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SUMMARY

Ultra-high chip power densities that are expected to surpass 1-2kW/cm2 in future
high-performance systems cannot be easily handled by conventional cooling
methods. Various emerging cooling methods, such as liquid cooling via micro-
channels, thermoelectric coolers (TECs), two-phase vapor chambers, and hybrid
cooling options have been designed to efficiently remove heat from high-perfor-
mance processors. However, selecting the optimal cooling solution for a given
chip and determining the optimal cooling parameters for that solution to achieve
high efficiency are open problems. These problems are, in fact, computationally
expensive because of the massive space of possible solutions. To address this
design challenge, this article introduces a deep learning-based cooling design
optimization flow that rapidly and accurately converges to the optimal cooling
solution as well as the optimal cooling parameters for a given chip floorplan
and its power profile.

INTRODUCTION

Over the last few decades, on-chip power densities have grown tremendously following the downscaling of

transistors. Power densities that reach 1-2kW/cm2 caused by the performance boost of scaling already

occur in high-performance chips and result in amplified localized hot spots (Schultz et al., 2016). These

localized on-chip hot spots not only degrade the performance of the chip, but also generate larger sub-

threshold leakage power and cause reliability challenges (Srinivasan et al., 2004; Kim et al., 2003). Conven-

tional on-chip cooling solutions such as forced air cooling via fans or pin-fin heat sink are often not sufficient

to mitigate such high-power-density hot spots and can result in over/under-cooling. Emerging cooling

technologies such as liquid cooling via microchannels (Dang et al., 2010), thermoelectric coolers (TECs)

(Chowdhury et al., 2009), two-phase vapor chambers (VCs) (Bulut et al., 2019), and hybrid cooling options

(Yazawa et al., 2012) (e.g., of liquid cooling via microchannels and TECs) have the potential to provide bet-

ter cooling performance compared to the conventional cooling solutions. However, there is no obvious

winner in terms of cooling efficiency among all these emerging cooling technologies. The cooling perfor-

mance and cooling power of these potential solutions vary significantly based on the cooling parameters

(such as liquid flow velocity, evaporator design, TEC current, etc.) (Yuan et al., 2019a; 2019b). The selection

of the cooling technologies and the cooling parameters also needs to consider the chip architecture, chip

size, and floorplan, as well as the power profiles of the applications running on the given chip. To minimize

the cooling power while satisfying chip thermal constraints, there is a need for an optimization flow that

enables rapid and accurate selection of the optimal cooling solution and the associated cooling parame-

ters for a given chip and application profile.

A key enabler to such a cooling design optimization flow is a set of accurate and fast models for various

cooling technologies. A common approach toward this direction is using compact thermal models

(CTMs) that model heat dissipation with an equivalent lumped circuit model (Pedram and Nazarian,

2006). However, given the vast solution space of possible cooling solutions (including possible hybrids)

and cooling parameters, the optimal solution search time is still prohibitively time-consuming with

CTMs (Yuan et al., 2019b). In addition to cooling design choice possibilities, the optimization flow needs

to also account for the chip design and power profile changes. In this case, using a simple grid search

to find the optimal cooling design for a small-sized chip floorplan and its typical power profile could

take up to days (Yuan et al., 2020). Previous work has investigated usingmachine learning or black-box opti-

mizationmethods to optimize ormodel the systemwith emerging cooling technologies such as liquid cool-

ing via microchannels and TECs (Beneventi et al., 2012; Fan et al., 2018; Blackburn et al., 2020; Zhou et al.,
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2020; Tang et al., 2020). However, their models or techniques have not considered a wide range of

emerging cooling technologies or selected the optimal cooling solution and cooling parameters based

on cooling efficiency (Chen et al., 2020; Sheng et al., 2020; Juneia et al., 2019; Ramos-Alvarado et al., 2013).

This paper argues that applying a deep learning (DL) model provides an effective solution to the above

challenge. A DL regression model can learn the intrinsic information among the chip designs and the cool-

ing solutions, and then generate the optimal cooling solution as well as the cooling parameters, given a

specific chip floorplan and power profile. The paper demonstrates a step toward this goal by designing

a multi-output convolutional neural network (CNN) regression model to estimate the best cooling method

and its cooling design and technology parameters. The cost function used to evaluate the output of the

CNN is the combination of cooling power, hot spot temperatures, and temperature constraint of the

chip. This CNN-based optimization flow requires the CNN regression model to be sufficiently modular

for all chip floorplans and power profiles. If the input chip floorplan and power profile change, the pre-

dicted cooling solution as well as the cooling parameters should still maintain at the desired accuracy.

