
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2018

Improving efficiency and resilience
in large-scale computing systems
through analytics and data-driven
management

https://hdl.handle.net/2144/30732
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

IMPROVING EFFICIENCY AND RESILIENCE IN

LARGE-SCALE COMPUTING SYSTEMS THROUGH

ANALYTICS AND DATA-DRIVEN MANAGEMENT

by

OZAN TUNCER

B.S., Middle East Technical University, 2012

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2018

c© 2018 by
OZAN TUNCER
All rights reserved

Approved by

First Reader

Ayse K. Coskun, Ph.D.
Associate Professor of Electrical and Computer Engineering

Second Reader

Manuel Egele, Ph.D.
Assistant Professor of Electrical and Computer Engineering

Third Reader

Orran Krieger, Ph.D.
Professor of the Practice of Electrical and Computer Engineering

Fourth Reader

Vitus J. Leung, Ph.D.
Principal Member of Technical Staff
Sandia National Laboratories

Fifth Reader

Nilton Bila, Ph.D.
Research Staff Member
IBM T.J. Watson Research Center

Research is what I’m doing when I don’t know what I’m doing.

Wernher von Braun

iv

Acknowledgments

First, I would like to thank my advisor, Professor Ayse K. Coskun, for her invaluable

support and constant encouragement throughout my Ph.D. studies. I appreciate all

her contributions, time, and ideas that have made my PhD experience productive.

In addition to my advisor, I am also grateful to Professor Manuel Egele and

Professor Orran Krieger for their valuable advice and feedback on my research. I

would like to thank Dr. Vitus Leung for his inspirational guidance and for the summer

internship opportunity at Sandia National Laboratories. I would also like to thank

Dr. Nilton Bila and Dr. Canturk Isci for their invaluable advice and support on my

research and during my internship at IBM T. J. Watson Research Center.

I am grateful to our collaborators and co-authors: Emre Ates, Yijia Zhang, and

Dr. Ata Turk at Boston University, Jim Brandt at Sandia National Laboratories, Dr.

Sastry Duri at IBM Research, Dr. Marina Zapater at EPFL, Prof. José Ayala at

Complutense University of Madrid, Prof. José Moya at Universidad Politécnica de

Madrid, Dr. Kalyan Vaidyanathan at BAE Systems, and Dr. Kenny Gross at Oracle

Corp. for their productive collaboration and all the stimulating discussions.

I thank my fellow lab mates and friends for their encouragement and support

which greatly helped me to overcome the struggles of the Ph.D. life. I would like to

especially acknowledge Dr. Fulya Kaplan, Dr. Tiansheng Zhang, Tolga Bolukbasi,

Onur Sahin, Emre Ates, Onur Zungur, Cali Stephens, and Laura Cunningham.

Finally, I would like to give special thanks to my family for their encouragement,

understanding, and unconditional support.

The research that forms the basis of this dissertation has been partially funded by

Sandia National Laboratories, by IBM T. J. Watson Research Center, and by Oracle

Corp.

The contents of Chapter 3 are in part reprints of the material from the paper Ozan

v

Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J. Leung, Manuel

Egele, Ayse K. Coskun, “Diagnosing Performance Variations in HPC Applications

Using Machine Learning”, in Proceedings of the International Supercomputing Con-

ference (ISC-HPC).

Chapter 4 contains reprints of the material from the papers Ozan Tuncer, Kalyan

Vaidyanathan, Kenny Gross, and Ayse K. Coskun, “CoolBudget: Data Center Power

Budgeting with Workload and Cooling Asymmetry Awareness”, in IEEE Interna-

tional Conference on Computer Design (ICCD), 2014; Ozan Tuncer, Vitus J. Leung,

and Ayse K. Coskun, “PaCMap: Topology Mapping of Unstructured Communication

Patterns onto Non-contiguous Allocations”, in Proceedings of the ACM on Interna-

tional Conference on Supercomputing (ICS), 2015; Marina Zapater, Ozan Tuncer, José

