogeneous memory system offering varied

power-performance benefits, it is critical to develop a memory management policy

that can best utilize the benefits of different modules in such a system. This policy
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Figure 2·7: Memory access behavior of selected applications from
SPEC CPU2006 and SDVBS benchmarks. A high L2 MPKI indicates
that the application is memory-intensive. A low number of ROB stall
cycles for a memory-intensive application implies high memory-level
parallelism.

needs to account for the application’s memory requirement and allocate memory pages

from a module that is best suited to the application. A wide diversity in applications’

memory characteristics necessitates a robust and systematic page allocation policy.

Figure 2·7 plots the memory access behavior of applications from SPEC CPU2006

benchmark (Henning, 2006) and SDVBS benchmark (Venkata et al., 2009). The

L2 MPKI and ROB head stall time specifies the memory intensity and the MLP of

applications, respectively. From this figure, we observe that applications have diverse

memory intensities and exhibit different MLP. Achieving high energy efficiency and

system performance is, therefore, contingent upon placing an application’s data in

the right memory module.

Phadke et al. introduce an application-level allocation policy for heterogeneous

memory systems (Phadke and Narayanasamy, 2011). They profile the memory ac-

cess behavior of every application as a whole and allocate the entire application to
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the best-fit memory module. Other works employ optimal page-level allocation poli-

cies to utilize the lowest latency memory module by tracking frequently accessed

pages (Meswani et al., 2015; Dong et al., 2010; Pavlovic et al., 2013), or controlling

the amount of memory-mapped based on bandwidth utilization (Tran et al., 2013).

Chatterjee et al. place critical words in a cache line in latency-optimized memory

module and rest of the cache line in power-optimized modules (Chatterjee et al.,

2012). Shen et al. use PIN-based profiling to track array allocations for placing fre-

quently accessed and low-locality arrays in the on-chip scratchpad (Shen et al., 2016).

Dulloor et al. profile memory access patterns of data structures as either sequential,

random, or involving pointer chasing to place either in DRAM or PCM (Dulloor

et al., 2016). Peon-Quiros et al. track the access frequency and changing memory

footprint over time of dynamically allocated data structures to place them in either

on-chip SRAM or off-chip DRAM modules (Peon-Quiros et al., 2015). Intel’s Knights

Landing processor enables the programmer to explicitly allocate workloads’ critical

data in HBM using built-in APIs or compiler annotations (Sodani, 2015).

These memory management policies, though promising, perform page allocation

at a much coarser granularity. As the datasets of application are growing at an expo-

nential rate, there exists increased diversity in memory characteristics even within a

single application. Memory management at a coarser granularity such as application-

level, cache-line or highly-accessed pages leaves the benefits of the heterogeneous

memory system under-utilized. Furthermore, built-in APIs for memory management

puts the burden on the programmer to explicitly define these APIs in the application

source code.
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2.5 Distinguishing Aspects of this Thesis

This thesis identifies key gaps in architectural design and system management in

leveraging the promising benefits of silicon-photonics technology and optical phase

change memory. The major distinguishing aspects of this thesis in contrast to prior

state-of-the-art works are as follows:

• We design a simulation framework that characterizes the PV and TV sensitiv-

ities of MRRs and includes a model of the thermal control loop for thermal

tuning of MRRs. We are the first to model this thermal control loop, which

enables runtime thermal remapping of MRRs to the nearest resonant peak of an

optical signal. With the help of this thermal control model, the bandwidth allo-

cation policies developed in this thesis, SO-WAVES (Narayan et al., 2019) and

PROWAVES (Narayan et al., 2020b) reduces the photonic power substantially,

thus increasing the energy efficiency of silicon-photonic links. To further im-

prove these power management policies, we perform application instrumentation

on the software stack that can assist SO-WAVES and PROWAVES (Narayan

et al., 2020a). We also present the efficacy of silicon-photonic links for graph

workloads and discuss the architectural considerations of systems with silicon-

photonic links (Narayan et al., 2020c). These system management policies en-

able an energy-efficient design of chip-scale communication networks as well as

processor-to-memory networks.

• We are the first to design an optically-controlled non-volatile main memory that

can be directly accessed with silicon-photonic links. Our Co-designed Optical

phaSe change Memory and Optical link System, COSMOS, provides increased

memory throughput due to silicon-photonic links and increased bit density per

cell. COSMOS includes a hierarchical design of OPCM array microarchitecture
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with novel read/write access protocol. The design of the OPCM array combines

WDM and mode-division-multiplexing properties of optical signals to deliver

high internal memory bandwidth. We design an E-O-E control unit for seamless

integration of COSMOS with the processor. This E-O-E control unit receives

standard DRAM protocol commands from the processor, and converts them

into OPCM address, data, and control signals that are mapped onto optical

signals.

• With workloads exhibiting strong diversity in their memory characteristics, a

single memory module such as DDR4, LPDDR, RLDRAM, COSMOS, etc. fails

to sufficiently satisfy a wide range of diverse memory needs. With heteroge-

neous memory systems gaining popularity in a variety of computing systems,

we present a case for developing memory management policies at a fine granu-

larity. Our proposed framework, Memory Object Classification and Allocation,

MOCA (Narayan et al., 2018), performs memory managemenet at the granu-

larity of memory objects that are allocated in the heap space. MOCA profiles

an application and allocates memory objects within an application to memory

modules that are best suited to the objects’ memory characteristics.



Chapter 3

System-level Management of
Silicon-Photonic Links

With the emergence of CMOS-integrated silicon-photonic technology, photonic links

are being widely adopted as chip-scale networks since they provide high bandwidth

density and low latencies at minimal energy-per-bit communication. However, a

limiting factor towards the wide-scale adoption of silicon-photonic links arises from

the high power overhead in the laser, the circuitry for electrical-optical conversion and

thermal tuning. In this chapter, we characterize the network bandwidth requirements

in applications and present system-level policies that limit the photonic power with

minimal impact on application performance.

The chapter begins with the architectural description of a 2.5D manycore chip

that uses silicon-photonic links. We describe our cross-layer framework that models

the device-level sensitivities of silicon-photonic devices and the architectural details

of the 2.5D manycore chip, and evaluates the system-level performance, power and

thermal profile for different workloads. We present our system-level management

policy called wavelength selection (WAVES) to provide a power-efficient operation of

silicon-photonic links for a range of communication-intensive big data workloads. We

then demonstrate the efficacy of silicon-photonic links for graph workloads and present

the architectural opportunities in redesigning memory hierarchies with photonic links.

Next, we demonstrate the benefits of software-level application instrumentation on

top of wavelength selection policies for further reducing the photonic power.

33
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3.1 2.5D Manycore System with Silicon-Photonic Links

Off-chip Laser

Waveguide

Microrings Resonator 
Group (MRRG)

TxRx Chiplet
(1.8mm x 1.8mm)

Compute Chiplet
(5.6mm x 4mm)

Silicon Photonic Interposer
(15.68mm x 13.72mm)

Vertical Fibre
Attachment

(a)

A cluster with cores 
(with private  L1 I/D cache)

Shared distributed L2 cache 
per cluster

Adaptive distributed L3 
cache tile per cluster

(b)

Clock Generation

Thermal 
control

loop

Rx 
Comparator

Thermal 
control

loop

Serializer

From Compute 
Chiplets/IO

To Compute 
Chiplets/IO

Flow Control 
and Arbitration

Driver TIA

PhotodiodePhotodiode
MRRMRR

Waveguide Waveguide

Tx Circuitry MUX Rx Circuitry

(c)

λ1, λ2,…, λ14, λ15
MRRG1 MRRG2 MRRG3 MRRG4

MRRG8 MRRG7 MRRG6 MRRG5

pn MRRs for Tx
p-i-n MRRs for Rx Photodiode Waveguide

(d)

Figure 3·1: POPSTAR architecture. (a) 2.5D manycore chip with
six compute chiplets and eight TxRx chiplets that are integrated on
a photonic interposer. (b) Architecture of a compute chiplet, with
four clusters and four cores per cluster. (c) Architecture of a TxRx
chiplet, with circuitry for data modulation, data filtering, flow control
and arbitration. (d) SWMR routing of optical channels and MRRG
assignment.

In our work, we use a homogeneous 2.5D manycore chip with integrated silicon-

photonic interconnect on the interposer, called Processor On Photonic Silicon in-

Terposer ARchitecture (POPSTAR) (Thonnart et al., 2020). Figure 3·1 shows the

complete architecture and organization of POPSTAR. POPSTAR consists of 96 cores

that are organized into six compute chiplets. The analog and digital circuitry that

handle the photonic communication are organized into eight TxRx chiplets. The
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compute and the TxRx chiplets are integrated on a photonic interposer. In POP-

STAR, we consider off-chip laser sources that emit optical signals onto the photonic

interposer through a fiber attachment. Vertical grating couplers couple these optical

signals between the waveguides on the interposer and the fiber attachment.

Compute Chiplets

POPSTAR comprises of 96 IA-32 cores from SCC (Howard et al., 2010). These cores

are organized into six compute chiplets, each containing 16 cores. Within a chiplet,

the 16 cores are further organized into four clusters of 4 cores each, as shown in

Figure 3·1b. Each core has a private L1 I/D cache of 16KB. There is a shared

distributed L2-cache with 256KB per cluster, and a distributed L3-cache, with 4 L3

tiles (4× 1MB) per compute chiplet.

TxRx Chiplets

A compute chiplet accesses the silicon-photonic link on the interposer via a TxRx

chiplet. The TxRx chiplets are composed of analog and digital circuitry required for

modulating digital data on optical signals, and converting the data received on optical

signals back into digital data. Figure 3·1c shows the architecture of a TxRx chiplet.

There are six TxRx chiplets that are connected to the six compute chiplets, and two

TxRx chiplets are connected to the external peripherals, IOs, and memory controllers.

For data modulation, the TxRx chiplet uses a serializer and a modulation driver for

every wavelength of optical signals in the system. Similarly, for data filtering, there

is a TIA and a comparator circuit for every wavelength of optical signals. An analog

thermal loop (Thonnart et al., 2018) detects the photodiode current, compares it with

a reference bias current and supplies heating power to thermally tune the MRRs so

that the detected photocurrent is equal to the reference current. The TxRx chiplet

uses FIFO queues and multiplexers to handle the flow control.
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Network Architecture

The silicon-photonic network on the interposer handles the data and coherence traffic

between the chiplets and main memory. The global network topology connecting the

TxRx chiplets is a Single-Writer Multiple Reader (SWMR) topology. The optical

channels are mapped onto a U-shaped spiral of waveguides on the photonic inter-

poser, as shown in Figure 3·1d. Each TxRx chiplet can send data over any of the

optical signals in the system. The data passes through the appropriate waveguide

and is routed to the destination TxRx chiplet, where the data is filtered out by the

photodetector. The data rate of each optical channel is 12Gbps, resulting in a peak

aggregate bandwidth of 1.5Tbps on the interposer with 16 optical channels.

MRRG Architecture

Each of the 8 TxRx chiplets has a set of MRRs organized underneath into an MRRG.

An MRRG consists of 16 WDM bundle of MRRs, with each WDM bundle operating

at a different optical channel. For each optical channel, an MRRG consists of a single

Tx MRR for data transmission to seven other TxRx chiplets and seven Rx MRRs for

receiving data from seven other TxRx chiplets. The Tx MRR in an MRRG modulates

data on one optical channel, which traverses through the silicon-photonic link to the

other MRRGs. The seven Rx MRRs in an MRRG are utilized to receive data from

MRRGs in other seven TxRx chiplets. The MRRs have a radius of 10µm, and designed

around a center wavelength of 1310nm with an FSR of 10.8nm. Thermal tuning of

MRRs is achieved via dedicated local heaters.
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Table 3.1: Notations used in modeling of silicon-photonic links.

Notation Description
C Number of TxRx chiplets (and waveguides)
λtot # available optical channels in the system
λact # activated optical channels
λmin Minimum # optical channels required for an application

∆λshift MRR wavelength shift due to PV and TV
∆λheat Thermal tuning shift required for an MRR

dλ
dH

Heater efficiency
Pheat Heating power for MRR thermal tuning
Plaser Overall laser power in the system

3.2 Cross-layer Simulation Framework for Silicon-Photonic
Links

We design a simulation framework to evaluate the runtime characteristics of workloads

on POPSTAR. Our simulation framework is a cross-layer approach that models the

impact at different levels in the computing stack. (a) At the device-level, we model

the impact of TV and PV on the MRR resonant wavelength, and the analog thermal

control loop that enables thermal remapping during different application phases, (b)

at the architectural-level, we model the processor architecture, communication traffic

arising in the silicon-photonic link and power consumed in different circuit elements

in the TxRx chiplet, and (c) at the system-level, we model performance, power and

thermal profile of workloads when executed on POPSTAR, and implement our system-

level policies to reduce the photonic power. Table 3.1 lists the notations used in

modeling the different parameters in our framework.

3.2.1 Device-level Modeling

As explained in Section 2.2.2, the resonant wavelength of MRRs shifts due to vari-

ations in temperature and fabrication process imperfections. In large 2.5D systems,
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the high compute activity across the chip introduces thermal hot spots and large

thermal gradients on the chip, which can reach temperatures > 85oC for compute-

intensive applications (Abellán et al., 2017). These temperature variations are not

only temporal, but also spatially lateral, since heat is not uniformly spread across the

interposer. Additionally, the process variations are mostly geometric and introduce

a random component. During the fabrication process of a die reticle, two distant

MRRs in the same die may experience completely different variations in their reso-

nant wavelength. To ensure reliable on-chip communication in the photonic link, it

is, therefore, essential to mitigate the impact of thermal and process variations on

the resonant wavelength of the MRRs.

For modeling the thermal-variation-induced resonance shifts in MRRs, we consider

MRR thermal sensitivity of 78pm/K (Thonnart et al., 2018). Given the small area

footprint of an MRRG, we assume that all the MRRs within an MRRG are at the

same temperature at a given time. As a consequence, all the MRRs within an MRRG

undergo the same resonance shift due to thermal variations. Characterization studies

at the die and wafer level show that the process variations of MRRs can be modeled as

a gaussian distribution (Thonnart et al., 2020). We, therefore, model the local MRRG

process variations as a gaussian distribution with a standard deviation of 100pm. The

overall wavelength shift (∆λshift) for an MRR can be expressed as follows:

∆λshift = dλ
dT
·∆T + ∆λshift,PV . (3.1)

From Section 2.2.2, we saw that active control of resonant wavelength of MRRs is

performed by supplying heat to thermally tune the MRR to a higher order resonant

wavelength. The heating power to thermally tune the MRR depends on the overall

resonant wavelength shift of the MRR, the FSR and the heater sensitivity. Since

two adjacent resonant peaks are separated by FSR, the maximum wavelength shift
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required for an MRR is one FSR. With WDM, it is possible to multiplex multiple

optical signals in a waveguide, with the peak resonant wavelength of each signal evenly

spaced in the FSR. Therefore, an MRR can now be tuned to the nearest resonant

peak in the FSR. With a total of λtot optical signals, the maximum wavelength shift

required for an MRR is FSR/λtot. The analog control loop in the TxRx chiplet

detects the aggregate resonant shift of each MRR and supplies appropriate heating

current to lock the MRR to its nearest resonant peak (Thonnart et al., 2018). This

tuning range can be expressed as follows:

∆λheat = FSR
λtot
− (∆λshift mod

FSR
λtot

) (3.2)

The total heating power in POPSTAR can be calculated by aggregating the

heating power across all Tx and Rx MRRs. With a heater efficiency (dλ/dH) of

100pm/mW , the total heating (Pheat) is calculated as follows:

Pheat =
∑C

i=1

∑C·λact
r=1

∆λheatir
dλ
dH

. (3.3)

3.2.2 Architecture-level Modeling

The system performance and the energy of the silicon-photonic links is highly im-

pacted by its microarchitectural details. We model the core microarchitecture of

POPSTAR, which is described in Section 3.1. The silicon-photonic link is modeled as

SWMR topology with a point-to-point latency of one cycle and a data rate of 12Gbps.

The packets sent on the silicon-photonic link consist of data and coherence accesses

by a core to an LLC on a separate chiplet in addition to the main memory accesses.

The network traffic in the silicon-photonic link impacts the laser power and the

active power in the circuit elements in the TxRx chiplet. These powers are, therefore,

a strong function of the number of optical channels in the system. The laser source

power of a single wavelength (PL) should be higher than the sum of the worst-case
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Table 3.2: Power consumption of a laser source and the different active
elements in TxRx chiplet for E-O-E conversion (Polster et al., 2016)

Component Active Power Idle Power
Notation Value (mW) Notation Value (mW)

Laser (wall-plug) PL 30 0
Serializer Psrl,a 3 Psrl,i 1
Driver Pdrv 3 0
Rx Comparator Pcmp,a 1 Pcmp,i 0.33
TIA PTIA 2 0
Arbitration and
Flow Control Parb,a 32 Parb,i 10

power loss in the silicon-photonic link and the photodetector sensitivity. We calculate

this value as 30mW . The overall laser power, Plaser, for λact laser wavelengths can

then be expressed as:

Plaser = PL · C · λact . (3.4)

To calculate the power consumed in the EOE circuit elements in the TxRx chiplet,

we consider the active and idle power of each element. Table 3.2 displays the active

and idle power that are determined from the post-layout simulations using Prime-

Time power analysis (Polster et al., 2016). We break down the overall EOE power

consumption into the power consumed by the Tx circuitry, Rx circuitry and the logic

for arbitration and flow control. Depending on the number of active optical channels

in the silicon-photonic link, we express the overall EOE power as follows:

PTx = Pdrv · λact + Psrl,a · λact + Psrl,i · (λtot − λact) , (3.5)

PRx = PTIA · λact + Pcmp,a · λact + Pcmp,i · (λtot · C − λact) , (3.6)

Parb = Parb,a · λactλtot
+ Parb,i · λtot−λactλtot

, (3.7)

PEOE = C · (PTx + PRx + Parb) . (3.8)
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Figure 3·2: Simulation framework for modeling performance, power
and temperature of POPSTAR.

3.2.3 System-level Performance, Power and Thermal Modeling

To evaluate the performance and power consumption of POPSTAR with different

wavelength selection policies, we set up a simulation framework that is composed of

a performance simulator, a logic core power calculator, a PNoC power model and a

thermal simulator. Figure 3·2 depicts our system-level toolflow. For our experiments,

we use a diverse set of HPC applications from PARSEC (Bienia et al., 2008), SPLASH-

2 (Woo et al., 1995), UHPC (Campbell et al., 2012), HPCCG (Heroux, 2007) and

NAS Parallel Benchmark (Bailey et al., 1991). We also conduct experiments on large

scale graph processing algorithms from the GAP-BS benchmark (Beamer et al., 2015).

For graph applications, we use real-world datasets from the Stanford Large Network

Dataset Collection (Leskovec and Krevl, 2014). Table 3.3 details the HPC and graph

workloads from these benchmarks.

We model the architectural details of POPSTAR in Sniper (Carlson et al., 2011)

for simulating the performance of applications. In our simulations, we fast forward the
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initial phase of the application execution to the ROI. For each application, we execute

10 billion instructions in the ROI unless the application ROI finishes earlier. During

this execution, we collect the performance traces pertaining to the PNoC activity for

every interval. The interval size in our experiments is 100 million instructions, unless

otherwise stated. To understand the impact of our system-level policies for different

system utilization, we run each application with varying number of thread counts.

We use McPAT (Li et al., 2009) for calculating the core and cache power at every

interval. We feed the performance statistics from Sniper as input to McPAT. McPAT

calculates the dynamic power of all the active elements in the core based on their

activity. We calibrate the McPAT power numbers by scaling these numbers to the

published average power of the IA-32 core (Howard et al., 2010). We assume that the

idle cores are put to sleep and consume negligible power. We calculate the leakage

power in the cores using a linear temperature-dependent model. The power consumed

in the silicon-photonic link comes from the laser source, the EOE circuit elements in

the TxRx chiplet and the heating power to thermally tune the MRRs. We use our

analytical model to calculate the laser power (Equation 3.4), EOE power (Equation

3.5-3.8) and the heating power (Equation 3.3) for each interval based on the number

of active optical channels at that interval.

Table 3.3: Description of applications from the HPC and Graph
Benchmarks used in system simulations of silicon-photonic links.

Application Descripion
mg Multi-grid on a sequence of meshes
sp Scalar Penta-diagonal solver
bt Block Tri-diagonal solver
is Integer Sort
ft Discrete 3D Fast Fourier Transform
lu Lower-Upper Gauss-Siedel Solver

hpccg High Performance Computing Conjugate Gradients
pr PageRank
bfs Breadth-First Search
bc Betweenness Centrality
sssp Single-source Shortest Paths
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Figure 3·3: (a) Layout of POPSTAR along with the dimensions of
compute and TxRx chiplets, (b) Cross-sectional view of POPSTAR
with the different layers in 2.5D integration

We use the 3D extension of HotSpot (Skadron et al., 2003; Meng et al., 2012)

to determine the transient temperatures of MRRs. HotSpot uses the power traces

for core and caches from McPAT and the power traces for the TxRx chiplet from

Equation 3.5-3.8. We model the layout of the compute and TxRx chiplets as shown

in Figure 3·3a. The 3D cross-section of POPSTAR is shown in Figure 3·3b, where

the chiplets are integrated on the interposer via microbumps using BEOL integration

technology. For efficient vertical heat dissipation, there is a heat spreader and heat

sink over the POPSTAR chip. Table 3.4 shows the material properties of different

layers. We calibrate the HotSpot temperatures to the temperatures obtained from

Project Sahara, which is a signoff thermal tool from Mentor. We obtain HotSpot tem-

peratures within 2% error margin of Project Sahara on average. Figure 3·4 illustrates

the thermal map of POPSTAR in Project Sahara and HotSpot.
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Table 3.4: Material properties and dimensions of different layers in
POPSTAR

Layer Thickness
(µm)

Thermal
conductivity
(W/m.K)

Specific
heat

(J/kg.K)
Density
(kg/m3)

Heat sink 6900 400 396 8960
Heat spreader 1000 400 396 8960

TIM 10 6.8 900 1300
Chiplets 750 150 700 2330
BEOL 10 145 612 4237

Microbump Pitch=40,
diameter=20 0.86 846 2689

Interposer 750 150 700 2330

Sahara HotSpot
65
64
63
62
61
60
59
58

oC

(a) Interposer layer.

Sahara HotSpot
68
67
66
65
64
63
62
61

oC

(b) Chiplet layer.

Figure 3·4: Thermal map of POPSTAR in Sahara tool (Parry and Wang,
2018) and HotSpot tool (Skadron et al., 2003)

3.3 Wavelength Selection for Energy-efficient Silicon-Photonic
Links

The high data footprints and the growing on-chip communication traffic in data-

centric applications necessitate the design of silicon-photonic links with increased

peak bandwidth. The peak aggregate bandwidth of a silicon-photonic link is the

product of λact and the modulation bit rate of an optical channel. For applications

with high inter-chiplet communication, a higher λact provides increased communica-

tion bandwidth, and therefore, is desirable for higher performance. Figure 3·5a shows

an improvement in application performance as the number of optical channels in the

silicon-photonic link increases. However, the overall photonic power consumed in the

laser source, EOE circuitry in TxRx chiplet and the MRR thermal tuning also in-
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creases with an increase in optical channels. Equations 3.3, 3.4-3.7 and 3.2 show the

dependence of laser power, E-O-E power and thermal tuning power, respectively, on

the number of active optical channels (λact) in the silicon-photonic link. Figure 3·5b

also shows the rise in overall system power with increasing optical channels. This

increased photonic power consumption limits the ability to provide high bandwidth

density for applications. From Figure 3·5a, we observe a general trend that the sys-

tem performance tends to saturate at a particular λact. As a result, we can activate

the minimum number of optical channels, λmin, that sufficiently caters to the re-

quired bandwidth needs of an application. We now present our proposed wavelength

selection policy (WAVES), which can be performed either statically before the ap-

plication execution (SO-WAVES), or dynamically during the application execution

(PROWAVES).
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Figure 3·5: (a) Normalized execution time and (b) system power break-
down with different number of active optical channels (λact) in the silicon-
photonic link.

3.3.1 Static Policy: SO-WAVES

In SO-WAVES policy, we determine the minimum number optical channels that can

satisfy the average bandwidth needs of an application. An application has the highest

performance when run with λtot optical channels. We set a performance loss thresh-
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old, Lthr, from the maximum performance that is deemed accepted for the system.

We reduce the optical channels from λtot and determine the minimum number of op-

tical channels, λmin, that provides a performance within the set Lthr. At runtime,

we execute the application with λmin optical channels out of a total of λtot optical

channels. Section 3.3.3 explains the selection of the best combination of λmin from

λtot considering the process variations of MRRs, thermal profile of the chip and the

MRR locking mechanism.