We experiment with realistic multiprocessor system-on-chip (MPSoCs) data to evaluate the search time

as well as the search accuracy of this CNN-based cooling design flow. Results confirm that, when compared

to existing optimization methods, our proposed CNN architectures and DL-based optimization flow can

successfully predict the optimal cooling solution and cooling parameters with a maximum error of less

than 4% and a maximum speedup of 140X.

Emerging cooling technologies

Several new cooling methods have been developed to handle the high heat fluxes and address the ineffi-

ciency problem of conventional solutions. These new methods involve careful engineering of new technol-

ogies and advanced materials to reduce hot spots and thermal gradients on the chip, both of which impact

power, reliability, and overall performance. We next briefly discuss several promising emerging cooling

solutions.

Liquid cooling via microchannels

Liquid cooling via microchannels as shown in Figure 1A is an attractive cooling solution that uses the liquid

convection effect to remove heat from processors (Sridhar et al., 2013; Dang et al., 2010). There are two

main contributors to the convective heat transfer of the coolant: (1) convective heat transfer from the walls

of the channel to the liquid and (2) convective heat transfer in the direction of the liquid flow into and out of

the current liquid cell (Sridhar et al., 2013). These contributors, and the overall heat transfer capability of the

system, are strongly impacted by the design geometries, material choices, and the active cooling power

(that powers the pump connected to the system).

Thermoelectric coolers (TECs)

TEC units have gained attraction because of their abilities to effectively remove heat from high power den-

sity hot spots. A TEC unit operates based on the Peltier effect such that when an electric current passes

through a TEC unit, heat is absorbed from one side (cold side) and rejected on the other side (hot side).

TEC units are typically placed directly above hot spots. Existing on-chip TEC devices are composed of ul-

trathin (5–10 mm) Bi2Te3-based p-n thermocouples sandwiched between copper mini-headers and are

covered with ceramic plates at the outermost surfaces to provide insulation. A typical chip stack of the

TEC device is shown in Figure 1B (Kaplan et al., 2017).

Two-phase vapor chambers (VCs)

Two-phase cooling using VCs is a passive cooling method that uses a capillary-driven flow that conducts

thin-film evaporation through a porous wick placed on the bottom surface of the VC to remove heat

from processors (Vaartstra et al., 2019). The schematic of a VC is shown in Figure 1C. The advantages of

two-phase VCs are better cooling performance and no pumping power (in contrast to liquid cooling via

microchannels and microchannel-based two-phase cooling). There are two metrics that impact the cooling

performance of the VCs: (i) heat transfer coefficient (HTC), and (ii) dry-out heat flux. HTC is a parameter that

determines the rate of heat transfer per unit temperature difference of the evaporator. Dry-out heat flux is

the thermal limit of a two-phase device. If the hot spot power density of the chip is higher than the dry-out

heat flux, the coolant will no longer remain in the two-phase state and possibly cause overheating and dam-

age to the chip (Vaartstra et al., 2019; Yuan et al., 2019a; 2019b). Therefore, a higher dry-out heat flux means
2 iScience 25, 103582, January 21, 2022



Figure 1. Emerging cooling method structure view

(A) A simple liquid cooling via microchannels chip stack.

(B) A typical chip stack of the TEC device.

(C) A vapor chamber structure view.

(D) Hybrid wick evaporator front view.

(E) A hybrid cooling method of liquid cooling via microchannels and TECs.
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more heat can be removed before the coolant dries out. Micropillar wick evaporator is one type of evap-

orator that is particularly interesting because it uses thin-film evaporation to provide high HTC (Vaartstra.

et al., 2019; Yuan et al., 2019a; 2019b). The HTC and dry-out heat flux of the micropillar wick evaporator are

mainly determined by the micropillar geometry (height, diameter, and pitch).

For a micropillar wick evaporator, an evaporator with a higher HTC is desired to reduce the thermal resis-

tance of the VCs. However, such high HTC evaporators often suffer from low critical dry-out heat flux. These

two metrics are typically conflicting with each other and it is challenging to maximize HTC while enhancing

dry-out heat flux. A hybrid wick evaporator of nanoporous membrane and microchannels, as shown in Fig-

ure 1D, has the potential to simultaneously improve both HTC and dry-out heat flux. Similar to two-phase

VCs with micropillar wick evaporators, two-phase VCs with hybrid wick evaporators only replace the micro-

pillar evaporator wicking structure with hybrid wicking structure of nanoporous membrane and microchan-

nels (Lu et al., 2019; Yuan et al., 2020). The hybrid wick evaporator geometry list in Table 1 determines the

HTC and dry-out heat flux. Themicrochannel andmembrane geometries can be varied independently so as

to enhance the permeability of the microchannels and the heat transfer from highly conductive solids (the

substrate, microchannels, and nanoporous membrane) to the liquid-vapor interface.

