
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 1

HPC Data Center Participation in Demand
Response: an Adaptive Policy with QoS

Assurance
Yijia Zhang, Student Member, IEEE, Daniel C. Wilson, Student Member, IEEE,

Ioannis Ch. Paschalidis, Fellow, IEEE, and Ayse K. Coskun, Senior Member, IEEE

Abstract—Demand response programs help stabilize the electricity grid by providing monetary stimulus to consumers if they regulate
their power consumption following market requirements. Regulation service, a market that requires participants to regulate power by
following a signal updated every few seconds, is particularly beneficial to HPC data centers since data centers are capable of
increasing/decreasing power consumption owing to the flexibility in running workloads and the availability of power control
mechanisms. While prior works have explored how data centers can provide regulation service reserves, Quality-of-Service (QoS)
provisioning for the jobs running at the data centers has not been considered. In this work, we propose an Adaptive policy with QoS
Assurance that enables data centers to participate in regulation service programs with assurance on job QoS. Our policy regulates
data center power through job scheduling and server power capping. QoS assurance is achieved by applying a queueing-theoretic
result to our job scheduling strategy. We evaluate our policy by experiments on a real cluster. Our results demonstrate that the
proposed policy reduces electricity costs by 25-56% while providing QoS assurance. On the other hand, the baseline policies cannot
meet QoS constraints in 9 of the 14 workload traces tested.

Index Terms—Data center, HPC, demand response, Quality of Service, QoS assurance.

F

1 INTRODUCTION

DATA centers1 are playing an irreplaceable role of of-
fering a substantial amount of computing services to

society. IT companies, financial companies, and research
institutes all rely on the computing power provided by
innumerable data centers around the world. However, data
centers are large power consumers. In 2014, all data centers
in the US consumed 70 billion kWh, close to 2% of US
electricity usage [1]. In 2019, the top-1 supercomputer in the
world, the Summit system, consumed a peak power of 10
MW [2], equivalent to $24,000 of energy cost per day. As the
trend of building large data centers is expected to continue,
suppressing the increasing energy cost of data centers is a
key challenge and vital to sustain their growth [1].

Participation in demand response programs is a prof-
itable and environmentally beneficial answer to this chal-
lenge, and in this paper, we focus on regulation service,
which is a specific type of demand response program [3].
In regulation service programs, a power consumer is asked
to regulate its power by following a target signal broadcast
by a grid operator. The power consumer determines the
average power value and the range of the power according
to their own regulation capability, but the exact value of the
power target is not known in advance and changes every
few seconds. Participants of regulation service programs

• Y. Zhang, D. C. Wilson, I. Ch. Paschalidis, and A. K. Coskun are with the
Department of Electrical and Computer Engineering, Boston University,
Boston, MA, 02215.
E-mail: {zhangyj,danielcw,yannisp,acoskun}@bu.edu

Manuscript received April 19, 2020; revised August 26, 2020.
1. In this work, we define data centers broadly, including both

enterprise and high-performance computing (HPC) data centers.

benefit from significant electricity cost reduction as long as
they track the target within a small error margin [3].

Data centers are good candidates to provide regulation
service reserves because many data centers are capable of
quickly regulating their power usage within a large range
through job scheduling and server power management.
Previous works have demonstrated in simulation that par-
ticipation in demand response could reduce the energy cost
of data centers by 50% [4], [5]. However, those works do not
provide assurance on meeting the quality-of-service (QoS)2

constraints of jobs running in data centers, which could
discourage many potential participants as QoS is one of
their top concerns.

To solve the problem of providing QoS guarantees in
demand response, in this work, we propose an Adaptive
QoS-Assurance (AQA) policy that enables data centers to
participate in demand response with QoS assurance of
jobs. This policy stems from the generalized processor shar-
ing (GPS) algorithm [6], where guarantees on delay have
been proven using queueing theory [7], [8]. To track the
power target, our policy schedules different types of jobs
according to their properties (e.g., job size, execution time,
QoS constraints, etc.) and adjusts the power caps of servers.
Our policy also selects the optimal bidding parameters to
participate in regulation service reserves markets. The main
contributions of our work are as follows:

• We propose a policy that enables data centers
to participate in demand response programs with

2. In this work, QoS refers to timely execution of computing jobs
submitted to data centers. In other words, QoS requirement places a
constraint on the delay of executing each job.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 2

theoretically-proven guarantees on job QoS.
• We evaluate our policy by experimenting with a

broad range of workload traces on a real cluster
composed of enterprise-level servers.

In comparison with our recent work [9] that presents
a preliminary version of our AQA policy, this paper has
the following improvements: (1) Instead of considering only
single-node jobs, our proposed policy now allows parallel
applications that run on multiple nodes3. (2) The AQA
policy adaptively optimizes the bidding parameters and the
weight parameters used by the policy, in contrast to estimat-
ing the optimal parameters based on a single simulation. (3)
Compared to our earlier experiments on a 12-server cluster,
this work includes real-system experiments on a 36-server
cluster with a broad set of workload settings.

Using both simulation and real-system experiments, we
demonstrate that our AQA policy outperforms two baseline
policies [4], [5] in terms of cost reduction and QoS assurance.
We show that our policy is robust to different workload
profiles, and we demonstrate that our policy reduces the
electricity cost by 25-56% while providing QoS guarantees.

In the following, we first provide some background on
demand response and regulation service in Section 2. Then,
we describe our AQA in detail in Section 3. We elaborate
our experimental methodology in Section 4 and results are
presented in Section 5.

2 BACKGROUND ON DEMAND RESPONSE AND
REGULATION SERVICE

Due to the rapidly growing trend of incorporating renew-
able energy sources in the power grid [10], [11], ensur-
ing the stability of the power grid becomes increasingly
important as renewable supplies such as solar and wind
are highly volatile and intermittent [12]. Various demand
response programs have been developed to help stabilize
the power grid by motivating the demand side of the
grid to adjust power consumption in response to power
supply. Peak shaving [13], dynamic energy pricing [14], and
emergency load reduction [15], [16] are programs of this
kind. In addition, there are demand response programs that
allow the demand side to provide capacity reserves, where
power consumers are required to regulate their power con-
sumption to track a dynamic power target based on the
amount of reserve that they intend to offer. By providing
a larger amount of reserves, consumers receive a larger cost
reduction as a reward.

There are mainly three types of capacity reserves, or-
dered from more to less valuable as follows: (1) frequency
control requires power consumers to counter frequency de-
viations by modulating their consumption at near-real-time;
(2) regulation service asks consumers to react to a power
target broadcast by independent system operators (ISOs)
every few seconds; (3) operating reserves are offered in a
slower pace where a power target maintains its value for up
to a few hours. We target regulation service in this work as
it is a particularly profitable choice for data centers because
data centers are capable of efficiently regulating power in

3. In the following, we use the two words, “node” and “server”,
interchangeably.

0 500 1000 1500 2000 2500 3000 3500
Time (second)

Po
we

r (
W
)

̄P̄R

̄P−R

̄P

Power Target
Data Center Power

Fig. 1: The power target derived from a 1-hour ISO signal
y(t) and the power consumption of a data center that
follows the target well. P̄ is the average power consumption
of this hour and R is the amount of reserve provided by the
data center.

a few seconds and matching the signal update interval of
regulation service programs.

To participate in regulation service, at the beginning of
every hour, a data center first bids for an average power
consumption P̄ and the reserve amount R according to its
own power regulation capability. Then, within this hour, the
power target is set as:

Ptarget(t) = P̄ + y(t)R, (1)

where y ∈ [−1, 1] is the signal broadcast by the ISO
and is updated every few seconds. In other words, the
power target Ptarget(t) could change within the range of
[P̄ − R, P̄ + R]. Although the value of signal y(t) is not
known in advance, it generally follows a known distribu-
tion. The signal is required to have a mean as zero, and its
change rate is limited [3]. The power target derived from a
1-hour signal sample is shown in Fig. 1.

Regulation service participants should make sure their
actual power follows the target closely. In this work, we
express the tracking constraints in a probabilistic form [3]:

Prob[ε(t) > 0.3] < 10%, (2)

where ε(t) is the relative tracking error defined as

ε(t) =
|P (t)− Ptarget(t)|

R
. (3)

In other words, power consumption must be near the target
power, within a margin of 30% (with respect to R) for more
than 90% of time.

At the end of this hour, the electricity bill for the data
center is calculated according to its bidding parameters P̄ ,
R and the average tracking error ε̄ = E[ε(t)]. This monetary
cost can be estimated by [3]

Cost =
(
ΠP P̄ −ΠRR+ ΠεRε̄

)
× 1h, (4)

where ΠP , ΠR, and Πε are fixed monetary cost coefficients
determined by the power market.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 3

Fig. 2: Our data center model and the AQA policy. Jobs are grouped into different job types and each type is processed
in a separate queue. Servers are conceptually (not physically) grouped into an idle-server group and several active-server
groups. Servers in the jth active group run the jth-type jobs. The total number of active servers n(t) is adjusted to track
the power target. The Runtime Policy and the Parameter Selection algorithm constitute the AQA policy.

3 THE ADAPTIVE QOS-ASSURANCE POLICY

In this section, we first introduce our data center model and
give an overview of our AQA policy. Next, we provide some
background on the GPS algorithm. Then, we explain how
our AQA policy regulates the total power to track the target
by job scheduling and server power capping. At the end,
we explain how our policy adaptively finds the optimal
bidding parameters (P̄ , R) and weight parameters (wj),
when participating in the regulation service markets.

3.1 Data center and workload model

The power consumption of a data center consists of power
from servers, cooling systems, and affiliated components
such as network and storage systems. Because servers have
a large power contribution and are typically more flexible
than other systems, in this work, we focus on the regulation
of server power through job scheduling and server power
capping.

We assume servers are homogeneous: they consume the
same amount of power when running the same job and
they finish the execution of that job in the same amount
of time (when under the same power cap setting). This
assumption is an approximation to real data centers and is a
prerequisite step towards future work considering hardware
variations or data centers composed of multiple types of
servers.