3.3.2 Dynamic Policy with Time-series Prediction: PROWAVES

Figure 3·6 illustrates that the transfer of network packets in silicon-photonic links

is highly dynamic and periodic during the application execution. The plot shows

that applications have varying trends in bandwidth requirements. Since SO-WAVES

selects a single λmin for the entire application execution, much of the power benefits

from wavelength selection remain under-utilized. Therefore, a dynamic policy that

can select the minimum optical channel at each application phase is desirable. To this

end, we consider a Dynamic Oracle WAVES (DO-WAVES), which selects λact = λmin

within the set Lthr at each application phase. It is imperative to note that DO-

WAVES policy is not practically realistic as it assumes accurate knowledge of the

future execution trends to select the optimal λmin at each application phase. Our

goal is to design a proactive policy that can closely match the λmin of DO-WAVES.

PROWAVES is a dynamic policy that predicts the network activity for an appli-

cation phase using time-series forecasting, and proactively determines the λmin for

that phase. The network activity in the silicon-photonic link is characterized by the

average packet latency, which is expressed as follows:

Latavgi =
Tqueuei
Npi

, (3.9)
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Figure 3·6: Inter-chiplet packets transferred during application execution
for (a) bt, (b) ep, (c) shock, and (d) lu. Applications have phases where a
higher number of packets are transferred compared to other phases and these
phases exhibit periodic behavior.
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Figure 3·7: Trends and seasonality in the Latavg time series for (a) bt, (b)
ep, (c) shock, and (d) lu.

where Tqueuei is the aggregate queue latency of all packets, and Npi is the total number

of packets transferred during an application interval i.

We utilize an ARIMA (Box et al., 2015) predictor to forecast Latavg for each ap-

plication interval by utilizing past trends in Latavg. ARIMA model requires the time

series to be stationary i.e., the time series should be devoid of trends and/or season-

ality. The average packet latency experiences minimal trends but strong seasonality

during the application execution as depicted in Figure 3·7. We convert this time

series to stationary by computing the difference between consecutive time intervals,

a process known as differencing.

The ARIMA (p, d, q) forecasting model consists of: 1 an autoregression model

that forecasts a variable using the relationship between an observation and p prior

observations, 2 differencing of raw observations d times to make the time-series sta-
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Figure 3·8: Flow of PROWAVES. Every interval, the ARIMA model fore-
casts the Latavg. The linear regression model selects the λmin from the
forecasted Latavg. A K-S test is applied to update the ARIMA model in
case of divergence.

tionary, and 3 a moving average model applied to q prior observations to extract the

dependency between an observation and its residual error. We build the best-fitting

ARIMA(p, d, q) model using the Akaike information criterion (AIC) (Akaike, 1969).

The AIC estimates the goodness of fit of the model on the dataset, by determining

the relative information lost by the ARIMA model. The less information the model

loses, the higher the quality of that model. We start with an ARIMA(1, 0, 0) model

and perform a grid search for a range of p, d and q parameters. We increment these

parameters and determine the values that yield the lowest AIC value.

Figure 3·8 shows the operational flow of PROWAVES policy. During each interval,

we use the ARIMA(p, d, q) model to forecast the average packet latency for the

following interval. A time series, however, may diverge from the initial training

dataset and result in inaccurate forecasting. We incorporate a goodness-of-fit test to

detect the divergence of the real data from the ARIMA predicted data. We integrate

Kolmogorov-Smirnov (K-S) (Massey Jr, 1951) test into the ARIMA model to run

every interval. If the K-S test fails during an interval, i.e., marked by 1 in Figure 3·8,

we rebuild the ARIMA model by grid-searching again over the range of p,d and q
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parameters. An updated ARIMA(p, d, q) model is then utilized to forecast for the

following intervals.

With the predicted Latavg, we determine the λmin required for the next interval.

We devise a methodology to correlate the Latavg to the optimal λmin, which is selected

by DO-WAVES. For different intervals of our training applications, we determine the

λmin that provides a performance within the set Lthr at those intervals. Figure 3·9

shows a plot of λmin against the log of Latavg at those intervals. We fit a line through

these points, such that 90% of the points are above this line to ensure that the

bandwidth needs at an interval is always satisfied. We store the parameters of this

linear regression model on-chip. At runtime, PROWAVES determines the λmin for

the next interval based on the forecasted Latavg using the linear regression model.
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Figure 3·9: Scatterplots of Latavg vs λmin selected by DO-WAVES for
Lthr = 5%. (a) shows the line with least mean square error, (b) shows the
line such that 90% of the points are above the line.

3.3.3 MRR Locking with Wavelength Selection

During application execution with PROWAVES, due to resonance shift, the MRRs

need to be locked to the activated optical channels under three conditions: 1 when

PROWAVES increases the number of optical channels due to increased bandwidth

demand, 2 when PROWAVES reduces the number of optical channels due to lower
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Figure 3·10: Thermal remapping of MRRs to λact. As chip activity varies
during execution, the thermal profile of MRRGs varies, causing MRRs within
an MRRG to map to different optical channels.

bandwidth demand, and 3 a large temperature drift introduces a resonance shift

greater than FSR/λtot. For each of these three scenarios, the analog thermal control

loop in the TxRx chiplet supplies heating power to remap these MRRs to the nearest

laser wavelength in the spectrum.

Figure 3·10 shows an example of the thermal remapping of MRRs. When the MRR

shift increases over the tuning range of the heaters, the computation is temporarily

halted. An on-chip LUT is polled to determine the set of λact laser wavelengths that

result in the lowest thermal tuning power. The thermal control loop then supplies the

heating power to lock the MRRs to these new λact optical channels. This is shown in

Fig. 3·10, where the MRRs resonate at different laser wavelengths after remapping.

Similarly, when PROWAVES increases or decreases the λact during application exe-

cution, the on-chip LUT is polled to identify the new set of MRRs that needs to be

mapped to the selected λact.
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3.3.4 Hardware Cost of Wavelength Selection

Implementation of SO-WAVES or PROWAVES policy on a 2.5D system comes at

a minimal hardware cost. In SO-WAVES, an offline analysis determines the λmin

for the entire application execution. Thus, SO-WAVES does not incur any runtime

hardware overhead for determining λmin. In PROWAVES, the hardware performance

counters are polled at the end of every interval to read out network activity statistics,

i.e., the number of inter-chiplet packets transferred and overall queue time. An initial

ARIMA model is created using these statistics from the training interval and the

model parameters (p, d, q) are stored. On average, this ARIMA model is created in

72ms for an application. This ARIMA model is utilized to determine the λmin for the

next interval in parallel with the execution of the current interval. We observe that

ARIMA forecasting takes less than 0.1% of the execution time of an interval and,

therefore, is always hidden in the execution time of the current interval.

Once λmin for the next interval is determined, we need to activate the best com-

bination of λmin among a total of
(
λtot
λmin

)
combinations. An LUT holds floating point

values of heating power for all the MRRGs, λtot wavelengths and temperature range

of 300 − 380K (0.5K precision). The memory footprint of this LUT is estimated as

400kB, and can be stored on-chip. At runtime, depending on the thermal profile at

the end of an interval, we poll this LUT and exhaustively search across all the laser

combinations to determine the best combination of λmin. As the worst-case LUT

access time is ≤
(
λtot
λtot/2

)
· C lookups and additions, this latency is hidden within the

thermal remapping latency (100µs).

A major factor contributing to the performance overhead in PROWAVES comes

from the latency associated with increasing and decreasing the optical channels. Fig-

ure 3·11 illustrates the latencies of different components in PROWAVES during an

application execution. The ARIMA model predicts λmin for the next interval in par-
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Figure 3·11: Latency overhead of PROWAVES. Increasing λmin involves
laser activation (2ns) and thermal remapping (100µs). Decreasing λmin in-
volves laser deactivation (2ns) and flushing pending packets (100ns− 1µs),
both of which are hidden in the computation time.

allel with the execution of current interval. MRR remapping, if required for the next

interval, begins at the completion of the current interval. When λmin is increased,

the latency comprises of the laser power-on latency and the thermal remapping of the

new group of MRRs to the activated optical channels. Laser power-on takes about

2ns with relatively low drift (Simon et al., 2016). Once the laser wavelengths are acti-

vated, the thermal control loop remaps the MRRs to the activated laser wavelengths

in 100µs (Thonnart et al., 2018). Therefore, activating additional laser wavelengths

during an application execution introduces a latency overhead of 100µs.

When λmin is decreased, the next application interval requires deactivation of

certain laser sources (2ns (Simon et al., 2016)). We observe that there is no additional

WDM group of MRRs that needs to be tuned to the new set of laser wavelengths,

therefore, the MRR thermal remapping during laser deactivation is not necessary.

We simply release the heating power on the MRRs that were communicating via

the deactivated laser wavelengths, and maintain the heating power on the remaining

MRRs 1. However, decreasing λmin at runtime requires flushing the pending packets

on deactivated laser wavelengths. We measure the worst-case completion of pending
1Note that when deactivating laser wavelengths, we do not perform LUT lookup to select λmin,

as the LUT lookup requires MRR thermal mapping to a new set of λmin with a remapping cost of
100µs. So the activated λmin may not be the best combination that result in lowest thermal tuning
power.
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packets in the PNoC to be 100ns − 1µs, and this latency is hidden in the next

application interval. Hence, the overall latency of decreasing λmin is negligible.

3.3.5 Experimental Results and Analysis

We evaluate the power benefits of performing wavelength selection by comparing

SO-WAVES and PROWAVES against a baseline policy that activates all the optical

channels throughout the application execution. Moreover, we contrast the benefits

of thermal remapping obtained with the modeling of analog thermal control loop by

comparing PROWAVES to a prior power scaling technique (Van Winkle et al., 2018).

We also quantify the performance overheads of SO-WAVES and PROWAVES. We

conduct our experiments with varying system utilization by running the application

with different thread counts. In all experiments, we use Lthr values of 1% and 5% to

demonstrate the user flexibility of setting the performance loss threshold and exploring

the bandwidth-power tradeoffs in silicon-photonic links.

Power Benefits of SO-WAVES with Varying System Utilization

We evaluate the power benefits of SO-WAVES for different system utilizations by

varying the thread count in applications. Each application is run with Lthr values of

1%, 5% and 10%. Figures 3·12a-d shows the power savings for different applications

running on POPSTAR with 24, 48, 72 and 96 threads, respectively. In most appli-

cations, larger thread counts result in increased inter-chiplet network traffic among

the communicating threads. Consequently, larger thread counts require higher λmin.

This is evident in canneal and cholesky applications running 96 threads, which require

all the optical channels to be activated, even for an Lthr of 10%. Moreover, for ap-

plications with lower communication traffic (e.g., blackscholes, barnes, and lu.cont),

the system performance saturates for a lower λact compared to other applications. As

a consequence, even for a 1% Lthr, a lower λmin is activated and we observe aver-
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Figure 3·12: Photonic power consumption of POPSTAR with SO-WAVES
for (a) 25% system utilization, (b) 50% system utilization, (c) 75% system
utilization, and (d) 100% system utilization.

age power savings of 38%. For applications with higher communication traffic (e.g.,

canneal, swaptions, and cholesky), the high network traffic demands higher λmin,

resulting in average power savings of only 8% for Lthr = 1%. On average across all

applications, SO −WAV ES achieves 23%, 38%, and 42% average photonic power

savings with 1%, 5%, and 10% performance loss, respectively.

Power Benefits of PROWAVES with Varying System Utilization

We next study the power benefits of the proactive dynamic WAVES policy, PROW-

AVES, in contrast to SO-WAVES. We also compare the power benefits of PROWAVES

to DO-WAVES, which selects the theoretical minimum number of optical channels for

an interval. Our goal with PROWAVES is to select a λmin that is as close as possible to

the λmin selected by DO-WAVES. Our baseline case activates all the optical channels
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Figure 3·13: Photonic power consumption of POPSTAR with different
WAVES policies for (a) 50% system utilization, Lthr = 1%, (b) 100% system
utilization, Lthr = 1%, (c) 50% system utilization, Lthr = 5%, and (d) 100%
system utilization, Lthr = 5%.

in the systems, i.e., (λact = λmin). Figure 3·13 shows the photonic power consumption

with different WAVES policies under varying system utilization.

SO-WAVES consumes 8.6% and 21% lower PNoC power on average than the base-

line case for an Lthr of 1% and 5%, respectively. DO-WAVES is able to uncover addi-

tional photonic power savings in the system by activating lower λmin during phases of

low bandwidth needs. This is in contrast to SO-WAVES that selects and activates a

single λmin during the entire application execution. As a result, for Lthr of 1% and 5%,

DO-WAVES provides 34.4% and 40.7% reduction in photonic power than the base-

line. In comparison, for Lthr of 1% and 5%, the system with PROWAVES consumes

18% and 33% lower photonic power than the baseline and 10.2% and 16.4% lower

photonic power than SO-WAVES respectively. The power savings with PROWAVES



56

is within 12% of the theoretical minimum, which is achieved by DO-WAVES. The

power savings obtained from PROWAVES lowers with increasing system utilization.

With a higher number of threads per chiplet, there is an increased inter-chiplet net-

work traffic, resulting in higher bandwidth requirements. Consequently, a higher λmin

is selected to satisfy the high bandwidth needs.

Thermal Tuning Power Savings with PROWAVES

A primary benefit of our cross-layer modeling in SO-WAVES and PROWAVES is

obtained with the modeling of the thermal control loop that enables runtime MRR

locking. We, therefore, compare PROWAVES against a power scaling technique based

on a ridge regression model (RR-PS) (Van Winkle et al., 2018). With a feature set

consisting of network metrics and L1/L2 cache misses, RR-PS predicts the number

of packets transferred in the PNoC. Using the predicted number of packets, RR-PS

calculates the minimum number of optical channels that can support the network

packets. A major limitation of RR-PS comes from the lack of TV and PV modeling,

and the resulting thermal tuning power. Here, we evaluate the two major benefits

of PROWAVES: (1) the modeling of the low-level thermal control loop that enables

MRR thermal remapping, and (2) the selection of best λmin for every interval.

Figure 3·14a shows the thermal tuning power in POPSTAR with PROWAVES or

RR-PS. The impact of TV and PV-induced resonance shift is prominently observed

in RR-PS compared to PROWAVES. Due to the lack of modeling a control loop for

thermal tuning in RR-PS, all the MRRs need to be tuned to the designated laser

wavelengths. Therefore, the average case tuning range for a random PV distribution

across MRRG in RR-PS is FSR/2. In contrast, the presence of a control loop for

thermal tuning in PROWAVES enables thermal remapping to the nearest activated

laser wavelength, resulting in a worst-case tuning range of FSR/λact. Since we model

the low-level thermal control loop at the system-level, we are able to capture the
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Figure 3·14: Thermal tuning power comparison between RR-PS and
PROWAVES. In (a), RR-PS does not model thermal control loop that
enables thermal remapping, as initially proposed in (Van Winkle et al.,
2018). In (b), RR-PS is updated to include a thermal control loop model as
PROWAVES, but does not select best λmin that accounts for PV.

benefits of thermal remapping and significantly reduce the overall thermal tuning

power. Compared to RR-PS, PROWAVES consumes 24.6W and 26.3W lower thermal

tuning power with an Lthr of 1% and 5% respectively. Thus, modeling of the thermal

control loop is essential to evaluate system-level power benefits.

Since thermal control loop is essential for thermal remapping and significantly

reduces the thermal tuning power, we incorporate its modeling in RR-PS in Fig-

ure 3·14b. This modeling enables us to isolate the specific benefits of wavelength

selection. PROWAVES accounts for the impact of PV-induced resonance shift, which

varies across MRRs in an MRRG, and across different MRRGs. PROWAVES acti-

vates the best combination of laser wavelengths to reduce the impact of PV-induced

resonance shifts as opposed to RR-PS with TCL, which always selects a fixed set

of laser wavelengths for an interval. This finer level of wavelength selection in

PROWAVES reduces the thermal tuning power by 7.1% and 22.01% for Lthr of 1%

and 5% respectively, as compared to RR-PS.
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Figure 3·15: Normalized execution time and wavelength switching over-
head with different WAVES policies for (a) 50% utilization, Lthr = 1%, (b)
100% utilization, Lthr = 1%, (c) 50% utilization, Lthr = 5%, and (d) 100%
utilization, Lthr = 5%. The dotted line indicates Lthr.

Performance Overhead in Wavelength Selection

Figure 3·15 shows the execution time of applications with the baseline case (λact =

λtot) and under different policies, normalized to the baseline case. For each applica-

tion, we calculate the wavelength switching overhead of PROWAVES by determining

the count of thermal remappings arising due to laser activation or a large thermal

drift during the execution. On average, this switching overhead is computed to be

only 0.73% of the overall execution time for PROWAVES. Since we calculate the

λmin for PROWAVES by comparing only the computation time with the performance

loss threshold, the overall execution time including the wavelength selection overhead

occasionally violates the set Lthr.

Compared to the execution time of SO-WAVES, the dynamic selection in

PROWAVES is able to provide better performance at lower PNoC power, leading
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Figure 3·16: Comparison of λmin selected by DO-WAVES and
PROWAVES with Lthr = 5% for applications (a) bt, (b) is, (c) sp, and
(d) mg. During periods of high bandwidth needs, a higher λmin is activated,
and during periods of lower bandwidth needs, a lower λmin is activated.

to much lower PNoC energy compared to SO-WAVES. In PROWAVES, higher λmin

is selected during periods of high bandwidth needs and a lower λmin is selected dur-

ing periods of lower bandwidth needs. In contrast, since SO-WAVES only selects

a single λmin throughout the application execution, this λmin is roughly averaged.

Therefore, during periods of high bandwidth needs, SO-WAVES falls short of select-

ing the optimal λmin. Similarly, during periods of low bandwidth needs, SO-WAVES

overestimates and selects a higher λmin than required.

Forecasting Accuracy of PROWAVES Policy

Figure 3·16 illustrates the deviation of λmin selected by our proposed PROWAVES

policy from DO-WAVES. This deviation in the selected λmin and the resultant lower

power savings in PROWAVES can be attributed primarily to two major reasons.
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Figure 3·17: Latavg values from Sniper simulations and forecasted Latavg
values using ARIMA model for applications (a) bt, (b) ep, (c) shock, and (d)
lu running 96 threads.

First, the Latavg predicted by the ARIMA model does not have a 100% forecasting

accuracy. Second, the linear regression model used to correlate the predicted Latavg

to the DO-WAVES λmin has inaccuracies that further contribute to a slightly different

λmin. Figure 3·17 illustrates the simulated values of Latavg on Sniper and the predicted

Latavg values by ARIMA. We calculate the mean squared error of predicted Latavg

as 0.019ns2. Thus, our ARIMA predictor with K-S test has an automated process of

forming the model with 96.3% accuracy. Figure 3·17 depicts the Latavg values from

our Sniper simulations and the forecasted Latavg values from our ARIMA model. We

observe that the ARIMA model with K-S test captures the seasonality in the Latavg

time series with high precision.

We analyze the selected λmin against the training data in the linear regression

model. We obtain an R-squared value of 0.916 with a low p-value, strongly sug-

gesting that changes in the predictor’s value (Latavg) are related to changes in the
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Table 3.5: Summary of modeling parameters and results of different
wavelength selection policies

RR-PS [25] SO-WAVES [18] PROWAVES
Static/dynamic

policy Dynamic Static Dynamic

Model Ridge
regression Offline ARIMA

Thermal control
loop modeling No Yes Yes

Process variation
modeling No Yes Yes

Power savings
over baseline 13% 8.6%a

21%b
18%a

33%b

Latency overhead a1% Lthr, b5% Lthr

response variable (λmin). This shows that Latavg is statistically significant in pre-

dicting λmin. We observe from Fig. 3·16 that during each phase of an application

run, PROWAVES selects a λmin that is equal to or higher than the λmin selected by

DO-WAVES. Therefore, at the cost of slightly lower power savings, the performance

with PROWAVES is always better than DO-WAVES.

Summary of wavelength selection policies

The model for thermal control loop and the resultant MRR remapping enables SO-

WAVES and PROWAVES to reduce higher photonic power when compared to RR-

PS. Moreover, the dynamic wavelength selection in PROWAVES when helps uncover

additional photonic power savings compared to SO-WAVES, while staying within the

performance threshold. Table 3.5 summarizes the results and modeling parameters

of PROWAVES compared to RR-PS (Van Winkle et al., 2018) and SO-WAVES.

3.4 Silicon-Photonic Links for Graph Workloads

Graphs represent the basic relationship between two vertices. With data in several

application domains becoming increasingly connected, graphs are rather ubiquitous

in social networks, financial sectors, transportation representations and webpages.
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A primary bottleneck in graph applications arises from the highly irregular memory

access patterns resulting in poor spatial and temporal locality (Ahn et al., 2015).

These irregular access patterns often result in high and frequent memory accesses.

In 2.5D systems, when the LLCs are spread across multiple chiplets, the memory

accesses constitute a major fraction of the application execution time (Wang et al.,

2019). These graph processing applications require more than 1Tbps bandwidth in the

communication network. Though silicon-photonic networks are able to meet the high

bandwidth density demands of graph applications, the high photonic power limits the

energy efficiency of the overall system. In this section, we demonstrate the efficacy of

WAVES in reducing the photonic power when running graph applications.

3.4.1 Evaluation of Wavelength Selection for Graph Workloads

We simulate the execution of graph applications from GAP-BS (Beamer et al.,

2015) benchmark when run on POPSTAR using our cross-layer simulation frame-

work. Table 3.3 shows the description of the graph applications used in these sim-

ulations. We evaluate these applications on three datasets, two Kronecker graphs

with 218 and 220 nodes and a real-world dataset from Google web graph (|V|=875713,

|E|=5105039) (Leskovec and Krevl, 2014).

Figure 3·18 illustrates the normalized execution time of graph applications as we

increase the peak aggregate bandwidth in the interposer by activating more optical

channels. Even for graph applications, we observe that the performance saturates

at different bandwidth values for different applications. We apply our wavelength

selection policy, SO-WAVES, on graph applications using a performance loss thresh-

old of Lthr = 1%. We determine the best combination of λmin that result in the

lowest thermal tuning range. Figure. 3·19 shows the normalized photonic power with

λmin, compared to the power with the highest bandwidth, i.e. λtot. SO-WAVES pro-

vides 36% average reduction in power with λmin than when using the peak aggregate
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Figure 3·18: Normalized performance with increasing inter-chiplet
bandwidth for graph applications on Google web graph. The per-
formance is normalized to the performance with peak bandwidth of
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Figure 3·19: Photonic power consumption with SO-WAVES for graph
applications on three different datasets. Power numbers are normalized
to baseline case where all laser wavelengths are activated.

bandwidth with λtot. We observe that graphs with larger datasets consume higher

photonic power. This is due to the increased bandwidth needs and higher inter-chiplet

communication traffic as the scale of input dataset increases.

3.4.2 Architectural Exploration for Graph Workloads

Silicon-photonic links provide higher orders of bandwidth density compared to elec-

trical links and meet the bandwidth demands of graph applications. Thus, there is

an opportunity to rethink the design of conventional memory hierarchy for graph
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Figure 3·20: Performance of (a) bc and (b) pr with different inter-
chiplet bandwidth, when executed on 2 systems with different L2 cache
sizes.

applications, which do not utilize the cache hierarchy effectively. We first evaluate

the performance of graph applications with varying private L2 cache sizes for two

different inter-chiplet bandwidth. For this experiment, we use the Google web graph

dataset from SNAP (Leskovec and Krevl, 2014). Figure 3·20 shows the application

performance with increasing L2 cache size. We observe that the application perfor-

mance improves as we increase the L2 cache size for a low inter-chiplet bandwidth

of 192Gbps. However, a higher inter-chiplet bandwidth of 960Gbps shows minimal

execution time variations with increasing L2 cache size.

For lower inter-chiplet bandwidth and smaller L2 cache sizes, the execution time

due to L2 misses also includes the high fraction of queue latency in the photonic

link. Increasing the L2 cache size improves the hit rate and we observe a speedup in

performance. However, the L2 miss latency is still dominated by the queue latency in

the photonic link. When we increase the inter-chiplet bandwidth to meet the band-

width requirements of graph applications, we significantly reduce the queue latency.

As a result, the L2 cache misses for the same L2 cache size is serviced faster with a

high-bandwidth link. Due to irregular memory accesses in graph applications, we do
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Figure 3·21: Performance of (a) bfs and (b) pr with different inter-
chiplet bandwidth, when executed on 2 systems with different core
counts.

not observe performance improvement with increasing L2 cache when the bandwidth

requirements are met. As silicon-photonic links are able to meet the high bandwidth

demands of applications, there is an opportunity to incorporate a smaller L2 cache

per core and per chiplet.