L. Ayala, José M. Moya, Kalyan Vaidyanathan, Kenny Gross, and Ayse K. Coskun,

“Leakage-Aware Cooling Management for Improving Server Energy Efficiency”, in

IEEE Transactions on Parallel and Distributed Systems (TPDS), 2015; and Ozan

Tuncer, Yijia Zhang, Vitus J. Leung, Ayse K. Coskun, “Task Mapping on a Drag-

onfly Supercomputer”, in IEEE High Performance Extreme Computing Conference

(HPEC), 2017.

vi

IMPROVING EFFICIENCY AND RESILIENCE IN

LARGE-SCALE COMPUTING SYSTEMS THROUGH

ANALYTICS AND DATA-DRIVEN MANAGEMENT

OZAN TUNCER

Boston University, College of Engineering, 2018

Major Professor: Ayse K. Coskun, Ph.D.
Associate Professor of Electrical and Computer
Engineering

ABSTRACT

Applications running in large-scale computing systems such as high performance com-

puting (HPC) or cloud data centers are essential to many aspects of modern society,

from weather forecasting to financial services. As the number and size of data cen-

ters increase with the growing computing demand, scalable and efficient management

becomes crucial. However, data center management is a challenging task due to the

complex interactions between applications, middleware, and hardware layers such as

processors, network, and cooling units.

This thesis claims that to improve robustness and efficiency of large-scale comput-

ing systems, significantly higher levels of automated support than what is available

in today’s systems are needed, and this automation should leverage the data contin-

uously collected from various system layers. Towards this claim, we propose novel

methodologies to automatically diagnose the root causes of performance and configu-

ration problems and to improve efficiency through data-driven system management.

We first propose a framework to diagnose software and hardware anomalies that

vii

cause undesired performance variations in large-scale computing systems. We show

that by training machine learning models on resource usage and performance data col-

lected from servers, our approach successfully diagnoses 98% of the injected anomalies

at runtime in real-world HPC clusters with negligible computational overhead.

We then introduce an analytics framework to address another major source of

performance anomalies in cloud data centers: software misconfigurations. Our frame-

work discovers and extracts configuration information from cloud instances such as

containers or virtual machines. This is the first framework to provide comprehen-

sive visibility into software configurations in multi-tenant cloud platforms, enabling

systematic analysis for validating the correctness of software configurations.

This thesis also contributes to the design of robust and efficient system man-

agement methods that leverage continuously monitored resource usage data. To

improve performance under power constraints, we propose a workload- and cooling-

aware power budgeting algorithm that distributes the available power among servers

and cooling units in a data center, achieving up to 21% improvement in throughput

per Watt compared to the state-of-the-art. Additionally, we design a network- and

communication-aware HPC workload placement policy that reduces communication

overhead by up to 30% in terms of hop-bytes compared to existing policies.