We group the computing jobs in a data center workload
into different types according to their power consumption,
processing time, and QoS constraints. We assign separate
queues for different job types, and inside each queue, jobs
are processed in a first-come-first-serve manner. In the fol-
lowing, we denote the number of job-type in a workload
by J . A jth-type job (j = 1, 2, ..., J) has processing time
T j and average power consumption pj . We assume those
values are known in advance from prior measurements. Our
framework allows parallel jobs that simultaneously occupy
multiple nodes to run. We assume no job consolidation, i.e.,
different jobs cannot share the same node, which is typical in
many HPC systems due to efficiency and security consider-
ations. By default, we assume jobs cannot be interrupted or

stopped in the middle of their execution, and the relaxation
of this assumption is discussed in Sections 3.6 and 5.4.

Since we have jobs grouped into different types, we also
group the servers according to the jobs they are running.
At runtime, the servers are dynamically and conceptually
partitioned into an idle-server group and J separate active-
server groups, as shown in Fig. 2. When a jth-type job is
started on a server, the server switches from the idle-server
group into the jth active-server group, and switches back
after the job finishes.

We define the quality-of-service (QoS) degradation of a
job as the extra time used for processing the job compared
to its minimum processing time T jmin, calculated by the
formula:

Qj =
Tso − T jmin

T jmin
. (5)

Here, minimum processing time T jmin is defined as the
time for processing a jth-type job without power caps and
without being delayed in the queue. The sojourn time Tso is
defined as the time from a job’s submission to completion,
including the waiting time in the queue Twait and the actual
processing time Tproc:

Tso = Twait + Tproc.

In this paper, we focus on QoS constraints in a probabilistic
form:

Prob[Qj ≥ Qjthres] ≤ δ
j (j = 1, 2, ...), (6)

where Qjthres is a given QoS threshold for the jth-type jobs,
and we set δj = 10% in Sec. 4. This formula means that only
a small fraction (δj) of jth-type jobs have a QoS degradation
exceeding their QoS threshold Qjthres.

3.2 An overview of our AQA policy

To provide QoS guarantees to each type of job, we partition
the active servers to job types following the Generalized
Processor Sharing (GPS) algorithm [6], according to which,
the number of active servers allocated for each job type
is proportional to a set of non-negative weights, wj (with

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 4

TABLE 1: Variables Used in the Problem Formulation
Label Description
R The reserve amount to participate in regulation service
P̄ The average power to participate in regulation service
N The total number of servers in the data center
pidle The power consumption of a server that is idle
J The number of job types
pj The power consumption of a jth-type job
λj The average number of jth-type jobs submitted to

the data center per second
mj The number of servers (nodes) required to run

each jth-type job
T j The processing time for each jth-type job
Dj The delay of a jth-type job, i.e., the time from submission

to starting
Dj

max The maximal delay that the majority of jth-type jobs
should satisfy

Qj
thres A threshold in the QoS constraint for jth-type jobs
δj A probability in the QoS constraint for jth-type jobs
δjD A parameter calculated by δj in Eq. (19)
Aj(t) The random variable representing the amount of work

submitted to the jth queue per second
B(t) The random variable representing the total amount of

service provided by the data center per second
y(t) The ISO signal at time t, which is always within [−1, 1]
n(t) The number of servers that should be active at time t
αj An empirically-determined coefficient in quantifying

the probability of large delay, in Eq. (18)
θ∗j A coefficient in the exponent quantifying the probability

of large delay, in Eq. (18)
wj The weights used in the GPS algorithm

∑J
j=1 wj = 1). As we follow the GPS algorithm, a queueing-

theoretic result guarantees that the delay in each queue
meets QoS constraints [7], [8].

When applying our policy at runtime, at the beginning
of every cycle (one cycle is one second in our experiments),
the policy adjusts the total number of servers expected to
be active in order to match the total power consumption
with the target power. Next, the number of servers expected
to be active for each job type is determined following the
GPS algorithm. Then, for each job type, if the number of
active servers in this group needs to increase to meet the
expectation, our policy will activate idle servers to run some
queued jobs of this type if there are any. On the other hand, if
the number of active servers in this group needs to decrease
to meet the expectation, our policy will reduce these servers’
power cap instead of deactivating them because we assume
no job interruption. These procedures form the runtime
policy in Fig. 2.

The key to guarantee QoS and simultaneously reduce
monetary cost is to select optimal bidding parameters (P̄ ,
R) and weight parameters (wj). Although bidding for a
larger average power P̄ is more beneficial to guarantee
QoS because a higher power target (as a result of a larger
P̄) allows more servers to run, larger P̄ also increases the
monetary cost according to Eq. (4). The weight parame-
ters (wj) need to be well-tuned so that a job type that is
harder to meet its QoS constraint will take a larger weight
and consequently, be able to access more servers. Our policy
determines the optimal parameters by running simulations
and applying the gradient descent on a cost function. That
cost function includes both the monetary cost in Eq. (4)
and an additional term penalizing QoS violation. These
procedures are depicted in Fig. 2: parameter selection.

3.3 Generalized processor sharing (GPS) algorithm
GPS is an algorithm originally proposed to provide balanced
performance in network scheduling [6]. It assumes that
there are incoming requests4 from several separate queues to
be processed by a fixed amount of resources. The algorithm
assigns a fixed non-negative weight wj (j = 1, 2, ...) for each
queue satisfying

∑
j wj = 1, and allocates the resources

to every queue according to the weights. In case a certain
queue has no waiting requests, its resources will be allocated
to other non-empty queues according to their weights. If we
call the request-processing capability of the resources the
total bandwidth, denoted as B, then the bandwidth for the
jth queue is at least wjB, which means there exists a lower
limit on the processing capability of each queue.

When extending the GPS algorithm to the scenario
where the total resources B(t) is not fixed but follows a
stochastic process, Paschalidis et al. [7], [8] proved a theorem
stating that the portion of requests that experience large
delay before being processed should decrease exponentially
as m −→∞:

Prob[Dj ≥ m] = αje
−mθ∗j , (j = 1, 2, ..., J). (7)

Here, the exponential coefficients θ∗j can be derived from
the statistical properties of the requests and the processing
resources.

Since the result in [7], [8] is proven only for a system with
two queues, in order to accommodate a system with more
queues, we follow their derivation and generalize the results
for multiple-queue cases by taking a first-order assumption
where different queues are assumed to be decoupled (which
means that resources for an empty queue will not be shared
by the non-empty queues). From our derivations in Ap-
pendix A, we prove that the portion of requests with large
delay should decrease exponentially following this formula
as m −→∞:

Prob[Dj ≥ m] = αje
−mθ∗j , (j = 1, 2, ..., J), (8)

where the coefficients are calculated by

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj), (9)

and where the function ΛGPS,j(θ) is defined as

ΛGPS,j(θ) = ΛAj (θ) + ΛB(−θwj). (10)

Here, ΛAj and ΛB are the log moment-generating functions
for the random variables Aj(t), B(t). Variable Aj(t) repre-
sents the amount of requests arriving in the jth queue per
unit time at time t, and B(t) represents the total processing
capability (bandwidth) at time t; “sup” denotes the supre-
mum of the expression under conditions.

This analytical form of large delay probability in Eq. (8)
is the path towards providing theoretical guarantees on QoS
in this work.

3.4 Job scheduling and power capping in AQA
Our AQA policy adjusts a data center’s power consump-
tion at runtime to match the power target Ptarget by job

4. The “requests” here are assumed to be identical in terms of their
processing time.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 5

(a) Job scheduling and server power
capping at runtime.

(b) Optimal selection
of bidding and
weight parameters.

Fig. 3: The two components of our AQA policy.

scheduling and server power capping strategies, as shown
in Fig. 3(a). The parameters used in the following are listed
in Table 1.

In order to provide guarantees on job QoS, we schedule
J different queues of jobs following the GPS algorithm. To
match power target Ptarget(t) at time t, our policy first
determines the total number of active servers n(t). Then,
the n(t) active servers are partitioned for the J queues
according to their weights wj following the GPS algorithm.
As a result, we get the number of active servers for the jth

queue (i.e., for jth-type jobs), nj . This nj equals to n(t)wj if
all queues are non-empty, and larger if not. Next, from nj ,
we get the number of jth-type jobs that should be running
as nj/mj (i.e., nj divided by mj), where mj is the number
of servers required for running each jth-type job5.

If nj/mj is larger than the current number of running
jobs of the jth type, then the difference between nj/mj and
the current number of running jobs of the jth type is the
number of jth-type jobs that should be scheduled to start
at this moment. On the other hand, if nj/mj is smaller
than the current number of running jobs of the jth type,
because we do not want to terminate jobs before they finish,
we reduce data center power by reducing the server power
caps of all active servers, which is discussed in the following
paragraphs. Whenever reducing the server power caps is
not necessary, our policy always let servers run without
power caps.

From the policy described above, we see that the total
number of active servers n(t) at time t should be determined
by matching the target power with the data center’s power
consumption, i.e.:

Ptarget = P̄ + y(t)R = (N − n(t))pidle +

J∑
j=1

njpj ,

which is equivalent to

n(t) =
P̄ + y(t)R− pidleN(∑J

j=1 wjpj

)
− pidle

. (11)

5. We call a job as a single-server job if mj = 1, and a multi-server
job or parallel job if mj > 1.

Here, N is the total number of servers in the data center.
pidle is the idle server power, and pj (also denoted as pj,max
later) is the power for running a jth-type job without power
capping. We have also made an approximation nj = n(t)wj .

Our AQA policy applies server power capping only in
situations when the already-running jobs are consuming
more power than the target. When that happens, our policy
reduces the power cap on all the active servers by the same
ratio γ ∈ [0, 1] to ensure fairness. To be more specific, for a
jth-type job whose power consumption is pj,max and pj,min
when under the highest/lowest server power cap, we apply
a server power cap that makes the job running at power
pj,cap defined by the equation

γ =
pj,cap − pj,min
pj,max − pj,min

.