Hybrid cooling

Hybrid cooling refers to incorporating two or more cooling solutions on the same platform. For example, as

shown in Figure 1E, a hybrid cooling system can be designed using liquid cooling via microchannels and

TECs (Kaplan et al., 2017; Yazawa et al., 2012). Liquid cooling via microchannels can effectively remove
iScience 25, 103582, January 21, 2022 3



Table 1. Hybrid wick geometry parameters and valid range

Symbol Parameters Valid range

t Nanoporous membrane thickness 250–1000nm

dp Membrane pore diameter 50–200nm

4 Membrane porosity 0.2–0.8

AR Microchannel aspect ratio 0.5–2

SF Microchannel wall solid fraction 0.1–0.4

w Microchannel width 2–8 mm
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the background heat in large chips and especially in 3D-stacked architectures. TEC is favorable for

handling high power densities in a small area. Hybrid cooling combines the advantages of both cooling

methods and can potentially provide high cooling efficiency by manipulating the TEC current and liquid

flow velocity. In hybrid cooling, TEC would be placed on select hot spots to shave the high temperatures,

and then liquid cooling would remove the overall heat.

Compact thermal modeling methodology

Commercial multiphysics simulators, such as COMSOL Multiphysics (Pryor, 2009) and ANSYS (Stolarski

et al., 2018), are typically used to design and simulate the thermal models of the aforementioned

emerging cooling solutions. However, these tools require significant efforts to construct system-specific

models. Such tools also incur long simulation times as well as large memory requirements (e.g., simu-

lating an mm-scale chip takes from hours to multiple days and easily requires tens of GBs of memory)

(Yuan et al., 2019a; 2019b; Kaplan et al., 2017). Compact thermal modeling has been designed to tackle

the long design and simulation time problem (Pedram and Nazarian, 2006; Skadron et al., 2003). In the

following sections, we briefly discuss the compact modeling methodologies and CTMs for each

emerging cooling technology.

A CTM leverages the duality between electrical and thermal properties. Tomodel a single heat source chip,

the traditional heat equation can be transformed into a first-order resistor and capacitor (RC) circuit. To

model a multiple heat source chip, this electrical and thermal duality can simplify the heat conductions

from the neighboring nodes as a first-order thermal RC matrix equation as shown in Equation 1:

GTðtÞ + C _TðtÞ=UðtÞ; (Equation 1)

where G, C, U are the equivalent thermal conductance, thermal capacitance, and power dissipation

matrices, respectively. T is the node temperature matrix that can be solved from Equation 1. This thermal

RC equationmatrix can be solved using differential solvers, such as LU decomposition solvers, to obtain the

steady-state temperature of each thermal node (Skadron et al., 2003; Yuan et al., 2021). Solving this first-

order RC matrix is apparently faster than solving the second-order heat equations (Pedram and Nazarian,

2006).

Researchers have developed various CTMs to model the cooling behaviors of emerging cooling solutions

such as liquid cooling via microchannels (Sridhar et al., 2013; Kaplan et al., 2017), TECs (Kaplan et al., 2017;

Yazawa et al., 2012), two-phase VCs with micropillar wick evaporators (Yuan et al., 2019a; 2019b), two-phase

VCs with hybrid wick evaporators (Yuan et al., 2020), and hybrid cooling (of liquid cooling via microchannels

and TECs) (Kaplan et al., 2017; Yazawa et al., 2012).

Tradeoff of emerging cooling methods

As we discussed in the previous sections, researchers have developed CTMs for various emerging cooling

technologies and among these cooling technologies, liquid cooling via microchannels, two-phase VCs,

and hybrid cooling (of liquid cooling via microchannels and TECs) are particularly interesting because of

their reported high heat transfer rate compared to conventional cooling methods. However, there is no

comprehensive study to compare the cooling efficiency in terms of cooling performance and cooling po-

wer for these cooling technologies. We next study the cooling efficiency of the cooling methods using their

corresponding CTMs. We adopt the optimization objective function as shown in Equation 2 from previous

work (Yuan et al., 2019b):
4 iScience 25, 103582, January 21, 2022



Figure 2. Initial optimization results for hybrid cooling and two-phase VCs with hybrid wick evaporators

(A) Synthetic chip floor plans.

