
Using Monitoring Data to Improve HPC
Performance via Network-Data-Driven Allocation

Yijia Zhang∗, Burak Aksar∗, Omar Aaziz†, Benjamin Schwaller†,
Jim Brandt†, Vitus Leung†, Manuel Egele∗ and Ayse K. Coskun∗

∗ Boston University, Boston, MA, USA; E-mail: {zhangyj, baksar, megele, acoskun}@bu.edu
† Sandia National Laboratories, Albuquerque, NM, USA; E-mail: {oaaziz, bschwal, brandt, vjleung}@sandia.gov

Abstract—On high-performance computing (HPC) systems,
job allocation strategies control the placement of a job among
available nodes. As the placement changes a job’s communication
performance, allocation can significantly affects execution times
of many HPC applications. Existing allocation strategies typically
make decisions based on resource limit, network topology, com-
munication patterns, etc. However, system network performance
at runtime is seldom consulted in allocation, even though it
significantly affects job execution times.

In this work, we demonstrate using monitoring data to
improve HPC systems’ performance by proposing a Network-
Data-Driven (NeDD) job allocation framework, which monitors
the network performance of an HPC system at runtime and
allocates resources based on both network performance and job
characteristics. NeDD characterizes system network performance
by collecting the network traffic statistics on each router link,
and it characterizes a job’s sensitivity to network congestion by
collecting Message Passing Interface (MPI) statistics. During al-
location, NeDD pairs network-sensitive (network-insensitive) jobs
with nodes whose parent routers have low (high) network traffic.
Through experiments on a large HPC system, we demonstrate
that NeDD reduces the execution time of parallel applications by
11% on average and up to 34%.

Index Terms—HPC system, job allocation, network congestion

I. INTRODUCTION

High-performance computing (HPC) systems are playing
an irreplaceable role in our society by providing compute
resources to support many scientific research and engineering
projects. On HPC systems, the communication traffic gener-
ated by many simultaneous parallel applications travels on the
shared interconnections, often creating network contention that
leads to performance degradation. Prior works have observed
that network contention on HPC systems is causing significant
performance variation as high as 2x [1], 3x [2], 7x [3], or even
8x [4] in terms of delays in job execution times. Therefore, it
is important to find new approaches to minimize the impact
of network contention and improve job performance.

Job allocation on HPC systems significantly affects the
execution times of jobs because placements affect the path

This work has been partially funded by Sandia National Laboratories.
Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
Contract DE-NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of Energy or
the United States Government.

Fig. 1: The Network-Data-Driven job allocation framework.

and latency of communication. Existing allocation strategies
typically make decisions based on resource limit, network
topology, communication pattern, etc. [5]–[12]. However, as
congestion hot spots in an HPC network changes from time
to time, allocation strategies based on those static properties
cannot maintain the best performance. Therefore, it is impor-
tant for an HPC job allocator to be network-data-driven, i.e.,
to use monitoring data to make decisions. In spite of that, most
HPC job allocation strategies does not take network data into
consideration, except for a few works that monitor networks
or profile job characteristics with a large overhead [13], [14].

Many HPC systems are equipped with monitoring systems
that collect metrics from a variety of hardware performance
counters. For example, Cray XC systems offers the ability to
monitor hundreds of network counters per router [15]. Multiple
HPC systems, including the 12k-node Cori system (LBNL,
USA), the 19k-node Trinity system (LANL, USA), and the
28k-node Blue Waters (NCSA, USA), have been running the
Lightweight Distributed Metric Service (LDMS) [16] to collect
performance metrics from CPU, memory, I/O, network, etc.
Some prior works have conducted offline analysis based on
the collected performance metrics [4], [17]–[19].