The ratio γ is determined by matching the target power and
the actual consumption:

Ptarget = (N − n(t))pidle +

J∑
j=1

njpj,cap.

3.5 Bidding and weight parameter selection in AQA
Our policy determines the optimal selection of bidding
parameters P̄ , R, and weights wj by solving the following
optimization problem:

min
P̄ ,R,wj

(
ΠP P̄ −ΠRR+ ΠεRε̄

)
× 1h (12)

subject to Prob[Qj ≥ Qjthres] ≤ δ
j , j = 1, 2, ...(13)

J∑
j=1

wj = 1, P̄ , R,wj > 0. (14)

In the following, we first simplify the QoS constraints in
Eq. (13) using the queueing-theoretical result in Sec. 3.3. To
start with, we combine Eq. (13) and Eq. (5), and we get

Prob[Qj ≥ Qjthres] ≤ δ
j (15)

⇔ Prob

[
T jwait + T jproc − T

j
min

T jmin
≥ Qjthres

]
≤ δj (16)

⇔ Prob[T jwait ≥ Q
j
thresT

j
min] ≤ δj . (17)

Here, Eq. (16) is transformed into Eq. (17) by approximation
since the actual processing time T jproc is usually close to the
minimum T jmin. Combining Eq. (8) with Eq. (17) leads to

⇔ Prob[Dj ≥ Dj
max] = αje

−Djmaxθ
∗
j ≤ δj (18)

⇔ θ∗j ≥ δ
j
D = − 1

Dj
max

ln

(
δj

αj

)
. (19)

Converting Eq. (17) into Eq. (18) is merely a change of
notation in order to match the notation in Eq. (8).

To further simplify Eq. (19) using Eq. (9), we quantify the
statistical properties of job arrival and power target. Because
different types of jobs have different power consumption
and processing times, a job cannot be simply regarded as a
“request” in Sec. 3.3. Instead, we convert jobs and servers
into the unit of “amount of service”. A jth-type job, using
mj servers to run and with a minimum processing time
of T jmin, is considered as requiring mjT

j
min amount of

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 6

service. As a result, if we assume the job arrival for this
queue follows a Poisson process with parameter λj (i.e.,
the average number of jth-type jobs arriving per unit time),
then, the amount of service injected to the jth queue per
unit time,Aj(t), follows a Poisson process. The log moment-
generating function for Aj(t) is

ΛAj (θ) = λj(e
θmjTj − 1). (20)

Similarly, n(t) active servers at time t are considered as
having a processing capability of B(t) = n(t) amount of
service per unit time. Since the matching of power target
with data center power gives us the relation Eq. (11), the
statistical property of n(t) depends on the property of the
signal y(t). Regulation service programs require the average
value over a long time ȳ to be close to 0. From the ISO signal
sample we have, we empirically determine that the signal
y(t) generally follows a normal distribution, whose stan-
dard deviation is estimated as yσ = 0.40. As a consequence,
n(t) follows a normal distribution with an average value

nµ =
P̄ − pidleN(∑J
j=1 wjpj

)
− pidle

, (21)

and a standard deviation

nσ =
yσR(∑J

j=1 wjpj

)
− pidle

. (22)

Thus, the log moment-generating function of B(t) is

ΛB(θ) = nµθ +
1

2
n2
σθ

2. (23)

Eqs. (9)(10)(20)(23) provide us the θ∗j defined in Eq. (19),
and as we have seen, satisfying Eq. (19) provides the QoS
assurance we need.

Although θ∗j can be derived from the statistic properties
of job arrival and ISO signal, the coefficient αj can only
be estimated empirically. In our previous work [9], we
obtained a fixed estimate of this coefficient by running one
experiment and fitted it with the observed QoS-degradation
probability using Eq. (18). However, because the fixed es-
timate of αj using a specific set of parameters (P̄ , R, and
wj) could have errors at other P̄ , R, wj values, in this
work, we improve this procedure by adaptively adjusting
the estimation of αj while optimizing the cost function
using gradient descent.

In order to apply the gradient descent optimization, we
make the QoS-assurance constraint (Eq. (13)) as a part of the
cost function (Eq. (12)), and we estimate the cost of tracking
error as Cerror. Then, the cost function becomes

C =
(
ΠP P̄ −ΠRR

)
H + Cerror

+β
∑
j

SoftPlus
(
ρ
(

Prob[Qj −Qjthres]− δ
j
))

.(24)

Here, H represents 1 hour. Function SoftPlus(x) is defined
as ln(1 + ex), which is a smooth approximation of the
ramp function max(0, x). Therefore, the QoS-related term in
Eq. (24) is close to zero when the QoS constraint is met, and
positive when violated. Parameters β and ρ control whether
the QoS constraints are less or more strict. Although larger
β and ρ result in more strict constraints, they also make the

surface of cost function steeper, and consequently, finding
the optimum becomes harder.

To calculate the derivatives of the tracking error cost, we
need an analytical estimation of the tracking error cost:

Cerror = ΠεRε̄H (25)

= Πε

∫ H

0

|Ptarget(t)− Pactual(t)|dt (26)

' Πε

∫ H

0

(P̄ + y(t)R− Pactual(t))dt (27)

= Πε
[
P̄H − Eactual

]
(28)

' ΠεH

P̄ − pidleN −∑
j

λjmjTj (pj − pidle)

 .(29)

Here, H again represents 1 hour. Eq. (25) is the definition
of tracking error cost, and Eq. (26) is from the definition of
the average tracking error. Eq. (27) removes the absolute
sign because this tracking error term is significant only
when P̄ + y(t)R � Pactual(t), and the other case where
P̄ + y(t)R � Pactual(t) is precluded by the QoS-related
term in Eq. (24) because a small P̄ already violates QoS
significantly. In Eq. (28), Eactual represents the actual energy
consumption in that 1 hour, which is estimated in Eq. (29)
following our assumption of job arrivals according to Pois-
son processes.

Applying Eqs. (18)(20-24)(29), we can compute the
derivatives of the cost function, ∂C

∂P̄
, ∂C∂R , ∂C

∂wj
, to be used in

gradient descent optimization. More details on calculating
the derivatives are in Appendix B.

Figure 3(b) shows the algorithm we apply to perform
the optimization. The algorithm starts with a set of initial
values for parameters P̄ , R, wj , and αj , and runs a one-
hour6 simulation. Next, parameter αj is estimated for each
jobtype j by fitting the QoS degradation curve with Eq. (18).
Then, we calculate the cost function with its derivatives,
and update P̄ , R, wj through gradient descent7. These new
parameters are fed into simulation again and we iterate
over the process above. In this optimization approach, the
time complexity of performing the theoretical calculations
is constant irrespective of the data center size, and in our
experiments, the time spent on theoretical calculations is
negligible (less than 1 second). The time for conducting sim-
ulation depends on the data center size. In our experiments,
this optimization approach always finds a solution meeting
all constraints in less than 200 iterations, which takes no
more than a few minutes even for a large data center with
10k nodes.

3.6 Additional methods to regulate power

In the sections above, we have explained how our policy
regulates power consumption to match the target by job
scheduling and server power capping. The flexibility of our
policy allows additional methods to address potential non-
ideal situations. Two typical non-ideal situations include:

6. Simulating a one-hour running time of the 36-node data center
takes less than 5 seconds using our simulator.

7. Because there is a constraint
∑

j wj = 1 in our optimization
problem, we apply gradient descent with projection.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 7

Long execution time: When jobs with long execution
times are running but the target power decreases sharply,
the data center power may not be able to match the target
because long-running jobs do not finish quickly and server
power capping alone may not be able to reduce a large
portion of power. To handle this situation, our policy can
further apply job preemption, which interrupts the long-
running jobs temporarily, and only resume their execution
when target power matching is achievable. When applying
job preemption, our policy prioritizes selecting jobs that
are least possible to violate their QoS constraints, and the
number of jobs preempted are determined by matching the
power target. When the power target increases, resuming
preempted jobs is prioritized before starting new jobs, and
jobs closer to QoS violation are prioritized to resume.

Lack of jobs: When there are not enough jobs waiting
in the queues but the target power is high, the data center
power may not be able to match the target as servers are
mostly in idle state due to this lack of jobs. To handle this
situation, our policy can work with a queue of standby jobs
and start jobs in this standby-job-queue. The standby-job-
queue can be composed of jobs that have no QoS constraint
or have a relatively loose QoS constraint at the time-scale
of days. When other queues are empty, our policy starts
jobs from this standby-job-queue, and the number of jobs to
start is determined by matching the estimated total power
consumption with the power target.

One real-life example for the standby-job-queue is the
overrun queue in the Cori system at the National Energy
Research Scientific Computing Center (NERSC) [17]. The
overrun queue allows Cori users running out of their CPU-
hour quota to submit jobs to this queue without monetary
costs. Even though the overrun queue is convenient for the
users, there is no guarantee on the waiting time in the
overrun queue, and a job there may also be terminated
by the system after running for 4 hours. Another similar
example is the Amazon EC2 Spot Instances which offer
spare computing capacity in the Amazon cloud at a steep
discount [18]. Users can enjoy the low price of this service
at the cost of unexpected interruptions: the cloud service
provider may interrupt the service with a warning two
minutes in advance whenever there are no sufficient spare
servers.

4 EXPERIMENTAL METHODOLOGY

We implement our AQA policy and evaluate it using both
simulation and real-system experiments. Fig. 4 shows the
architecture of our implementation. Among all the servers,
we choose one server to be the “master” that receives
the ISO signal, applies our AQA policy, and controls job
scheduling and power capping. The other servers are called
“clients” and they communicate with the master frequently
(once per second in our experiments) to receive a control
message and send their job/power status. We implement
the communication between the master and clients using
rabbitmq [19].

A controller process in each client server executes the
power capping of the server. It reads the power consump-
tion from sensors and accordingly sets a cap on the CPU
power to match the control message sent from the master. In

Fig. 4: Our real-system implementation architecture.

our system, that controller process is a PID controller with
parameters P = 0.4, I = 0, D = 0. We determine these
parameters by running benchmark applications under a
changing powercap and selecting the parameters that shows
the quickest response and the best stability.