We next evaluate the performance scaling of graph applications with increasing

core counts. As 2.5D systems enable modularity, we integrate more chiplets on the

interposer, keeping the same number of cores per chiplet. For this experiment, we

use our largest data graph, the Kronecker graph with 220 vertices. The maximum

bandwidth with λact = 16 increases from 1.5Tbps in a 96-core system to 1.9Tbps in a

128-core system. From Figure 3·21, we observe a performance improvement of 21%

on average for a 128-core system compared to a 96-core system for the same number

of activated laser wavelengths. It is interesting to note that the system performance

saturates at a higher inter-chiplet bandwidth for the 128-core system than the 96-

core system. For example, in bfs, we obtain a system performance within 1% of peak

performance for an inter-chiplet bandwidth of 864Gbps (λact = 9) in a 96-core system,
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while in the 128-core system, we obtain 1% of peak performance for an inter-chiplet

bandwidth of 1.56Tbps (λact = 13). Similarly, in pr, we obtain the peak performance

for λact = 6 for both systems. However, the aggregate bandwidth corresponds to

576Gbps in a 96-core system and 720Gbps in a 128-core system.

These observations enforce the scalability of graph applications with number of

coures due to their inherent parallelism. There is a significant increase in inter-

chiplet traffic with increasing LLC and memory accesses with higher chiplet counts.

Therefore, 2.5D manycore systems with silicon-photonic links are able to meet the

required bandwidths for graph applications.

3.5 Wavelength Selection using Application Instrumentation

Our wavelength selection policies provide the required bandwidth for an application

by activating the appropriate number of optical channels. However, most band-

width allocation policies including SO-WAVES and PROWAVES are typically imple-

mented at the system-level and have minimal to no exposure to the application source

code. Our proposed wavelength selection characterizes the bandwidth requirement

using offline analysis as in SO-WAVES or forecasts network activity at runtime as

in PROWAVES. However, the chip-scale communication traffic also depends on the

software implementation of the application algorithm. This dependence provides an

opportunity to develop a generalized software-level approach for performing wave-

length selection at the system-level.

This section introduces the software framework to instrument an application and

guide wavelength selection at the system-level. We instrument data structures or

privileged instructions in the application source code to provide information regarding

the communication traffic during the application execution. This information can

then be utilized at the system level to perform wavelength selection.
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3.5.1 Application Instrumentation

As an example, we consider PageRank, an iterative graph algorithm that has ex-

tremely high parallelism. We demonstrate that using appropriate instrumentation of

PageRank source code, we pass additional information regarding active vertices that

can be used to reduce the network bandwidth density.

Motivational Example: PageRank

The PageRank algorithm begins with equal ranks assigned to each vertex in the

input graph. Depending on the number of vertices connected to a vertex v,

(g.out_degree(v)), the rank of v is updated. At the end of every iteration, the

rank of each vertex is compared with an error threshold. The algorithm iterates until

all vertices converge.

A key characteristic of PageRank is the varying number of iterations required to

converge the vertices, which result in asymmetric convergence (Ozdal et al., 2015).

We demonstrate this characteristic by running PageRank on a Google webgraph from

SNAP (Leskovec and Krevl, 2014) and a Kronecker graph with 218 vertices. Fig-

ure 3·22 shows the fraction of vertices that have not yet converged at the end of each

iteration. On a Google webgraph, 21.77% of vertices converge in a single iteration,
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Figure 3·22: Number of unconverged vertices with iterations for
PageRank on (a) Google webgraph, (b) Kronecker graph with 218 ver-
tices.
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Figure 3·23: Framework of bandwidth allocation using application
instrumentation.

another 75.8% of vertices converge in the next 40 iterations, and less than 3% of

vertices converge in the last 60 iterations. It can be noted that a significantly high

fraction of vertices converge in the first few iterations, leaving a very low fraction

of unconverged vertices in later iterations. This observation implies reduced mem-

ory accesses in later iterations. Thus, there is an opportunity to reduce the network

bandwidth between memory and LLCs by deactivating certain photonic links in later

iterations and save photonic network power.

Framework for application-instrumentation-assisted wavelength selection

Figure 3·23 shows the framework of application instrumentation-assisted bandwidth

allocation. We instrument the PageRank source code to maintain a data structure

called active vertex set (Ozdal et al., 2015). The active vertex set maintains a list of

all unconverged vertices. During each iteration, PageRank algorithm operates only

on vertices in the active vertex set. At the end of each iteration, we update this active

vertex set by deleting vertices that converge during the current iteration.

We study the network characteristics when an instrumented PageRank is exe-

cuted on POPSTAR. Figure 3·24 illustrates the network packets transferred in the



69

0 20 40 60 80
# Instructions (x108)

105

106

107

108
# 

Pa
ck

et
s i

n 
ne

tw
or

k
without instrumentation
with instrumentation

(a)

0 5 10 15 20 25 30 35
# Instructions (x108)

105

106

107

108

# 
Pa

ck
et

s i
n 

ne
tw

or
k

(b)

Figure 3·24: Number of packets transferred in the photonic network
during application execution for (a) Google webgraph and (b) Kro-
necker graph with 218 vertices

silicon-photonic link during application execution. Instrumenting the PageRank al-

gorithm with the active vertex set enables the algorithm to execute on lower number

of vertices every iteration. This results in an overall decrease in the LLC and main

memory traffic, resulting in a lower number of packets in the silicon-photonic link

as the application progresses. At the system-level, the wavelength selection policy

monitors the number of active vertices in PageRank as the application progresses.

This instrumented information is utilized in addition to other network parameters to

determine the minimum number of optical channels.

3.5.2 Simulation Results and Analysis

We evaluate SO-WAVES to demonstrate the benefits of application-instrumentation-

assisted bandwidth allocation. We utilize our simulation framework as described in

Section 3.2. We modify the source code in PageRank to maintain the active vertex set

that is updated every iteration with unconverged vertices. We model different network

bandwidths in Sniper for instrumented and uninstrumented PageRank and determine

the number of optical channels that satisfy the Lthr for SO-WAVES. Figure 3·25 shows

the photonic power savings with SO-WAVES that uses application instrumentation

in contrast to SO-WAVES without instrumentation.
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Figure 3·25: Photonic power savings using application
instrumentation-assisted bandwidth allocation

For instrumented PageRank, a higher number of vertices converge in the ini-

tial interations. SO-WAVES, therefore, allocates a higher bandwidth by activating

a higher number of optical channels during the initial iterations. For later inter-

vals, SO-WAVES activates a lower number of optical channels as the bandwidth de-

mand is reduced with fewer unconverged vertices. Using our instrumentation-assisted

bandwidth allocation across four datasets, on average, we reduce 35.13% of photonic

network power compared to bandwidth allocation on an uninstrumented PageRank

algorithm.

3.6 Chapter Summary

Silicon-photonic links are an effective alternative to electrical links as a high-

bandwidth and low-latency chip-scale networks in large manycore systems. However,

a cause of concern arises from the device sensitivity towards TV and PV, and the

high power overhead in the laser sources, electrical circuitry for E-O-E conversion

and the heating power for MRR thermal tuning. This high power overhead limits the
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energy-per-bit in silicon-photonic links at high bandwidth operations. Though device-

level strategies and architectural designs address these limitations in various degrees,

the growing diversity in applications’ network requirements demands a system-level

solution.

This chapter presents bandwidth allocation policies called wavelength selection

that also includes a cross-layer model of device sensitivities and solutions, architec-

tural designs and the system policies. We show that a static wavelength selection

policy, SO-WAVES, is effective in limiting the photonic power by activating the opti-

mal set of optical channels for an application. To further address the dynamic changes

in application’s bandwidth requirements, this chapter presents PROWAVES that uses

a time forecasting model to proactively activate the best set of optical channels for

the next phase. We evaluate a diverse set of data-centric HPC and graph applications

to demonstrate the potential of wavelength selection. We then present the efficacy

of application instrumentation that can assist these wavelength selection policies to

further reduce the photonic power. These system-level policies, in tandem with archi-

tectural designs and device-level solutions, are promising towards achieving a sub-pJ

operation of silicon-photonic links at > TBps on-chip bandwidths.
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Chapter 4

Architecting Optically-controlled Phase
Change Memory

Recent demonstrations of PCM prototypes that can be optically-controlled have in-

vigorated the concept of an optical memory system. Further merit to such memory

systems lies in their ability to directly interface with silicon-photonic links. The non-

volatility and the high bit density offered by such an optically-controlled PCM, called

OPCM, promises a high-throughput and scalable main memory system. Unfortu-

nately, the architecture and the access protocol used in current DRAM and EPCM

systems are designed to align with the properties of electrical addressing. The design

of a memory system using OPCM cells, therefore, requires a complete redesign of the

microarchitecture and access protocol tailored to the properties of OPCM technology

and silicon-photonic links.

The chapter begins with a discussion on design challenges in adapting the current

DRAM architecture for OPCM, rendering such a design impractical. We then intro-

duce our proposed Co-designed Optically-controlled phaSe change Memory and Op-

tical link System, COSMOS, that includes a hierarchical multi-banked OPCM array,

WDM silicon-photonic links to access the OPCM cells, laser sources and an E-O-E

control unit that maps the standard memory protocol from processor to OPCM-

specific commands. We study data-centric graph and HPC workloads and evaluate

their performance and energy consumption when run on a computing system that

uses COSMOS as the main memory in contrast to an EPCM system.
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Figure 4·1: A typical EPCM architecture (Lee et al., 2009).

4.1 Challenges with Adapting DRAMArchitecture for OPCM

In this section, we first describe a typical EPCM architecture and then explain why

such an architectural design is impractical for OPCM. Figure 4·1 shows the archi-

tecture of EPCM (Lee et al., 2009). An EPCM cell consists of an access transistor

and a GST element. The EPCM array is a hierarchical organization of banks, blocks

and sub-blocks, as proposed by Lee et al. (Lee et al., 2009). During read or write

operation, the EPCM first receives a row address. The row address decoder reads the

appropriate row from the EPCM array into a row buffer. The EPCM next receives

the column address, and the column address multiplexer selects the appropriate data

block from the row buffer. The bitlines of the selected data block are connected to

the write drivers for write operation or to the sense amplifiers for read operation. The

write operation of an EPCM cell is performed by passing particular current values to

SET/RESET the GST element. The charge pumps supply the required drive voltage
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corresponding to SET/RESET operation to the write drivers. For read operation,

a read current is passed through the GST (Lee et al., 2009) and sense amplifiers

determine the voltage on the bitline to read out logic 0 or logic 1.

Naively adapting the EPCM architecture for OPCM, where we just replace the

EPCM cells with OPCM cells, raises latency, energy and thermal concerns, thereby

rendering such a design impractical. To understand these concerns, let us consider an

OPCM array that uses the EPCM architecture from Figure 4·1 with either an optical

row buffer or an electrical row buffer. Such an OPCM architecture has the following

limitations:

Limitations with optical row buffer: An optical row buffer can be designed using

a row of GST elements, whose states are controlled using optical signals. When a

row is read from the OPCM array using an optical signal, the data is encoded in the

signal’s intensity. This intensity is not large enough to update the state of the GST

elements in the optical row buffer. So we need to first convert the read value into the

electrical domain. Based on this value, we then generate a new optical signal with

the appropriate intensity to write the value into the optical row buffer. Therefore,

even though the optical signals contain an intensity corresponding to the data, this

intensity does not correlate directly to the optical energy required to write that data

to the optical data buffer. Essentially we perform an extra O-E and E-O conversion.

This necessitates the use of photodetectors, receiver, buffers, transmitter and optical

pulse generators, which unnecessarily add to the energy and latency of a memory

access. Hence, an optical row buffer is not a viable option.

Limitations with electrical row buffer: An electrical row buffer can be designed

either using capacitor cells as in DRAM or using phase change materials that are

controlled using electrical current as in EPCM. In both these cases, the row buffer is

accessed using electrical addressing.
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1. Impact on read latency: With an electrical row buffer, the row address is read

from the OPCM array into the row buffer, upon receiving the row address. The

row address first needs to be converted to an optical pulse, which is applied to

OPCM cells in the array to read the data. After optical readout of the entire

row, the data needs to be converted back into electrical domain to store it in the

row buffer. This requires E-O and O-E conversions on the memory side (irrespec-

tive of whether we use electrical or silicon-photonic links for processor-to-memory

communication). These conversions increase latency for each read access.

2. Impact on write latency: When writing data from the row buffer to the OPCM

array, a set of sense amplifiers reads the data from the electrical row buffer. This

row buffer data is then converted into an appropriate optical signal intensity using

pulse generation circuitry within memory. The optical signals can then be used

to write the data to the OPCM cells. Therefore, the write operation too requires

additional E-O and O-E conversion (irrespective of electrical or silicon-photonic

links for processor-to-memory communication), thereby increasing the latency for

each write access.

3. Impact on read/write energy: The energy spent in the peripheral circuitry

for optical signal generation and readout, as well as in the circuitry for E-O-

E conversion increases the active power within memory (Notomi et al., 2014;

Bahadori et al., 2016). Given that each read/write operation encounters multiple

E-O-E conversions, the energy per read and write access increases.

4. Thermal issues: Optical devices such as MRRs are highly sensitive to ther-

mal variations (Padmaraju and Bergman, 2014). The increased power density

in OPCM due to additional circuitry for E-O and O-E conversions causes poten-

tial thermal violations. The thermal variations due to varied power distribution
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within memory lowers the reliability of the MRR operation. Such a design, there-

fore, calls for active thermal and power management in OPCM, which further

adds to the access latency and energy.

Hence, we argue for the need to redesign the microarchitecture and the read/write

access protocol for OPCM in a way that is tailored to the properties of the OPCM

cell technology.

4.2 COSMOS: OPCM Memory System with Silicon-Photonic
links

We introduce Combined Optical phaSe change Memory and Optical link System,

COSMOS, that provides high read/write throughput and consumes low read/write

energy when combined with high-bandwidth-density silicon-photonic links connecting

the processor and OPCM array. Figure 4·2 shows a high-level system overview of a

2.5D integrated computing system that uses COSMOS as the main memory.1 COS-

MOS includes a hierarchical design of a multi-banked OPCM array microarchitecture
1COSMOS-based main memory is agnostic of the integration technology. Since 3D-integrated

systems raises thermal concerns and 2D-systems result in large system footprints, we use a 2.5D-
integrated system with COSMOS.
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and a novel read/write access protocol, which are customized to the properties of

the OPCM cell. The optical signals in the silicon-photonic links directly access the

OPCM cells, eliminating the need for row buffers for intermediate storage. These

optical signals are generated by an E-O-E control unit that serves as an intermediary

between the memory controller in the processor and the OPCM array. This E-O-E

control unit is responsible for mapping the standard DRAM protocol commands sent

by the memory controller to optical signals, and then sending these optical signals to

the OPCM array. The distinguishing features of COSMOS as as follows:

1. The design of the OPCM array in COSMOS combines WDM and mode division

multiplexing properties of optical signals to deliver high memory bandwidth.

2. The OPCM array is only composed of passive optical components such as

MRRs, GST elements and waveguides. As a result, the OPCM array does

not dissipate active power during its operation, eliminating the need of thermal

management policies.

3. COSMOS uses a novel protocol for performing the read and write operations

of a cache line in the OPCM array. A cache line is interleaved across multiple

banks in the OPCM array to enable high-throughput access. The write data to

an OPCM cell is encoded in the intensity of optical signals that uniquely address

the cell. The readout of the OPCM cell uses a 3-step operation that measures

the attenuation of the optical signal transmitted through the cell, where the at-

tenuation corresponds to a predetermined bit pattern. Since the read operation

is destructive, COSMOS uses an opportunistic writeback operation of the read

data to restore the OPCM cell state.

4. COSMOS consists of an E-O-E control unit for seamless integration of the

OPCM array with the processor. This E-O-E control unit receives standard
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DRAM protocol commands from the processor, and converts them into the

OPCM address, data, and control signals that are mapped onto optical signals.

These optical signals are then used to read/write data from/to the OPCM array.

The responses from the OPCM array are converted by the E-O-E control unit

back into standard DRAM protocol commands that are sent to the processor.

4.3 OPCM Array Microarchitecture in COSMOS

In this section, we describe the microarchitecture of the high-throughput OPCM array

in COSMOS. The key innovation of the proposed microarchitecture is enabling direct

access of OPCM cells by the optical signals in the silicon-photonic links. This direct

access avoids the extra E-O and O-E conversions that are required while adapting an

EPCM architecture for COSMOS. Our OPCM array microarchitecture is a hierarchi-
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cal multi-banked design that maximizes the degree of parallelism for read and write

accesses within the array. A distinguishing feature of our OPCM array design is that

it does not contain any active circuits that consume power; that is, it only contains

passive optical devices. To enable high-throughput access of OPCM cells within this

array, we propose a novel read and write access protocol for COSMOS. Figure 4·3

illustrates the detailed microarchitecture of our proposed OPCM array in COSMOS

that uses GST as the phase change material. Next, we describe each component of

the proposed architecture, particularly focusing on how to access an OPCM cell in

the optical domain with minimal E-O and O-E conversions, how to maximize par-

allelism in our OPCM microarchitecture, and how to perform low-latency read and

write operations within the OPCM array.

4.3.1 OPCM Tile

An OPCM tile (see Figure 4·3c) consists of an n × n array of GST elements, i.e.,

OPCM cells. The GST elements are placed on top of waveguide crossings as shown

in Figure 4·3d. This organization enables every OPCM cell to be accessed using a

unique pair of optical signals: one on the associated row and one on the associated

column. We need a total of n unique optical signals with wavelengths λ1, λ2,..., λn

that are routed in the rows (one per row waveguide), and n unique optical signals

with wavelengths λn+1, λn+2,..., λ2n that are routed in the columns (one per column

waveguide). Wavelengths λ1 to λn together form the Tile Row Access (TRA)-channel,

and wavelengths λn+1 to λ2n together form the Tile Column Access (TCA)-channel. A

TRA-channel (and similarly each TCA-channel) is mapped to one or more waveguides

depending on the number of wavelengths that can be multiplexed in a waveguide.

Owing to MLC, each OPCM cell stores bcell bits. The total capacity of an OPCM tile

is n2.bcell. A maximum of n cells can be read/written in parallel from a single tile,

which gives us a peak throughput of n.bcell bits per read/write access for a tile. We use
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a Gray Coding scheme when mapping bit patterns to the states of the GST material.

Due to only one-bit difference in bit patterns between adjacent states, there is a very

low probability of multi-bit errors during read/write operations. These single-bit

errors can be corrected using standard single-bit error correction techniques (Spica

and Mak, 2004).

4.3.2 OPCM Bank

Figure 4·3b shows the organization of an OPCM bank. The OPCM bank is composed

of an array of m ×m OPCM tiles, and has a total capacity of m2.n2.bcell bits. The

OPCM bank uses m TRA-channels, one for each row in the bank, and m TCA-

channels, one for each column in the bank to communicate with the E-O-E control

unit. Each TRA-channel uses λ1 to λn, and each TCA-channel uses λn+1 to λ2n. We

design a hierarchical array of OPCM cells (m2 tiles with n2 OPCM cells per tile)

instead of a large monolithic array (m2.n2 OPCM cells), as designed by Feldman

et al. (Feldmann et al., 2017; Feldmann et al., 2019) to decrease the laser power by

the optical signals. With our proposed design, the laser sources only need to support

2n unique optical signals (in the range of λ1 to λ2n) instead of them.2n unique optical

signals that would be required in a large monolithic array. We utilize MRRs to couple

the optical signals of each TRA-channel and TCA-channel to its corresponding tile.

We need n MRRs that are tuned to λ1 to λn in each of the m TRA-channels and n

MRRs that are tuned to λn+1 to λ2n in each of the m TCA-channels.

4.3.3 Multi-banked OPCM Array

We interleave a cache-line across multiple banks using mode-division multiplexing.

The spatial mode of electromagnetic radiation describes the field pattern of the prop-

agating waves. An optical signal can propagate in several spatial modes. A waveguide

can carry a single or multiple such modes of the optical signal. Several prior works
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Figure 4·4: Mapping of the physical address in the memory controller
to the physical location of the OPCM cell in the OPCM array.

have exploited the multiple spatial modes of optical signals coupled with wavelength-

division multiplexing to design high-bandwidth-density silicon-photonic links (Luo

et al., 2014; Wu et al., 2017). Figure 4·3a shows the proposed multi-banked orga-

nization of the OPCM array using mode-division multiplexing. There are p banks,

each supporting one of the p spatial modes of the 2n optical signals. For example,

Bank 0 only supports mode 0 of all optical signals λ1,.. λn and λn+1,.. λ2n, Bank 1

only supports mode 1 of all optical signals, and so on. The waveguides connecting

the OPCM to the E-O-E control unit are multi-mode waveguides, which carry all

the p spatial modes of optical signals. We employ single-mode MRRs (Yang et al.,

2014; Wang et al., 2017) that couple a single spatial mode of optical signals from the

multimode waveguide to a bank.

4.3.4 Address Mapping in COSMOS

Figure 4·3e shows an example mapping of the physical address received by the MC

to the physical location of cells within the OPCM array in COSMOS. A cache line of

64B is stored in a total of 128 OPCM cells with 4bits/cell. We interleave the cache
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line across 4 different banks. Within a bank, we map the 128-bit chunk of a cache

line to a tile. The tile has 32×32 cells, and so we map that 128-bit chunk to an entire

row within a tile. The row (column) field of physical address in the MC is mapped

to the row ID of tile (column ID of tile) field and the row ID of cell (column ID of

cell) field. In Figure 4·3e, we show how the different fields of the physical address

0x10301FC0 are mapped to bank ID, row ID of tile, column ID of tile, row ID of cell,

and column ID of cell.

4.4 Access Protocol in COSMOS

To enable high-throughput access of OPCM cells within the OPCM array, we propose

a novel read and write access protocol for COSMOS. When the MC issues a read or

write operation, the row address and column address are entered into the Row Address

Queue and Column Address Queue, respectively, and the write data is entered into

the Data Buffer in the E-O-E control unit.

4.4.1 Writing a Cache Line to OPCM Array

To write a cache line to the OPCM array, the E-O-E control unit identifies the bank

ID, the row ID and column ID of the tile, and the row ID and column ID of the cell

within a tile using the address mapping. In our example with 32×32 array of cells in

a tile, when writing 128-bit chunk of a cache line, we end up updating all the cells in a

row (any misaligned accesses are handled on the processor side). Hence, for writes at

cache line granularity, the column ID within a tile is not used. The E-O-E control unit

determines the optical intensity that is required at each OPCM cell in the row to write

the 128-bit chunk of the cache line. It then breaks down the optical intensity into

two signals, one with a constant intensity of I0 and the other with a data-dependent

intensity of Ii, where i = 1, 2, ..., 128. The E-O-E control unit modulates the constant

intensity I0 onto the optical signal corresponding to the row (selected by the row ID
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of cell) within a tile. The E-O-E control unit then modulates the data-dependent

optical intensities (i.e., I1, I2, ...,I128) onto the optical signals corresponding to the

columns within the tile. The E-O-E control unit transmits the row signal I0, and the

column optical signals I1, I2, ..., I128 in parallel to write the cache line in the OPCM

array. The superposition of the optical signals, i.e., I0+I1, I0+I2, ..., I0+I128 updates

the state of the OPCM cells. Note that since a cache line is spread across 4 banks,

the E-O-E control unit modulates data on optical signals to write to an OPCM tile

in each of these 4 banks. None of the optical signals individually carries sufficient

intensity to trigger a state transition at any cell, so none of the other cells along the

row or column are affected.

4.4.2 Reading a Cache Line from OPCM Array

To read a cache line from OPCM array, the E-O-E control unit transmits sub-ns

optical pulses along all the columns in a tile that contain the cache line and measures

the pulse attenuation. However, there are multiple OPCM cells along each column

and so the output intensity of optical signals will be attenuated by all cells in that

column. It is, therefore, not possible to determine the OPCM cell values using a

one-pulse readout. Hence, we use a three-step process for read operation of OPCM

array in COSMOS. 1 To read a cache line, the E-O-E control unit first determines

the bank ID, row ID and column ID of tile, row ID and column ID of cell. The E-O-E

control unit transmits a read pulse RD1 through all the columns in a tile containing

the cache line. Note that since a cache line is spread across 4 banks, the E-O-E

control unit transmits RD1 on the 4 different optical modes corresponding to the

4 banks. Each read pulse is attenuated by all the OPCM cells in the column. The

attenuated pulses are received by the E-O-E control unit, which records the intensities

of these attenuated pulses as I1,1, I2,1, ..., I128,1. These intensities are converted into

electrical voltage and stored as V1,1, V2,1, ..., V128,1. 2 The E-O-E control unit then
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transmits a RESET pulse to the OPCM cells of the cache line, i.e., all the cells along

a row within a tile. All the cells along the row are now amorphized and have 100%

optical transmission. 3 The E-O-E control unit then sends a second read pulse

RD2 through all the columns of a tile containing the cache line. Each read pulse is

again attenuated by all OPCM cells in the column. Given that step 2 amorphized all

OPCM cells of the cache line, the output pulse intensities are different from those in

step 1. The attenuated pulses are received by the E-O-E control unit, which records

the intensities of these attenuated pulses as I1,2, I2,2, ..., I128,2. These intensities are

converted into electrical voltage and stored as V1,2, V2,2, ..., V128,2. The E-O-E control

unit computes the difference of the stored voltages of steps 1 and 3, i.e., V1,1 − V1,2,

V2,1 − V2,2, ..., V128,1 − V128,2. This difference is used to determine the cache line data

stored in the OPCM cells.