Motivated by the opportunity to use monitoring data to
help mitigate congestion, we propose a Network-Data-Driven
(NeDD) job allocation framework for HPC systems. NeDD
makes allocation decisions based on monitored network per-
formance at runtime. The framework comprises three compo-
nents, as shown in Fig. 1: (1) a low-cost network monitoring
component that quantifies the traffic intensity in each router
or link of an HPC system; (2) an application profiling com-
ponent that determines whether an application is sensitive to
network congestion or not; (3) a congestion-aware allocation
component that allocates nodes to jobs based on the network
and job characteristics with the goal of minimizing congestion.
Through experiments on a production HPC system, we eval-
uate our proposed allocation framework by comparing with
other state-of-the-art job allocation strategies. The contribu-
tions of this work are listed as follows:



• We propose a Network-Data-Driven (NeDD) job allo-
cation framework for HPC systems. This framework
monitors the network performance of an HPC system at
runtime at a fine granularity and places an application
based on both the system’s network performance and a
job’s communication characteristics.

• We implement our proposed framework by characterizing
network performance using low-cost hardware perfor-
mance counters and by characterizing a job’s sensitivity
to network congestion using its MPI operation statistics.

• Through experiments on a large production HPC system,
we demonstrate that our proposed framework reduces
the execution times of parallel applications by 11% on
average and up to 34%.

II. RELATED WORK

We briefly review some latest work by grouping HPC job
allocation strategies into five categories as follows:

Strategies based on static properties allocate nodes ac-
cording to the system’s and the job’s static properties, includ-
ing network topology, memory capacity, job size (node count
of the job), etc. For example, some methods utilize the row,
column, and group structures of dragonfly networks [5], [6].
Some approaches differentiate large-size or small-size jobs to
reduce system fragmentation [7].

Strategies based on profiled job characteristics use job
characteristics such as communication graphs and message
sizes to make decisions. For example, Soryani’s work places
computational tasks with larger message sizes closer to each
other [8]. Michelogiannakis’ work and Yan’s work construct
weighted communication graphs of applications and place the
tasks with larger weights closer [9], [10].

Strategies based on thermal and energy constraints
focus on meeting a thermal or power constraint. For example,
Cheng’s work schedules and migrates workload among dis-
tributed data centers based on green energy supply [20]. Cao’s
work optimizes system throughput under power and cooling
constraints [21].

Strategies based on other jobs’ placement consult the
placement of other jobs so as to reduce network interference.
For example, Pollard’s work places a job to the smallest
topological level in a fat-tree network and aims to avoid
sharing a switch among different jobs [11]. Zhang’s work
selects the lowest topological level in a dragonfly network that
a job fits in and places the job in a spread manner within that
level to reduce congestion [12].

Strategies based on system performance status collect
system performance status at runtime and make allocation
decisions to balance the CPU, memory, storage, or net-
work resource usage. For example, Werstein’s work com-
pares the CPU load on each node when allocating nodes to
jobs [22]. LaCurts’ work measures the network throughput
between every pair of nodes in a system and prioritizes
mapping communication-heavy tasks of an application to high-
throughput node pairs [13].

Fig. 2: NeDD quantifies the network traffic intensity of a router
according to the flits per second metric collected over links.

In summary, existing allocation strategies seldom consult
network monitoring data at runtime, and as a result, most
strategies cannot adapt to the change of network hot spots.
Part of the reason is that quantifying the entire network’s
performance of a large HPC system is not easy. For example,
LaCurts’ work quantify network performance by continuously
querying the network throughput of all pairs of nodes through
ping-pong tests [13], which generates an unacceptable over-
head for large systems. In comparison, NeDD uses monitoring
data to infer network hot spots in the system, which has a much
lower overhead than active query methods.

III. THE NEDD JOB ALLOCATION FRAMEWORK

To incorporate network monitoring data into job allocation
decisions, we propose the NeDD job allocation framework.