4.1 System setup
We use 36 servers from the Boston University Shared Com-
puting Cluster (BU-SCC) that are physically located at the
Massachusetts Green High Performance Computing Cen-
ter (MGHPCC). Each server has two Intel Xeon Gold 6132
processors. Each processor has 14 cores, and its thermal
design power is 140 W. When conducting experiments on
this cluster, we use one server as the master, and the other
35 as clients.

We use the Linux perf tool [20] to read the power of CPU
and memory in a server. We also use the IPMI tool [21] to
read an entire server’s power, which includes the power
from CPU, memory, disk, fan, network interface, mother-
board, etc. Because the IPMI reading is a running-average
value of the server power and it has a large granularity of 4
W, we fit a power model based on the perf reading to obtain
the real-time server power and increase the granularity. We
fit the power model by running benchmark applications and
collecting the CPU/memory power (Pproc and Pmem) from
perf and server power (Pserver) from IPMI. We find that a
linear model, Pserver = φ1Pproc +φ2Pmem +φ3, is accurate
enough for our purpose, and we empirically determine
φ1 = 1.29, φ2 = 1.63, φ3 = 44.0 W in our experiments.

4.2 Workload profile
We generate 14 different workload traces using paral-
lel applications from the NAS Parallel Benchmark (NPB)
suite [22]. These benchmarks allow a few different in-
puts and can be processed using different number of
threads/servers. Because modifying the input and the num-
ber of threads/servers significantly changes the processing
time and power consumption, in our evaluation, we use the
word “application” or “a type of job” to refer to a bench-
mark with a specific input and processed with a specific
number of threads on a specific number of servers. For
example, application bt.C.16 means running benchmark
bt with input C and with 16 threads, and we run it on 1
server, as shown in Table 2.

Table 2 shows the properties of the applications and
the composition of the 14 workload traces: W1∼W14. The
applications in each trace are marked in the table. Column

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 8

TABLE 2: Applications and workloads used in evaluation. The meaning of application name is shown by this example:
bt.C.16 means running benchmark bt with input C and with 16 threads. Here, mj is the size (number of servers used
to run). Tmin (Tmax) is the minimum (maximum) processing time in seconds and pmax (pmin) is the corresponding power
consumption of a server in Watts.

App mj Tmin pmax Tmax pmin Qthres W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14
bt.C.16 1 73 339 86 249 2.5 D D D D D
bt.C.25 1 53 402 70 276 4.7 D D
mg.D.16 1 84 380 105 266 2.8 D D D D
sp.C.16 1 54 375 62 267 7.1 D D D D D
ep.D.88 4 40 360 53 237 6.3 D
is.D.32 3 42 249 42 241 5.6 D D D D D D D
bt.C.36 2 38 343 46 249 3.1 D D D D D
bt.D.49 2 551 391 729 250 5.6 D D D D D D D
ep.D.64 3 54 353 70 237 3.9 D D D
sp.D.100 4 343 399 381 264 3.3 D D D D
lu.D.224 8 89 400 119 250 7.6 D D
ep.D.28 1 124 383 175 238 5.9 D D
cg.C.4 1 28 238 28 239 4.0 D D
bt.D.25 1 1022 402 1370 254 3.2 D D D D D
lu.D.28 1 763 429 954 270 5.0 D
mg.D.8 1 141 297 151 258 2.9 D D D D D D D D
sp.D.16 1 1165 355 1302 270 5.5 D D D
is.D.4 1 122 204 123 194 7.3 D D D D
cg.D.16 1 743 326 823 253 7.3 D D D D
ep.D.56 2 64 383 90 238 2.0 D
ft.D.64 3 284 321 313 247 3.1 D D
ft.D.128 6 165 321 179 242 7.7 D D
sp.D.196 8 329 370 352 253 3.7 D
lu.C.28 1 29 413 43 255 6.9 D D
cg.D.128 6 231 336 242 246 4.0 D D D
cg.D.32 3 364 281 390 246 5.5 D D D
ep.D.100 4 36 366 49 238 4.5 D D D D D
is.D.64 4 27 287 28 228 3.1 D D D D
lu.D.112 4 164 405 222 251 4.1 D D D D
mg.D.32 2 49 378 58 266 5.0 D D D D D D D
sp.C.64 3 31 371 32 258 2.2 D

mj is jobsize that represents the number of servers we use
to run a certain application. When running an application,
Tmin (Tmax) is the minimum (maximum) processing time
in seconds and pmax (pmin) is the corresponding power
consumption of a server in Watts. We determine the values
of these parameters by running experiments on our 36-
server cluster. Column Qthres is the QoS threshold defined
in Eq. (6), whose values are randomly generated within 2 to
7.9.

For each workload trace, the applications in the trace
are selected with some randomness while following a trace-
specific rule summarized in Table 3. In addition, 8 appli-
cations are selected in W1∼W5 and W8∼W13. Cases with
less/more types of applications are explored by W6 and
W7. We also assume a 50% data center utilization level
for W1∼W11 and W14. Cases with lower/higher utilization
level are explored by W12 and W13.

We generate a workload trace by generating the job
arrival time of each application to follow a Poisson process
with arrival rate λj . These arrival rates are related to the
data center utilization level η by an approximate equation:

J∑
j=1

λjTj,min = ηN.

Fig. 5: Simplified flow chart illustrating the two baseline
policies. EnergyQARE [5] or Tracking-only policy [4] cor-
responds to the chart with or without the pink region,
respectively.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 9

0

25
Nu

m
be

r
Number of Jobs Submitted

6000

8000

10000

To
ta
l P

ow
er
 (W

) Avg. tracking error: 23.1%P: 8434 Watt R: 3435 Watt Cost: $0.58

Target Power AQA Policy

0

25

Nu
m
be
r

Number of Jobs Waiting in the Queue

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Se
rv
er Job Execution

Fig. 6: Experiments on a real 36-server cluster running workload W4 using our AQA policy.

TABLE 3: Workload trace properties.

Trace Property Note
W1 Mix Applications cover a wide range of size,

processing time, power, and QoS threshold
W2 Single Only contains single-server applications
W3 LargeSize Applications of size 4∼8 servers
W4 ShortTime Applications with Tmin ≤ 120 s
W5 LongTime Applications with 122 s ≤ Tmin ≤ 1022 s
W6 LessType Contains 2 types of applications
W7 MoreType Contains 16 types of applications
W8 LowPower Applications with pmax ≤ 350 W
W9 HighPower Applications with pmax > 350 W
W10 TightQoS Applications with Qthres ≤ 5
W11 SlackQoS Applications with Qthres > 5
W12 Util-25% Average system utilization is 25%
W13 Util-90% Average system utilization is 90%
W14 ExtraTight Top 3 applications with the smallest Qthres

Assuming each application shares the data center utilization
equally, we can derive the arrival rate for type-j jobs as

λj =
ηN

Tj,minJ
. (30)

It deserves mentioning that our assumption of Poisson-
distribution job arrival and normal-distribution ISO signal is
only a special application of our policy for the experimental
evaluation in this work, and our AQA policy can also be
applied for other distributions of job arrivals and ISO signal.

For simulation, we build a simulator following the same
architecture as the one shown in Fig. 4. Our simulator
models simulated servers whose behaviors are close to the
BU-SCC servers in our real-system experiments. When a
simulated server is idle, we assume it consumes 169 W
power, which is the average idle server power in our real
system. When the simulated servers are running an applica-
tion, we assume the power they consume and the time they
take to finish the application follow the power and time
values in Table 2. To be specific, when an application is run
with pmax (or pmin) power, it takes Tmin (or Tmax) time
to finish. If the power cap of running an application is set
to be a value pcap within the range of (pmin, pmax), then
we assume the application finishes in T time in simulation.
Here, T satisfies

Tmax − T
Tmax − Tmin

=
pcap − pmin
pmax − pmin

.

This formula follows a first-order approximation to the
actual power-performance relation.

4.3 Baseline policies
We compare our AQA policy with two baselines proposed
in previous works: the Tracking-only policy [4] and the
EnergyQARE policy [5]. The flow chart in Fig. 5 with or
without the pink region corresponds to the EnergyQARE
or the Tracking-only policy. Obviously, the Tracking-only
policy focuses entirely on tracking the target and it ig-
nores job QoS. EnergyQARE has an additional QoS-aware
block (shown in pink) which is activated whenever the rel-
ative QoS degradation, defined as Qj/Qjthres, is larger than
the relative tracking error, defined as ε/0.3. This QoS-aware
block tries to schedule waiting jobs as more as possible and
the power target constraint is ignored temporarily. To select
parameters P̄ and R in EnergyQARE, we do a grid search
in the valid range of P̄ , R by running simulations, and we
choose the best P̄ , R that minimize QoS degradation and
tracking error. We use the same P̄ , R from EnergyQARE to
run the Tracking-only policy.

5 RESULTS

To conduct real-system experiments, we run each work-
load trace and each policy (AQA, Tracking-only, and
EnergyQARE) for one hour on our cluster. We are not apply-
ing job preemption and standby-job-queue in Sections 5.1-
5.2. Later in Section 5.3, we present the results of AQA pol-
icy with standby jobs. In Section 5.4, we present the results
of AQA policy with job preemption. Section 5.5 presents
comparison between different QoS levels, and Section 5.6
presents results for a 10k-node data center. All results pre-
sented in Sections 5.1-5.3 are from experiments on our real
system. Results in Sections 5.4-5.6 are from simulation.

5.1 A 36-server real-system experiment
Figure 6 shows a typical result for running the AQA policy
on our 36 servers. The workload trace for this experiment is
W4. The green bars show the number of jobs (summed over
all types) submitted to the queues in each time interval. The
red curve represents the target power calculated by Eq. (1)

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 10

0.0 0.1 0.2 0.3 0.4
Tracking Error (=|P_actual-P_target|/R)

0.0

0.2

0.4

0.6

0.8

1.0
Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu

nc
tio

n

Tracking-only
EnergyQARE
AQA

(a) Tracking error.