viii

Contents

1 Introduction 1

1.1 Problem Diagnosis in Large-scale Computing Systems 2

1.2 Data-driven System Management . 5

1.3 Organization . 8

2 Background and Related Work 9

2.1 Detection of Performance Anomalies 9

2.2 Software Configuration Analytics in the Cloud 12

2.3 Management of Large-scale Computing Systems 15

2.3.1 Power Management . 15

2.3.2 Workload Management in HPC Systems 18

3 Automated Problem Diagnosis in Large-scale Computing Systems 21

3.1 Diagnosis of Performance Anomalies 22

3.1.1 Using Machine Learning for Online Anomaly Diagnosis 23

3.1.2 Experimental Methodology . 28

3.1.3 Results . 39

3.1.4 Summary . 57

3.2 Software Configuration Analytics in the Cloud 57

3.2.1 Cloud Software Configurations 58

3.2.2 Configuration Analytics using ConfEx 61

3.2.3 Evaluation . 70

3.2.4 Case Studies . 76

ix

3.2.5 Summary . 81

4 Data-driven Management for Improving Data Center Efficiency 82

4.1 Cluster-level Power Management . 83

4.1.1 Modeling of Power, Performance, and Cooling 84

4.1.2 Telemetry-based Power Budgeting Using CoolBudget 90

4.1.3 Comparison with Other Policies 93

4.1.4 Summary . 96

4.2 Leakage-aware Server Cooling . 97

4.2.1 Cooling and Leakage Dynamics 97

4.2.2 Leakage-aware Fan Control . 102

4.2.3 Evaluation . 103

4.2.4 Summary . 107

4.3 Efficient Topology Mapping in HPC Systems 108

4.3.1 Joint Job Allocation and Task Mapping with PaCMap 114

4.3.2 Evaluation . 119

4.3.3 Topology Mapping in Dragonfly Networks 127

4.3.4 Summary . 132

5 Conclusions and Future Directions 133

5.1 Summary of Major Contributions . 133

5.2 Future Research Directions . 135

5.2.1 Diagnosing Performance Anomalies in Production HPC Systems 135

5.2.2 Configuration Analytics . 137

5.2.3 Data-driven System Management 138

References 140

Curriculum Vitae 155

x

List of Tables

3.1 Applications used in evaluation . 31

3.2 Injected synthetic performance anomalies 33

3.3 The impact of feature selection on anomaly detection.

The effectiveness of random forest improves when using

only the selected features. 43

3.4 Single-threaded computational overhead of model training and

anomaly detection. 54

3.5 Common configuration error types and example constraints that lead

to errors upon violation. 60

3.6 Statistics on the studied Docker Hub Images 71

3.7 File paths checked by Augeas to identify httpd configuration files. “*”

is a wildcard that represents any file name. 71

3.8 Injected application misconfigurations 77

4.1 Comparison of objective functions . 94

4.2 Comparison of server inlet based cooling and CoolBudget 95

xi

List of Figures

3·1 Our anomaly diagnosis framework. In the offline training phase, we use

resource usage and performance data from known healthy and anoma-

lous runs to identify statistical time series features that are useful to

distinguish anomalies. The selected features are then used by machine

learning algorithms to extract concise anomaly signatures. At runtime,

we generate features from the recently observed resource usage and per-

formance data, and predict the anomalies using the machine learning

models. We raise an anomaly alarm only if the anomaly prediction is

persistent across multiple sliding windows. 24

3·2 Classification accuracy of ICA-Lan w.r.t. number of independent com-

ponents used in the algorithm. The data is obtained when using NPB

applications (Tuncer et al., 2017a). 38

3·3 The impact of window size on the overall F-score. The classification is

less effective with small window sizes where a window cannot capture

the patterns in the time series adequately. 40

3·4 The impact of window size on the per-class F-scores of the AdaBoost

classifier. The F-score of memeater anomaly decreases significantly as

windows get shorter. 41

3·5 The percentage of features selected for different application-anomaly

pairs. Less than 28% of the features are useful for the detection of

target anomalies except for linkclog, where up to 41% of the features

are useful depending on the running application. 42

xii

3·6 Distribution of consecutive misclassifications. Most misclassifications

do not persist for more than a few consecutive windows. 43

3·7 The impact of confidence threshold on the false alarm rate. Filtering

out non-persistent anomaly predictions using a confidence threshold

reduces the false alarm rate while increasing anomaly miss rate. . . . 44

3·8 Anomaly detection and diagnosis statistics of various classifiers using 5-

fold stratified cross-validation. Random forest correctly identifies 98%

of the anomalies while leading to only 0.08% false anomaly alarms. . 45

3·9 Anomaly diagnosis statistics when the training data excludes certain

unknown input configurations for each application and the testing is

done using only the excluded input configurations. 48

3·10 Anomaly detection and diagnosis statistics when the training data ex-

cludes one application and the testing is done using only the excluded

unknown application. With the proposed framework, random forest

achieves over 0.97 F-score on the average. 49

3·11 Anomaly diagnosis statistics when the training data excludes certain