A. The Principle and Implementation of NeDD

As shown in Fig. 1, NeDD comprises three components: a
network monitoring component, an application profiling com-
ponent, and an allocation decision component. The network
monitoring component characterizes the network performance
based on network metrics. Its purpose is to obtain an up-to-
date knowledge of which nodes, routers, or network links
suffer from network congestion. The application profiling
component determines an application’s sensitivity to network
congestion. The purpose of this component is to obtain the
knowledge of which application’s performance degrades more
significantly than the others under network congestion con-
ditions. Finally, the allocation decision component determines
where to place a certain job based on the network and applica-
tion characteristics provided by the previous two components.
In principle, this allocation decision component places more
network-sensitive jobs on nodes that are suffering from less
network congestion. Detailed implementation choices are dis-
cussed in the following.

The network monitoring component collects the flits
per second metric between each node and its parent router
to quantify the network performance at runtime. Figure 2
shows the design of the system we experiment with where
four nodes are linked to each router. In this figure, the blue
links connecting each node with its parent router are the
places where we collect the flits per second network statistics.
Using these network metrics, we quantify the network traffic
intensity of each router defined as the total flits per second



(a) Flowchart of NeDD. (b) Aries router architecture. (c) One-job experiments

Fig. 3: The NeDD flowchart, router architecture, and design of experiments.

summed over all nodes directly connected to that router. To
mitigate the noise in these network metrics generated by bursty
communication traffic, we take the average of these metrics’
values over a certain time window.

The application profiling component determines whether
an application is sensitive to network congestion or not, and
one direct approach to quantify that sensitivity is to compare
the application’s performance in situations with or without
network congestion. However, this direct approach requires
running a set of experiments that execute the application
multiple times, which poses a heavy burden on the valuable
compute resources. Fortunately, our previous work has demon-
strated that the MPI usage statistics of parallel applications,
such as the ratio of time spent on MPI operations, are good in-
dicators of applications’ sensitivity to network congestion [4].
Therefore, in the implementation of NeDD, we characterize
an application’s sensitivity to network congestion based on
its MPI statistics, which can be obtained by running the
application only once. From the collected MPI statistics, we
classify an application as either network-sensitive or network-
insensitive, based on its ratio of time spent on MPI operations.

The allocation decision component controls where to place
a job among the available nodes in an HPC system. In our
implementation, we apply a straightforward strategy that pairs
a network-sensitive job with the nodes whose parent routers
have low network traffic intensity. On the other hand, we
pair a network-insensitive job with the nodes whose parent
routers have high network traffic intensity. We allocate nodes
to network-insensitive applications in this way because this
allocation decision can leave the other low-traffic routers
for other network-sensitive applications. To be specific, as
shown in Fig. 3 (a), the allocation decision component first
obtains the collected network traffic intensity of all routers
in the system, and then, it sorts all nodes from low-traffic to
high-traffic according to their parent routers’ network traffic
intensity. Finally, For a network-sensitive job, it prioritizes
selecting nodes whose parent routers have lower network
traffic intensity. Conversely, for network-insensitive jobs, it
prioritizes selecting nodes whose parent routers have higher
network traffic intensity.

B. Discussion on Real-world Deployment

As our allocation strategy requires the knowledge of
whether a job is network-sensitive or not, the real-world
deployment of our framework will benefit from a mechanism
that can identify the jobs in the queues. One way to identify
jobs in HPC systems is to maintain a database that records
the mapping between a job’s executable binary file’s name
and its corresponding application name. In this way, although
the names of different submission scripts may vary, we can
identify them as running the same application as long as they
call the same binary file. Sometimes, the same application can
have multiple different binary names, and in that case, this
information could be gathered manually through interaction
with users. As an example, the Cori system we experiment
with maintains such a database for application identification.

As NeDD relies on applications’ MPI statistics to determine
its sensitivity to congestion, in the real-world deployment
of NeDD, we can maintain a database of applications’ MPI
statistics. Any unprofiled application will be launched with
a default allocation strategy, and its MPI statistics collected
in its first run will be used for future runs. Since the same
application run with different node counts may have different
network-sensitivity, ideally, we need to profile an application’s
MPI statistics for each node count that it is run with. However,
to reduce the overhead generated by the profiling procedure,
we can assume that the network-sensitivity of an application
maintains the same for a range of node counts.