0 2 4 6 8
QoS Degradation of Job Type: is.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(b) QoS degradation.

Fig. 7: The cumulative distribution functions (CDF) of the
tracking error and QoS degradation of the three policies.

0 5 10 15 20
Iteration

0.10

0.15

0.20

0.25

0.30

W
ei
gh

t

mg.D.16
sp.C.16
is.D.32
ep.D.64

cg.C.4
lu.C.28
is.D.64
mg.D.32

Fig. 8: Weights adjusted by gradient-descent optimization.

from the ISO signal. The blue curve represents the total
power consumption of the 35 client servers. We see clearly
that the real power consumption follows closely with the
target power.

The yellow curve shows the total number of jobs waiting
in the queues. Clearly, this waiting job number is negatively
correlated with the target power. At t = 400 s and 1400 s,
when the target power drops, the number of active servers
needs to be diminished, and consequently, more jobs are
held in the waiting state. The deep grey stripes at the bottom
of Fig. 6 show the period when a server is running a job, and
the vertical displacement of a stripe denotes the server’s
index number.

In this experiment, the estimated electricity cost for
these servers calculated by Eq. (4) is $0.58 when applying
our AQA policy. On the other hand, the electricity cost
for applying the Tracking-only or EnergyQARE policy is
$0.77 or $0.78, 33% higher than AQA (see Appendix C
Fig. 1 for the results of the EnergyQARE policy). Figure 7
compares the cumulative distribution functions (CDFs) of
the tracking-error violation and the QoS violation8 among
the three policies. This proves that our AQA policy provides
more cost reduction than the baselines without violating
tracking and QoS constraints. If not participating in demand
response, the electricity cost can be estimated as ΠP P̄×1h =
$0.84. By comparing the cost when participating in demand
response, $0.58, with the cost when not participating in
demand response, $0.84, we conclude that AQA policy
can reduce electricity cost by 31% while abiding by QoS
constraints.

8. Due to space limits, only one type of job’s QoS degradation is
drawn here, and the other 7 types are shown in Appendix C Fig. 2.

TABLE 4: Experiments with 14 workload traces using the
AQA policy.

Trace Cost Cost Reduction
W1 $0.58 30%
W2 $0.57 37%
W3 $0.68 29%
W4 $0.58 31%
W5 $0.34 56%
W6 $0.64 34%
W7 $0.58 33%
W8 $0.56 29%
W9 $0.58 37%
W10 $0.58 34%
W11 $0.46 46%
W12 $0.46 38%
W13 $0.71 31%
W14 $0.64 33%

The optimal P̄ andR for AQA policy with this workload
are 8434 W and 3435 W, which are selected following the
gradient-descent-based method discussed in Sec. 3.5. Fig-
ure 8 shows how the weights for the 8 types of application
are adjusted through iterations. Although all weights are
similar at initialization, the weight for application is.D.64
increases significantly to 31.3% at the end, meanwhile the
weights for other applications decrease slightly to save
space for is.D.64 as all weights should sum to 1. The ap-
plication is.D.64 needs a much larger weight than others
because of its relatively large size (taking 4 servers), short
processing time (27 s), and relatively strict QoS constraint
(Qthres=3.1).

This capability of fine-tuning the weights for different
applications by gradient-descent optimization is one of the
key advantages of our AQA policy over the EnergyQARE
policy. In EnergyQARE, all applications are treated similarly
in using servers, so the jobs that are easier to violate their
QoS constraint cannot gain higher priority. Our AQA policy,
instead, balances the QoS of all types of applications by op-
timizing the cost function in Eq. (24). Through iterations of
simulation and gradient-descent optimization, any applica-
tion type that suffers from a high QoS violation probability
will be given a higher weight by reducing the weights of
other applications. If the weights of other applications are
already at critical values and cannot be further reduced, P̄
will increase and R will decrease to provide more space in
tuning the weights.

5.2 Results from 14 different workload traces

We experiment with the 14 workload traces listed in Table 3,
and our findings are summarized as follows:

• With workload trace W2, all three policies meet both
the QoS constraints and the tracking constraint.

• With workload traces W6, W8, W10, and W11, AQA
and EnergyQARE can meet all constraints, whereas
the Tracking-only policy violates QoS constraints.

• With workload trace W1, W3∼W5, W7, W9,
W12∼W14, only the AQA policy meets all con-
straints (standby jobs needed for W3, see Sec-
tion 5.3), whereas the Tracking-only policy and the
EnergyQARE policy violate either the QoS con-
straints or the tracking constraint.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 11

0 2 4 6 8
QoS Degradation of Job Type: ep.D.100

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
Di

st
rib

ut
io

n
Fu

nc
tio

n

EnergyQARE
AQA

(a) Application ep.D.100.

0 2 4 6 8
QoS Degradation of Job Type: mg.D.8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

EnergyQARE
AQA

(b) Application mg.D.8.

Fig. 9: The cumulative distribution functions of QoS degra-
dation when running W13 with AQA or EnergyQARE.

In summary, our experiments with the 14 workloads prove
that our proposed AQA policy outperforms EnergyQARE
and Tracking-only as AQA meets QoS and tracking con-
straints in all tested workloads while EnergyQARE and
Tracking-only cannot. The results also prove that Tracking-
only is the worst among the three policies at meeting
QoS objectives as Tracking-only can only meet the QoS
constraints for 1 out of 14 workloads. Although Tracking-
only policy performs well at tracking the regulation signal,
it sacrifices QoS too much.

Table 4 summarizes the cost and cost reduction of AQA
policy in these experiments. Here, the cost with demand
response participation is calculated following Eq. (4), and
the cost without demand response participation is estimated
as ΠP P̄ × 1h. The cost reduction is calculated by comparing
the costs with and without demand response participation.
Our experiment results show that AQA policy reduces the
electricity cost by 29-56%.

The single-server workload mix, W2, performs well in
all evaluated policies. This matches the results of the evalua-
tions in the prior works that proposed the EnergyQARE and
the Tracking-only policies [4], [5]. Intuitively, single-server
jobs are much better than multi-server jobs in regulation
service participation because single-server jobs are easier
for scheduling while larger jobs need to wait until the time
when enough servers are available. In addition, even though
all three policies perform well in trace W2, AQA is better
than the other two as AQA achieves the lowest electricity
cost: $0.57, which is 7% (or 8%) lower than the $0.61 (or
$0.62) from Tracking-only (or EnergyQARE).

It also deserves mentioning the result from workload
trace W13 as it is a good example demonstrating the benefits
of the adaptive optimization of weights in AQA policy. For
this workload trace, AQA can meet both tracking and QoS
constraints. EnergyQARE either fails to meet the tracking
error constraint or fails to meet the QoS constraints of some
applications even after we exhaustively experiment with all
valid pairs of P̄ , R in simulation. Figure 9(a) compares the
cumulative distribution functions of the QoS degradation
of application ep.D.100 in AQA or EnergyQARE9, and
Fig. 9(b) is for application mg.D.8. These figures show
that the AQA policy enables both ep.D.100 and mg.D.8
to meet their QoS constraints. On the other hand, using
EnergyQARE, ep.D.100 fails to meet its QoS constraint

9. In this figure, EnergyQARE runs with a best pair of P̄ , R that has
the lowest QoS degradation while meeting tracking error constraint.

while mg.D.8’s QoS is too good and even better than its
QoS in AQA policy.

A main reason behind this is that mg.D.8 runs on 1
server but ep.D.100 takes 4 server, so mg.D.8 is easier
to be scheduled due to its small size, resulting in its low
QoS degradation in EnergyQARE. However, the failure of
ep.D.100 to meet its QoS constraints in EnergyQARE
proves that we need a mechanism to give different pri-
orities to these two applications so that we can sacrifice
the performance of mg.D.8 to improve the performance of
ep.D.100. Therefore, the reason why AQA enables both
applications to meet their constraints is the adaptive opti-
mization of weights. In fact, the gradient-descent-based op-
timization in AQA results in a 38.8% weight for ep.D.100
and a 4.2% weight for mg.D.8.

To verify that our policy can be applied to QoS con-
straint values other than the specific Qthres values shown
in Table 2, we also conduct simulations for 10 times with
randomized selection ofQthres values within the range from
2 to 7.9. In all cases, we find that our optimization method is
able to find weights and bidding parameters that guarantee
all jobs to meet their QoS constraints while participating in
demand response.

5.3 AQA with standby jobs
As discussed in Section 3.6, we suggest a standby job queue
to solve the potential problem caused by lack of submitted
jobs. In case that regular jobs are large in size, standby jobs
also help improve the power tracking performance if their
sizes are smaller.

In our experiments with workload trace W3 where each
regular job takes 4 to 8 servers (which is considered “large”
as they already occupy 11% to 22% of our cluster), applying
our AQA policy without standby jobs results in violation of
tracking error (see Fig. 10(a)) because large jobs are much
less flexible in scheduling. The average tracking error here
is 30.1%. On the other hand, with standby jobs of one server
in size, Fig. 10(b) shows better tracking performance where
the average tracking error is 14.7%. The standby jobs will
start whenever there are insufficient jobs. As a result, AQA
with standby jobs smooths the power consumption curve
and enables the power consumption to match the target at
t = 2700, instead of leaving a 3000 W gap at t = 2700 in
Fig. 10(a) due to the lack of waiting jobs.

5.4 AQA with job preemption
We evaluate job preemption in simulation using workload
trace W5, where applications have relatively long execution
time ranging from 122 s to 1022 s. Figure 11 compares the
results of the AQA policy with or without job preemption.
The same P̄ , R, and weights are used. The green regions
in Fig. 11(b) represent the time where a job is preempted
to reduce power and resumed later. As a result, the total
power consumption at t = 400, t = 1400, t = 1800, etc.
in job preemption case is lower than the case without job
preemption, enabling AQA with job preemption to achieve a
lower average tracking error of 6.2%, in comparison with the
9.5% tracking error from AQA without job preemption. Both
cases in Fig. 11 meet the tracking error constraint (according
to their CDFs curves, not shown here), so the real benefit

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 12

5000

7500

10000

12500
To

ta
l P

ow
er
 (W

) Avg. tracking error: 30.1%P: 9135 Watt R: 3955 Watt Cost: $0.64

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 35000

20

Nu
m

be
r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(a) AQA policy without standby jobs.