4.4.3 Opportunistic Writeback for Read Operation

The RESET operation in step 2 of the read operation destructs the original data

in the OPCM cells. We, therefore, perform an opportunistic writeback of the cache

line to the OPCM cells. After completing the 3 steps of the read operation, the

read data and the address are saved into a holding buffer in the E-O-E control unit.

When there are no pending read or write operations from the MC, the E-O-E control

unit reads the data and its address from the holding buffer and writes the data back

to the OPCM array. This writeback operation does not block any critical pending

read and write operations coming from the MC. The dependencies in read and write

requests between the holding buffer and the data buffer is handled in the E-O-E

control unit. For a Read-After-Read case, the second read operation reads the data

from the holding buffer if present. If the data is not in the holding buffer then the

second read operation just uses the 3-step process + writeback (described above)

to complete the read operation. For a Write-After-Read case, if the write address
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matches the read address and there is an entry for that read in the holding buffer,

then the corresponding entry in the holding buffer is invalidated. The write data is

then entered into the data buffer and then written into the appropriate OPCM array.

The Write-After-Write and Read-After-Write are not an issue as the E-O-E control

unit processes them in order.

4.5 E-O-E control Unit Architecture

We design the E-O-E control unit as an interface between the processor and the

OPCM array. An LLC miss in the processor leads to a memory access request being

sent to the MC. The MC sends standard DRAM access protocol commands to the

E-O-E control unit.2 The E-O-E control unit maps these commands onto optical

signals that read/write the data from/to OPCM array.

For write operation, depending on the write address, the E-O-E control unit selects

specific optical signals in TRA-channel and TCA-channel, and maps the write data

onto an appropriate pulse intensity of these optical signals. For read operation, using

the 3-step process explained in Section 4.4.2, the E-O-E control unit filters the optical

signals received from the OPCM cell and determines the value stored in the cell. The

E-O-E control unit consists of five sub-units: a data modulation unit (DMU), an

address mapping unit (AMU), a pulse selector unit (PSU), a pulse amplification unit

(PAU), and a pulse filtering unit (PFU). Each bank has a dedicated set of these five

sub-units. Figure 4·5 shows the various sub-units in the E-O-E control unit.

4.5.1 Data Modulation Unit (DMU)

The DMU generates the modulation voltage and bias currents corresponding to the

write data. For write operation, we divide the k-bit write data into k/bcell entries and
2Given that OPCM cells do not require Activate/Precharge/Refresh operations, the

E-O-E control unit does not take any action for these commands. Though we can design an OPCM-
specific MC, our goal is to enable the OPCM operation with a standard MC in any processor.
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store them in the Data Buffer (DB) (one entry per cell) of the DMU. For each entry

in DB, the DMU generates a modulation voltage (same fixed value for all possible

values that can be written to a cell) and a bias current depending on the exact value

that needs to be written. The DMU uses a voltage generator for generating the

modulation voltage and a current DAC for generating the bias current. It takes TEO

cycles to map each entry from the DB to the appropriate optical signals. So the DMU

generates the modulation voltage and bias current every TEO cycles, if the DB is not

empty, giving a write throughput of 1/TEO. The modulation voltage is input to the

PSU, and the bias current is input to the PAU.

In our 3-step read operation (described in Section 4.4.2), the DMU generates a

modulation voltage to select the optical signal. For step 2 in the read operation,
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it generates a modulation voltage and a bias current that corresponds to a RESET

operation.

4.5.2 Address Mapping Unit (AMU)

The AMU receives the address bits from MC in parallel with RAS and CAS signals,

and maps them to appropriate row and column optical signals. For a given read/write

address, the AMU generates two enable signals, EnR and EnC . The EnR signal is

used in the PSU to select the appropriate optical signal in the TRA-channel and

to select the associated silicon-photonic link driver. The EnR signal is also used in

the PAU to select the amplifier associated with the optical signal. Similarly, EnC

signal is used in the PSU to select the optical signal in the TCA-channel and the

associated silicon-photonic link driver, and to select the amplifier in the PAU. The

AMU is synchronized with DMU such that the enable signals from the AMU, and

the modulation voltage and bias current from the DMU reach the PSU and PAU at

the same time.

4.5.3 Pulse Selector Unit (PSU)

The PSU uses EnR and EnC to select the appropriate optical signals in TRA-channel

and TCA-channel, respectively, for the read/write operation. It also uses the EnR

and EnC signals to route the modulation voltage (received from the DMU) to the

silicon-photonic link drivers associated with the optical signals selected in the TRA-

channel and TCA-channel, respectively. The driver uses this modulation voltage to

detune the MRRs corresponding to the selected optical signals, and allows the optical

signals to continue to the PAU. The remaining MRRs filter out and block the other

optical signals from reaching the PAU.
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4.5.4 Pulse Amplification Unit (PAU)

The PAU amplifies the optical signals (received from PSU) in the TRA-channel and

the TCA-channel using the bias current received from the DMU. The PAU uses

semiconductor optical amplifiers (SOA) for amplification, where the gain is a function

of the input bias current (Connelly, 2007). The amplified optical signals traverse

through the silicon-photonic link to the target OPCM cell.

4.5.5 Pulse Filtering Unit (PFU)

The PFU is only involved in the OPCM read operation. For step 1 and step 3 of the

read operation (described in Section 4.4.2), the PFU receives an optical signal back

from OPCM. The PFU uses MRRs for filtering the optical signals, and photodetectors

and transimpedance amplifiers to generate V1e during step 1 and V2e during step 3.

A voltage differentiator calculates V1e - V2e, and this difference is input to an ADC to

get the digital value stored in the OPCM cell. The PFU aggregates the values from

the 128 OPCM cells and then send a 64B cache link back to the processor.

4.6 Experimental Evaluation and Analysis

4.6.1 Evaluation Methodology

Computing System with COSMOS

We use an 8-core processor with fully-coherent LLC for our evaluation. We primarily

evaluate OPCM with 4-bit MLC (given that OPCM cells with 5 bits/cell has been

prototyped (Li et al., 2019)) against an EPCM with 2-bit MLC. For processor-memory

interconnects, we consider electrical as well as silicon-photonic links, with 1GT/s

transfer rate. Table 4.1 provides details of the processor and memory configurations.

The OPCM is organized as a single rank connected to a memory channel on the

MC via the E-O-E control unit. Each of the 8 OPCM banks has a set of dedicated
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Table 4.1: Architectural details of the computing system for COSMOS
evaluation

Processor, On-chip caches
Cores 8-core, 1GHz x86 ISA, our-of-order

L1 caches 32kB split L1 I$ and D$, 2-way, 2-cycle
L2 cache Shared L2$, 2MB, 8-way, 20-cycles, 64B line size

Main memory (2GB)
EPCM (Choi
et al., 2012)

4 banks, 8 devices/rank, 1 rank/channel,
bus width=64, burst length=4

tSET = 120ns, tRESET = 50ns, tread = 60ns, tBURST = 4ns
OPCM (Ríos
et al., 2015; Li
et al., 2019)

8 banks, 1 rank/channel, 1 device/rank
bus width=32× bcell, burst length=8

tSET = 160ns, tRESET = 25ns, tread = 25ns, tBURST = 1ns,
tEOE = 5ns

DMU, ATU, PSU, PAU, and PFU sub-units in the E-O-E control unit. The average

SET latency is tSET + tEOE, 165ns, the RESET latency is tRESET + tEOE, 30ns,

and the read latency is tread (time for 3-step read operation) + tEOE, i.e. 30ns. A

maximum of tSET/tEOE = 32 writes can be issued from the E-O-E control unit to

OPCM in parallel. The effective bus width between E-O-E control and OPCM for

write operation is, therefore, 32 × bcell. So, we can write 32 × bcell in parallel. A

maximum of tread/tEOE = 5 reads is issued from the E-O-E control unit to OPCM in

parallel. So, we can read 5× bcell in parallel.

Simulation Framework

We model the architectural specifications of the system in Gem5 (Binkert et al.,

2011). We conduct full-system simulations in Gem5 with Ubuntu 12.04 OS and

Linux kernel v4.8.13. We fast-forward to the end of Linux boot and execute each

workload for 10 billion instructions. The main memory models for DDR4 are based

on DRAMSim2 (Rosenfeld et al., 2011). For modeling EPCM and OPCM, we inte-

grate NVMain2.0 (Poremba et al., 2015) in Gem5. NVMain2.0 provides support for

modeling MLC cells, and variable SET and RESET latencies.
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Figure 4·6: Performance comparison of COSMOS with EPCM.

Workloads

We simulate graph applications from GAP-BS benchmark (Beamer et al., 2015) and

HPC applications from NAS-PB benchmark (Bailey et al., 1991). We evaluate the

graph applications on three different input datasets from SNAP repository (Leskovec

and Krevl, 2014): Google web graph (google), road network graph of Pennsylvania

(roadNetPA) and Youtube online social network (youtube). For HPC applications

from the NAS-PB benchmark, we use the large dataset. We execute 8 threads of an

application in a workload, with each thread running on a dedicated core.

4.6.2 Performance Comparison with EPCM

We first compare EPCM (2bit MLC) that uses 64 processor-to-memory electrical

links with a COSMOS system (4bit MLC) that also uses 64 processor-to-memory

silicon-photonic links, and a COSMOS system (4bit MLC) that uses 256 processor-

to-memory silicon-photonic links. Figure 4·6 shows the overall performance (execution

time in seconds) for systems with these three configurations. Compared to the EPCM-

2bit with 64 electrical links, the OPCM-4bit with 64 silicon-photonic links has on

average 1.52× better performance across all workloads.
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Figure 4·7: Comparison of EPCM-2bit with 64 electrical links and
COSMOS-4bit in terms of (a) write throughput, (b) read throughput,
(c) average memory latency

This performance improvement is due to the higher bits/access throughput of

COSMOS resulting from higher MLC capability of OPCM cells and the single-cycle

latency in silicon-photonic links. Increasing the number of silicon-photonic links from

64 to 256 further improves the system performance. Compared to EPCM-2bit using

64 electrical links, we observe performance improvement of 2.14× on average for

graph and HPC workloads with COSMOS-4bit using 256 silicon-photonic links. These

performance benefits are due to denser WDM capacity in silicon-photonic links.

We next study the increased throughput in COSMOS in contrast with an EPCM

system. Figures 4·7a and 4·7b show the read and write throughput, respectively,

of COSMOS-4bit with 256 silicon-photonic links and EPCM-2bit with 64 electrical

links. Compared to EPCM-2bit with 64 electrical links, COSMOS-4bit with 256

silicon-photonic links theoretically has 8× higher peak bandwidth, i.e., 2× due to
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Table 4.2: Optical power budget for 2GB COSMOS. The table shows
optical power losses and SOA gain along the optical path from laser
source to OPCM cells.

Loss/gain component Single Total
Coupling loss −1dB −1dB

MRR drop loss (E-O-E control) −0.5dB −0.5dB
MRR through loss (E-O-E control) −0.05dB −3.2dB
Propagation loss (Laser to SOA) −0.3dB/cm −0.09dB

SOA gain +20dB +20dB

Propagation loss (SOA to OPCM) −0.3dB/cm −0.09dB
Bending loss −0.167dB −0.167dB

MRR drop loss (OPCM) −0.5dB −0.5dB
MRR through loss (OPCM) −0.05dB −3.2dB
Propagation loss (in OPCM) −0.03dB/cm −4.91dB

Max. power required to SET the GST 135pJ
250ns −2.67dBm

Power per optical signal −7.22dBm =
0.19mW

Laser wall-plug efficiency 20%

Total laser power 16.38W

higher MLC capability and the 4× due to the increased number of processor-to-

memory links. Therefore, it is possible to issue increased number of parallel read and

write operations in COSMOS-4bit. From figure 4·7a and figure 4·7b we observe that

COSMOS-4bit has 2.09× higher read throughput and 2.15× higher write throughput,

respectively, than EPCM-2bit for graph and HPC workloads. This increased read and

write throughput of COSMOS-4bit hides the long write latencies. Figure 4·7c shows

that the average memory latency (read+write) of COSMOS-4bit is 33% lower than

EPCM-2bit across all workloads. The key insight from this study is that the increased

read and write throughput provided by the higher MLC capability and the silicon-

photonic links hide the long write latencies in COSMOS.

Energy Consumption of COSMOS

The primary contributors to the overall power consumption during the read and write

operations are the different active components in the E-O-E control unit and the laser
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sources that drive the silicon-photonic links. The OPCM array in COSMOS consists

of only passive optical devices, so it does not consume any active or idle power. The

electrical power consumed in the laser source is proportional to its optical output

power, which in turn depends on the optical losses in the path of the optical signal

and the minimum power required to switch the farthest GST element. Table 4.2

lists the optical losses in the various components and the maximum switching power

required at the GST element in decibels (dB). The various optical losses and SOA

gains are obtained from prior characterization works (Batten et al., 2008; Grani and

Bartolini, 2014; Shang et al., 2015; Li et al., 2019). By accounting for the wall-

plug efficiency, we calculate the minimum required laser power per optical signal

as 0.95mW . Aggregating the laser power for all optical signals required in a 2GB

COSMOS system, we get a total laser power of 16.38W .

In the E-O-E control unit, the current-DAC in DMU and the ADC in PFU con-

sume 0.3mW each (Rekhi et al., 2019). For OPCM-4bit, 32 write operations can be

issued in parallel per bank, i.e., we can write 32× bcell× 8 = 128B in parallel with an

average write latency of 160ns. That aggregates to writing 2 cache lines of 64B each

in parallel. A cache line is interleaved across 4 banks and is row aligned in an OPCM

tile. Therefore, we need 4 row optical signals and 4 × 32 column optical signals to

write a cache line. Therefore, the total power of the laser, SOAs and DACs in the

E-O-E control unit for writing 2 cache lines in parallel aggregates to 334.8mW . This

equates to 40.68pJ/bit for writing to COSMOS-4bit.

For read operation, up to 5 read operations can be issued in parallel per bank,

i.e., 5× bcell × 8 = 20B bits in parallel, with a read latency of 25ns. The total power

of the laser, SOA, DAC, and ADC in E-O-E control for 5 parallel read operations

is 9.3mW , resulting in a read energy of 11.6pJ/bit for COSMOS-4bit. The energy

consumed in the electrical links connecting the processor and the E-O-E control unit
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Table 4.3: Energy-per-bit for read and write operations in EPCM and
COSMOS with 4-bit OPCM cells

Energy per bit
(pJ/bit)

EPCM-2bit OPCM-4bit

Write 243 40.68

Read 44.5 11.6

Opportunistic
Writeback

NA 40.68

is < 1pJ/bit (Coskun et al., 2020). For EPCM, we use NVSim (Dong et al., 2012) to

compute the energy-per-bit for read and write operations. The opportunistic write-

back operation in COSMOS uses the same energy as that required for write operation.

Table 4.3 shows the energy-per-bit for EPCM-2bit and COSMOS-4bit. The read and

write energy-per-bit of COSMOS-4bit are 3.8× and 5.97× lower, respectively, than

that of EPCM-2bit.

4.6.3 Sensitivity Analysis with Optical Parameters

In this section, we evaluate the sensitivity of COSMOS performance with respect to

several design variables.

MLC capacity

Rios et al. gave the first demonstration of a 2-bit OPCM cell operation (Ríos et al.,

2015). Advances in optical signaling and control have resulted in the demonstra-

tion of denser multilevel OPCM cells. Li et al. demonstrated 5-6 bits per OPCM

cell (Li et al., 2019). Further prototypes have demonstrated scalable integration of

OPCM cell arrays in silicon and silicon nitride platforms (Li et al., 2020; Feldmann

et al., 2019). With the maturity in optical integration technologies, OPCM technol-

ogy with 8 bits/cell is expected in the near future (Li et al., 2019). We compare

the performance of systems having OPCM with different MLC capabilities, ranging

from 2 bits/cell to 8 bits/cell, for the same number of silicon-photonic links (see Fig-
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Figure 4·8: Performance comparison of COSMOS with different MLC
OPCM cells.
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Figure 4·9: Performance comparison of COSMOS with different num-
ber of optical channels in the silicon-photonic link.

ure 4·8). The performance across applications increases by 39.2% on average as the

MLC capacity increases from 2 bits/cell to 4 bits/cell and by 26.4% as the MLC ca-

pacity increases from 4 bits/cell to 8 bits/cell. As the MLC capability of OPCM cell

increases, the bits/access number increases for the same number of processor-memory

links, thereby increasing the memory throughput.

Silicon-photonic links

We compare the performance of systems with OPCM-4bit having different number of
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Figure 4·10: Performance comparison of COSMOS with and without
holding buffer for opportunistic writeback in read operation.

silicon-photonic links. This corresponds to the increasing number of optical channels

in the silicon-photonic links. Figure 4·9 shows the system performance of OPCM-

4bit with increasing optical channels. Increasing the number of optical channels in

silicon-photonic link enables parallel read and write accesses to a higher number

of OPCM cells. Due to this higher read and write throughput, as the number of

optical channels increases, the overall system performance improves. We observe

a performance improvement of 29.3% (on average) for OPCM-4bit with 256 silicon-

photonic links over OPCM-4bit with 64 links. A higher number of densely multiplexed

optical signals in the silicon-photonic link increases the peak memory bandwidth, and

therefore, improves the overall system performance.

Holding Buffer

Figure 4·10 shows the system performance comparison with and without the holding

buffer. In absence of the holding buffer, the read data needs to be written back to

the OPCM cells immediately after readout because the read operation is destructive.

Therefore, the complete read operation incurs a total latency of readout latency (25ns)

+ writeback latency (160ns). In contrast, when the E-O-E control unit consists of a

holding buffer, the read data is stored in the holding buffer at the end of read operation.
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The data from the holding buffer is written back to the OPCM cells only when the

DB in the E-O-E control unit is empty, ensuring that the writeback operation does

not stall any critical read and write operations. Using the highest read and write rate

of the workloads that we evaluated, we determine that a holding buffer with 16 cache

line slots, i.e., 1KB, is enough to avoid any memory read/write stalls. The holding

buffer occupies less than 1000 µm2 area and can be integrated into the E-O-E control

unit with minimal overhead.

4.6.4 OPCM Endurance Analysis

Similar to EPCM, OPCM cells have lower write endurance due to cell wearout. The

OPCM cell endurance depends on how often we write to that cell (Qureshi et al.,

2009a). Given that the read operation in OPCM also includes a write (RESET) in

step 2, the read rate also needs to be accounted for in the endurance analysis. We

calculate the average read and write rate across all the graph and HPC workloads and

then estimate the OPCM lifetime using the following equation proposed by Qureshi

et al. (Qureshi et al., 2009b):

Y = S.Wm

B.F.225

where, Y is lifetime in years, Wm is maximum allowable writes per cell, B is write

rate in bytes/cycle, F is processor frequency in Hz, and S is OPCM capacity in bytes.

Figure 4·11 plots the average lifetime for OPCM with different MLC capabilities.

Here we assume that for a given memory size, all MLC options use the same number

of silicon-photonic links. Hence, the OPCM with 8-bit MLC has higher effective

throughput than the OPCM with 4-bit MLC. As a result, an application running on

OPCM-8bit runs faster than an application running on OPCM-4bit. Hence, for an

application, even if the absolute number of memory writes is same for both OPCM-
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Figure 4·11: Average lifetime (in years) of COSMOS with different
MLC capabilities for different memory capacities.

8bit and OPCM-4bit, the number of writes/second to OPCM-8bit is higher than the

number of writes/second to OPCM-4bit. As a result, the lifetime of OPCM-8bit is

lower than that of the OPCM-4bit and OPCM-2bit.

4.6.5 Area Efficiency of COSMOS

To design the OPCM array in COSMOS, we use the prototype of a GST element devel-

oped by Rios et al. (Rios et al., 2014; Ríos et al., 2015). This prototype demonstrates

the MLC characteristics in 500nm × 500nm GST element with 500nm separation

between adjacent GST elements. We use 3D stacking for the OPCM array, with

different banks stacked vertically (one bank per layer). The multi-mode waveguides

are routed vertically, and in each layer single-mode MRRs filter out the mode of all

optical signals that belong to its corresponding bank. We calculate the area of a

bank as a function of the number of tiles in a bank, number of cells per tile, spacing

between two cells, size of each cell, and the size of MRRs required in a bank.3 We

calculate the bit density of COSMOS as a function of the number of OPCM bank

layers in the stack, the area of each OPCM bank, and the capacity of each bank.

We compare the area and bit density of the 3D-stacked OPCM array in COSMOS
3The tile size is limited by the number of unique optical signals in C and L bands with sufficient

guardbands (32 in our case). The number of banks depends on the number of unique electromagnetic
modes that can be supported (8 in our case).
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Table 4.4: Bit density (bits/mm2) of different memory technologies.

Memory technology Area of 2GB
memory

Bit density
(bits/mm2)

DDR4 224mm2 9.14MB/mm2

HBM2.0 91.99mm2 22.26MB/mm2

EPCM-2bit 336mm2 6.095MB/mm2

3D OPCM-4bit array in
COSMOS

268.43mm2 7.63MB/mm2

3D OPCM-8bit array in
COSMOS

67.1mm2 30.52MB/mm2

with DDR4, 3D-stacked HBM2.0 and EPCM-2bit memory system (see Table 4.4).

With current OPCM cell footprints, 3D-stacked OPCM-4bit has 1.2× and 2.9× lower

bit density than DDR4 and HBM2.0, respectively, and 1.25× higher bit density than

EPCM-2bit. Due to its higher MLC capacity, 3D OPCM-8bit has 3.4×, 1.4× and

5× higher bit density than DDR4, HBM2.0 and EPCM-2bit, respectively. Neverthe-

less, device-level research efforts have demonstrated that GST elements are highly

scalable and can retain the electrical and optical characteristics at amorphous and

crystalline states (Raoux et al., 2008; Wang et al., 2020). An aggressive chip prototype

with 200nm × 200nm GST element with 50nm separation has been recently fabri-

cated (Hosseini et al., 2014). These aggressive optical fabrication technologies promise

achieving several orders higher densities for OPCM arrays than current DRAM tech-

nologies.

4.6.6 Performance and Energy Comparison with DRAM

The overarching goal of COSMOS is to replace DRAM systems that are used widely

in computing systems. We noted that though all other NVM systems (in their cur-

rent form) provide non-volatility, data persistence and high scalability, their poor

performance negates their benefits and makes them impractical to replace DRAM

systems. We, therefore, compare the performance and energy of a DDR4 system with

64 electrical links, a DDR4 system with 256 silicon-photonic links (Beamer et al.,
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Figure 4·12: Performance comparison of DDR4 and COSMOS with
OPCM-4bit array.

2009), COSMOS-4bit with 256 silicon-photonic links, and COSMOS-8bit with 256

silicon-photonic links. Figure 4·12 shows the overall system performance across the

four configurations. For DDR4, replacing 64 electrical links with 256 silicon-photonic

links provides 32% average performance improvement. This improvement results

from the higher throughput due to dense WDM and single-cycle latency of silicon-

photonic links. With COSMOS-4bit, we obtain 5.6% improvement in performance

compared to DDR4 with 64 electrical links. This is in stark contrast to EPCM-2bit,

which performs 3 − 4× worse than DDR4. COSMOS-8bit with 256 silicon-photonic

links performs 30.6% better than DDR4 with 64 electrical links and 2.1% better

than DDR4 with 256 silicon-photonic links. The increased read and write through-

put due to the higher MLC capacity and dense WDM silicon-photonic links reduces

the average memory access latency of COSMOS. Figure 4·7c shows the the average

memory latency in COSMOS is 33.64ns across all workloads, which is lower than

DDR4 DRAM (40ns). Moreover, from Table 4.3 we observe that energy-per-access

for write operation in COSMOS-4bit is similar to that of DDR4 DRAM (40pJ/bit)

and the energy-per-access for read operation in COSMOS-4bit is 3.45× lower than

DDR4 DRAM (40pJ/bit).
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Though we evaluate DDR4 memory with silicon-photonic links, such a system

encounters several design challenges. To support silicon-photonic links in DDR4,

memory requests from MC require an E-O conversion in MC and an O-E conversion

in memory, and memory responses from DDR4 require an E-O conversion in memory

and an O-E conversion in MC. Effectively, we need two extra conversions on the

memory side. The active peripheral circuitry to support E-O-E conversions within

memory increases the power density and raises thermal concerns. Due to the high

thermal sensitivity of MRRs, there is a need for active thermal management. The

power and resulting thermal concerns affect the reliability of optical communication

in DRAM systems.

We observe that COSMOS with 4 bits/cell OPCM array demonstrates similar

performance and energy characteristics as current DDR4 systems, while COSMOS

with 8 bits/cell OPCM array improves performance. This is particularly exciting as

COSMOS can be scaled further, and unlike DRAM it has zero leakage power and

non-volatility, making it a viable replacement for DRAM in the near future.