IV. EXPERIMENTAL METHODOLOGY

In this section, we describe the system setup, the applica-
tions we use, the experimental design, the baseline allocation
policies, the GPCNeT tool we use to create network conges-
tion, and the CrayPat tool we use to profile applications.

A. System and Application Setup

To evaluate NeDD, we experiment on Cori, a large HPC
system in production. It is a 12k-node Cray XC40 system
located at the Lawrence Berkeley National Laboratory, USA.
The system features a dragonfly network topology [23], and
an adaptive routing policy is applied to the network.



To monitor the system’s hardware performance, the Cori
system runs the LDMS as a background service on every node
of the system [16]. Except for a couple of nodes dedicated to
recording the entire system’s performance counter values to
files, the overhead of running LDMS is low, as the typical CPU
usage of LDMS on a compute node is less than 0.1%. The
LDMS has been continously running on the entire Cori system
for more than two years, and on every node, it is collecting
hundreds of metrics from hardware performance counters at
the granularity of once per second [15]. In our experiments, we
build and run our own instance of LDMS, and we configure
our LDMS to collect metrics once per second.

Figure 3 (b) shows the architecture of an Aries router in
the Cori system [24]. Each router connects four computing
nodes and contains 48 tiles. The 8 tiles at the bottom, called
Ptiles (Processor tiles), contain network traffic directed to/from
the four nodes. The other 40 tiles, called Ntiles (Network tiles),
contain traffic directed to/from either the Ptiles of this router
or the Ntiles of some other routers.

For our evaluation, we experiment with six different real-
world or benchmark applications, including HACC [25] (cos-
mological simulation), HPCG [26] (conjugate gradient calcula-
tion), LAMMPS [27] (molecular dynamics), MILC [28] (quan-
tum chromodynamics), miniMD [29] (molecular dynamics),
and QMCPACK [30] (electronic structure calculation).

We run experiments on nodes with the Knights Landing
micro-architecture. Each node contains 68 cores. We run the
application on all 68 cores per node when running miniMD,
LAMMPS, QMCPACK, and HPCG. We use 64 cores per
node when running MILC and HACC as our inputs for MILC
and HACC do not support using all 68 cores. We configure
application inputs to make their typical execution time to
be within several minutes, and the same inputs are used
throughout our experiments. For these applications with our
inputs, their execution times spent on the initialization phase
are typically within 6 seconds, so the execution times we report
are mainly for their processing phases.

B. Experimental Design

We evaluate NeDD through controlled experiments on Cori.
In these experiments, we take some idle nodes from the
system, run a network congestor to create network congestion,
and then allocate nodes to one or two applications.

Figure 3 (c) shows an example of running a network
congestor and one application. To conduct that experiment, we
first get N idle nodes (squares in the figure) from the system
by the Slurm scheduler. Then, we run a network congestor
using the GPCNeT on C randomly selected nodes (grey
squares) [31]. In each repetition of our experiments, the
congestor nodes are re-selected. After running the congestor
for two minutes, we collect network traffic data over the last
two minutes from all nodes, and we sort them according to
the network traffic intensity. Then, we run an application on
M nodes (green) using different allocation policies. During
the experiments, we run our experiment control script and
the LDMS storage daemon in one node (purple) which is

prevented from running either the congestor or the application
to avoid potential interference.

In our one-job experiments, we set N = 201, C = 64,
and M = 32, so our allocator selects 32 nodes out of 136 =
N − 1 − C available nodes to place the job. In addition, we
also have two-job experiments, where we allocate nodes to
two different jobs (each with M = 32 nodes), start the two
jobs simultaneously, and measure their execution times.

We compare the following allocation strategies:
• Low-Traffic-Router places a job on nodes whose parent

routers have low network traffic intensity. This is NeDD’s
strategy for network-sensitive applications.