5000

7500

10000

12500

To
ta
l P
ow

er
 (W

) Avg. tracking error: 14.7%P: 9607 Watt R: 3247 Watt Cost: $0.68

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 35000

20

Nu
m
be

r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(b) AQA policy with standby jobs.

Fig. 10: Experiments on a real 36-server cluster running workload trace W3 using our AQA policy.

2500

5000

7500

10000

12500

To
ta

l P
ow

er
 (W

) Avg. tracking error: 9.5%P: 7759 Watt R: 5127 Watt Cost: $0.31

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Se
rv
er Job Execution

(a) AQA policy without job preemption.

2500

5000

7500

10000

12500

To
ta
l P

ow
er
 (W

) Avg. tracking error: 6.2%P: 7759 Watt R: 5127 Watt Cost: $0.30

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Se
rv
er Job Execution

Job Preemption

(b) AQA policy with job preemption.

Fig. 11: Evaluating AQA policy with/without job preemption by simulation using workload trace W5.

of job preemption here is a slight decrease of electricity cost
from $0.31 to $0.30. However, if using some workload traces
that have application execution time even longer than the
ones in W5, we find that AQA without job preemption may
not be able to meet the tracking error constraint. In those
cases, job preemption becomes necessary.

5.5 Comparison of different QoS constraint levels

To evaluate the impact of different QoS constraint levels
on our policy, we conduct simulations with a workload
when applications’ QoS constraints are changed from tight
to loose. Starting from the QoS constraints shown in Ta-
ble 2 column Qthres (we call them as in a ”medium” QoS

0 2 4 6 8
QoS Degradation of Job Type: is.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

EnergyQARE
AQA

(a) Medium QoS level.

0 2 4 6 8
QoS Degradation of Job Type: is.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

EnergyQARE
AQA

(b) Tight QoS level.

Fig. 12: Comparing results from workload W4 with either a
medium or a tight QoS constraint level.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 13

0

20
Nu

m
be

r

Number of Jobs Submitted

2000000

2500000

3000000

To
ta
l P

ow
er
 (W

) Avg. tracking error: 20.6%P: 2538113 Watt R: 798553 Watt Cost: $190.37

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0

50

Nu
m
be
r

Number of Jobs Waiting in the Queue

Fig. 13: Evaluating AQA policy by simulating a 10k-node data center with a job-size-scaled version of W1 workload.

constraint level), we tighten the QoS constraints of the
applications by decreasing the Qthres of each application by
half, and we loosen the QoS constraints of the applications
by doubling the Qthres of each application. These simula-
tions do not apply a standby job queue or job preemption.
Figure 12 compares the simulation results of workload W4
with either a medium or a tight QoS constraint level. As
we can see, when the QoS constraint levels change from
medium in Fig. 12(a) to tight in Fig. 12(b), both our AQA
policy and the EnergyQARE policy improve the QoS of
this application, and our policy enables the application to
meet the QoS constraint while EnergyQARE policy does not.
We only show the QoS degradation curve of application
is.D.64 due to the space limit, but the results for other
applications have similar behaviors as this one. Therefore,
we conclude that our AQA policy has the opportunity to
meet either a loose or a tight QoS constraint assuming there
is a valid solution that can be achieved by selecting the
appropriate values for the weights and bidding parameters.

5.6 Scalability to large data centers

To evaluate the scalability of our policy when applied to
large data centers, we conduct simulation studies with a
data center composed of ten thousand servers. Figure 13
shows the simulation results of running a job-size-scaled
version of workload W1 for one hour. Here, the workload is
composed of the same types of applications in Table 2 (W1)
but the number of nodes used by each application is scaled
up by 100x (e.g., application is.D.32 takes 300 nodes
instead of 3 nodes), and the job arrival rates are also adjusted
following Eq. (30) to match an assumed 50% utilization level
of this large data center. As shown in Fig. 13, our policy
works well for a large data center with 10k-node and enables
the actual power to follow the target power closely. We also
check the QoS degradation of the applications, and they all
meet their QoS constraints. The electricity cost with demand
response participation in this experiment is $190.4 accord-
ing to Eq. (4). Without demand response participation, the
electricity cost for running these jobs can be estimated as
ΠP P̄ × 1h = $253.8. Therefore, the cost reduction for this
experiment is 25%. If the data center has similar power
consumption and cost reduction throughout the year, then
it can save $555,822 (= 253.8× 25%× 24× 365) per year by
participation in demand response with our policy.

6 RELATED WORK

The problem of improving efficiency for data centers has
received considerable attentions. According to a recent sur-
vey [23], several major HPC centers around the world are
employing or are exploring energy-aware resource manage-
ment strategies. It has been reported that these HPC centers
are integrating job schedulers with power grid informa-
tion, developing power-adaptive scheduling in SLURM, de-
tecting power-hungry applications at runtime, or building
power-capping infrastructures [23].

In recent years, there have been significant advances
on integrating data centers and HPC systems with power
markets. To enable data centers to participate in power mar-
kets, various power programs including peak shaving [13],
dynamic energy pricing [14], and emergency load reduc-
tion [15], [16] have been explored. Different kinds of policies
have been proposed for data centers to participate in fre-
quency control, regulation service, or operating reserves [4],
[5], [24], [25], [26], [27]. The impact of power limitation on
the performance of data centers is also important. Using a
model inspired by a real HPC system, Borghesi et al. [28]
showed that it is possible to apply frequency scaling to save
energy without penalizing users. Another recent trend is
exploring the coordination of multiple data centers together
in power markets. Some strategies are proposed to enable
multiple data centers to collaborate in power markets and
mitigate workload uncertainty [29], [30].

In conjunction with these efforts, there has been a
growing interest for data centers to participate in demand
response. Prior works have explored strategies for data
centers to participate in demand response by joint man-
agement of IT workloads with cooling facilities [25], [31],
[32], renewable energy sources [33], [34], energy storage
devices [34], [35], or electric vehicles [36]. It has also been
shown that without renewable energy sources or energy
storage devices, computing servers are capable of adjusting
power consumption to meet the power target in demand
response. Chen et al. [4] developed a heuristic power reg-
ulation policy for data centers to participate in regulation
service though job scheduling, processor power capping,
and server state transition. Chen et al. [5] also designed a
QoS-aware policy for data centers to meet regulation service
requirement while considering jobs’ QoS. The evaluation of
data center integration with power market is usually done

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 14

in simulation. Recently, a few works (including our previous
work [9]) evaluated policies on small-scale real systems [9],
[37].

In addition to works from the perspective of data centers,
there are also works from the perspective of power mar-
kets. Clausen et al. presented a qualitative study of service
contracts between electricity service providers and data
centers in the United States and Europe [38]. Novel incentive
mechanisms have been proposed to motivate power grids
and data centers to participate in demand response [39],
[40], [41]. For geo-distributed colocation data centers, Sun
et al. proposed an online auction mechanism for emergency
demand response to motivate data centers to shuffle work-
load across multiple sites [42].

7 CONCLUSION

Data centers are large power consumers, but the flexibility of
job scheduling and the capability of server power capping
enable them to regulate their total power consumption at
a short time-scale. The data centers’ capability to signifi-
cantly regulate their power renders them particularly good
candidates for demand response programs, especially the
regulation service where the participant needs to follow a
target power that changes every few seconds. Prior works
developed policies that enable data centers to participate in
regulation service but without providing assurances on the
QoS of computing jobs [4], [5]. To fill this gap, in this work,
we propose an Adaptive policy with QoS Assurance (AQA)
that provides service QoS guarantees based on queueing
theoretic results. We implemented and evaluated our policy
on a real cluster composed of 36 enterprise-level servers by
running a broad set of workload traces. We demonstrated
that our AQA policy meets both tracking error constraints
and job QoS constraints, outperforming two earlier policies
which cannot meet the constraints in some cases.

Potential future directions can focus on relaxing the
assumptions we use. First, because our policy assumes the
knowledge of the distributions of job arrival processes, it
will be interesting to explore what happens if the distribu-
tions deviate from the assumed models. If there are periodic
trends or other predictable features in job arrival patterns,
a predictor could be added to improve the performance in
that case. Second, since our policy assumes the knowledge
of jobs’ expected execution time and power usage, it will be
useful if this need for accurate knowledge can be replaced
by some strategies that only need approximate knowledge.

ACKNOWLEDGMENTS

The authors would like to thank Michael Dugan from
Boston University Research Computing Services group and
Naved Ansari from Massachusetts Open Cloud for their
help in reserving servers for our experiments. Research was
partially supported by the NSF under grants IIS-1914792,
DMS-1664644, and CNS-1645681, by the NIH under grant
R01 GM135930, by the ONR under grant N00014-19-1-2571,
and by the Boston University College of Engineering under
the Dean’s Catalyst Award.

REFERENCES

[1] A. Shehabi, S. Smith, N. Horner, I. Azevedo, R. Brown, J. Koomey,
E. Masanet, D. Sartor, M. Herrlin, and W. Lintner, “United states
data center energy usage report,” Lawrence Berkeley National Labo-
ratory, Berkeley, California. LBNL-1005775 Page, vol. 4, 2016.

[2] TOP500. (2019) The top 500 list. [Online]. Available:
https://www.top500.org/lists/2019/11/

[3] New York Independent System Operator (NYISO), “Ancillary
services manual, v6.0,” NYISO, Manual, May 2020. [Online].
Available: https://www.nyiso.com/manuals-tech-bulletins-user-
guides

[4] H. Chen, M. C. Caramanis, and A. K. Coskun, “The data center
as a grid load stabilizer,” Proceedings of the Asia and South Pacific
Design Automation Conference, ASP-DAC, no. i, pp. 105–112, 2014.