unknown anomaly intensities and the testing is done using only the

excluded anomaly intensity. 50

3·12 Anomaly diagnosis statistics when the models are trained with anomaly

intensities 10, 20, and 100, and tested with low intensities. Most

anomaly signatures are detected when the intensity is lowered. In the

dial anomaly, the intensity sets the utilization of the synthetic anomaly

program, making it harder to detect with low intensities. 51

xiii

3·13 Anomaly detection and diagnosis statistics when the models are trained

with 4-node application runs and tested with 32-node runs. The results

are very similar to those with unknown input configurations as the 32-

node runs use input configurations that are not used for training. . . 52

3·14 Anomaly detection delay and percentage of nodes with undetected

anomalies when anomalies start at a random time while the application

is running. 53

3·15 Comparison of the overall F-scores achieved in Volta and MOC platforms. 56

3·16 Httpd configuration file snippet. Configurations are stored in an XML-

like format. 59

3·17 /etc/fstab snippet. Configurations are stored in a table format where

certain table cells contain multiple configuration entries. 59

3·18 ConfEx overview. 61

3·19 Discovery phase. A vocabulary is generated for each known application

offline. Input text files are compared with each application vocabulary

and selected as candidate configuration files upon a match that is larger

than a confidence threshold. 63

3·20 The extraction phase of our ConfEx framework. 67

3·21 Configuration file discovery results using vocabulary-based discovery

w.r.t. confidence threshold. With a confidence threshold above 0.5,

ConfEx ’s discovery approach achieves above 0.98 precision and recall

in all applications we study. 72

xiv

3·22 Comparison of the default path-based and ConfEx ’s vocabulary-based

discovery approaches (Tconfidence = 0.5). The default approach can

identify only 19-75% of the application configuration files, leading to

low recall. ConfEx successfully identifies more than 98% of these files

while resulting in less than 2% false positives in Nginx. 73

3·23 The number of distinct values per key across application configuration

corpora before and after ConfEx ’s disambiguation. The keys are sorted

individually for each line. 75

3·24 The fraction of injected errors that are ranked within the top five sus-

pects by PeerPressure among 1000 randomized injections. services

is the /etc/services misconfiguration. 78

3·25 The number of configuration entries checked and marked as invalid

using rule-based type validation. With the default keys, all values

that share the same key are checked using the same rule although they

belong to different parameters in httpd, resulting in a high number false

negatives. In MySQL and Nginx, default Augeas keys can capture only

a subset of the target key-value pairs. 80

4·1 BIPS vs. server power relationship for various jobs, when each job is

running with 8, 12, 16, 20, 24, 28, 32 cores. 86

4·2 BIPS upper-bound set by the number of DRAM accesses per instruc-

tion. The dots represent individual jobs and the solid line is the re-

gression result for the upper-bound. 87

4·3 Typical trend in maximum fair speedup within the proximity of op-

timum Tcrac, and the policy iteration steps with a starting point of

20.6◦C . 91

4·4 Performance degradation histograms for each objective function . . . 94

xv

4·5 Comparison between self-consistent (SC) and CoolBudget (CB) policies

under two job allocation scenarios with Pbudget = 200kW 96

4·6 Fan and leakage power for various workloads. 97

4·7 CPU leakage model regression for both CPUs. 99

4·8 Steady-state temperature model and measured samples for three dif-

ferent fan speeds. 100

4·9 Thermal time constant and maximum temperature under various fan

speeds . 101

4·10 Leakage plus fan energy savings achieved by the proactive fan control

policy compared to baseline policies. 105

4·11 CPU temperature and fan speed traces for workload profile 1 with

clustered allocation using different fan controllers. 106

4·12 Workload management in conventional HPC machines. 109

4·13 Fragmented and non-fragmented job allocation. The boxes represent

machine nodes and the numbers represent allocated jobs. 110

4·14 RCM applied on a sample sparse matrix 111

4·15 Communication graph of a 3x3 stencil application, and (b)

communication-aware and (c) -unaware allocation examples 113

4·16 PaCMap overview . 114

4·17 Partially allocated application. The solid shapes are current alloca-

tion/mapping, the dashed shapes are the frames, and striped squares

are busy nodes. 117

4·18 Relationship between communication and hop-bytes. The communica-

tion time represents the time spent in communication when the com-

putation time equals 1. 122

xvi

4·19 Hop-bytes comparison of task mappers for all applications in our input

set. The values are normalized to the hop-bytes resulting from PaCMap.123

4·20 Mismatching coordinates and allocation. The dashed lines represent

the bisection cuts. 124

4·21 Cumulative running time of the jobs that use multiple nodes in (a)