(B) Results for on-chip temperature constraint = 65�C. The format for two-phase VCs with hybrid wick evaporators is

{coolant, hot spot temperature, cooling power}. The format for hybrid cooling is {liquid flow velocity, TEC current, hot

spot temperature, cooling power}.
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minaPcooling;norm + bðmaxðThs �Tlimit;0Þ;normÞ: (Equation 2)

Pcooling;norm is the normalized cooling power and Ths � Tlimit is the temperature difference between the hot

spot temperature and on-chip temperature limit. a is the user-specific weight factor with no unit and b is the

penalty weight that we set to a large value to prevent violation of the temperature constraint. Given the

chip floorplans, power profile, and on-chip temperature limit, we want to find out the optimal cooling so-

lution along with the cooling parameters that result in the minimum cooling power while satisfying the tem-

perature constraint. We select 3 floorplans with a various number of hot spots and hot spot power densities

as shown in Figure 2A.

For each of the floorplan, we set the background power density to 50W=cm2 with hot spot power densities

of f100; 300; 1000; 1700; 2000gW=cm2. We use the aforementioned emerging cooling methods as heat

sinks or inter-layer cooling methods. The on-chip maximum temperature limit (temperature constraint) is

set to 65 �C. The detailed experimental setup can be found in the previous work (Yuan et al., 2019b,

2020). To select the optimal cooling solutions and cooling parameters, we use the covariance matrix adap-

tation evolution strategy (CMA-ES) and multi-start simulated annealing (MSA) to select the optimal cooling

parameters for the aforementioned emerging cooling technologies (Yuan et al., 2019b, 2020). We summa-

rize the results in Figure 2B.

As shown in Figure 2B, because two-phase VCs are passive cooling methods (no additional power is

needed on the evaporator side), for relatively low power density (100, 300, and 1000 W=cm2), two-phase

VCs with hybrid wick evaporators completely beat other cooling methods. Note that, compared to the

hybrid wick, the micropillar wick evaporator cannot provide enough HTC on the evaporator side to cool

down the chip because of the low dry-out limit. Liquid cooling via microchannels cannot provide enough

power to remove the high heat flow generated by the chip. Because hybrid cooling has finer control over

the cooling power and cooling ability, hybrid cooling always results in lower cooling power compared to
iScience 25, 103582, January 21, 2022 5
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only using TEC. For high power density (1700 and 2000 W=cm2), because hybrid cooling and TECs are tar-

geted at removing the hot spot heat, hybrid cooling is the optimal cooling method in these cases. We also

carry out experiments with a temperature constraint of 90�C, but because two-phase VCs with hybrid wick

evaporators are passive cooling methods, they beat other emerging cooling technologies in terms of cool-

ing efficiency. Because two-phase VCs with hybrid wick evaporators and hybrid cooling (of liquid cooling

via microchannels and TECs) can achieve the optimal cooling efficiency among all the aforementioned

cooling technologies. Therefore, we only discuss the CNN regression architectures for these two cooling

technologies. We will also perform cooling optimization studies using realistic high power density chips in

the optimization results section.
RESULTS

In this section, we first demonstrate the proposed DL-based cooling optimization flow and then discuss the

validation results of the proposed CNN architectures. CNN architectures are discussed detail in the Star

Methods. Next, we demonstrate the efficiency of using our proposed DL-based cooling optimization

flow against existing cooling optimization methods on realistic multiprocessor system-on-chips from

OpenROAD (Ajayi et al., 2019) and IBM Power9 processor (Sadasivam et al., 2017).
Overall CNN optimization architecture

The existing cooling optimization methods (CMA-ES andMSA) have twomain issues: (i) need to run a great

number of thermal simulations which results in large simulation time and (ii) there is no guarantee that the

selected cooling method and its cooling parameters are optimal. The accuracy of the optimization result

selected by CMA-ES and MSA is determined by the sample size and the number of iterations (Yuan et al.,

2019b, 2020). Using the DL model, specifically, the CNN regression model, to predict the optimal cooling

solution and its cooling parameters could be the solution to these two issues. In this section, we will elab-

orate on the proposed DL-based cooling optimization flow.

The overall CNN optimization architecture is shown in Figure 3A. Given an arbitrary chip power map, the

optimization flow standardizes the power map into a 103 10 power density matrix. The power density ma-

trix is used as the input to the hybrid cooling and two-phase VCs CNN architectures to predict the optimal

cooling parameters for these two cooling technologies, respectively. The optimization flow then conducts

thermal simulations for the input power map using hybrid cooling and two-phase VCs with hybrid wick

evaporators as the cooling method and compares the hot spot temperatures and the cooling costs to

determine the optimal cooling method and its cooling parameters.