4.7 Chapter Summary

With DRAM technologies facing critical scaling challenges, the scalability of memory

systems to meet the ever-increasing capacity and bandwidth requirements of applica-

tions is causing a major concern. In contrast, non-volatile memory systems including

EPCM systems suffer from long write latencies and high write energies, yielding poor

performance and high energy consumption for data-centric applications. This chapter

presents a disruptive memory system, COSMOS that is based on the concept of PCM

cells with optical control. OPCM cells have already shown tremendous promise due

to their higher bit density owing to increased MLC capacity. They also present an

opportunity to interface with high-bandwidth-density silicon-photonic links.
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COSMOS is a first-of-its-kind memory architecture consisting of a dense OPCM

array that provides a high read and write throughput when combined with silicon-

photonic links. This chapter also presents the design of an E-O-E control unit that

acts as an intermediary between any off-the-shelf processor and the OPCM array. We

demonstrate that a computing system with COSMOS delivers high performance and

low energy consumption, which are comparable to DRAM systems, at the same time

providing non-volatily, higher bit density and zero leakage power.
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Chapter 5

Memory Management in Heterogeneous
Memory Systems

In chapter 4, we presented COSMOS as a main memory module providing increased

bandwidth than DDR4, but with long write latency. Workloads with high memory

parallelism yield increased performance in COSMOS. However, workloads that are

more sensitive to memory latency would result in sub-par performance with COSMOS

as the main memory. Due to the inherent tradeoff of bandwidth-power in memory

modules, a single memory module can never provide the lowest latency, highest band-

width and consume lowest power at the same time. Heterogeneous memory systems

are effective in catering to a diverse range of memory access characteristics across

workloads. A computing system with heterogeneous memory uses multiple mem-

ory modules, each of which are optimized to either provide high internal memory

bandwidth or low memory access latency or low memory access power. The power-

performance benefits of such a system is contingent upon a memory management

policy that is aware of the access characteristics in applications.

In this chapter, we characterize the access patterns in applications at a fine granu-

larity of memory objects that are allocated in the heap space. These memory objects

exhibit vastly diverse memory access behavior, which are often significantly different

from the application’s aggregate memory access behavior. We, therefore, present our

argument for object-level page allocation and introduce our memory management

framework for heterogeneous memory systems.
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5.1 Memory Access Characteristics of Heap Objects

Figure 5·1: Access intensity and memory-level parallelism of heap memory
objects for applications from SPEC CPU2006 and SDVBS benchmarks.

Section 2.4.2 in Chapter 2 presented the diverse memory access characteristics of

different applications. An application-level page allocation policy profiles the access

patterns of applications and feeds this information to runtime page allocation (Phadke

and Narayanasamy, 2011). However, such a policy operates at a coarser-level granu-

larity and fails to distinguish the diversity in memory access characteristics that exists

within an application. Many applications are composed of a number of heap mem-

ory objects that are dynamically allocated at runtime. We study the memory access

characteristics of these memory objects since they are often accessed periodically.

Figure 5·1 shows the distribution of memory objects within selected applications

from SPEC CPU2006 (Henning, 2006) and SDVBS (Venkata et al., 2009) benchmark

suites. The L2 MPKI and ROB head stall time specify the memory intensity and the

MLP of objects, respectively. The size of a circle indicates the relative size of that

object. Figure 5·1 shows a wide distribution across both of these metrics for memory

objects within the same application. Therefore, an application-level allocation that

uses the memory access characteristics of the application as a whole may not yield the
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Figure 5·2: The flow of MOCA. The profiling stage uniquely names
memory objects and characterizes the memory intensity and memory
level parallelism. Classification stage uses this information to classify
objects. At runtime, each memory object is allocated with pages from
the best-fitting memory module based on object’s type.

full benefits in a heterogeneous memory system. As an example, memory-intensive

applications such as milc and mser have only a few memory objects with high L2

MPKI. In contrast to an application-level allocation, which would place all the ob-

jects into an RLDRAM module for these applications, a finer-level allocation could

place the objects with low L2 MPKI into an LPDDR module, thereby improving the

memory energy efficiency.

5.2 MOCA: Memory Object Classification and Allocation

In order to tap into the heterogeneity in memory access characteristics of objects

within an application, we develop the MOCA framework. MOCA consists of a profiler

that first uniquely names all the memory objects allocated in the heap address space.

For each memory object in the application, MOCA collects metrics that characterize

the memory intensity and the memory-level parallelism of that object. We then

classify these memory objects as either latency-sensitive, bandwidth-sensitive or non-

memory-intensive using predetermined thresholds on these metrics. We instrument

the application binary, where each memory object is tagged with the corresponding
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App C code:
void main() {
  array = malloc(16);
  ... 
  foo();
}
void foo() {
  string = malloc(20);
}

App ASM code:...
4004e9: e8 ca fe ff ff  callq  4003b8 <malloc@plt>
4004ee: 48 89 45 f8     mov    %rax,-0x8(%rbp)
...
4004f7: e8 c8 ff ff ff  callq  4004c4 <foo>
4004fc: c9              leaveq
...
4004d1: e8 e2 fe ff ff  callq  4003b8 <malloc@plt>
4004d6: 48 89 45 f8     mov    %rax,-0x8(%rbp)

Heap Status:

array

string

  ...

Naming Information:

return addr. start addr. size

0x4004ee

0x4004d6 
0x4004fc

0x602010

0x602030

16

20

Figure 5·3: An example of memory object naming convention.

type. The page allocation algorithm in the OS is modified to track the type of each

memory object and allocate the object to the corresponding memory module in the

heterogeneous memory system. The profiling and classification of memory objects

are conducted offline, and the page allocation of memory objects happens at runtime

during application execution. Figure 5·2 shows the different steps involved in MOCA.

5.2.1 Memory Object Naming

The profiling stage uniquely names memory objects and collects metrics that charac-

terize the memory access behavior of each object. To name memory objects, we use

the return address of each dynamic memory allocation function (e.g., malloc, calloc,

etc. in C) and record the virtual address of its caller function in the stack. These two

addresses are unique to every object. Our naming convention for an example C code

is shown in Figure 5·3. When the memory object “array" is initialized, we first record

the virtual address of the caller function and the size of the object. The return address

stack of “array" consists of only one return address in the main function. When the

memory object “string" is initialized from inside the foo function, we again record the

virtual address of its caller function and its size. However, in contrast to “array", the

return address stack of “string" will consist of two return addresses, i.e., the return

address of malloc in foo and the return address of foo in the main function.
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5.2.2 Statistics Collection

Once we name all memory objects within an application, we utilize metrics that char-

acterize their memory access behavior. We record the LLC MPKI for each object,

which provides an indication of how frequently the memory is accessed. In addition,

we collect average ROB head stall cycles per load miss (Mutlu et al., 2006) for each

object. ROB head stall time is computed as the average cycles spent waiting at

the head of the ROB for load misses and This has been used as an effective mea-

sure for memory level parallelism in prior works (Mutlu et al., 2006; Phadke and

Narayanasamy, 2011).

5.2.3 Memory Object Classification

We use the collected statistics from profiling (memory objects, their LLC MPKI and

ROB head stall times) to classify objects as being either latency-sensitive, bandwidth-

sensitive, or neither. A memory object with high LLC MPKI implies increased main

memory accesses. Such memory objects are classified as memory-intensive. Among

the memory-intensive objects, the ones exhibiting low ROB head stall time imply

that the memory latencies of objects are largely hidden in the latency of prior objects.

Such objects, therefore, exhibit high MLP and are classified as bandwidth-sensitive

memory objects. The remaining memory-intensive objects with high ROB stall time

are more sensitive to the memory access latency. Such objects are classified as latency-

sensitive memory objects. The objects with low LLC MPKI have minimal main

memory accesses and are classified as non-memory-intensive objects. Such objects can

be placed in low-power memory modules without affecting the system performance,

thereby reducing memory power consumption.

Figure 5·4 depicts this classification where Lat Mem is a latency-optimized memory

module, BW Mem is an bandwidth-optimized memory module and Pow Mem is a
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Figure 5·4: Classification of memory objects into different types based
on latency and bandwidth thresholds.

power-optimized memory module. We classify objects with LLC MPKI greater than

ThrLat as memory-intensive objects. Among these objects, the ones with ROB head

stalls higher than ThrBW are allocated to Lat Mem module. The memory-intensive

objects with ROB head stalls lower than ThrBW are allocated to BW Mem module.

The rest of the objects with LLC MPKI lower than ThrLat are allocated to Pow Mem

module.

5.2.4 Binary Instrumentation

The offline profiling and classification stages collectively identifies the type of each

memory object in the application. We then instrument the memory object classifica-

tion information into application binaries. We modify the standard memory allocation

function (e.g. malloc, calloc, realloc) to enable an additional “type" field specifier.

This field specifier can be 0 to represent a latency-sensitive object, 1 to represent

a bandwidth-sensitive object, or 2 to represent a non-memory-intensive object. For

each object, we update the “type" field specifier in the application binary.

5.2.5 Page Allocation

At runtime, MOCA uses the object-level information to perform page allocation. The

heap memory address space in the virtual memory is divided into three regions as

shown in Figure 5·5. Similarly, the physical address space is also divided into regions

pertaining to the available memory modules in the system. The OS maintains the
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Figure 5·5: Mapping of virtual pages in the heap space to multiple
memory modules in physical memory in MOCA.

mapping of virtual memory pages of a particular memory type (e.g., latency-sensitive)

to the physical frames of the corresponding memory module (e.g., RLDRAM).

When a memory object is instantiated through the modified memory allocator

(including the extra “type" field specifier), that object is allocated with virtual pages

from the heap space based on its type. In the page translation process, based on

the memory object’s virtual page number, the OS identifies the type of the memory

object and maps a physical frame from the memory module corresponding to its type,

as shown in Figure 5·5.

5.3 Implementation of MOCA

MOCA targets applications that run repeatedly on a servers and data centers. There-

fore, in a real system, it MOCA uses representative training inputs for offline pro-

filing and classification of memory objects. Once the binary of the application is

instrumented using the memory characteristics of objects, consequent runs of the ap-

plications can be executed seamlessly. We implemented a simulation framework in

Gem5 (Binkert et al., 2011) to conduct full-system architectural simulations. We use

a Linux 2.6.32 disk image as the host operating system. We track memory objects

allocated using the memory allocation library of C language (e.g., malloc()).
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5.3.1 Offline Profiling and Classification

To implement the naming process, we modify the memory allocation functions to get

the return addresses of each memory allocation function and its caller function using

a built-in function __builtin_return_address(). We create a shared library of the

modified memory allocation functions and preload this library while executing an

application. We add a profiler flag to our compiler to maintain all the objects within

an application in a LUT. This LUT contains all the information of every object (call

stack, size, start address, LLC MPKI, ROB head stall cycles per load miss). MOCA

uses the hardware performance counters of the processor to record the LLC misses

and the ROB head stall cycles for each memory object. Each time an object is

read/written to, if the ROB stalls for a memory read or if there is an LLC miss, we

identify the accessed memory object (based on the requested address) and increment

the corresponding counter for that memory object in the LUT. We also update the

object’s size as needed.

For classifying the memory objects as either latency-sensitive, bandwidth-sensitive

or non-memory-intensive, we empirically set the ThrLat and ThrBW . For our target

heterogeneous system, we set ThrLat as 1 and ThrBW as 20. ThrLat and ThrBW need

to be customized for a given system, as memory, cache, and core microarchitectural

parameters significantly impact memory performance and energy efficiency.

5.3.2 Runtime Page Allocation

MOCA’s runtime page allocation algorithm runs on top of the existing OS memory

management. As noted earlier, we use the classification information of objects to

instrument the application binary by specifying the “type" in the modified memory

allocation function. 1 When the CPU issues a memory request, it goes to the L1 cache.
1Alternatively, one could instrument the application binary with object statistics (LLC MPKI

and ROB stalls) and pass the Thr_Lat and Thr_BW thresholds to the OS.
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In parallel, the CPU searches TLB for the physical page number of this memory

request. On a hit, the TLB sends the physical page corresponding to the requested

virtual page. Otherwise, there is a page fault, and the OS searches through page

table to find the required virtual-physical page translation. The requested PTE is

returned and inserted into TLB. The OS maintains the starting, ending, and the next

available page number of each memory module in a heterogeneous memory system.

The OS is also given the priorities of memory modules for different memory object

types in case the most desired memory module is full (i.e., next best module if the

ideal one is full).

5.3.3 Overheads of MOCA

The profiling and classification of memory objects are conducted offline and do not

impact system performance at runtime. We measure the performance overhead of

running our applications with profiling turned on, and observe only 0.59% slowdown

on average. At runtime, the OS performs page allocation for memory objects only

when they are instantiated. Therefore, the page allocation overhead is negligible in

contrast to page migration policies that need to monitor runtime information.

5.4 Experimental Evaluation and Analysis

5.4.1 Simulation Framework

Computing System with Homogeneous/Heterogeneous Memory

We use the AMD Magny Cours processor (Conway et al., 2009) for demonstrating

the benefits of MOCA. Table 5.1 shows the microarchitectural details of the AMD

Magny Cours processor. We conduct simulations on both a single-core system and a

4-core multicore system. We consider a computing system with 2GB DDR3 memory

module as the baseline for all simulations, since most high-end servers and data centers
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Table 5.1: Microarchitectural details of AMD Magny Cours processor
used in Gem5 simulations.

Execution Core 1GHz x86 ISA with out-of-order execution
Fetch/Decode/Dispatch/Issue/Commit width 3,
84-entry ROB, 32-entry LQ,
tournament branch predictor with 4K BTB entries

On-chip caches 64KB split L1 I and D cache, 2-way, 2 cycle , 64B
line size, 4 MSHR
Unified L2, 512KB, 16-way, 20 cycles, 64B line size,
20 MSHR

Memory Controller Address mapping RoRaBaChCo, 4 channels,
FR-FCFS scheduling

employ this memory module. In addition, we consider 3 computing systems with

homogeneous memory, one with 2GB RLDRAM as the latency-optimized memory,

one with 2GB HBM as the bandwidth-optimized memory and one with 2GB LPDDR2

as the power-optimized memory. We denote system with DDR3 memory as Homogen-

DDR3, system with LPDDR2 memory as Homogen-LPDDR2, system with RLDRAM

memory as Homogen-RDLRAM and system with HBM memory as Homogen-HBM.

Our target computing system with heterogeneous memory consists of four memory

channels and each channel is connected to a type of memory module. We model

this memory system to consist of a 768MB HBM module, a 256MB RLDRAM

module, and two 512MB LPDDR2 modules. We use a dedicated memory controller

for each memory channel as the device timing parameters differ for different memory

modules. We compare our proposed MOCA, which is an object-level page allocation

in heterogeneous memory system, with an application-level allocation (Phadke and

Narayanasamy, 2011), where all the memory objects in one application are allocated

to that application’s best-fit memory module. We denote the heterogeneous memory

system with application-level allocation as Heter-App.
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Performance and Power Simulation

We conduct full-system simulations in Gem5 (Binkert et al., 2011). We model the

microarchitectural parameters of AMD Magny Cours processor in Gem5. We use a

Linux 2.6.32 disk image as the host operating system. For each application, we run

the applications for 100 million instructions at each simpoint (Hamerly et al., 2005)

to collect memory object statistics for each application.

We feed the Gem5 output statistics to McPAT (Li et al., 2009) for core and cache

power calculation. We calibrate the runtime dynamic core power values using mea-

surements collected on the AMD Magny Cours processor (Kumar et al., 2003). We

model performance characteristics of our memory system designs in Gem5 and use

MICRON’s DRAM power calculators for DDR3 (MICRON, 2011), RLDRAM (MI-

CRON, 2016) and LPDDR2 (MICRON, 2013) to calculate memory power consump-

tion. This calculator takes in memory read and write access rates as inputs and

provides detailed DRAM power traces for each banks. For HBM, we scale down the

DDR3 precharge and power-down current (Li et al., 2016a), and then estimate mem-

ory power from SDRAM power calculator (MICRON, 2011). We assume that the

I/O power and the on-chip bus power are negligible compared to total chip power.

Workloads

We run selected C-based applications from SPEC CPU2006 (Henning, 2006) and SD-

VBS (Venkata et al., 2009). For SPEC benchmarks, we conduct profiling using the

training input sets and perform allocation on reference input sets. In case of SD-

VBS benchmarks, we select two different images from MIT-Adobe fivek dataset (By-

chkovsky et al., 2011) for profiling and allocation. We classify the applications as

a whole to be either latency-sensitive (L), bandwidth-sensitive (B) or non-memory-

intensive (N). To run workloads on a multicore system, we create multi-program work-

load sets consisting of a diverse mix of these applications. As an example, 2L1B1N
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(a) (b)

Figure 5·6: (a) Memory performance in access time, and (b) memory
energy efficiency in EDP of homogeneous and heterogeneous memory
systems for single-program workloads

represent a workload set with two latency-sensitive applications, one bandwidth-

sensitive application and one non-memory-intensive application.

5.4.2 Performance and Energy Benefits for Single-core Systems

We demonstrate the benefits of heterogeneous memory over homogeneous memory

systems, and the benefits of object-level page allocation with MOCA over application-

level page allocation in heterogeneous memory systems. Figure 5·6a and Figure 5·6b

shows the memory performance and energy efficiency in EDP, respectively, across

different memory configurations for a single-core computing system. The memory

access times and memory EDP are normalized to that of an homogeneous memory

system with on DDR3 memory module, i.e. Homogen-DDR3.

For a single-core system, MOCA reduces the memory access time by 51% and

the memory EDP by 43% over Homogen-DDR3. Homogen-RL unsurprisingly has

the lowest memory access time whilst the worst energy efficiency. On the other hand,

Homogen-LP has the worst performance among all memory systems, but due to its low

power cost, it still has better EDP than Homogen-RL and Homogen-DDR3. MOCA

achieves the best energy efficiency among all experimented memory systems and stays

closest to Homogen-RL’s performance.

Compared to Heter-App, MOCA outperforms in memory performance by 14%
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Figure 5·7: (a) Memory performance in access time, and (b) memory
energy efficiency in EDP of homogeneous and heterogeneous memory
systems for multi-program workloads

and in energy efficiency by 15% for single-core systems. In particular, MOCA pro-

vides more benefits in performance and energy efficiency for latency-sensitive appli-

cations, such as disparity. disparity has two major memory objects, one with a high

L2MPKI and the other with a relatively low L2MPKI. Heter-App first allocates the

lower-L2MPKI object in RLDRAM module since it is the first one identified during

runtime. Since RLDRAM module capacity is used up by this object, the higher-

L2MPKI object is allocated in HBM module. In contrast, MOCA is aware of both

objects’ characteristics, and thus, allocates the higher-L2MPKI object in RLDRAM

and the lower-L2MPKI one in HBM, which improves the memory performance and

reduces the memory EDP. Therefore, object-level page allocation in MOCA is able to

unearth more of heterogeneous memory systems’ potential than an application-level

page allocation.

5.4.3 Performance and Energy Benefits for Multicore Systems

Figure 5·7a and Figure 5·7b shows the memory performance and energy efficiency in

EDP, respectively, for a multicore system. The memory EDP with MOCA is 63%

higher than Homogen-DDR3 and 40% higher than Homogen-LP, which makes MOCA

the most energy-efficient one among all tested memory systems. In addition, MOCA

reduces the memory access time by 26% and the memory EDP by 33% over Heter-App.
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Figure 5·8: L2 MPKI of stack and code segment for all applications

MOCA prioritizes the high-L2MPKI objects to RLDRAM and the high-MLP objects

to HBM, thereby reducing overall memory access time. In addition, MOCA also

places the non-memory-intensive objects to LPDDR modules, thereby reducing the

memory power consumption significantly. Thus, we see energy efficiency improvement

from MOCA over Heter-App, which tries to place all objects in RLDRAM module.

5.4.4 Classifying Stack Data and Code Segment

In MOCA, we mainly profile and allocate memory objects allocated in the heap space.

In addition, there are also memory accesses to the code segment as well as the stack

space. However, the memory access intensity of these segments is considerably lower

than that of the heap objects. Figure 5·8 shows the L2MPKI for stack and code

segments of the target applications. These segments exhibit lower L2MPKI values

due to the higher locality of code segment and lower data size of the stack segment.

Therefore, we allocate pages from LPDDR module for these segments in MOCA.

5.5 Chapter Summary

Heterogeneous memory systems are very effective in catering to a wide diversity of

workloads with varied memory characteristics. Although, such systems need a system

memory management policies to leverage their full potential in delivering high system

energy efficiency. In contrast to coarser-level page allocation policies in prior work,

this chapter points out that memory objects within an application exhibit substantial
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diversity in memory characteristics. Our proposed framework, MOCA exploits this

observation to design an intelligent data placement, which profiles an application and

places each object in a memory module that best suits that object’s memory access

behavior.

This chapter demonstrates that heterogeneous memory systems with MOCA out-

perform current homogeneous systems composed of DDR3 modules with 63% im-

proved energy efficiency and 30% higher performance. MOCA also enables an efficient

framework for memory management by providing 26% higher performance and 33%

improved energy efficiency compared to an application-level page allocation.
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Chapter 6

Conclusions and Future Directions

As we usher in an era of extreme data-centric computing, the primary focus has shifted

towards data movement and data access in current and future manycore systems.

With silicon-photonic links and optical phase change materials undergoing major

breakthroughs in device research, they present a fascinating platform for designing

energy-efficient manycore systems. This thesis has presented architectural designs

and system management policies for chip-scale networks and main memory using

silicon-photonics technology. This chapter summarizes the important findings of the

thesis and discusses open problems for future research directions.

6.1 Summary of Thesis Contributions

This thesis addresses the energy efficiency concerns in data movement and data access

on two major fronts: developing system management policies for power-efficient uti-

lization of silicon-photonic links and designing an optically-controlled memory system

that is interfaced using silicon-photonic links.

Supporting the high-Tbps demands of data-centric applications on manycore chips

requires the design of dense WDM silicon-photonic links with increased optical chan-

nels. The consequent increase in the photonic power impacts the energy-per-bit bud-

get of chip-scale networks. We, therefore, postulate that it is sufficient to activate

the minimum number of optical channels that satisfies the application bandwidth

requirements. To this end, we model the different components of the power consump-
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tion in the silicon-photonic links, i.e., laser sources, electrical circuitry in the E-O-E

conversion and thermal tuning of MRRs. We identify that thermal tuning is a major

contributor to the photonic power, and leverage the analog thermal control loop at

device-level to enable MRR remapping at runtime. Our cross-layer simulation frame-

work accounts for the MRR sensitivities to PV and TV, architectural parameters

of the 2.5D manycore system and the system-level resource utilization, power and

thermal profile during an application execution. We propose a bandwidth allocation

policy, SO-WAVES (Narayan et al., 2019), that is effective in limiting the photonic

power by 38% compared to activating all the optical channels with only 5% loss in

performance.

A limiting factor of our SO-WAVES policy stems from the fact that it only ac-

counts for the averaged bandwidth needs of an application. An application has some

phases with high bandwidth utilization and some phases with low bandwidth uti-

lization. Since SO-WAVES activates optical channels based on averaged bandwidth

needs, this may under or over provision the dynamic bandwidth needs during an ap-

plication execution. To address this shortcoming, we propose a dynamic bandwidth

allocation policy called PROWAVES (Narayan et al., 2020b). PROWAVES consists

of a time-series forecasting that uses an ARIMA model to predict the bandwidth

requirement for the next phase and proactively activate the optical channels. We ob-

serve that PROWAVES consumes 16.4% lower photonic power than SO-WAVES for

the same performance loss threshold, i.e., 5%. We also compare PROWAVES with a

prior bandwidth allocation technique that uses ridge regression model for bandwidth

prediction, RR-PS (Van Winkle et al., 2018). Owing to model of the device-level

thermal control loop, PROWAVES results in 26.3W lower thermal tuning power than

RR-PS for the same performance loss threshold, i.e., 5%.
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We evaluate a diverse range of workloads from standard HPC and graph bench-

marks that form the basis of a majority of data-centric applications across several do-

mains. We particularly investigate graph benchmarks as they exhibit random memory

accesses, resulting in increased network traffic. We demonstrate that silicon-photonic

links, owing to their high bandwidth-density, are able to meet the high bandwidth de-

mands of graph applications (Narayan et al., 2020a). Moreover, we performed several

architectural sensitivity analyses using silicon-photonic links for graph applications

that present promising opportunities for redesigning future systems.

On top of our system-level bandwidth allocation policies, we implemented a

software-level instrumentation that reduces the network traffic in silicon-photonic

links during application execution (Narayan et al., 2020a). Using this application-

instrumentation approach, we observe a reduced number of inter-chiplet transferred

packets, thus reducing the application’s bandwidth requirements. As a result, we are

able to save 35.13% higher photonic power using instrumentation-assisted SO-WAVES

compared to SO-WAVES without instrumentation.