• High-Traffic-Router prioritizes routers with high net-
work traffic intensity. This is NeDD’s strategy for
network-insensitive applications.

• Random strategy places a job randomly.
• Low-Stall-Router strategy prioritizes routers with low

Ntile network stalls (i.e., network stall count summed
over all Ntiles in a router).

• Fewer-Router places a job into fewer routers by priori-
tizing routers connected to more idle nodes.

In our experiments, we also record the execution time of the
applications when we do not run the network congestor (and
we allocate nodes following the Fewer-Router strategy). This
case is denoted as “No-Congestor”.

C. Network Congestor and MPI Tracing Tool

In our experiments, we use the Global Performance and
Congestion Network Tests (GPCNeT) tool to create network
congestion in a controlled way [31]. GPCNeT is a tool that
injects network congestion and benchmarks the communica-
tion performance of HPC systems. When launched on a set
of nodes, GPCNeT runs one or multiple congestor kernels
on 80% of nodes, and the other 20% of nodes run a canary
test to evaluate the impact of the congestor kernels. In our
experiments, we configure GPCNeT to run the RMA (Remote
Memory Access) Broadcast congestor kernel.

We use the CrayPat tool to profile a job’s MPI statistics [32]
following the observation from our previous work that a job’s
sensitivity to network congestion can be estimated by its ratio
of time spent on MPI operations [4]. CrayPat is an easy-to-
use performance analysis tool that can be installed on Cray
XC platforms to instrument an executable to trace calls to
functions. CrayPat is supported on the Cori system [33].

V. RESULTS

In this section, we first profile the MPI operation statistics of
all applications that we use. Then, we show the results for the
one-job allocation experiments. Finally, we show the results
for the two-job allocation experiments.

A. Application Profiling

To estimate the network-sensitivity of applications, we use
the CrayPat tool to profile the MPI statistics of applications
when running them without the GPCNeT network congestor.
In Table I, the “MPI Operation” column shows the ratio of time



TABLE I: The ratio of execution time spent on MPI operations.

Application MPI Operation MPI Allreduce MPI Sendrecv/Send/Isend MPI Wait/Waitall MPI (other)
miniMD 68.9% 1.1% 65.8% 0 2.0%

LAMMPS 51.5% 22.4% 10.5% 12.7% 5.9%
MILC 48.2% 1.9% 7.7% 34.0% 4.6%
HACC 49.7% 1.4% 0 41.2% 7.1%

QMCPACK 19.3% 14.2% 0 <0.1% 5.1%
HPCG 11.5% <0.1% 4.6% 6.4% 0.5%

that an application spends on MPI operations. The breakdown
into specific MPI operations is shown in other columns where
Some typical MPI operations are listed. The “MPI (other)”
column shows the other MPI operations not specified.

Table I shows that the six applications have different ratios
of time spent on MPI operations, and we use that metric to
classify an application as either network-sensitive or network-
insensitive. In our system, we find QMCPACK is not af-
fected by the congestor much, so we set the threshold to be
above 19.3% and classify QMCPACK and HPCG as network-
insensitive applications. We classify the other applications,
including HACC, LAMMPS, MILC, miniMD, as network-
sensitive applications since their ratio of time spent on MPI op-
erations are much larger and are in the range of 48.2%∼68.9%.

B. One-job Experiments

The results for running the network congestor with a single
job are shown in Fig. 4. These experiments use N = 201
nodes in total (including one node running the LDMS storage
daemon), run network congestor on C = 64 nodes, and run
a parallel application on M = 32 nodes. From Fig. 4 (a) to
Fig. 4 (f), we conduct experiments with application miniMD,
LAMMPS, MILC, HACC, QMCPACK, and HPCG, respec-
tively. In each figure, we compare the execution times of
the application when placed by different allocation strategies.
Colored bars are cases with the network congestor, and the
white bar (“No-Congestor”) represents the case without the
network congestor. Each bar shows the distribution of results
from multiple (≥10) runs using a certain allocation strategy,
and the red point shows the mean execution time.