As the solution space of this cooling optimization problem is continuous instead of discrete, the optimiza-

tion results found by black-box optimization methods (e.g., exhaustive search, simulated annealing, or

others) can only be near-optimal because they require discretizing the optimization inputs. Therefore, un-

less an accurate mathematical formula is created for such an optimization problem, the accuracy of the

optimization methods will always depend on the input granularity and the outputs can only be near-

optimal. It is not possible to create an accurate mathematical formula for this particular cooling optimiza-

tion problem to solve it analytically; thus, we consider the output of our proposed DL-based optimization

framework as optimal given the constraints. The accuracy of the proposed optimization flow depends on

the granularity of the training data in the cooling parameter solution space.
Validation of the proposed CNN architectures

To validate the accuracy of the CNN architectures discussed in the previous section, we divide the 90,000

training power density maps into the training set and validation set. The total number of training power

density maps is set to 72,000 and the validation set is set to 18,000. All the input power matrices are normal-

ized with respect to the mean and standard derivation of the training data. We summarize the validation

mean square error (MSE), mean absolute error (MAE), and R2 score in Table 2. For two-phase VCs with

hybrid wick evaporators, because each coolant has its own CNN architecture, we average the error of

two-phase VCs with hybrid wick evaporators’ geometries for each coolant.

As we can see from Table 2, our proposed CNN architectures are able to properly learn patterns to predict

the optimal cooling parameters for each type of cooling technology. We observe that compared to two-

phase VCs with hybrid wick evaporator CNN, hybrid cooling CNN has higher mean square errors and
6 iScience 25, 103582, January 21, 2022



Figure 3. Deep learning-based cooling optimization flow and optimization results

(A) Deep learning-based cooling optimization flow.

(B) CNN architectures’ accuracy results.

(C) The correlation plots of the maximum temperatures and cooling costs predicted using the proposed optimization flow

against the results generated using the baseline methods. Baseline methods stand for the combination of MSA and CMA-

ES. CNN stands for the proposed CNN architectures and optimization flow. All the data are normalized to the maximum

value.

(D) IBM Power9 processor floorplan.
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mean absolute errors with lower R2 scores. The reason is that hybrid cooling is more complex because of

the optimization objective function. Hybrid cooling CNN also needs to take cooling power into consider-

ation which makes the prediction more complicated and therefore less accurate. However, in two-phase

VCs with hybrid wick evaporators, there is no additional cooling power at the evaporator side.
Optimization results for realistic MPSoCs

To demonstrate the predicted accuracy and search time improvements on realistic chips of our proposed

optimization flow against existing cooling optimization methods (Yuan et al., 2019b, 2020), we select real-

istic high-power density MPSoCs from OpenROAD (Ajayi et al., 2019) with different chip sizes, floorplans,

and power profiles to test the proposed DL-based cooling optimization framework. We compare the

optimal results predicted using our proposed CNN architectures and optimization flow against MSA

and CMA-ES from previous work with a temperature constraint of 90�C. The statistics of the realistic

MPSoCs from OpenROAD are listed in Table 3. For each of the MPSoC, we first map the power profiles

into 10 3 10 power density maps. We then use Equation 3 to standardize the power density maps with

respect to the training power density maps:
iScience 25, 103582, January 21, 2022 7



Table 2. Validation results of the proposed CNN architectures

Metrics Liquid flow velocity TEC current t dp 4 AR SF w

MSE 2.3% 2.1% 0.9% 0.6% 2.5% 0.7% 1% 2.1%

MAE 5.3% 4.7% 2% 1.5% 4% 2% 2% 4%

R2 93.2% 96% 96% 99.3% 99.2% 99.2% 99.3% 98.5%
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PDnew =
PDoriginal � mtrainng

stdtraining
+b: (Equation 3)

mtraining is the mean power density of the training dataset, stdtraining is the standard derivation of the training

power density dataset, and b is the bias which is defined as the ratio of the testing MPSoCs dimension over

the training chip dimension.

For each cooling parameter, we calculate the average and max error for all MPSoCs and coolants and plot

the percentage error in Figure 3B. The Avg error and Max error are defined as shown in Equation 4:

Avg error =

P
ppred � pbase

# of MPSoCs 3# of coolants
;

�X �

Max error = max ppred �pbase ; (Equation 4)

where ppred is the predicted parameter by our proposed CNN architectures and pbase is the parameter

generated using the baseline method (CMA-ES and MSA). Both CMA-ES and MSA have been validated

against grid search in previous work (Yuan et al., 2019b, 2020). The reason we chose the baseline method

to be CMA-ES and MSA instead of grid search is we seek to have a fast design exploration and simulation

time for the baseline method, which would further show the simulation speed improvement of our pro-

posed CNN architectures. For hybrid cooling, because the coolant is only water, # of coolants equals

1. For two-phase VCs, the # of coolants is set to 3 because there are three available coolants (water,

R245fa, and R141b). As we see in Figure 3B, our proposed CNN architectures can successfully predict

optimal cooling parameters for hybrid cooling and two-phase VCs with hybrid wick evaporators with a

maximum error of less than 4%. Because PicoSoC with 95% utilization has the highest power density, we

also show the predicted parameters using our proposed CNN architectures and baseline parameters

generated using the baseline methods of PicoSoC in Table 4.