LLNL-Atlas and (b) CEA-Curie traces. The horizontal axis shows

different task mappers; whereas bar colors are different allocators. . . 125

4·22 Average per-application hop-bytes in two workload traces with differ-

ent allocator & task mapper pairs. The results are normalized with

respect to PaCMap. 126

4·23 A dragonfly group with all-to-all local connections. Boxes are routers,

circles are nodes, solid lines are electrical local links, and dashed lines

are optical global links. 128

4·24 Application communication time normalized with respect to the in-

order task mapper. The results show that task mapping affects the

communication overhead significantly. 131

5·1 The integration automated our anomaly diagnosis framework with

LDMS. 136

xvii

List of Abbreviations

BIPS Billions of Instructions Per Second
CDF Cumulative Distribution Function
CoP Coefficient of Performance
CPU Central Processing Unit
CRAC Computer Room Air Conditioning unit
CSTH Continuous System Telemetry Harness
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage-Frequency Scaling
FDR False Discovery Rate
GPU Graphics Processing Unit
HPC High Performance Computing
ICA Independent Component Analysis
kNN K Nearest Neighbors
KS Kolmogorov-Smirnov
LDMS Light-weight Distributed Metric Service
MPI Message Passing Interface
NPB The NAS Parallel Benchmark Suite
RPM Revolutions Per Minute
QoS Quality of Service
SVM Support Vector Machine
VM Virtual Machine

xviii

1

Chapter 1

Introduction

The number and size of large-scale computing systems (e.g., high performance com-

puting (HPC) or cloud data centers) have been increasing rapidly in recent years

following the explosive demand in digital services such as social networking, web

search, and weather forecasting. The number of data centers1 in 2017 has been pre-

dicted as 8.6 million (IDC, 2014), and today’s largest data centers are using nearly

20 million CPU cores (Dongarra et al., 2017). As a result, data centers are among

the largest electricity consumers in the world. In the upcoming years, the global data

center market is expected to have an annual growth rate of 5% (Technavio, 2017),

further increasing the economical, environmental, and performance impact of data

center energy and resource efficiency.

The expansion of data centers leads to an increasingly complex management prob-

lem, where there are many levels of interactions among numerous subsystems such

as networking, storage, cooling, and processors. Due to the scale, heterogeneity, and

complexity of data centers, managing these systems using heuristics, manual control,

or methods that are designed for specific conditions is quickly becoming insufficient

to achieve robust and efficient operation. Moreover, in these complex large-scale sys-

tems, a great variety of performance or resilience problems arise from different sources

including hardware failures, firmware bugs, shared resource contention, and configura-

1In this thesis, a data center broadly refers to a large-scale computing system that runs HPC
or cloud workloads. The applicability of our methodologies to different types of data centers are
discussed in individual chapters.

2

tion errors. These problems are becoming parts of normal operating conditions rather

than rare events that must be avoided (Barroso et al., 2013). As a result, approx-

imately 70% of data center spending is on management and administration (Villars

et al., 2012).

The efficiency and resilience of large-scale computing systems are typically ensured

via monitoring infrastructures that continuously collect data from various system lay-

ers regarding resource utilization, application performance, software log outputs, con-

figurations, and component temperatures (Agelastos et al., 2014; Aceto et al., 2013).

This thesis builds upon the observation that existing data center management frame-

works do not fully utilize the data that is collected from various system layers. We

claim that significantly higher levels of automated support are needed to improve ro-

bustness and efficiency of large-scale computing systems, and this automation should

be based on intelligent frameworks that leverage the continuously collected data using

statistical system modeling and learning-based approaches. To this end, this thesis

provides frameworks to automatically diagnose performance and software configura-

tion problems, and data-driven dynamic system management policies to improve the

energy efficiency of large-scale computing systems.

1.1 Problem Diagnosis in Large-scale Computing Systems

In large-scale computing systems, each application may require hundreds or thousands

of individual servers as well as their corresponding storage and networking subsys-

tems, and power distribution and cooling infrastructures to work together seamlessly.