As shown in Figs. 4 (a)-(d), for network-sensitive appli-
cations, network congestion leads to a large increase in job
execution time. For example, the average execution time for
miniMD when running with congestor and placed by the
Random strategy is 5x as large as the No-Congestor case.
For these network-sensitive applications in Figs. 4 (a)-(d),
the average execution time using NeDD is among the lowest
values compared with other allocation strategies. Especially
for miniMD, NeDD performs 34% (comparing the mean
value) better than Random, 32% better than Low-Router-Stall,
and 2% better than Fewer-Router. When averaged over the four
applications, NeDD is performing 19% better than Random,
12% better than Low-Router-Stall, and 2% better than Fewer-
Router. When averaged over the three allocation strategies,
Random, Low-Stall-Router, and Fewer-Router, the improve-
ment of NeDD is 11%. This proves that NeDD improves
network-sensitive jobs’ performance.

On the other hand, in Figs. 4 (e)(f), for network-insensitive
applications like HPCG and QMCPACK, the impact of con-
gestion on performance is negligible, and different allocation
strategies perform similarly. This can be seen from the fact that
the variance of execution times for each allocation strategy is
similar to that in the No-Congestor case. Especially, the mean
execution times of all strategies are within the error bars of the
No-Congestor case. This proves that the network-insensitive
jobs can be safely placed on high-traffic routers without
causing much performance degradation while reserving the
low-traffic routers for network-sensitive jobs.

C. Two-job Experiments

The results for two-job experiments are in Fig. 5. Similarly,
we use N = 201 nodes in total, run network congestor on
C = 64 nodes, and run each of the two jobs on M = 32 nodes.
The figure caption, such as in Fig. 5 (a), “miniMD + MILC”
means that we allocate nodes first to a miniMD job and then
to a MILC job. After that, the two jobs start simultaneously.
We use the X-axis and the Y-axis to show the execution time
of the two jobs, respectively. Each point represents the mean
value from multiple (≥ 5) runs.

In Fig. 5 (a), because both miniMD and MILC are network-
sensitive applications, NeDD prioritizes pairing each job with
nodes whose parent routers have lower network traffic, and the
result of NeDD (green) is located at the left-bottom part of the
figure, demonstrating that NeDD outperforms other allocation
strategies for both jobs.

Figure 5 (b) shows the combination of a network-sensitive
job with a network-insensitive job. For this combination,
NeDD pairs miniMD with low-traffic routers while pairing
QMCPACK with high-traffic routers. The result shows that
NeDD is on the left side of the figure, demonstrating that
NeDD outperforms other allocation strategies for the network-
sensitive application, miniMD. Although the execution time
of QMCPACK when applying NeDD is not the lowest, the
performance difference between NeDD and Low-Stall-Router
(the best strategy for QMCPACK in this case) is less than 1%.

Figure 5 (c) shows the same combination of miniMD and
QMCPACK but with the scheduling order changed. Here, QM-
CPACK is placed before the allocation of miniMD. Similarly,
NeDD improves the network-sensitive job by 40% (compared
to Fewer-Router strategy) while the network-insensitive job’s
performance degrades by less than 1%.

In Figs. 4,5, the Low-Stall-Router strategy performs worse
than NeDD for some applications, which seems counter-
intuitive at first thought. In fact, it is caused by noise in
Ntile metrics. As Low-Stall-Router makes allocation decisions



(a) miniMD (b) LAMMPS (c) MILC

(d) HACC (e) QMCPACK (f) HPCG

Fig. 4: One-job experiments comparing the performance of different job allocation strategies. Error bars show the minimum
and maximum execution times in multiple (≥ 10) runs for each application. Colored area shows the first and third quartiles.
The dashed black line shows the median, and the red point shows the mean.