Figure 3C shows the optimization results of correlation plots for all MPSoCs. The proposed DL-based cool-

ing optimization flow can find a similar optimal cooling solution and its cooling parameters with maximum

temperature and cost difference of 0.7�C and 0.01W compared to existing methods. Note that, the tested

MPSoCs have different chip dimensions compared to the training chip size we are using, which
Table 3. Statistics of the realistic MPSoCs from OpenROAD

MPSoCs Average power density (W=cm2) Utilization (%) Dimensions (mm2)

PicoSoC 368 85 1567 3 1567

PicoSoC 387 90 1522 3 1522

PicoSoC 409 95 1493 3 1493

Sparc 351 85 1225 3 1225

Sparc 351 90 1225 3 1225

Sparc 351 95 1225 3 225

Black_parrot 319 85 769 3 769

Black_parrot 343 90 748 3 748

Black_parrot 362 95 728 3 728

Swerv 311 85 620 3 620

Swerv 326 90 602 3 602

Swerv 338 95 595 3 595

8 iScience 25, 103582, January 21, 2022



Table 4. Predicted parameters using our proposed CNN architectures and baseline parameters generated using

the baseline methods for PicoSoC

Methods Coolant IðAÞ qðm =sÞ tðnmÞ dpðnmÞ 4 AR sf wðmmÞ
CNN Water 7 2.57 0.97 0.17 0.30 1.92 0.34 7.63

Baseline Water 6.98 2.57 0.99 0.175 0.29 1.85 0.33 7.56
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demonstrates that our proposed CNN architectures can be used to predict the optimal cooling parameters

for any given chip sizes and power profiles. For large-size chips such as PicoSoC, Sparc, and Black_parrot,

the optimal solution is always two-phase VCs with hybrid wick evaporators because it does not consume

additional power on the evaporator side. For smaller chips with high power density, two-phase VCs with

hybrid wick evaporators cannot efficiently spread the heat across the chip. That is the reason for Swerv

MPSoCs, the optimal cooling solution is hybrid cooling. In addition, all the predicted geometries are within

the valid range and all the two-phase VCs with hybrid wick evaporators’ geometries satisfy the dry-out

constraint. The average search time for the baseline method (MSA and CMA-ES) is 1.57 h, whereas it

only takes the proposed DL-based cooling optimization flow 50 s at most to predict the optimal cooling

method and its cooling parameters. Our proposed DL-based cooling optimization flow can achieve a

maximum of 140X speedup when compared to using existing optimization methods. In addition, the

training time for hybrid cooling CNN is 13.3 min (�21 s per epoch) and the maximum training time for

two-phase VCs CNN is 18 min (�56 s per epoch). The worst-case training and inference time is calculated

based on Equation 5

Timeworst = maxðHybridtrain + Hybridinfer;maxðVCtrain + VCinferÞÞ; (Equation 5)

where Hybridtrain and Hybridinfer are the training time and inference time for hybrid cooling, respectively.

VCtrain is the training time for two-phase VCs CNN architectures with different coolants. VCinfer is the

inference time for two-phase VCs CNN architectures with different coolants. The worst-case training and

inference time for the proposed CNN architectures is 18.83 min and the overall speedup compared to

the baseline method is 5X.

Optimization results for the IBM Power9 processor

To further investigate the prediction accuracy of the proposed CNN optimization architectures, we model

the IBM Power9 high-performance processor with a total chip power of 190 W (Sadasivam et al., 2017). The

floorplan of the IBM Power9 processor is shown in Figure 3D and the power breakdown is shown in Table 5.

We compare the optimal results predicted using our proposed CNN architectures and optimization flow

against the baseline method (MSA and CMA-ES) with a temperature constraint of 90�C. We use Equation 3

to standardize the power density maps with respect to the training power density maps. The comparison

results are shown in Table 6. The maximum cooling parameter difference is less than 3.8%. Because the

dry-out heat flux is negatively correlated with the chip size, as the chip size increases, the dry-out heat

flux decreases dramatically. In this case, both proposed CNN architectures and baseline methods cannot

find optimal cooling parameters for two-phase VCs to optimize the maximum temperature under 90�C.
Therefore, the optimal cooling solution is hybrid cooling. We also observe that, for a small chip with a fewer

number of hot spots, compared to the power consumption of the chip, the cooling cost is not significant.