[5] H. Chen, Y. Zhang, M. C. Caramanis, and A. K. Coskun,
“Energyqare: Qos-aware data center participation in smart grid
regulation service reserve provision,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 4, no. 1, pp. 2:1–2:31, Jan. 2019.

[6] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The
single-node case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–
357, Jun. 1993.

[7] I. C. Paschalidis, “Class-specific quality of service guarantees in
multimedia communication networks,” Automatica, vol. 35, no. 12,
pp. 1951 – 1968, 1999.

[8] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis, “Large de-
viations analysis of the generalized processor sharing policy,”
Queueing Systems, vol. 32, no. 4, pp. 319–349, Nov 1999.

[9] Y. Zhang, I. C. Paschalidis, and A. K. Coskun, “Data center par-
ticipation in demand response programs with quality-of-service
guarantees,” in Proceedings of the Tenth ACM International Confer-
ence on Future Energy Systems, ser. e-Energy ’19, 2019, p. 285–302.

[10] C. Bohringer, A. Loschel, U. Moslener, and T. F. Rutherford, “Eu
climate policy up to 2020: An economic impact assessment,”
Energy Economics, vol. 31, Supplement 2, pp. S295 – S305, 2009.

[11] EIA, “Annual energy outlook 2014,”
http://www.eia.gov/forecasts/aeo, 2014.

[12] C. Novoa and T. Jin, “Reliability centered planning for distributed
generation considering wind power volatility,” Electric Power Sys-
tems Research, vol. 81, no. 8, pp. 1654 – 1661, 2011.

[13] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, “Benefits
and limitations of tapping into stored energy for datacenters,”
in Proceedings of the 38th International Symposium on Computer
Architecture (ISCA). New York, NY, USA: ACM, 2011, pp. 341–352.

[14] T. N. Le, Z. Liu, Y. Chen, and C. Bash, “Joint capacity planning and
operational management for sustainable data centers and demand
response,” in Proceedings of the 7th International Conference on Future
Energy Systems, ser. e-Energy ’16, 2016, pp. 16:1–16:12.

[15] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mecha-
nism for emergency demand response in colocation data centers,”
in 2015 IEEE Conference on Computer Communications (INFOCOM),
April 2015, pp. 2632–2640.

[16] N. H. Tran, C. Pham, S. Ren, Z. Han, and C. S. Hong, “Coordi-
nated power reduction in multi-tenant colocation datacenter: An
emergency demand response study,” in ICC, May 2016, pp. 1–6.

[17] National Energy Research Scientific Computing Cen-
ter (NERSC). (2020) NERSC Queue Policy. [Online]. Available:
https://docs.nersc.gov/jobs/policy/

[18] Amazon. (2020) Amazon ec2 spot instances. [Online]. Available:
https://aws.amazon.com/ec2/spot

[19] B. Chapman et al., “Rabbitmq,” https://github.com/rabbitmq,
2018.

[20] D. Melo and A. Carvalho, “The new linux perf tools,” in Slides
from Linux Kongress, vol. 18, 2010.

[21] D. Laurie et al., “An open-source tool for controlling ipmi-enabled
systems,” https://github.com/ipmitool/ipmitool, 2018.

[22] D. H. Bailey, E. Barszcz, J. T. Barton et al., “The nas parallel
benchmarks,” Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, pp. 158–165, 1991.

[23] M. Maiterth, G. Koenig, K. Pedretti, S. Jana, N. Bates, A. Borghesi,
D. Montoya, A. Bartolini, and M. Puzovic, “Energy and power
aware job scheduling and resource management: Global survey —
initial analysis,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), May 2018, pp. 685–693.

[24] W. Wang, A. Abdolrashidi, N. Yu, and D. Wong, “Frequency
regulation service provision in data center with computational
flexibility,” Applied Energy, vol. 251, p. 113304, 2019.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 15

[25] T. Cioara, I. Anghel, M. Bertoncini, I. Salomie, D. Arnone, M. Mam-
mina, T. Velivassaki, and M. Antal, “Optimized flexibility man-
agement enacting data centres participation in smart demand
response programs,” Future Generation Computer Systems, vol. 78,
pp. 330 – 342, 2018.

[26] B. Aksanli and T. Rosing, “Providing regulation services and man-
aging data center peak power budgets,” in 2014 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2014, pp. 1–4.

[27] K. Ahmed, J. Liu, and X. Wu, “An energy efficient demand-
response model for high performance computing systems,” in
2017 IEEE 25th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
Sep. 2017, pp. 175–186.

[28] A. Borghesi, A. Bartolini, M. Milano, and L. Benini, “Pricing
schemes for energy-efficient hpc systems: Design and explo-
ration,” The International Journal of High Performance Computing
Applications, vol. 33, no. 4, pp. 716–734, 2019.

[29] Z. Yu, Y. Guo, and M. Pan, “Coalitional datacenter energy cost
optimization in electricity markets,” in Proceedings of the Eighth
International Conference on Future Energy Systems, ser. e-Energy ’17.
New York, NY, USA: ACM, 2017, pp. 191–202.

[30] L. Niu and Y. Guo, “Enabling reliable data center demand re-
sponse via aggregation,” in Proceedings of the Seventh International
Conference on Future Energy Systems, ser. e-Energy ’16. New York,
NY, USA: ACM, 2016, pp. 22:1–22:11.

[31] L. Cupelli, T. Schütz, P. Jahangiri, M. Fuchs, A. Monti, and
D. Müller, “Data center control strategy for participation in de-
mand response programs,” IEEE Transactions on Industrial Infor-
matics, vol. 14, no. 11, pp. 5087–5099, Nov 2018.

[32] Z. Chen, L. Wu, and Z. Li, “Electric demand response management
for distributed large-scale internet data centers,” IEEE Transactions
on Smart Grid, vol. 5, no. 2, pp. 651–661, 2014.

[33] T. N. Le, Z. Liu, Y. Chen, and C. Bash, “Joint capacity planning and
operational management for sustainable data centers and demand
response,” in Proceedings of the Seventh International Conference on
Future Energy Systems, ser. e-Energy ’16. New York, NY, USA:
ACM, 2016, pp. 16:1–16:12.

[34] A. Pahlevan, M. Zapater, A. Coskun, and D. Atienza, “Ecogreen:
Electricity cost optimization for green datacenters in emerging
power markets,” IEEE Transactions on Sustainable Computing, pp.
1–1, 2020.

[35] Y. Shi, B. Xu, B. Zhang, and D. Wang, “Leveraging energy storage
to optimize data center electricity cost in emerging power mar-
kets,” in Proceedings of the Seventh International Conference on Future
Energy Systems, ser. e-Energy ’16. New York, NY, USA: ACM,
2016, pp. 18:1–18:13.

[36] S. Li, M. Brocanelli, W. Zhang, and X. Wang, “Integrated power
management of data centers and electric vehicles for energy and
regulation market participation,” IEEE Transactions on Smart Grid,
vol. 5, no. 5, pp. 2283–2294, 2014.

[37] J. McClurg, R. Mudumbai, and J. Hall, “Fast demand response
with datacenter loads,” in 2016 IEEE Power Energy Society Innova-
tive Smart Grid Technologies Conference (ISGT), Sep. 2016, pp. 1–5.

[38] A. Clausen, G. Koenig, S. Klingert, G. Ghatikar, P. M. Schwartz,
and N. Bates, “An analysis of contracts and relationships between
supercomputing centers and electricity service providers,” in Pro-
ceedings of the 48th International Conference on Parallel Processing:
Workshops, ser. ICPP 2019, 2019, pp. 4:1–4:8.

[39] I. C. Paschalidis, B. Li, and M. C. Caramanis, “Demand-side
management for regulation service provisioning through internal
pricing,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp.
1531–1539, 2012.

[40] Z. Zhou, F. Liu, S. Chen, and Z. Li, “A truthful and efficient
incentive mechanism for demand response in green datacenters,”
IEEE Transactions on Parallel and Distributed Systems, pp. 1–1, 2018.

[41] Y. Wang, F. Zhang, C. Chi, S. Ren, F. Liu, R. Wang, and Z. Liu,
“A market-oriented incentive mechanism for emergency demand
response in colocation data centers,” Sustainable Computing: Infor-
matics and Systems, vol. 22, pp. 13 – 25, 2019.

[42] Q. Sun, S. Ren, C. Wu, and Z. Li, “An online incentive mechanism
for emergency demand response in geo-distributed colocation
data centers,” in Proceedings of the Seventh International Conference
on Future Energy Systems, ser. e-Energy ’16. New York, NY, USA:
ACM, 2016, pp. 3:1–3:13.

Yijia Zhang received the BS degree from the
Department of Physics, Peking University, Bei-
jing, China. He is working toward the PhD de-
gree in the Department of Electrical and Com-
puter Engineering, Boston University. His re-
search interests include high performance com-
puting, computer system optimization, and ma-
chine learning.

Daniel Curtis Wilson Daniel Curtis Wilson re-
ceived the BS degrees in Computer Science and
Computer Engineering from NC State University,
Raleigh, North Carolina. He is working toward
the PhD degree in Computer Engineering at
Boston University. Prior to his current studies,
Daniel worked at NetApp and Itron. He worked
as an intern at Intel while pursuing his PhD. His
current research interests include energy-aware
computing and systemwide optimization.

Ioannis Ch. Paschalidis (M’96–SM’06–F’14)
received the Diploma in ECE from the National
Technical University of Athens, Athens, Greece,
in 1991, and the M.S. and Ph.D. degrees, both in
EECS, from the Massachusetts Institute of Tech-
nology (MIT), Cambridge, MA, USA, in 1993 and
1996, respectively.

In September 1996 he joined Boston Univer-
sity where he has been ever since. He is a
Professor and Data Science Fellow at Boston
University with appointments in the Department

of Electrical and Computer Engineering, the Division of Systems En-
gineering, the Department of Biomedical Engineering, and the Faculty
of Computing & Data Sciences. He is the Director of the Center for
Information and Systems Engineering (CISE). He has held visiting
appointments with MIT and Columbia University, New York, NY, USA.
His current research interests lie in the fields of systems and control,
networks, applied probability, optimization, operations research, compu-
tational biology, and medical informatics.