(a) miniMD + MILC (b) miniMD + QMCPACK (c) QMCPACK + miniMD

Fig. 5: Results comparing different allocation strategies for two jobs. The diamond-shaped points show the mean execution
time from multiple (≥ 5) runs. Error bars show the standard error of the mean.

based on the stall counts from Ntiles, whose traffics always
include communications with some Ntiles in other routers, so
the corresponding stall metrics do not well reflect the network
congestion happening on the current router.

VI. CONCLUSION

In this work, we demonstrate using monitoring data to
improve HPC performance via a Network-Data-Driven job
allocation framework. Through controlled experiments, we
demonstrate that NeDD reduces the execution time of parallel
applications by 11% on average and up to 34%. In future

works, it is possible to take other approaches to extract
congestion information from HPC systems’ network traffic
data such as by the region-growth clustering algorithm [34].
Machine-learning algorithms can also be applied to profile
applications and predict their performance under network
congestion [2], [35]. In addition, it is possible to replace the
current application classifier by a “smoothed” version that
assigns each application a network-sensitivity value instead
of using a bipartite classification strategy.



ACKNOWLEDGMENT

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. De-
partment of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] A. Bhatele et al., “There goes the neighborhood: Performance degrada-
tion due to nearby jobs,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13, 2013, pp. 41:1–41:12.

[2] A. Bhatele, J. J. Thiagarajan, T. Groves et al., “The case of performance
variability on dragonfly-based systems,” in IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2020.

[3] S. Chunduri, K. Harms et al., “Run-to-run variability on xeon phi based
cray xc systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’17, 2017, pp. 52:1–52:13.

[4] Y. Zhang, T. Groves, B. Cook et al., “Quantifying the impact of
network congestion on application performance and network metrics,” in
2020 IEEE International Conference on Cluster Computing (CLUSTER),
2020, pp. 162–168.

[5] N. Jain, A. Bhatele, X. Ni et al., “Maximizing throughput on a dragonfly
network,” in SC ’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2014,
pp. 336–347.

[6] B. Prisacari, G. Rodriguez, P. Heidelberger et al., “Efficient task place-
ment and routing in dragonfly networks,” ACM International Symposium
on High-Performance Parallel and Distributed Computing (HPDC), pp.
129–140, 2014.

[7] A. Jokanovic, J. C. Sancho, G. Rodriguez et al., “Quiet neighborhoods:
key to protect job performance predictability,” IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), pp. 449–459, 2015.

[8] M. Soryani et al., “Improving inter-node communications in multi-
core clusters using a contention-free process mapping algorithm,” J.
Supercomput., vol. 66, no. 1, p. 488–513, 2013.

[9] G. Michelogiannakis et al., “Aphid: Hierarchical task placement to
enable a tapered fat tree topology for lower power and cost in hpc
networks,” in International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2017, pp. 228–237.

[10] Y. Baicheng, Y. Zhang et al., “Lpms: A low-cost topology-aware process
mapping method for large-scale parallel applications on shared hpc
systems,” in 48th International Conference on Parallel Processing:
Workshops, ser. ICPP 2019, 2019.

[11] S. D. Pollard, N. Jain, S. Herbein et al., “Evaluation of an interference-
free node allocation policy on fat-tree clusters,” in SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2018, pp. 333–345.

[12] Y. Zhang, O. Tuncer, F. Kaplan, K. Olcoz, V. J. Leung, and A. K.
Coskun, “Level-spread: A new job allocation policy for dragonfly
networks,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2018, pp. 1123–1132.

[13] K. LaCurts et al., “Choreo: Network-aware task placement for cloud
applications,” in Conference on Internet Measurement Conference, 2013,
p. 191–204.

[14] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar, “Network-aware scheduling for data-parallel jobs: Plan when you
can,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, p. 407–420,
Aug. 2015.

[15] Cray Inc., “Aries hardware counters (4.0),” https://pubs.cray.com/
bundle/Aries Hardware Counters S-0045-40/page/Aries Hardware
Counters.html, 2018.