However, for high-power chips with large chip sizes and more hot spots (such as IBM Power9), there will be

more liquid microchannels and TEC units. Therefore, the cooling cost starts to become significant. As

shown in Table 6, the cooling power is around 10% of the total chip power.
DISCUSSION

This paper introduces a DL-based cooling optimization flow for emerging cooling technologies. We de-

signed multi-output convolutional neural network (CNN) regression models to estimate the best cooling

method and its cooling design and technology parameters. We demonstrated the efficiency of using

deep learning techniques on optimizing the cooling technologies against existing work. Our proposed
Table 5. IBM Power9 processor power breakdown

Components Core (total) Cache Nest I/O DDR4

Power (W) 133 20.9 9.5 15.2 11.4
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Table 6. IBM Power9 processor optimal cooling parameters, maximum temperature, and cooling power

Methods Coolant IðAÞ qðm =sÞ TMaxð�CÞ PowerCooling (W )

CNN Water 7 2.59 89.9 19.50

Baseline Water 7 2.6 89.88 19.83

ll
OPEN ACCESS

iScience
Article
CNN architectures and DL-based cooling optimization flow can successfully predict the optimal cooling

solution and cooling parameters with a maximum error of less than 4% and a maximum speedup of 140X.

Limitations of the study

Our proposed DL-based cooling optimization flow could result in local optimal results because of the

training data granularity. Unless an accuratemathematical formula is created for this optimization problem,

the cooling optimization method may converge to a local minimum. This is generally true for black-box

optimization methods. It is not possible to create an accurate mathematical formula for this particular cool-

ing optimization problem to solve it analytically. Therefore, we cannot guarantee that the result of our pro-

posed cooling optimization flow is the global optimum.

An open problem is determining the optimal cooling solution and cooling parameters more broadly for

new integration methods, such as 3D ICs with arbitrary layer configurations. Our current flow is applicable

if the 3D IC layer configurations (i.e., which blocks are allocated on which layers) match the layer configu-

rations available in the training data. For applying the proposed CNN optimization architecture for arbi-

trary 3D IC designs, the CNN regression models have to be retrained as needed to maintain the desired

accuracy. We plan to provide layer partitioning configurations as inputs to the CNN regression models

to tackle this limitation in our future work. Our future work also includes building CNN architectures for

emerging technologies with different materials, chip thicknesses, manufacturing costs, and temperature

limits. In addition, using finer granularity power density maps to train accurate CNN architectures for

emerging cooling technologies is another open problem.
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TEC and hybrid cooling models Kaplan et al., 2019 https://ieeexplore.ieee.org/document/8654683

Two-phase vapor chamber model Yuan et al., 2020 https://ieeexplore.ieee.org/document/9116480
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�This paper does not report original codes.
�Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Training data preparation

The CNN architectures shown in Figure 3A require a huge amount of data to optimize the parameters

within the neural network to improve the performance of the model. One major challenge of building a

CNN architecture is the preparation of the training data. Since real processors’ power maps are hard to

obtain, we generate a comprehensive training dataset using statistical distribution. We select a 5 mm3

5mm chip and divide the chip uniformly into 10 310 power density grids. To generate comprehensive

and realistic power density maps, we choose to use Gamma distribution to randomly generate power den-

sity for each power density grid. The reason we use gamma distribution to generate random power density

maps are as follows: (i) obtaining real processors power map is hard, (ii) using real processors power map

may let the CNN architectures overfit to the training power maps of the chips, (iii) training power density

maps may not cover corner cases, and iv) the generated power density value should be positive and most

generated values should within the background power density range of 50-200 W=cm2. The largest power

density value that the selected Gamma distribution can generate is 2000 W=cm2. We then apply data

augmentation techniques to rotate and flip the power density maps to increase the training data size.

The total number of power density maps we generated is 90000. We use the same gamma distribution

with data augmentation techniques to generate 50000-200000 training power density maps. For each

generated power density map, we need to know the optimal cooling parameters of using hybrid cooling

and two-phase VCs with hybrid wick evaporators. For hybrid cooling, we apply TEC units to the power den-

sity grids that have values of more than 200W=cm2. The microchannel width is set to be 50 mm. We adopt
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Equation 2 as the optimization objective function and run grid searches to determine the optimal liquid

flow velocity and TEC current for each power density map. For two-phase VCs with hybrid wick evaporators,

we select water, R245fa, and R141b as the coolants. We directly run grid searches with a finer granularity for

each power density map to determine the optimal cooling parameters for each coolant.
Hybrid cooling CNN architecture