The performance of computing systems, despite using silicon-photonic links as

chip-scale networks, are still bottlenecked due to constrained bandwidth and long

access latency of the main memory. Our goal is to design a main memory system

that can be directly accessed by optical signals in the silicon-photonic links. This

thesis proposes COSMOS, a main memory system that combines optically-controlled

phase change materials with silicon-photonic links. The increased bit density per cell

and the high-bandwidth-density access of memory cells using silicon-photonic links

in COSMOS deliver a high memory throughput for read and write. COSMOS uses

a novel read and write access protocol that is tailored to the properties of OPCM

cells and the optical constraints of silicon-photonic links. Moreover, we design an

E-O-E control unit to enable interfacing COSMOS with current processors. The E-
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O-E control unit is responsible for mapping the DRAM protocol commands, data and

addresses to OPCM-specific optical signals.

Evaluation of a 2.5D computing system with COSMOS demonstrates 2.15× higher

write throughput and 2.09× higher read throughput compared to an equivalent com-

puting system with EPCM. This increased memory throughput in COSMOS reduces

the memory latency by 33%. Overall, when compared to EPCM, COSMOS has

2.14× better performance, 1.24× lower read energy-per-bit, and 4.06× lower write

energy-per-bit for graph and HPC workloads. COSMOS provides a scalable and non-

volatile alternative to DDR4 DRAM memory, with 5.6% higher performance and

similar energy-per-bit for read and write accesses. With DRAM technology undergo-

ing critical scaling challenges, COSMOS presents the first non-volatile main memory

system with improved scalability, increased bit density, high area efficiency and com-

parable performance and energy as DRAM. Our promising initial demonstration of

COSMOS architecture can open the doors for interesting architectural, design and

system-level directions that enable the feasibility of OPCM-based main memory in

future manycore systems.

This thesis finally addresses the shortcomings of homogeneous memory systems in

manycore chips in the era of workloads with diverse memory characteristics. Hetero-

geneous memory systems, with their potential to cater to a diverse range of workloads

with varying memory characteristics, still need a systematic memory management pol-

icy. We present MOCA, a framework for page allocation in heterogeneous memory

systems at the granularity of heap memory objects. MOCA first profiles an applica-

tion, collects statistics of different memory objects to classify them into different cate-

gories based their memory characteristics, and finally allocates them at runtime to the

best-fit memory module. Our evaluation of MOCA provides 63% energy improvement

compared to a homogeneous DDR3 memory system, and 33% energy improvement
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compared to an application-level allocation in heterogeneous memory system.

6.2 Future Research Directions

The architectural designs and system-level management presented in this thesis open

up interesting research directions in designing energy-efficient chip-scale networks and

memory systems.

6.2.1 Designing Efficient Silicon-Photonic Links

Bandwidth Allocation for Heterogeneous 2.5D Systems

This thesis presents WAVES as a system-level bandwidth allocation policy to address

the high photonic power overhead at increased network bandwidth. Our evaluations

demonstrated the power benefits of SO-WAVES and PROWAVES on a 96-core homo-

geneous 2.5D system, POPSTAR. A homogeneous 2.5D system consists of the same

compute chiplets integrated on an interposer. In such a system, the inter-chiplet net-

work traffic remains evenly distributed when a multi-threaded application is executed

with equal threads/chiplet. In contrast, a heterogeneous 2.5D system may experience

highly uneven network traffic distribution, as chiplets differ in their compute abil-

ity. Such uneven network distribution has been shown in heterogeneous manycore

systems consisting of CPU and GPU chiplets (Mirhosseini et al., 2017; Zhan et al.,

2016). Our proposed WAVES and PROWAVES policy activates minimum number

of optical channels for the entire system. As a result, some of the inter-chiplet net-

work traffic may be under-provisioned than the required bandwidth and yield lower

performance. To address this limitation, studying the network traffic patterns in

heterogeneous 2.5D systems is an interesting research direction.

• In a heterogeneous 2.5D system consisting of CPU chiplets, GPU or accelerator

chiplets and memory chiplets, the network traffic may be higher to and from the
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GPU chiplet due to its increased capability for parallel processing. Therefore,

a bandwidth allocation policy in such a system needs to account for uneven

network traffic between certain set of chiplets. Such a policy should also ensure

fairness to the network packets transferred so that none of the chiplets starve

for a long time.

• A heterogeneous 2.5D system also presents interesting design considerations in

chiplet placement and routing of silicon-photonic links to ensure thermal relia-

bility. Chiplets with higher compute activity result in increased temperatures,

demanding higher need for MRR thermal management. The placement of com-

pute chiplets, memory chiplets and the TxRx chiplets along with the routing of

the silicon-photonic links can be formulated as an optimization problem con-

strained by the thermal thresholds, the bandwidth required for the different

chiplets and the power budget.

Software Frameworks for Silicon-Photonic Links

This thesis presents the efficacy of bandwidth selection using application instrumen-

tation on PageRank algorithm. The benefits of such an approach opens up interesting

opportunities in designing more generalized software frameworks that can assist band-

width allocation policies. Such a framework can be implemented in several ways.

• One potential approach is to enable programmers with higher capability to de-

sign software at the function-level to minimize the data or cache coherency

traffic in the chip-scale network. Similar to our design, the programmer can

instrument the application using privileged instructions. Another powerful de-

sign can enable the programmer to define a specific flow of the application task

graph, which contains information about data dependencies. The goal of these

designs is to embed information in the source code to reduce network traffic. A
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dedicated core on chip can monitor the hardware performance counters to record

the network metrics, which can guide the system-level management policies.

• Another design approach is to enable the compilers to provide network infor-

mation to system management policies. Such an approach reduces the burden

on programmers to design optimized codes targeted towards network power

optimization. The compiler can use the code’s intermediate representation to

implement code-improving transformations to generate the object or machine

code. These transformations can leverage the data dependencies in the source

code and potential data coherency to minimize the chip-scale network traffic in

the silicon-photonic links.

6.2.2 Architectural Opportunities with COSMOS

This thesis proposes COSMOS as the first novel memory architecture using OPCM

cells. There are promising avenues to explore in the design architecture and the

software stack to maximize the potential of OPCM arrays.

OPCM-aware Scheduling and Application Mapping in COSMOS

The primary goal of COSMOS architecture is to ensure its compatibility with current

off-the-shelf processors. The E-O-E control unit is designed to interface with mem-

ory controllers and map the standard DRAM protocol commands to OPCM-specific

optical signals. The COSMOS system, therefore, uses the same memory scheduling

policies, virtual-physical address mapping, and error detection and correction mecha-

nisms that are used in current memory controllers. It will be interesting to investigate

whether the above mechanisms are indeed suitable for COSMOS.

• Most current memory controllers use FR-FCFS policy for memory schedul-

ing (Valsan and Yun, 2015; Martinez and Ipek, 2009). FR-FCFS policy is con-

ventionally designed to maximize the row-buffer locality in DRAM systems by
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prioritizing memory commands that hit in the row buffer. However, since COS-

MOS does not use a row-buffer in its design and directly accesses the cells in the

OPCM array, such a policy may result in sub-optimal performance. Therefore,

it is essential to identify the key bottlenecks with FR-FCFS policy in COS-

MOS, determine the extent of its impact and implement a memory scheduling

algorithm that maximizes the specific address mapping used in COSMOS.

• COSMOS relies on the E-O-E control unit to map the memory controller com-

mands to optical signals. Therefore, COSMOS still uses conventional electrical

links for memory controller to E-O-E control unit communication. Despite

silicon-photonic links + OPCM array delivering high throughput, the memory

controller can develop as a bottleneck for applications with high read/write

rates. The buffering of read/write operations may potentially stall the proces-

sor from issuing memory instructions even though the OPCM array is capable

of delivering the required throughput. Moreover, the memory controller still

issues commands for Precharge, Activate and Refresh, which are required for

DRAM systems, but are redudant for COSMOS. Therefore, it would be bene-

ficial to design an OPCM-specific memory controller in the processor. Such a

design also shifts the different sub-units in the E-O-E control unit inside the

processor or the memory controller as a separate chiplet.

• Application mapping to OPCM array is another interesting aspect to explore

as a potential direction. The high throughput obtained using COSMOS is con-

tingent on data accesses that are independent, which allows the E-O-E control

unit to pipeline the read and write accesses. However, in applications with

dependent accesses (e.g., pointer chasing, iterative algorithms), COSMOS can

yield suboptimal performance due to inefficient data mapping to OPCM cells.

Therefore, it is essential to consider data mapping policies in cases of graph
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Figure 6·1: (a) Multiplication and (b) Addition operation of two val-
ues stored in two OPCM cells in COSMOS.

workloads and data analytics to utilize the internal OPCM organization more

efficiently.

Processing-in-Memory in COSMOS

The current computing systems are mostly processor-centric, i.e., data is moved from

memory to processor for computation and then written back to memory. With the

data explosion in today’s workloads, most of this data movement leads to unnecessary

resource wastage and increases computation time and energy. Processing-in-Memory

(PIM) architectures have emerged as a memory-centric design that provide support

for computational elements or mechanisms inside the memory chips. These PIM

designs are based on analog or digital principles with the software stack providing

new primitives to support certain operations. PIM architectures have been extensively

studied in DRAM systems (Seshadri et al., 2013; Chang et al., 2016a; He et al., 2020;

Seshadri et al., 2017) as well as NVM systems (Li et al., 2016b; Angizi et al., 2017;

Angizi et al., 2018).

Owing to the higher bits/cell capability and high-throughput access, the OPCM

array in COSMOS provides an excellent opportunity for designing PIM architectures.

The associative property of optical signals enable us to perform addition and multi-

plication operation of two values stored in two separate OPCM cells. Figures 6·1a

and 6·1b illustrate the multiplication and addition operation of two values stored in
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two different OPCM cells. During multiplication operation, an optical signal with

intensity I0 is passed through the two OPCM cells that hold the operands for mul-

tiplication. The output optical signal has an intensity of T1.T2.I0, where T1 and T2

are the transmittance of the two OPCM cells based on the stored data. For addition

operation, two optical signals, both with intensity I0, are passed in parallel through

the two OPCM cells. The output intensities from the cells, T1.I0 and T2.I0 are aggre-

gated into the same waveguide. As a result, the final intensity of the optical signal is

I0.(T1 + T2).

Due to the high MLC capacity of OPCM cells, we can store n bits per cell,

which enables us to directly perform addition and multiplication of n− bit operands.

Currently, OPCM cells store 4 bits, with future projections forecasting up to 8 bits

per cell (Li et al., 2019). Most machine learning models operate on int4 and in8

operands (Martinez and Ipek, 2009; Fu et al., 2016; Zhu et al., 2020), which makes

OPCM-based array with PIM capabilities particularly attractive for machine learning

applications. Unlike DRAM, which can take up to 8+ cycles for a single multiplica-

tion or addition of int8 operands, and EPCM, which can take up to 4+ cycles and

3× latency to write back the result, OPCM-based PIM systems can perform these

operations in a single cycle. Using dense WDM silicon-photonic links, we can also

perform multiple such independent operations in parallel, thereby increasing the com-

pute throughput substantially compared to DRAM-based PIM designs. Furthermore,

neural network inference models are primarily composed of matrix-vector multiplica-

tion operations. Therefore, a memory system capable of performing high-throughput

addition and multiplication operations can perform matrix-vector multiplication op-

erations at much lower J/ops. Feldman et al. demonstrated a photonic hardware

accelerator that is capable of operating at tera-MAC operations/sec using optically-

controlled GST elements for data-heavy AI applications (Feldmann et al., 2021). All
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these above factors open up interesting future research directions as follows:

• Designing a PIM system using OPCM-based arrays requires enabling archi-

tectural support and defining PIM primitives in the programming model.

These primitives can either be defined at instruction-level by embedding PIM-

specific instructions in the ISA or at the function-level using a pragma-based or

directive-based approach to offload a kernel/function on to PIM.

• The PIM paradigm in OPCM-based arrays would call for a redesign of the E-

O-E control unit as well. In addition to address and data mapping to optical

signals, the E-O-E control unit would need to decode the PIM instructions and

generate specific intensity optical signals corresponding to PIM operations. An

interesting direction would be to explore optimization techniques on operation

scheduling and pipelined execution by leveraging the high bandwidth density

offered by silicon-photonic links.

• For data-centric applications such as graph algorithms and privacy-preserving

workloads, the data operands are often longer than 8 bits, unlike machine learn-

ing applications. Such applications would, therefore, require novel memory or-

ganization and compute mechanisms for arithmetic operations, where operands

are stored across multiple OPCM cells.

6.2.3 Memory Management in Heterogeneous Memory Systems

Designing heterogeneous memory systems with COSMOS

This thesis presents COSMOS as a high-throughput main memory candidate that is

particularly beneficial in servicing high orders of parallel reads and writes. However,

latency-sensitive workloads with highly dependent reads and writes will encounter the

long write latency in the OPCM array. Similarly, workloads with significantly high
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write rate will result in a faster wearout of OPCM cells in COSMOS. Therefore, an

interesting direction is to design a heterogeneous memory system with COSMOS and

DRAM systems that utilizes the non-volatily, high bit density and high bandwidth

advantages of COSMOS and the latency and endurance benefits of DRAM.

• We can employ two strategies in designing a heterogeneous memory system with

DRAM and COSMOS. One strategy can employ DRAM as an upper layer cache

memory of COSMOS. Similar to the L1 and L2 caches, DRAM cache here is

hidden from the OS and can be accessed only using hardware implementation.

The DRAM cache can be implemented as a writeback cache to minimize the

write frequency to COSMOS.

• Another strategy is to design DRAM and COSMOS at the same memory hierar-

chy level. The physical address is spread across both the DRAM and COSMOS,

and the OS needs to manage the page translation and allocation. In such a sce-

nario, an updated framework of MOCA that monitors the write rate and the

required throughput for a memory object can be investigated.

Dynamic memory object migration in heterogeneous memory systems

In our proposedMOCA framework, we address the diversity in memory characteristics

that exists in memory objects within an application. We profiled their characteristics

and allocated them at runtime to the best-fit memory module. The runtime page

allocation, therefore, was performed at the object initialization. However, objects

may exhibit changing memory characteristics during an application execution. For

example, an application may initialize a memory object in parallel, which makes the

object bandwidth-intensive. During an initial phase of execution, the object may be

accessed in parallel, which retains the object’s bandwidth-intensive property. But,

during a later phase of execution, the object may encounter dependent accesses, which
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makes it latency-sensitive. As another example, a large object may be initialized

and accessed in parallel during an early phase of the application execution. The

object may not be accessed for the rest of the application, which makes the object

non-memory-intensive. Such behaviors are common in graph and machine learning

applications. Therefore, an object migration policy between memory modules needs

to be explored in the MOCA framework.

• A potential approach to implement a page migration policy for memory objects

can be a reactive one. We can monitor the object’s memory characteristics dur-

ing the application execution and when the characteristics drastically changes

based on a predetermined threshold, the object’s pages can be migrated to the

target memory module. It is essential to account the performance and energy

overhead of page migration in this approach.

• Another approach to implement page migration for memory objects is to use a

proactive policy. We can design a time-forecasting model to learn the object’s

memory characteristics over time. Using this model, the object’s pages can be

proactively migrated to the destination memory module. With this approach,

it is also possible to hide the page migration latency of an object during the

application execution.



References

Abellán, J. L., Coskun, A. K., Gu, A., Jin, W., Joshi, A., Kahng, A. B., Klamkin,
J., Morales, C., Recchio, J., Srinivas, V., and Zhang, T. (2017). Adaptive tun-
ing of photonic devices in a photonic NoC through dynamic workload allocation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
36(5):801–814.

Ahn, J., Hong, S., Yoo, S., Mutlu, O., and Choi, K. (2015). A scalable processing-in-
memory accelerator for parallel graph processing. In Proceedings of International
Symposium on Computer Architecture, Portland, OR, USA, pages 105–117.

Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the
institute of Statistical Mathematics, 21(1):243–247.

AMD (2019). AMD RDNA GPU Architecture. https://www.amd.com/en/
technologies/rdna.

Angizi, S., He, Z., and Fan, D. (2018). PIMA-logic: A novel processing-in-memory
architecture for highly flexible and energy-efficient logic computation. In Proceed-
ings of Design Automation Conference, San Francisco, CA, USA, pages 1–6.

Angizi, S., He, Z., Parveen, F., and Fan, D. (2017). RIMPA: A new reconfigurable
dual-mode in-memory processing architecture with spin hall effect-driven domain
wall motion device. In Proceedings of International Symposium on VLSI, Bochum,
Germany, pages 45–50. IEEE.

Arjomand, M., Kandemir, M. T., Sivasubramaniam, A., and Das, C. R. (2016).
Boosting access parallelism to PCM-based main memory. In Proceedings of In-
ternational Symposium on Computer Architecture, Seoul, South Korea, pages 695–
706.

Avissar, O., Barua, R., and Stewart, D. (2001). Heterogeneous memory management
for embedded systems. In Proceedings of International. Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, Atlanta, GA, USA, pages 34–
43.

Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., Cheng, Q.,
and Bergman, K. (2017a). Thermal rectification of integrated microheaters for mi-
croring resonators in silicon photonics platform. Journal of Lightwave Technology,
36(3):773–788.

131

https://www.amd.com/en/technologies/rdna
https://www.amd.com/en/technologies/rdna


132

Bahadori, M., Polster, R., Rumley, S., Thonnart, Y., Gonzalez-Jimenez, J.-L., and
Bergman, K. (2016). Energy-bandwidth design exploration of silicon photonic
interconnects in 65nm CMOS. In Proceedings of Optical Interconnects Conference,
San Diego, CA, USA, pages 2–3.

Bahadori, M., Rumley, S., Polster, R., Gazman, A., Traverso, M., Webster, M.,
Patel, K., and Bergman, K. (2017b). Energy-performance optimized design of
silicon photonic interconnection networks for high-performance computing. In
Proceedings of Design, Automation & Test in Europe Conference & Exhibition,
Lausanne, Switzerland, pages 326–331. IEEE.

Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., and Yarrow, M.
(1991). The NAS parallel benchmarks. International Journal of Supercomputing
Applications, 5(3):63–73.

Batten, C., Joshi, A., Orcutt, J., Khilo, A., Moss, B., Holzwarth, C. W., Popovic,
M. A., Li, H., Smith, H. I., Hoyt, J. L., Kartner, F., Ram, R. J., Stojanović,
V., and Asanović, K. (2008). Building many-core processor-to-DRAM networks
with monolithic CMOS silicon photonics. In Proceedings of Symposium on High
Performance Interconnects, Stanford, CA, USA, pages 21–30.

Beamer, S., Asanović, K., and Patterson, D. (2015). The gap benchmark suite.
arXiv preprint arXiv:1508.03619.

Beamer, S., Sun, C., Kwon, Y.-j., Joshi, A., Batten, C., Stojanovic, V., and Asanovi,
K. (2009). Re-architecting DRAM with monolithically integrated silicon photonics.
In Proceedings of International Symposium on Computer Architecture, Saint-Malo,
France, pages 129–140.

Bedeschi, F., Fackenthal, R., Resta, C., Donze, E. M., Jagasivamani, M., Buda, E. C.,
Pellizzer, F., Chow, D. W., Cabrini, A., Calvi, G. M. A., Faravelli, R., Fantini, A.,
Torelli, G., Mills, D., Gastaldi, R., and Casagrande, G. (2008). A multi-level-cell
bipolar-selected phase-change memory. In Proceedings of International Solid-State
Circuits Conference, San Francisco, CA, pages 428–625.

Beigi, M. V. and Memik, G. (2016). Therma: Thermal-aware run-time thread migra-
tion for nanophotonic interconnects. In Proceedings of International Symposium
on Low Power Electronics and Design, San Francisco, CA, USA, pages 230–235.

Bergal, A. (2019). Trends in DRAM price per gigabyte. https://aiimpacts.org/
trends-in-dram-price-per-gigabyte/#easy-footnote-bottom-8-2408.

Bergman, K. (2018). Empowering flexible and scalable high performance architec-
tures with embedded photonics. In Proceedings of International Symposium of
Parallel and Distributed Processing, Vancouver, BC, Canada, page 378.

https://aiimpacts.org/trends-in-dram-price-per-gigabyte/#easy-footnote-bottom-8-2408
https://aiimpacts.org/trends-in-dram-price-per-gigabyte/#easy-footnote-bottom-8-2408


133

Bhattacharjee, D., Devadoss, R., and Chattopadhyay, A. (2017). ReVAMP: ReRAM
based VLIW architecture for in-memory computing. In Proceedings of Design,
Automation & Test in Europe Conference & Exhibition, Lausanne, Switzerland,
pages 782–787. IEEE.

Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings of Parallel
architectures and compilation techniques, Toronto, Canada.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness,
J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish,
N., Hill, M. D., and Wood, D. A. (2011). The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7.

Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S.,
Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., and Baets, R. (2012).
Silicon microring resonators. Laser & Photonics Reviews, 6(1):47–73.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series
analysis: Forecasting and control. John Wiley & Sons.

Bradford, D., Chinthamani, S., Corbal, J., Hassan, A., Janik, K., and Ali, N. (2017).
Knights mill: New intel processor for machine learning. In Proceedings of Hot
Chips Symposium, Cupertino, CA, USA, volume 29.

Burr, G., Breitwisch, M., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jack-
son, B., Kurdi, B., Lam, C., Lastras, L., Padilla, A., and Rajendran, B. (2010).
Phase change memory technology. Journal of Vacuum Science & Technology B,
Nanotechnology and Microelectronics: Materials, Processing, Measurement, and
Phenomena, 28(2):223–262.

Bychkovsky, V., Paris, S., Chan, E., and Durand, F. (2011). Learning photographic
global tonal adjustment with a database of input/output image pairs. In Pro-
ceedings of Computer Vision and Pattern Recognition, Providence, RI, USA, pages
97–104.

Campbell, D., Bader, D., Brandt, S., Cook, D., Gokhale, M., Hornung, R., Keasler,
J., LeBlanc, P., Marin, G., and Mulvaney, B. (2012). Ubiquitous high perfor-
mance computing: Challenge problems specification. Georgia Technical Research
Institute, Atlanta, GA, USA, Tech. Rep. HR0011-10-C-0145.

Cardenas, J., Poitras, C. B., Robinson, J. T., Preston, K., Chen, L., and Lipson, M.
(2009). Low loss etchless silicon photonic waveguides. Optics express, 17(6):4752–
4757.



134

Carlson, T. E., Heirman, W., and Eeckhout, L. (2011). Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation. In Proceedings
of International Conference for High Performance Computing, Networking, Storage
and Analysis, Seatle, WA, USA, page 52.

Chang, K. K., Nair, P. J., Lee, D., Ghose, S., Qureshi, M. K., and Mutlu, O. (2016a).
Low-cost inter-linked subarrays (LISA): Enabling fast inter-subarray data move-
ment in DRAM. In Proceedings of International Symposium on High Performance
Computer Architecture, Barcelona, Spain, pages 568–580. IEEE.

Chang, Y.-M., Hsiu, P.-C., Chang, Y.-H., Chen, C.-H., Kuo, T.-W., and Wang, C.-
Y. M. (2016b). Improving PCM endurance with a constant-cost wear leveling
design. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 22(1):1–27.

Chatterjee, N., Shevgoor, M., Balasubramonian, R., Davis, A., Fang, Z., Illikkal,
R., and Iyer, R. (2012). Leveraging heterogeneity in DRAM main memories to
accelerate critical word access. In Proceedings of International Symposium on
Microarchitecture, Vancouver, BC, Canada, pages 13–24.

Chatterjee, N., Shevgoor, M., Balasubramonian, R., Davis, A., Fang, Z., Illikkal,
R., and Iyer, R. (2012). Leveraging heterogeneity in DRAM main memories to
accelerate critical word access. In Proceedings of International Symposium on
Microarchitecture, Vancouver, BC, Canada, pages 13–24.

Chen, C. and Joshi, A. (2013). Runtime management of laser power in silicon-
photonic multibus NoC architecture. IEEE Journal of Selected Topics in Quantum
Electronics, 19(2):3700713–3700713.

Chen, X., Mohamed, M., Li, Z., Shang, L., and Mickelson, A. R. (2013). Process
variation in silicon photonic devices. Applied optics, 52(31):7638–7647.

Choi, Y., Song, I., Park, M.-H., Hoeju Chung, S. C., Cho, B., Kim, J., Oh, Y., Kwon,
D., Sunwoo, J., Shin, J., Rho, Y., Lee, C., Kang, M. G., Lee, J., Kwon, Y., Kim,
S., Kim, J., jun Lee, Y., Wang, Q., Cha, S., Ahn, S., Horii, H., Lee, J., Kim, K.,
Joo, H.-S., Lee, K., Lee, Y.-T., Yoo, J.-H., and Jeong, G. (2012). A 20nm 1.8V
8Gb PRAM with 40MB/s program bandwidth. In Proceedings of International
Solid-State Circuits Conference, San Francisco, CA, USA, pages 46–48.

Cirillo, D. and Valencia, A. (2019). Big data analytics for personalized medicine.
Current opinion in biotechnology, 58:161–167.