[16] A. Agelastos et al., “The lightweight distributed metric service: A
scalable infrastructure for continuous monitoring of large scale com-
puting systems and applications,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2014, pp. 154–165.

[17] S. Jha, J. Brandt, A. Gentile, Z. Kalbarczyk, G. Bauer, J. Enos, M. Show-
erman, L. Kaplan, B. Bode, A. Greiner, A. Bonnie, M. Mason, R. K. Iyer,
and W. Kramer, “Holistic measurement-driven system assessment,” in
2017 IEEE International Conference on Cluster Computing (CLUSTER),
2017, pp. 797–800.

[18] R. Izadpanah, N. Naksinehaboon, J. Brandt, A. Gentile, and D. Dechev,
“Integrating low-latency analysis into hpc system monitoring,” in Pro-
ceedings of the 47th International Conference on Parallel Processing,
ser. ICPP 2018. New York, NY, USA: Association for Computing
Machinery, 2018.

[19] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Diagnosing performance variations in hpc
applications using machine learning,” in High Performance Computing,
J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds. Cham: Springer
International Publishing, 2017, pp. 355–373.

[20] D. Cheng, C. Jiang, and X. Zhou, “Heterogeneity-aware workload
placement and migration in distributed sustainable datacenters,” in 2014
IEEE 28th International Parallel and Distributed Processing Sympo-
sium, 2014, pp. 307–316.

[21] T. Cao, W. Huang, Y. He, and M. Kondo, “Cooling-aware job scheduling
and node allocation for overprovisioned hpc systems,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2017, pp. 728–737.

[22] P. Werstein, H. Situ, and Z. Huang, “Load balancing in a cluster
computer,” in International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), 2006, pp. 569–
577.

[23] J. Kim, W. J. Dally et al., “Technology-driven, highly-scalable dragonfly
topology,” International Symposium on Computer Architecture (ISCA),
pp. 77–88, 2008.

[24] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray xc series
network,” https://www.alcf.anl.gov/files/CrayXCNetwork.pdf, 2012.

[25] K. Heitmann et al., “The outer rim simulation: A path to many-core
supercomputers,” The Astrophysical Journal Supplement Series, vol.
245, no. 1, p. 16, nov 2019.

[26] J. Dongarra, M. A. Heroux, and P. Luszczek, “A new metric for ranking
high-performance computing systems,” National Science Review, vol. 3,
no. 1, pp. 30–35, 01 2016.

[27] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of computational physics, vol. 117, no. 1, pp. 1–19, 1995.

[28] G. Bauer, S. Gottlieb, and T. Hoefler, “Performance modeling and
comparative analysis of the milc lattice qcd application su3 rmd,”
in IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), 2012, pp. 652–659.

[29] M. A. Heroux et al., “Improving performance via mini-applications,”
https://www.osti.gov/biblio/993908, 2009.

[30] J. Kim, A. D. Baczewski, T. D. Beaudet et al., “QMCPACK: an open
sourceab initioquantum monte carlo package for the electronic structure
of atoms, molecules and solids,” Journal of Physics: Condensed Matter,
vol. 30, no. 19, p. 195901, apr 2018.

[31] S. Chunduri et al., “GPCNeT: Designing a benchmark suite for inducing
and measuring contention in hpc networks,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19, 2019.

[32] Cray Inc., “Cray performance measurement and analysis tools user guide
(7.0.0),” https://pubs.cray.com/content/S-2376/7.0.0/cray-performance-
measurement-and-analysis-tools-user-guide/craypat, 2020.

[33] Lawrence Berkeley National Laboratory, “CrayPat Documentation,”
https://docs.nersc.gov/development/performance-debugging-
tools/craypat/, 2020.

[34] S. Jha, A. Patke, J. Brandt et al., “Measuring congestion in high-
performance datacenter interconnects,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), Feb. 2020,
pp. 37–57.

[35] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale,
“Predicting application performance using supervised learning on com-
munication features,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13. New York, NY, USA: ACM, 2013, pp. 95:1–95:12.