Dr. Paschalidis is a recipient of the NSF CAREER award (2000),
several best paper and best algorithmic performance awards, and a
2014 IBM/IEEE Smarter Planet Challenge Award. He was an invited
participant at the 2002 Frontiers of Engineering Symposium, organized
by the U.S. National Academy of Engineering and the 2014 U.S. National
Academies Keck Futures Initiative (NAFKI) Conference. From 2013 to
2019 he was the founding Editor-in-Chief of the IEEE Transactions on
Control of Network Systems.

Ayse K. Coskun received the MS and PhD
degrees in Computer Science and Engineering
from the University of California, San Diego. She
is a Professor with the Department of Electrical
and Computer Engineering, Boston University
(BU). She was with Sun Microsystems (now Or-
acle), San Diego, prior to her current position
at BU. Her research interests include energy-
efficient computing, computer architecture, em-
bedded systems, and management and opti-
mization of large-scale computing systems. She

serves as an associate editor of IEEE Transactions on CAD and IEEE
Transactions on Computers.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 16

APPENDIX A
DERIVATION OF EQ. (9)

We derive Eq. (9) using Theorem 7 in Ref. [7] and Theorem
7.2 in Ref. [8].

Theorem 7 in Ref. [7] proves that, in a two-class system
under the GPS policy, as m −→ ∞, the delay tail probability
can be approximated by

Prob[Dj ≥ m] ≈ αje−mθ
∗
j , (j = 1, 2).

Eq. (28) in Ref. [7] provides

θ∗1 = sup
θ≥0, ΛGPS,1(θ)<0

[ΛA1(θ)− ΛGPS,1(θ)] ,

where ΛGPS,1 is defined by

ΛGPS,1 = max
[
ΛI
GPS,1(θ),ΛII

GPS,1(θ)
]
,

and ΛI
GPS,1(θ), ΛII

GPS,1(θ) are defined in Eqs. (22)(23) in
Ref. [7]. Because ΛI

GPS,1(θ) corresponds to the case where
the second queue is empty and the effective bandwidth
of the first queue is larger than w1B(t), we neglect this
case following our decoupling assumption. This implies
ΛGPS,1 = ΛII

GPS,1(θ), and

θ∗1 = sup
θ≥0, ΛGPS,1(θ)<0

[
ΛA1(θ)− ΛII

GPS,1(θ)
]
. (31)

In the proof of Theorem 7.2 in Ref. [8], ΛII
GPS,1(θ) is given

by

ΛII
GPS,1(θ) = sup

a
sup

x1−w1x3=a
x2≥w2x3

[θa− Λ∗A1(x1)

− Λ∗A2(x2)− Λ∗B(x3)],

where Λ∗(·) is the Legendre transform of Λ(·), defined by

Λ∗(a) = sup
θ

(θa− Λ(θ)) .

Λ(·) denotes the log-moment generating functions, and
x1(t), x2(t), x3(t) are the empirical rates of the random
process A1, A2, B, respectively. Because of the decoupling
assumption, the influence of the process A2 can be removed
from Eq. (32). Consequently, we obtain

ΛII
GPS,1(θ) = sup

a
sup

x1−w1x3=a
[θa− Λ∗A1(x1)− Λ∗B(x3)]

= sup
x1

sup
x3

[θx1 − θw1x3 − Λ∗A1(x1)− Λ∗B(x3)]

= sup
x1

[θx1 − Λ∗A1(x1) + ΛB(−θw1)]

= ΛA1(θ) + ΛB(−θw1). (32)

Combining Eq. (31) and Eq. (32), we conclude at

θ∗1 = sup
θ≥0, ΛGPS,1(θ)<0

−ΛB(−θw1). (33)

For a multi-queue system, because of our decoupling as-
sumption, Eq. (33) holds for the first queue. Because all
queues are equivalent to each other, we can directly gen-
eralize Eq. (33) by symmetry, and arriving at Eq. (9).

APPENDIX B
CALCULATING THE DERIVATIVES IN EQ. (24)
We show the derivation of ∂C

∂P̄
. The other derivatives includ-

ing ∂C
∂R and ∂C

∂wj
can be derived similarly.

Starting with Eq. (24), we have

∂C

∂P̄
= ΠPH + ΠεH +

β
∑
j

(
eρ(Prob[Qj−Qjthres]−δ

j)

1 + eρ(Prob[Qj−Qjthres]−δj)
×

ρ
∂

∂P̄
Prob[Qj −Qjthres]

)
. (34)

Using Eq. (18), we obtain

∂

∂P̄
Prob[Qj −Qjthres] = αje

−Djmaxθ
∗
j (−Dj

max)
∂θ∗j
∂P̄

. (35)

To calculate the derivatives of θ∗j , we first calculate θ∗j by
plugging Eq. (23) into Eq. (9), which yields

sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) (36)

= sup
θ≥0, ΛGPS,j(θ)<0

−nµ(−θwj)−
1

2
n2
σ(−θwj)2

= sup
θ≥0, ΛGPS,j(θ)<0

−1

2
n2
σw

2
j

(
θ − nµ

n2
σwj

)2

+
n2
µ

2n2
σ

.(37)

Here, whether the maximum point
n2
µ

2n2
σ

of the above
quadratic function can be reached depends on whether
θ =

nµ
n2
σwj

meets the conditions θ ≥ 0, ΛGPS,j(θ) < 0.
To evaluate these conditions, we plug Eqs. (20)(23) into

Eq. (10) and obtain

ΛGPS,j(θ) = λj(e
θmjTj − 1)− nµθwj +

1

2
n2
σθ

2w2
j .

As the second-order derivative Λ′′GPS,j(θ) is always posi-
tive, the function ΛGPS,j(θ) is convex. Since 0 is a root of
ΛGPS,j(θ), the other root will be positive if and only if

Λ′GPS,j(θ)
∣∣
θ=0

< 0 (38)

⇔ wj >
λjmjTj
nµ

(39)

⇔ nµwj > λjmjTj . (40)

Equation (40) is actually the requirement that the average
computing service provided to the j-th queue should be
larger than the average amount of work submitted to this
queue. Thus, we can safely assume Eq. (40) is satisfied, oth-
erwise the queue length will diverge and the QoS constraint
will be violated. Therefore, there exists a positive root for
ΛGPS,j(θ), and whether θ =

nµ
n2
σwj

meets the conditions
ΛGPS,j(θ) < 0 can be converted to

ΛGPS,j

(
nµ
n2
σwj

)
< 0

⇔ λj(e
nµmjTj

n2
σwj − 1) <

n2
µ

2n2
σ

⇔ wj >
nµmjTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) . (41)

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 17

In the following, we separately discuss the two cases de-
pending on whether Eq. (41) is satisfied or not.

Case I: If Eq. (41) holds, from Eq. (37) we get

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) =
n2
µ

2n2
σ

. (42)

From Eq. (21), we get

∂nµ
∂P̄

=
1(∑J

j=1 wjpj

)
− pidle

. (43)

To summarize, in Case I, combining Eqs. (34)(35)(42)(43)
provides us the derivative ∂C

∂P̄
we need.

Case II: If Eq. (41) does not hold, i.e.,

wj ≤
nµmjTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) (44)

assuming Θj is the positive root of ΛGPS,j(θ), i.e.

ΛGPS,j(Θj) = ΛAj (Θj) + ΛB(−Θjwj) = 0 (45)

then the supremum in Eq. (36) is achieved at Θj , i.e.,

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj)

= −ΛB(−Θjwj)

= ΛAj (Θj)

= λj(e
ΘjmjTj − 1).

Then, we have

∂θ∗j
∂P̄

= λje
ΘjmjTjmjTj

∂Θj

∂P̄
. (46)

To calculate ∂Θj
∂P̄

, we take derivative ∂
∂P̄

on both sides of
Eq. (45), and after re-arrangement, we get

∂Θj

∂P̄
=

∂nµ
∂P̄

Θjwj − nσ ∂nσ∂P̄
Θ2
jw

2
j

λjeΘjmjTjmjTj − nµwj + n2
σΘjw2

j

. (47)

From Eq. (22), we have

∂nσ
∂P̄

= 0. (48)

To summarize, in Case II, combining Eqs. (34)(35)(43)(45-48)
provides us the derivative ∂C

∂P̄
we need.

APPENDIX C
ADDITIONAL FIGURES

Figure 14 show the results of applying EnergyQARE policy
with workload W4 on our cluster. Figure 15 compares the
cumulative distribution function of three policies, Tracking-
only, EnergyQARE, and AQA.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 00, NO. 0, AUGUST 2020 18

Fig. 14: Experiments on a real 36-server cluster running workload W4 using the EnergyQARE policy.

0 2 4 6 8
QoS Degradation of Job Type: mg.D.16

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(a) mg.D.16

0 2 4 6 8
QoS Degradation of Job Type: sp.C.16

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(b) sp.C.16

0 2 4 6 8
QoS Degradation of Job Type: is.D.32

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(c) is.D.32

0 2 4 6 8
QoS Degradation of Job Type: ep.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(d) ep.D.64

0 2 4 6 8
QoS Degradation of Job Type: cg.C.4

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(e) cg.C.4

0 2 4 6 8
QoS Degradation of Job Type: lu.C.28

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(f) lu.C.28

0 2 4 6 8
QoS Degradation of Job Type: is.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(g) is.D.64

0 2 4 6 8
QoS Degradation of Job Type: mg.D.32

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(h) mg.D.32

Fig. 15: The cumulative distribution functions (CDF) of all 8 applications’ QoS degradation when running workload W4 in
real-system experiments with three different policies. Both the EnergyQARE and the Tracking-only policies cannot meet the
QoS constraints of application is.D.64, as shown in (g). On the other hand, our AQA policy can meet that application’s
QoS constraint by giving it a large weight as shown in Fig. 8. In these CDF curves, the solid vertical line shows where the
curves reach 100%.