Connelly, M. J. (2007). Semiconductor optical amplifiers. Springer Science & Busi-
ness Media.



135

Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., and Hughes, B. (2009).
Blade computing with the AMD Opteron™ processor (" magny-cours"). In Pro-
ceedings of Hot Chips Symposium, Stanford, CA, USA, pages 1–19. IEEE.

Coskun, A., Eris, F., Joshi, A., Kahng, A. B., Ma, Y., Narayan, A., and Srinivas, V.
(2020). Cross-layer co-optimization of network design and chiplet placement in 2.5
D systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 39(12):5183–5196.

Demir, Y., Pan, Y., Song, S., Hardavellas, N., Kim, J., and Memik, G. (2014).
Galaxy: A high-performance energy-efficient multi-chip architecture using photonic
interconnects. In Proceedings of International Conference on Supercomputing,
Munich, Germany, pages 303–312.

Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delâge, A., Lapointe, J.,
Vachon, M., and Cheben, P. (2009). Compact and low power thermo-optic switch
using folded silicon waveguides. Optics Express, 17(13):10457–10465.

Dong, J., Zhang, L., Han, Y., Wang, Y., and Li, X. (2011). Wear rate leveling: Life-
time enhancement of PRAM with endurance variation. In Proceedings of Design
Automation Conference, New York, NY, USA, pages 972–977.

Dong, X., Xie, Y., Muralimanohar, N., and Jouppi, N. P. (2010). Simple but effective
heterogeneous main memory with on-chip memory controller support. In Proceed-
ings of International Conference for High Performance Computing, Networking,
Storage and Analysis, New Orleans, LA, USA, pages 1–11.

Dong, X., Xu, C., Xie, Y., and Jouppi, N. P. (2012). NVSim: A circuit-level per-
formance, energy, and area model for emerging nonvolatile memory. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 31(7):994–
1007.

Du, Y., Zhou, M., Childers, B. R., Mossé, D., and Melhem, R. (2013). Bit mapping
for balanced PCM cell programming. In Proceedings of International Symposium
on Computer Architecture, Tel Aviv, Israel, page 428–439.

Dulloor, S. R., Roy, A., Zhao, Z., Sundaram, N., Satish, N., Sankaran, R., Jackson,
J., and Schwan, K. (2016). Data tiering in heterogeneous memory systems. In
Proceedings of European Conference on Computer Systems, London, UK, pages
1–16.

Ebrahimi, M., Weldezion, A. Y., and Daneshtalab, M. (2017). NoD: Network-on-Die
as a standalone NoC for heterogeneous many-core systems in 2.5 D ICs. In Proceed-
ings of International Symposium on Computer Architecture and Digital Systems,
Kish Island, Iran, pages 1–6. IEEE.



136

Feldmann, J., Stegmaier, M., Gruhler, N., Ríos, C., Bhaskaran, H., Wright, C., and
Pernice, W. (2017). Calculating with light using a chip-scale all-optical abacus.
Nature communications, 8(1):1–8.

Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M.,
Le Gallo, M., Fu, X., Lukashchuk, A., Raja, A., et al. (2021). Parallel convolu-
tional processing using an integrated photonic tensor core. Nature, 589(7840):52–
58.

Feldmann, J., Youngblood, N., Li, X., Wright, C. D., Bhaskaran, H., and Pernice,
W. H. (2019). Integrated 256 cell photonic phase-change memory with 512-bit
capacity. IEEE Journal of Selected Topics in Quantum Electronics, 26(2):1–7.

Ferreira, A. P., Zhou, M., Bock, S., Childers, B., Melhem, R., and Mossé, D. (2010).
Increasing PCM main memory lifetime. In Proceedings of Design, Automation &
Test in Europe Conference & Exhibition, Dresden, Germany, pages 914–919.

Floridi, L. and Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and conse-
quences. Minds and Machines, 30(4):681–694.

Fu, Y., Wu, E., Sirasao, A., Attia, S., Khan, K., and Wittig, R. (2016). Deep learn-
ing with int8 optimization on xilinx devices. https://www.xilinx.com/support/
documentation/white_papers/wp486-deep-learning-int8.pdf.

Gai, K., Qiu, M., and Zhao, H. (2016). Cost-aware multimedia data allocation
for heterogeneous memory using genetic algorithm in cloud computing. IEEE
Transactions on Cloud Computing, 8(4):1212–1222.

Gelsinger, P. P. (2001). Microprocessors for the new millennium: Challenges, op-
portunities, and new frontiers. In International Solid-State Circuits Conference.
Digest of Technical Papers, San Francisco, CA, USA, pages 22–25.

Grani, P. and Bartolini, S. (2014). Design options for optical ring interconnect
in future client devices. ACM Journal on Emerging Technologies in Computing
Systems, 10(4):1–25.

Grani, P., Proietti, R., Akella, V., and Yoo, S. B. (2017). Design and evaluation
of AWGR-based photonic NoC architectures for 2.5D integrated high performance
computing systems. In Proceedings of International Symposium on High Perfor-
mance Computer Architecture, Austin, TX, USA, pages 289–300.

Hady, F. T., Foong, A., Veal, B., and Williams, D. (2017). Platform storage perfor-
mance with 3D XPoint technology. Proceedings of the IEEE, 105(9):1822–1833.

Hamerly, G., Perelman, E., Lau, J., and Calder, B. (2005). Simpoint 3.0: Faster and
more flexible program phase analysis. Journal of Instruction Level Parallelism,
7(4):1–28.

https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf


137

He, M., Song, C., Kim, I., Jeong, C., Kim, S., Park, I., Thottethodi, M., and Vi-
jaykumar, T. (2020). Newton: A DRAM-maker’s accelerator-in-memory (AiM)
architecture for machine learning. In Proceedings of International Symposium on
Microarchitecture, pages 372–385. IEEE.

Henning, J. L. (2006). SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17.

Heroux, M. (2007). HPCCG microapp. http://www.cs.sandia.gov/~maherou/
HPCCG-0.3.tar.gz.

Hertz, J. (2021). Micron unveils 1 DRAM process node — The highest-density
DRAM to date. https://www.allaboutcircuits.com/news/micron-unveils-
1a-dram-process-node-highest-density-dram-to-date/.

Hesla, L. (2012). Particle physics tames big data. https://
www.symmetrymagazine.org/article/august-2012/particle-physics-tames-
big-data.

Hosseini, P., Wright, C. D., and Bhaskaran, H. (2014). An optoelectronic framework
enabled by low-dimensional phase-change films. Nature, 511(7508):206–211.

Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Finan, D., Ruhl, G., Jenkins, D.,
Wilson, H., Borkar, N., Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S.,
Marella, S., Salihundam, P., Erraguntla, V., Konow, M., Riepen, M., Droege, G.,
Lindemann, J., Gries, M., Apel, T., Henriss, K., Lund-Larsen, T., Steibl, S., Borkar,
S., De, V., Wijngaart, R. V. D., and Mattson, T. (2010). A 48-core IA-32 message-
passing processor with DVFS in 45nm CMOS. In Proceedings of International
Solid-State Circuits Conference, San Francisco, CA, USA, pages 108–109.

Hu, X., Stow, D., and Xie, Y. (2018). Die stacking is happening. IEEE Micro,
38(1):22–28.

Ingerly, D. B., Amin, S., Aryasomayajula, L., Balankutty, A., Borst, D., Chandra,
A., Cheemalapati, K., Cook, C. S., Criss, R., Enamul, K., Gomes, W., Jones, D.,
Kolluru, K. C., Kandas, A., Kim, G. ., Ma, H., Pantuso, D., Petersburg, C. F.,
Phen-givoni, M., Pillai, A. M., Sairam, A., Shekhar, P., Sinha, P., Stover, P.,
Telang, A., and Zell, Z. (2019). Foveros: 3D integration and the use of face-to-face
chip stacking for logic devices. In Proceedings of International Electron Devices
Meeting, San Francisco, CA, USA, pages 19.6.1–19.6.4.

JEDEC (2013). High bandwidth memory (HBM) DRAM. https://www.jedec.org/
standards-documents/docs/jesd235a.

http://www.cs.sandia.gov/~maherou/HPCCG- 0.3.tar.gz
http://www.cs.sandia.gov/~maherou/HPCCG- 0.3.tar.gz
https://www.allaboutcircuits.com/news/micron-unveils-1a-dram-process-node-highest-density-dram-to-date/
https://www.allaboutcircuits.com/news/micron-unveils-1a-dram-process-node-highest-density-dram-to-date/
https://www.symmetrymagazine.org/article/august-2012/particle-physics-tames-big-data
https://www.symmetrymagazine.org/article/august-2012/particle-physics-tames-big-data
https://www.symmetrymagazine.org/article/august-2012/particle-physics-tames-big-data
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a


138

Jerger, N. E., Kannan, A., Li, Z., and Loh, G. H. (2014). NoC architectures for
silicon interposer systems: Why pay for more wires when you can get them (from
your interposer) for free? In Proceedings of International Symposium on Microar-
chitecture, Cambridge, UK, pages 458–470. IEEE.

Jiang, L., Zhang, Y., Childers, B. R., and Yang, J. (2012a). FPB: Fine-grained power
budgeting to improve write throughput of multi-level cell phase change memory.
In Proceedings of International Symposium on Microarchitecture, Vancouver, BC,
Canada, pages 1–12.

Jiang, L., Zhao, B., Zhang, Y., Yang, J., and Childers, B. R. (2012b). Improving
write operations in MLC phase change memory. In Proceedings of International
Symposium on High Performance Computer Architecture, New Orleans, LA, USA,
pages 1–10.

Kandlikar, S. G. (2014). Review and projections of integrated cooling systems for
three-dimensional integrated circuits. Journal of Electronic Packaging, 136(2).

Kang, U., Yu, H.-S., Park, C., Zheng, H., Halbert, J., Bains, K., Jang, S., and Choi,
J. S. (2014). Co-architecting controllers and DRAM to enhance DRAM process
scaling. In The memory forum, volume 14.

Kannan, A., Jerger, N. E., and Loh, G. H. (2015). Enabling interposer-based disin-
tegration of multi-core processors. In Proceedings of International Symposium on
Microarchitecture, Waikiki, HI, USA, pages 546–558.

Kannan, S., Gavrilovska, A., Gupta, V., and Schwan, K. (2017). HeteroOS: OS
design for heterogeneous memory management in datacenter. In Proceedings of
International Symposium of Computer Architecture, Toronto, ON, Canada, pages
521–534.

Karpov, I., Mitra, M., Kau, D., Spadini, G., Kryukov, Y., and Karpov, V. (2007).
Fundamental drift of parameters in chalcogenide phase change memory. Journal
of Applied Physics, 102(12):124503.

Khouzani, H. A., Hosseini, F. S., and Yang, C. (2016). Segment and conflict aware
page allocation and migration in DRAM-PCM hybrid main memory. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 36(9):1458–
1470.

Kim, J. and Kim, Y. (2014). HBM: Memory solution for bandwidth-hungry pro-
cessors. In Proceedings of Hot Chips Symposium, Cupertino, CA, USA, pages
1–24.



139

Kim, N. S., Song, C., Cho, W. Y., Huang, J., and Jung, M. (2019). LL-PCM: Low-
latency phase change memory architecture. In Proceedings of Design Automation
Conference, Las Vegas, NV, USA, pages 1–6.

Kim, S. K., Lee, S. W., Han, J. H., Lee, B., Han, S., and Hwang, C. S. (2010).
Capacitors with an equivalent oxide thickness of < 0.5nm for nanoscale electronic
semiconductor memory. Advanced Functional Materials, 20(18):2989–3003.

Kim, S. K. and Popovici, M. (2018). Future of dynamic random-access memory as
main memory. MRS Bulletin, 43(5):334.

Koka, P., McCracken, M. O., Schwetman, H., Zheng, X., Ho, R., and Krishnamoorthy,
A. V. (2010). Silicon-photonic network architectures for scalable, power-efficient
multi-chip systems. In ACM SIGARCH Computer Architecture News, volume 38,
pages 117–128.

Krishnamoorthy, A. V., Zheng, X., Li, G., Yao, J., Pinguet, T., Mekis, A., Thacker,
H., Shubin, I., Luo, Y., Raj, K., and Cunningham, J. E. (2011). Exploiting cmos
manufacturing to reduce tuning requirements for resonant optical devices. IEEE
Photonics Journal, 3(3):567–579.

Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and Tullsen, D. M.
(2003). Single-ISA heterogeneous multi-core architectures: the potential for pro-
cessor power reduction. In Proceedings of International Symposium on Microar-
chitecture, San Diego, CA, USA, pages 81–92.

Kwon, K.-W., Fong, X., Wijesinghe, P., Panda, P., and Roy, K. (2015). High-
density and robust STT-MRAM array through device/circuit/architecture interac-
tions. IEEE Transactions on Nanotechnology, 14(6):1024–1034.

Lee, B. C., Ipek, E., Mutlu, O., and Burger, D. (2009). Architecting phase change
memory as a scalable DRAM alternative. In Proceedings of International Sympo-
sium on Computer Architecture, Austin, TX, USA, pages 2–13.

Lee, B. G., Chen, X., Biberman, A., Liu, X., Hsieh, I., Chou, C., Dadap, J. I., Xia,
F., Green, W. M. J., Sekaric, L., Vlasov, Y. A., Osgood, R. M., and Bergman,
K. (2008). Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip
networks. IEEE Photonics Technology Letters, 20(6):398–400.

Lee, C., Hung, C., Cheung, C., Yang, P., Kao, C., Chen, D., Shih, M., Chien, C. C.,
Hsiao, Y., Chen, L., Su, M., Alfano, M., Siegel, J., Din, J., and Black, B. (2016a).
An overview of the development of a GPU with integrated HBM on silicon inter-
poser. In Proceedings of Electronic Components and Technology Conference, Las
Vegas, NV, USA, pages 1439–1444.



140

Lee, J. C., Kim, J., Kim, K. W., Ku, Y. J., Kim, D. S., Jeong, C., Yun, T. S., Kim,
H., Cho, H. S., Oh, S., Lee, H. S., Kwon, K. H., Lee, D. B., Choi, Y. J., Lee,
J., Kim, H. G., Chun, J. H., Oh, J., and Lee, S. H. (2016b). High bandwidth
memory(HBM) with TSV technique. In Proceedings of International SoC Design
Conference, Jeju, South Korea, pages 181–182.

Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., and Keller, T. W.
(2003). Energy management for commercial servers. Computer, 36(12):39–48.

Lepak, K., Talbot, G., White, S., Beck, N., and Naffziger, S. (2017). The next
generation AMD enterprise server product architecture). In Proceedings of Hot
Chips Symposium, Cupertino, CA, USA, pages 1–19. IEEE.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

Li, B., Song, C., Wei, J., Ahn, J. H., and Kim, N. S. (2016a). Exploring
new features of high-bandwidth memory for GPUs. IEICE Electronics Express,
13(14):20160527–20160527.

Li, H., Xuan, Z., Titriku, A., Li, C., Yu, K., Wang, B., Shafik, A., Qi, N., Liu, Y.,
Ding, R., Baehr-Jones, T., Fiorentino, M., Hochberg, M., Palermo, S., and Chiang,
P. Y. (2015). A 25Gb/s 4.4V -swing AC-coupled Si-photonic microring transmitter
with 2-tap asymmetric FFE and dynamic thermal tuning in 65nm CMOS. In
Proceedings of Solid-State Circuits Conference, San Francisco, CA, USA, pages
1–3.

Li, J., Luan, B., and Lam, C. (2012). Resistance drift in phase change memory. In
Proceedings of International Reliability Physics Symposium, Anaheim, CA, USA,
pages 6C–1.

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P.
(2009). McPAT: An integrated power, area, and timing modeling framework for
multicore and manycore architectures. In Proceedings of International Symposium
on Microarchitecture, New York, New York, pages 469–480.

Li, S., Xu, C., Zou, Q., Zhao, J., Lu, Y., and Xie, Y. (2016b). Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerging non-
volatile memories. In Proceedings of Design Automation Conference, Austin, TX,
USA, pages 1–6.

Li, X., Youngblood, N., Cheng, Z., Carrillo, S. G.-C., Gemo, E., Pernice, W. H.,
Wright, C. D., and Bhaskaran, H. (2020). Experimental investigation of silicon and
silicon nitride platforms for phase-change photonic in-memory computing. Optica,
7(3):218–225.

http://snap.stanford.edu/data


141

Li, X., Youngblood, N., Ríos, C., Cheng, Z., Wright, C. D., Pernice, W. H., and
Bhaskaran, H. (2019). Fast and reliable storage using a 5 bit, nonvolatile photonic
memory cell. Optica, 6(1):1–6.

Li, Y. and Chen, L. (2020). EquiNox: Equivalent NoC Injection Routers for Silicon
Interposer-Based Throughput Processors. In Proceedings of International Sympo-
sium on High Performance Computer Architecture, San Diego, CA, pages 435–446.

Li, Z., Qouneh, A., Joshi, M., Zhang, W., Fu, X., and Li, T. (2015). Aurora: A cross-
layer solution for thermally resilient photonic network-on-chip. IEEE Transactions
on Very Large Scale Integration Systems, 23(1):170–183.

Lin, M., Huang, T., Tsai, C., Tam, K., Hsieh, K. C., Chen, C., Huang, W., Hu, C.,
Chen, Y., Goel, S. K., Fu, C., Rusu, S., Li, C., Yang, S., Wong, M., Yang, S.,
and Lee, F. (2020). A 7nm 4GHz Arm-core-based CoWoS chiplet design for high-
performance computing. IEEE Journal of Solid-State Circuits, 55(4):956–966.

Lischke, S., Knoll, D., Mai, C., Zimmermann, L., Peczek, A., Kroh, M., Trusch, A.,
Krune, E., Voigt, K., and Mai, A. (2015). High bandwidth, high responsivity
waveguide-coupled germanium p-i-n photodiode. Optics express, 23(21):27213–
27220.

Liu, X., Wen, W., Qian, X., Li, H., and Chen, Y. (2018). Neu-NoC: A high-efficient
interconnection network for accelerated neuromorphic systems. In Proceedings of
Asia and South Pacific Design Automation Conference, Jeju Island, South Korea,
pages 141–146. IEEE.

Loh, G. H., Jerger, N. E., Kannan, A., and Eckert, Y. (2015). Interconnect-memory
challenges for multi-chip, silicon interposer systems. In Proceedings of international
symposium on Memory Systems, Washington, DC, USA, pages 3–10.

Luo, J., Killian, C., Beux, S. L., Chillet, D., Sentieys, O., and O’connor, I. (2018).
Offline optimization of wavelength allocation and laser power in nanophotonic
interconnects. ACM Journal on Emerging Technologies in Computing Systems,
14(2):24.

Luo, L.-W., Ophir, N., Chen, C. P., Gabrielli, L. H., Poitras, C. B., Bergmen, K.,
and Lipson, M. (2014). WDM-compatible mode-division multiplexing on a silicon
chip. Nature communications, 5(1):1–7.

Lyeo, H.-K., Cahill, D. G., Lee, B.-S., Abelson, J. R., Kwon, M.-H., Kim, K.-B.,
Bishop, S. G., and Cheong, B.-k. (2006). Thermal conductivity of phase-change
material Ge2Sb2Te5. Applied Physics Letters, 89(15):151904.



142

Macri, J. (2015). AMD’s next generation GPU and high bandwidth memory archi-
tecture: FURY. In Proceedings of Hot Chips Symposium, Cupertino, CA, USA,
pages 1–26.

Mahajan, R., Sankman, R., Patel, N., Kim, D., Aygun, K., Qian, Z., Mekonnen,
Y., Salama, I., Sharan, S., Iyengar, D., and Mallik, D. (2016). Embedded Multi-
die Interconnect Bridge (EMIB) – A High Density, High Bandwidth Packaging
Interconnect. In Proceedings of Electronic Components and Technology Conference,
Las Vegas, Nevada, USA, pages 557–565.

Martinez, J. F. and Ipek, E. (2009). Dynamic multicore resource management: A
machine learning approach. IEEE micro, 29(5):8–17.

Massey Jr, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association, 46(253):68–78.

Mellanox (2015). Tile-gx72 processor. http://www.mellanox.com/related-docs/
prod_multi_core/PB_TILE-Gx72.pdf.

Meng, J., Kawakami, K., and Coskun, A. K. (2012). Optimizing energy efficiency of
3D multicore systems with stacked DRAM under power and thermal constraints.
In Proceedings of Design Automation Conference, San Francisco, CA, USA, pages
648–655.

Meswani, M. R., Blagodurov, S., Roberts, D., Slice, J., Ignatowski, M., and Loh, G. H.
(2015). Heterogeneous memory architectures: A HW/SW approach for mixing die-
stacked and off-package memories. In Proceedings of International Symposium on
High Performance Computer Architecture, Burlingame, CA, USA, pages 126–136.

Michel, A.-K. U., Zalden, P., Chigrin, D. N., Wuttig, M., Lindenberg, A. M., and
Taubner, T. (2014). Reversible optical switching of infrared antenna resonances
with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics,
1(9):833–839.

MICRON (2011). DDR3 SDRAM power calculator. https://www.micron.com/
products/dram/ddr3-sdram.

MICRON (2013). LPDDR2 SDRAM power calculator. http://www.micron.com/
products/dram/lpdram.

MICRON (2016). RLDRAM3 power calculator. http://www.micron.com/
products/dram/rldram-memory.

Microsoft (2019). Microsoft Turing NLG. https://www.microsoft.com/en-us/
research/blog/turing-nlg-a-17-billion-parameter-language-model-by-
microsoft/.

http://www.mellanox. com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
http://www.mellanox. com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
https://www.micron.com/products/dram/ddr3-sdram
https://www.micron.com/products/dram/ddr3-sdram
http://www.micron.com/products/dram/lpdram
http://www.micron.com/products/dram/lpdram
http://www.micron.com/products/dram/rldram-memory
http://www.micron.com/products/dram/rldram-memory
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/


143

Mirhosseini, A., Sadrosadati, M., Soltani, B., Sarbazi-Azad, H., and Wenisch, T. F.
(2017). BiNoCHS: Bimodal network-on-chip for CPU-GPU heterogeneous sys-
tems. In Proceedings of International Symposium on Networks-on-Chip, Seoul,
South Korea, pages 1–8.

Morris, R., Kodi, A. K., and Louri, A. (2012). Dynamic reconfiguration of 3D pho-
tonic networks-on-chip for maximizing performance and improving fault tolerance.
In Proceedings of International Symposium on Microarchitecture, Vancouver, BC,
Canada, pages 282–293.

Mutlu, O. (2013). Memory scaling: A systems architecture perspective. In Interna-
tional Memory Workshop, pages 21–25.

Mutlu, O. (2018). Processing data where it makes sense in modern computing
systems: Enabling in-memory computation. In Proceedings of Mediterranean Con-
ference on Embedded Computing, pages 8–9.

Mutlu, O., Kim, H., and Patt, Y. N. (2006). Efficient runahead execution: Power-
efficient memory latency tolerance. IEEE Micro, 26(1):10–20.

Narayan, A., Joshi, A., and Coskun, A. K. (2020a). Bandwidth allocation in silicon-
photonic networks using application instrumentation. In Proceedings of High Per-
formance Extreme Computing Conference, Waltham, MA, USA, pages 1–2.

Narayan, A., Thonnart, Y., Vivet, P., and Coskun, A. K. (2020b). PROWAVES:
Proactive runtime wavelength selection for energy-efficient photonic NoCs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages
1–1.

Narayan, A., Thonnart, Y., Vivet, P., Joshi, A., and Coskun, A. K. (2020c). System-
level evaluation of chip-scale silicon photonic networks for emerging data-intensive
applications. In Proceedings of Design, Automation Test in Europe Conference
Exhibition, Grenoble, France, pages 1444–1449.

Narayan, A., Thonnart, Y., Vivet, P., Tortolero, C. F., and Coskun, A. K. (2019).
WAVES: Wavelength selection for power-efficient 2.5D-integrated photonic NoCs.
In Proceedings of Design, Automation Test in Europe Conference Exhibition, Flo-
rence, Italy, pages 516–521.

Narayan, A., Zhang, T., Aga, S., Narayanasamy, S., and Coskun, A. (2018). MOCA:
Memory object classification and allocation in heterogeneous memory systems. In
Proceedings of International Parallel and Distributed Processing Symposium, Van-
couver, BC, Canada, pages 326–335.



144

Nirschl, T., Philipp, J., Happ, T., Burr, G., Rajendran, B., Lee, M.-H., Schrott, A.,
Yang, M., Breitwisch, M., Chen, C.-F., Joseph, E., Lamorey, M., Cheek, R., Chen,
S.-H., Zaidi, S., Raoux, S., Chen, Y., Zhu, Y., Bergmann, R., Lung, H.-L., and
Lam, C. (2007). Write strategies for 2 and 4-bit multi-level phase-change memory.
In Proceedings of International Electron Devices Meeting, Washington, DC, USA,
pages 461–464.