The hybrid cooling method combines the liquid microchannel layer and TEC layers into one chip stack. But

since they are completely different cooling methods with different cooling performance and cooling po-

wer, the liquid flow velocity and TEC current are independent of each other. In this case, we create two

branches in this CNN architecture and each branch is responsible for predicting the optimal values for

either liquid flow velocity or TEC current. Both branches share the same input layer and have the same num-

ber of layers and parameters. However, since this is a multi-output CNN, the loss for each branch is

different. To achieve the best regression accuracy, we build different multi-output CNN architectures

with different kernel sizes, number of filters, number of convolutional layers, number of fully connected

layers, and with or without batch normalization layer, and select the one that has the highest validation ac-

curacy. Table S1 shows the details of three alternative CNN architectures of hybrid cooling.

To evaluate the accuracy of the CNN alternatives, we divide the 90000 training power density maps into the

training set and validation set. The total number of training power density maps is set to 72000 and the

validation set is set to 18000. All the input power matrices are normalized with respect to the mean and

standard derivation of the training data. We show the accuracy results of three CNN alternatives in Table

S2. To train thesemulti-output CNN architectures, we use Adam optimizer, and the loss function is selected

to be the mean square error.

As we can see from Table S2. Model_1 is clearly overfitting with the data since the validation accuracy is at

least 3.5% lower than the training accuracy. To prevent overfitting, we add additional dropout layers and

increase the dropout rate to 0.5. However, the model accuracy and R2 scores start to decrease below

85%. In this case, we decide to lower the complexity of the model by using a fewer number of convolutional

layers and fully connected layers, which results in model_2. The accuracy and R2 score of model_2 show that

themodel and the data are not closely correlated since the R2 scores are below 90%. To improve themodel

accuracy and R2 score, we add additional fully connected layers with additional neurons and result in

model_3. As we can see from the results of model_3, the accuracy and R2 scores are higher compared

to other alternatives, and the model itself is not overfitted. Therefore, we choose model_3 (as shown in Fig-

ure S1) as our hybrid cooling CNN regression model. In addition, we also experiment with different activa-

tion functions such as ReLU, Hyperbolic tangent, and Leaky ReLU. We compare the accuracy and R2 score

of model_3 with ReLU, Hyperbolic tangent, and Leaky ReLU. To ensure the predicted parameter is greater

than 0, we set the activation function of the last activation layer to be ReLU. We summarize the results in

Table S3. As we can see from Table S3. Since ReLU achieves the highest accuracy and R2 score, we select

ReLU as our activation function for all the activation layers in model_3.
Two-phase VCs with hybrid wick evaporators CNN architecture

Since two-phase VCs with hybrid wick evaporators have six different cooling parameters, there is a total of

six different branches for this cooling technology. In addition, since different coolant has different cooling

properties, it’s not realistic to train only one CNN model to predict both the optimal cooling parameters

and the coolant. To solve this problem, we train different multi-output CNNs for different coolants and

conduct thermal simulations at the end to find out the optimal coolant and its cooling parameters.

Compare to hybrid cooling CNN architecture, two-phase VCs with hybrid wick evaporators CNNs also

need to consider the dry-out effect. In order to improve the prediction accuracy, we add additional convo-

lutional layers in each branch, and the number of filters in each convolutional layer is doubled compared to

hybrid cooling CNN architecture. We also build different CNN alternatives for each two-phase VCs with

hybrid wick evaporators CNN with different coolants. We summarize 9 CNN alternatives’ parameters in

Table S4. For each CNN alternative, we change the number of Dropout layers from 6 to 36 and the dropout

rate from 0.25 to 0.5 to prevent overfitting. After each Convolutional layer, we add batch normalization to

stabilize the training process and improve the training time.We add oneMax Pooling layer after all the con-

volutional layers to decrease the problem size. We use RMSprop as the optimizer with a learning rate of

0.001 and the loss function for each branch is set to mean square error.
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To evaluate the accuracy of the CNN alternatives, we divide the 90000 training power density maps into the

training set and validation set. The total number of training power density maps is set to 72000 and the

validation set is set to 18000. All the input power matrices are normalized with respect to the mean and

standard derivation of the training data. We show the average accuracy results of these CNN alternatives

for cooling parameters in Table S5. We always start with the most complex model and our aim is to simplify

the CNN by using a fewer number of convolutional layers and fully connected layers. For each of the

coolants, we select model_3 as our final two-phase VCs with hybrid wick evaporators CNN model. We

also select the activation functions to be ReLU, Hyperbolic tangent, and leaky ReLU. Since ReLU results

in the highest accuracy, we set ReLU as our activation function for all the activation layers.
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