Notomi, M., Nozaki, K., Shinya, A., Matsuo, S., and Kuramochi, E. (2014). Toward
fj/bit optical communication in a chip. Optics Communications, 314:3–17.

Nvidia (2018). NVidia Turing GPU Architecture. https://www.nvidia.com/en-
us/geforce/turing/.

Nvidia (2019). Nvidia megatron. https://github.com/NVIDIA/Megatron-LM.

Olarig, S. P., Koenen, D. J., and Heng, C. S. (2003). Method and apparatus for
supporting heterogeneous memory in computer systems. US Patent 6,530,007.

Ovshinsky, S. R. (1968). Reversible electrical switching phenomena in disordered
structures. Physical Review Letters, 21(20):1450.

Ozdal, M. M., Yesil, S., Kim, T., Ayupov, A., Burns, S., and Ozturk, O. (2015).
Architectural requirements for energy efficient execution of graph analytics appli-
cations. In Proceedings of International Conference on Computer-Aided Design,
Austin, TX, USA, pages 676–681.

Padmaraju, K. and Bergman, K. (2014). Resolving the thermal challenges for silicon
microring resonator devices. Nanophotonics, 3(4-5):269–281.

Parry, J. and Wang, L. (2018). A complete guide to 3D chip-package thermal co-
design. . . 10 key considerations. https://corner-stone.com.tw/wp-content/
uploads/2018/08/A-COMPLETE-GUIDE-TO-3D-CHIP-PACKAGE.pdf.

Pasricha, S. and Nikdast, M. (2020). A survey of silicon photonics for energy-efficient
manycore computing. IEEE Design & Test, 37(4):60–81.

Paul, I., Huang, W., Arora, M., and Yalamanchili, S. (2015). Harmonia: Balancing
Compute and Memory Power in High-Performance GPUs. In Proceedings of In-
ternational Symposium on Computer Architecture, Portland, Oregon, USA, page
54–65.

Pavlovic, M., Puzovic, N., and Ramirez, A. (2013). Data placement in HPC ar-
chitectures with heterogeneous off-chip memory. In Proceedings of International
Conference on Computer Design, Asheville, NC, USA, pages 193–200.

https://www.nvidia.com/en-us/geforce/turing/
https://www.nvidia.com/en-us/geforce/turing/
https://github.com/NVIDIA/Megatron-LM
https://corner-stone.com.tw/wp-content/uploads/2018/08/A-COMPLETE-GUIDE-TO-3D-CHIP-PACKAGE.pdf
https://corner-stone.com.tw/wp-content/uploads/2018/08/A-COMPLETE-GUIDE-TO-3D-CHIP-PACKAGE.pdf


145

Peon-Quiros, M., Bartzas, A., Mamagkakis, S., Catthoor, F., Mendías, J. M., and
Soudris, D. (2015). Placement of linked dynamic data structures over heteroge-
neous memories in embedded systems. ACM Transactions on Embedded Comput-
ing Systems (TECS), 14(2):1–30.

Peón-quirós, M. et al. (2015). Placement of linked dynamic data structures over
heterogeneous memories in embedded systems. ACM Transactions on Embedded
Computing Systems, 14(2):37:1–37:30.

Phadke, S. and Narayanasamy, S. (2011). MLP aware heterogeneous memory system.
In Proceedings of Design, Automation and Test in Europe, Grenoble, France, pages
1–6.

Polster, R., Thonnart, Y., Waltener, G., Gonzalez, J.-L., and Cassan, E. (2016).
Efficiency optimization of silicon photonic links in 65-nm CMOS and 28-nm FDSOI
technology nodes. IEEE Transactions on Very Large Scale Integration Systems,
24(12):3450–3459.

Poremba, M., Zhang, T., and Xie, Y. (2015). Nvmain 2.0: A user-friendly memory
simulator to model (non-) volatile memory systems. IEEE Computer Architecture
Letters, 14(2):140–143.

Qureshi, M. K., Franceschini, M. M., Jagmohan, A., and Lastras, L. A. (2012). Pre-
SET: Improving performance of phase change memories by exploiting asymmetry
in write times. In Proc. International Symposium on Computer Architecture,
Portland, Oregon, USA.

Qureshi, M. K., Karidis, J., Franceschini, M., Srinivasan, V., Lastras, L., and Abali,
B. (2009a). Enhancing lifetime and security of PCM-based main memory with
start-gap wear leveling. In Proceedings of international Symposium on Microarchi-
tecture, New York, NY, USA, pages 14–23.

Qureshi, M. K., Srinivasan, V., and Rivers, J. A. (2009b). Scalable high performance
main memory system using phase-change memory technology. In Proceedings of
International Symposium on Computer Architecture, Austin, Texas, USA, pages
24–33.

Rakowski, M., Pantouvaki, M., De Heyn, P., Verheyen, P., Ingels, M., Chen, H.,
De Coster, J., Lepage, G., Snyder, B., De Meyer, K., Steyaert, M., Pavarelli, N.,
Lee, J. S., O’Brien, P., Absil, P., and Van Campenhout, J. (2015). A 4 × 20Gb/s
WDM ring-based hybrid CMOS silicon photonics transceiver. In Proceedings of
Solid-State Circuits Conference, San Francisco, CA, USA, pages 1–3.



146

Raoux, S., Burr, G. W., Breitwisch, M. J., Rettner, C. T., Chen, Y. ., Shelby, R. M.,
Salinga, M., Krebs, D., Chen, S. ., Lung, H. ., and Lam, C. H. (2008). Phase-
change random access memory: A scalable technology. IBM Journal of Research
and Development, 52(4.5):465–479.

Raoux, S., Xiong, F., Wuttig, M., and Pop, E. (2014). Phase change materials and
phase change memory. MRS bulletin, 39(8):703–710.

Rekhi, A. S., Zimmer, B., Nedovic, N., Liu, N., Venkatesan, R., Wang, M., Khailany,
B., Dally, W. J., and Gray, C. T. (2019). Analog/mixed-signal hardware error
modeling for deep learning inference. In Proceedings of Design Automation Con-
ference, Las Vegas, NV, USA, pages 1–6.

Rho, K., Tsuchida, K., Kim, D., Shirai, Y., Bae, J., Inaba, T., Noro, H., Moon, H.,
Chung, S., Sunouchi, K., Park, J., Park, K., Yamamoto, A., Chung, S., Kim, H.,
Oyamatsu, H., and Oh, J. (2017). A 4Gb LPDDR2 STT-MRAM with compact 9F2
1T1MTJ cell and hierarchical bitline architecture. In Proceedings of International
Solid-State Circuits Conference, San Francisco, CA, USA, pages 396–397.

Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H., and Pernice, W. H. (2014).
On-chip photonic memory elements employing phase-change materials. Advanced
Materials, 26(9):1372–1377.

Rosenfeld, P., Cooper-Balis, E., and Jacob, B. (2011). DRAMSim2: A cycle accurate
memory system simulator. IEEE computer architecture letters, 10(1):16–19.

Rumley, S., Bahadori, M., Polster, R., Hammond, S. D., Calhoun, D. M., Wen, K.,
Rodrigues, A., and Bergman, K. (2017). Optical interconnects for extreme scale
computing systems. Parallel Computing, 64:65–80.

Ríos, C., Stegmaier, M., Hosseini, P., Wang, D., Scherer, T., Wright, C. D.,
Bhaskaran, H., and Pernice, W. H. (2015). Integrated all-photonic non-volatile
multi-level memory. Nature Photonics, 9(11):725.

Saban, K. (2011). Xilinx stacked silicon interconnect technology
delivers breakthrough FPGA capacity, bandwidth, and power effi-
ciency. https://www.xilinx.com/support/documentation/white_papers/
wp380_Stacked_Silicon_Interconnect_Technology.pdf.

Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko, G.,
Luo, Y., Mutlu, O., Gibbons, P. B., Kozuch, M. A., and Mowry, T. C. (2013).
RowClone: Fast and energy-efficient in-DRAM bulk data copy and initialization.
In Procedings of International Symposium on Microarchitecture, Davis, CA, USA,
pages 185–197.

https://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf
https://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf


147

Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., Kozuch,
M. A., Mutlu, O., Gibbons, P. B., and Mowry, T. C. (2017). Ambit: In-memory
accelerator for bulk bitwise operations using commodity DRAM technology. In
Proceedings of International Symposium on Microarchitecture, Boston, MA, USA,
pages 273–287.

Shamim, M. S., Narde, R. S., Gonzalez-Hernandez, J.-L., Ganguly, A., Venkatar-
man, J., and Kandlikar, S. G. (2019). Evaluation of wireless network-on-chip
architectures with microchannel-based cooling in 3D multicore chips. Sustainable
Computing: Informatics and Systems, 21:165–178.

Shang, K., Pathak, S., Guan, B., Liu, G., and Yoo, S. (2015). Low-loss compact
multilayer silicon nitride platform for 3D photonic integrated circuits. Optics
Express, 23(16):21334–21342.

Shen, D., Liu, X., and Lin, F. X. (2016). Characterizing emerging heterogeneous
memory. In Proceedings of International Symposium on Memory Management,
Santa Barbara, CA, USA, pages 13–23.

Simon, G., Saliou, F., Chanclou, P., Neto, L. A., and Erasme, D. (2016). Experimen-
tal demonstration of low cost wavelength drift mitigation for TWDM systems. In
Proceedings of European Conference on Optical Communication, Dusseldorf, Ger-
many, pages 1–3.

Skadron, K., Stan, M. R., Huang, W., Velusamy, S., Sankaranarayanan, K., and
Tarjan, D. (2003). Temperature-aware microarchitecture. In Proceedings of Inter-
national Symposium on Computer Architecture, San Diego, CA, USA, pages 2–13.

Sodani, A. (2015). Knights landing (knl): 2nd generation intel® xeon phi processor.
In Proceedings of Hot Chips Symposium, Cupertino, CA, USA, pages 1–24.

Song, S., Das, A., Mutlu, O., and Kandasamy, N. (2019). Enabling and exploiting
partition-level parallelism (PALP) in phase change memories. ACM Transactions
on Embedded Computing Systems, 18(5s):1–25.

Spica, M. and Mak, T. (2004). Do we need anything more than single bit error
correction (ECC)? In International Workshop on Memory Technology, Design and
Testing, pages 111–116. IEEE.

Stow, D., Akgun, I., Barnes, R., Gu, P., and Xie, Y. (2016). Cost analysis and cost-
driven IP reuse methodology for SoC design based on 2.5 D/3D integration. In
Proceedings of International Conference on Computer-Aided Design, Austin, TX,
USA, page 56.



148

Sun, C., Wade, M., Georgas, M., Lin, S., Alloatti, L., Moss, B., Kumar, R., Atabaki,
A. H., Pavanello, F., Shainline, J. M., Orcutt, J. S., Ram, R. J., Popović, M., and
Stojanović, V. (2016). A 45nm CMOS-SOI monolithic photonics platform with bit-
statistics-based resonant microring thermal tuning. IEEE Journal of Solid-State
Circuits, 51(4):893–907.

Tanaka, D., Shoji, Y., Kuwahara, M., Wang, X., Kintaka, K., Kawashima, H.,
Toyosaki, T., Ikuma, Y., and Tsuda, H. (2012). Ultra-small, self-holding, opti-
cal gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide. Optics Express,
20(9):10283–10294.

Thakkar, I. G. and Pasricha, S. (2018). Libra: Thermal and process variation
aware reliability management in photonic networks-on-chip. IEEE Transactions
on Multi-Scale Computing Systems, 4(4):758–772.

Thonnart, Y., Bernabé, S., Charbonnier, J., Bernard, C., Coriat, D., Fuguet,
C., Tissier, P., Charbonnier, B., Malhouitre, S., Saint-Patrice, D., Assous, M.,
Narayan, A., Coskun, A., Dutoit, D., and Vivet, P. (2020). POPSTAR: A ro-
bust modular optical NoC architecture for chiplet-based 3D integrated systems.
In Proceedings of Design, Automation & Test in Europe Conference & Exhibition,
Grenoble, France.

Thonnart, Y., Zid, M., Gonzalez-Jimenez, J. L., Waltener, G., Polster, R., Dubray,
O., Lepin, F., Bernabé, S., Menezo, S., Parès, G., Castany, O., Boutafa, L., Grosse,
P., Charbonnier, B., and Baudot, C. (2018). A 10Gb/s Si-photonic transceiver with
150µW 120µs-lock-time digitally supervised analog microring wavelength stabiliza-
tion for 1Tb/s/mm2 die-to-die optical networks. In Proceedings of International
Solid-State Circuits Conference, San Francisco, CA, USA, pages 350–352.

Toal, C., Burns, D., McLaughlin, K., Sezer, S., and O’Kane, S. (2007). An RLDRAM
II implementation of a 10Gbps shared packet buffer for network processing. In
Proceedings of Conference on Adaptive Hardware and Systems, Edinburgh, UK,
pages 613–618.

Tran, L., Kurdahi, F. J., Eltawil, A. M., and Homayoun, H. (2013). Heterogeneous
memory management for 3D-DRAM and external DRAM with QoS. In Proceedings
of Asia and South Pacific Design Automation Conference, Yokohama, Japan, pages
663–668.

Valsan, P. K. and Yun, H. (2015). MEDUSA: a predictable and high-performance
DRAM controller for multicore based embedded systems. In Proceedings of In-
ternational Conference on Cyber-Physical Systems, Networks, and Applications,
Seattle, WA, USA, pages 86–93. IEEE.



149

Van Winkle, S., Kodi, A. K., Bunescu, R., and Louri, A. (2018). Extending the
power-efficiency and performance of photonic interconnects for heterogeneous mul-
ticores with machine learning. In Proceedings of International Symposium on High
Performance Computer Architecture, Vienna, Austria, pages 480–491.

Venkata, S. K., Ahn, I., Jeon, D., Gupta, A., Louie, C., Garcia, S., Belongie, S., and
Taylor, M. B. (2009). SD-VBS: The San Diego vision benchmark suite. In Pro-
ceedings of International Symposium on Workload Characterization, Austin, TX,
USA, pages 55–64.

Virot, L., Crozat, P., Fédéli, J.-M., Hartmann, J.-M., Marris-Morini, D., Cassan, E.,
Boeuf, F., and Vivien, L. (2014). Germanium avalanche receiver for low power
interconnects. Nature communications, 5:4957.

Vivet, P., Guthmuller, E., Thonnart, Y., Pillonnet, G., Moritz, G., Miro-Panadès, I.,
Fuguet, C., Durupt, J., Bernard, C., Varreau, D., Pontes, J., Thuries, S., Coriat,
D., Harrand, M., Dutoit, D., Lattard, D., Arnaud, L., Charbonnier, J., Coudrain,
P., Garnier, A., Berger, F., Gueugnot, A., Greiner, A., Meunier, Q., Farcy, A.,
Arriordaz, A., Cheramy, S., and Clermidy, F. (2020). A 220GOPS 96-core
processor with 6 chiplets 3D-stacked on an active interposer offering 0.6ns/mm
latency, 3Tb/s/mm2 inter-chiplet interconnects and 156mW/mm2 at 82%-peak-
efficiency DC-DC converters. In Proceedings of International Solid- State Circuits
Conference, San Francisco, CA, USA, pages 46–48.

Wade, M., Anderson, E., Ardalan, S., Bhargava, P., Buchbinder, S., L. Davenport,
M., Fini, J., Lu, H., Li, C., Meade, R., Ramamurthy, C., Rust, M., Sedgwick, F.,
Stojanovic, V., Van Orden, D., Zhang, C., Sun, C., Shumarayev, S. Y., O’Keeffe,
C., Hoang, T. T., Kehlet, D., Mahajan, R. V., Guzy, M. T., Chan, A., and Tran, T.
(2020). TeraPHY: A chiplet technology for low-power, high-bandwidth in-package
optical I/O. IEEE Micro, 40(2):63–71.

Wade, M. T., Pavanello, F., Kumar, R., Gentry, C. M., Atabaki, A., Ram, R., Sto-
janović, V., and Popović, M. A. (2015). 75% efficient wide bandwidth grating
couplers in a 45nm microelectronics CMOS process. In Proceedings of Optical
Interconnects Conference, San Diego, CA, USA, pages 46–47.

Wang, J., Wang, L., and Liu, J. (2020). Overview of phase-change materials based
photonic devices. IEEE Access, 8:121211–121245.

Wang, S., Feng, X., Gao, S., Shi, Y., Dai, T., Yu, H., Tsang, H.-K., and Dai, D. (2017).
On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-
division-multiplexing systems. Optics letters, 42(14):2802–2805.

Wang, Z., Wang, Z., Xu, J., Chang, Y.-S., Feng, J., Chen, X., Chen, S., and Zhang,
J. (2019). CAMON: Low-cost silicon photonic chiplet for manycore processors.



150

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(9):1820–1833.

Werner, S., Navaridas, J., and Luján, M. (2017). A survey on optical network-on-chip
architectures. ACM Computing Surveys (CSUR), 50(6):1–37.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995). The
SPLASH-2 programs: Characterization and methodological considerations. In
ACM SIGARCH computer architecture news, volume 23, pages 24–36.

Wu, X., Huang, C., Xu, K., Shu, C., and Tsang, H. K. (2017). Mode-division mul-
tiplexing for silicon photonic network-on-chip. Journal of Lightwave Technology,
35(15):3223–3228.

Wuttig, M., Bhaskaran, H., and Taubner, T. (2017). Phase-change materials for
non-volatile photonic applications. Nature Photonics, 11(8):465–476.

Wuttig, M. and Yamada, N. (2007). Phase-change materials for rewriteable data
storage. Nature materials, 6(11):824–832.

Xia, F., Jiang, D., Xiong, J., Chen, M., Zhang, L., and Sun, N. (2014). DWC:
Dynamic write consolidation for phase change memory systems. In Proceedings of
International conference on Supercomputing, Munich, Germany, pages 211–220.

Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takao, M. (1991). Rapid-
phase transitions of GeTe − Sb2Te3 pseudobinary amorphous thin films for an
optical disk memory. Journal of Applied Physics, 69(5):2849–2856.

Yang, Y.-D., Li, Y., Huang, Y.-Z., and Poon, A. W. (2014). Silicon nitride three-
mode division multiplexing and wavelength-division multiplexing using asymmet-
rical directional couplers and microring resonators. Optics express, 22(18):22172–
22183.

Yoon, H., Meza, J., Muralimanohar, N., Jouppi, N. P., and Mutlu, O. (2014). Effi-
cient data mapping and buffering techniques for multilevel cell phase-change mem-
ories. ACM Transactions on Architecture and Code Optimization, 11(4):1–25.

Youngblood, N., Ríos, C., Gemo, E., Feldmann, J., Cheng, Z., Baldycheva, A.,
Pernice, W. H., Wright, C. D., and Bhaskaran, H. (2019). Tunable volatil-
ity of Ge2Sb2Te5 in integrated photonics. Advanced Functional Materials,
29(11):1807571.

Yu, K., Li, H., Li, C., Titriku, A., Shafik, A., Wang, B., Wang, Z., Bai, R., Chen,
C., Fiorentino, M., Chiang, P. Y., and Palermo, S. (2015). A 24Gb/s 0.71pJ/b
Si-photonic source-synchronous receiver with adaptive equalization and microring
wavelength stabilization. In Proceedings of Solid-State Circuits Conference, San
Francisco, CA, USA, pages 1–3.



151

Zhan, J., Kayıran, O., Loh, G. H., Das, C. R., and Xie, Y. (2016). OSCAR: Orches-
trating STT-RAM cache traffic for heterogeneous CPU-GPU architectures. In Pro-
ceedings of International Symposium on Microarchitecture, Taipei, Taiwan, pages
1–13. IEEE.

Zhang, H., Xu, L., Chen, J., Zhou, L., Rahman, B. M. A., Wu, X., Lu, L., Xu, Y.,
Xu, J., Song, J., and Hu, Z. (2017). Ultracompact Si-GST hybrid waveguides for
nonvolatile light wave manipulation. IEEE Photonics Journal, 10(1):1–10.

Zhang, T., Abellán, J. L., Joshi, A., and Coskun, A. K. (2014). Thermal management
of manycore systems with silicon-photonic networks. In Proceedings of Design,
Automation & Test in Europe Conference & Exhibition, Dresden, Germany, page
307.

Zhang, Y., Feng, D., Tong, W., Liu, J., Wang, C., and Xu, J. (2019). Tiered-
ReRAM: A low latency and energy efficient TLC crossbar ReRAM architecture.
In Proceedings of Symposium on Mass Storage Systems and Technologies, Santa
Clara, CA, USA, pages 92–102. IEEE.

Zhao, M., Jiang, L., Zhang, Y., and Xue, C. J. (2014). SLC-enabled wear leveling
for MLC PCM considering process variation. In Proceedings of Design Automation
Conference, San Francisco, CA, USA, pages 1–6.

Zhu, F., Gong, R., Yu, F., Liu, X., Wang, Y., Li, Z., Yang, X., and Yan, J. (2020).
Towards unified int8 training for convolutional neural network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1969–1979.

Zulfiqar, A., Koka, P., Schwetman, H., Lipasti, M., Zheng, X., and Krishnamoorthy,
A. (2013). Wavelength stealing: An opportunistic approach to channel sharing in
multi-chip photonic interconnects. In Proceedings of International Symposium on
Microarchitecture, Davis, CA, USA, pages 222–233.



CURRICULUM VITAE



153



154



155


	Introduction
	Designing Energy-efficient Silicon-Photonic Links
	Designing Scalable and High-throughput Main Memory
	Dissertation Organization

	Background and Context
	2.5D Manycore Computing Systems
	Chip-scale Networks in 2.5D Manycore Systems
	Main Memory in 2.5D Manycore Systems

	Silicon-Photonic Link Technology
	Operation of WDM Silicon-Photonic Link
	Device-level Characteristics
	Thermal Management in Silicon-Photonic Links
	Bandwidth Allocation in Silicon-Photonic Links

	Optically-controlled Phase Change Memory
	Properties of Phase Change Materials
	Issues with an Electrically-controlled PCM Cell
	Operation of an Optically-controlled PCM Cell
	High-throughput Access with Silicon-Photonic Links

	Memory Management in Heterogeneous Memory Systems
	Heterogeneous Memory Systems
	Page Allocation in Heterogeneous Memory Systems

	Distinguishing Aspects of this Thesis

	System-level Management of Silicon-Photonic Links 
	2.5D Manycore System with Silicon-Photonic Links
	Cross-layer Simulation Framework for Silicon-Photonic Links
	Device-level Modeling
	Architecture-level Modeling
	System-level Performance, Power and Thermal Modeling

	Wavelength Selection for Energy-efficient Silicon-Photonic Links
	Static Policy: SO-WAVES
	Dynamic Policy with Time-series Prediction: PROWAVES
	MRR Locking with Wavelength Selection
	Hardware Cost of Wavelength Selection
	Experimental Results and Analysis

	Silicon-Photonic Links for Graph Workloads
	Evaluation of Wavelength Selection for Graph Workloads
	Architectural Exploration for Graph Workloads

	Wavelength Selection using Application Instrumentation
	Application Instrumentation
	Simulation Results and Analysis

	Chapter Summary

	Architecting Optically-controlled Phase Change Memory
	Challenges with Adapting DRAM Architecture for OPCM
	COSMOS: OPCM Memory System with Silicon-Photonic links
	OPCM Array Microarchitecture in COSMOS
	OPCM Tile
	OPCM Bank
	Multi-banked OPCM Array
	Address Mapping in COSMOS

	Access Protocol in COSMOS
	Writing a Cache Line to OPCM Array
	Reading a Cache Line from OPCM Array
	Opportunistic Writeback for Read Operation

	E-O-E control Unit Architecture
	Data Modulation Unit (DMU)
	Address Mapping Unit (AMU)
	Pulse Selector Unit (PSU)
	Pulse Amplification Unit (PAU)
	Pulse Filtering Unit (PFU)

	Experimental Evaluation and Analysis
	Evaluation Methodology
	Performance Comparison with EPCM
	Sensitivity Analysis with Optical Parameters
	OPCM Endurance Analysis
	Area Efficiency of COSMOS
	Performance and Energy Comparison with DRAM

	Chapter Summary

	Memory Management in Heterogeneous Memory Systems
	Memory Access Characteristics of Heap Objects
	MOCA: Memory Object Classification and Allocation
	Memory Object Naming
	Statistics Collection
	Memory Object Classification
	Binary Instrumentation
	Page Allocation

	Implementation of MOCA
	Offline Profiling and Classification
	Runtime Page Allocation
	Overheads of MOCA

	Experimental Evaluation and Analysis
	Simulation Framework
	Performance and Energy Benefits for Single-core Systems
	Performance and Energy Benefits for Multicore Systems
	Classifying Stack Data and Code Segment

	Chapter Summary

	Conclusions and Future Directions
	Summary of Thesis Contributions
	Future Research Directions
	Designing Efficient Silicon-Photonic Links
	Architectural Opportunities with COSMOS
	Memory Management in Heterogeneous Memory Systems


	References
	Curriculum Vitae