Component faults, misbehavior, or resource contention that occurs in a single proces-

sor or a network link can affect the performance of the entire application. Especially

in HPC clusters, where parallel applications run for hours or even days on hundreds of

compute nodes, a slowdown in a single node would lead to waste of compute resources

3

in all other nodes that are used in parallel with the degraded node. Cloud systems,

on the other hand, are typically designed to be resilient against failures of individual

components (Verma et al., 2015). However, cloud applications can still suffer from

increased tail latency upon component misbehavior (Dean and Barroso, 2013).

Studies have reported that HPC applications suffer by more than 100% perfor-

mance degradation due to hardware- and software-related anomalies (Skinner and

Kramer, 2005; Bhatelé et al., 2013; Wang et al., 2014). The anomalies that cause

performance variations include orphan processes left over from previous jobs (Brandt

et al., 2010), firmware bugs (Cisco, 2017), memory leaks (Agelastos et al., 2015), CPU

throttling for thermal control (Brandt et al., 2015), reduced CPU frequency due to

hardware problems (Snir et al., 2014), and resource contention (Bhatelé et al., 2013;

Dorier et al., 2014).

A key enabler for detecting anomalies is analyzing and understanding the healthy

behavior of subsystems across various software, middleware, and hardware layers.

However, analyzing system behavior is often a difficult task given the vast amount

of noisy and high-dimensional resource usage and performance data being collected

via system monitoring infrastructures (Agelastos et al., 2014). While a number of

anomaly detection techniques have been proposed (Klinkenberg et al., 2017; Yu and

Lan, 2016), these techniques still largely rely on human operators to discover the

root causes of the anomalies, leading to delayed mitigation and wasted compute re-

sources. An effective way of decreasing the delay between anomalies and remedies is

to automate the diagnosis of anomalies, paving the way for automated mitigation.

In addition to performance and resource usage data that is collected from various

subsystems, collection and analysis of application-specific data (e.g., logs or configura-

tions) can help in the diagnosis of anomalies. Specifically, software configurations have

been reported as a major source of disruptions and outages in cloud services (Rabkin

4

and Katz, 2013; Yin et al., 2011; Barroso et al., 2013).

To detect software misconfigurations, researchers have developed various tools

to automatically check for errors in software configurations (Attariyan et al., 2012;

Behrang et al., 2015). Among such tools, statistical and learning-based techniques

have gained popularity as low overhead configuration checkers that can be applied in

an application-agnostic manner (Wang et al., 2004; Zhang et al., 2014; Santolucito

et al., 2017). Statistical configuration checkers train on a corpus of configurations

and learn common patterns, and then identify configurations that deviate from the

norm as potential errors. To perform a reliable analysis, these techniques need to be

trained with configuration data collected from a large number of working systems.

Cloud environments, where a large number of users deploy their customized ap-

plications, provide a unique opportunity for configuration analytics. However, to

analyze software configurations in the cloud, one first needs to extract configuration

information from cloud system instances (i.e., images, VMs, and containers) without

losing any information that is crucial for detecting errors. This is challenging because

software configurations are typically stored in loosely-structured text files where each

software has its own custom configuration syntax. Furthermore, as cloud instance

contents are largely unlabeled, one needs to discover which files are configuration files

and also figure out to which applications these files belong.

This thesis proposes novel frameworks to enable automated diagnosis of perfor-

mance anomalies in large-scale computing systems and software configuration ana-

lytics in the cloud. The specific contributions are as follows:

• We propose an application-agnostic online anomaly detection framework that

enables automatic diagnosis of anomalies that contribute to performance varia-

tions (Tuncer et al., 2017a). Our framework leverages historical resource usage

and performance data collected from compute nodes to extract signatures of

5

previously-observed anomalies using machine learning. Using experiments on

a Cray XC30m supercomputer, we demonstrate that our approach consistently

outperforms state-of-the-art techniques on diagnosing anomalies.

• This thesis, for the first time, introduces a framework to enable the analysis of

text-based software configurations in multi-tenant cloud platforms. Our frame-

work, ConfEx, discovers text-based configuration files in cloud instances with

unlabeled content, and extracts the information in these files in a way that en-

ables automated comparison and analysis of configurations among thousands of

cloud instances.

1.2 Data-driven System Management

The growth in number and size of large-scale computing systems not only makes re-

silient operation a challenge but also makes the energy footprint of data centers a sig-

nificant burden on the world’s energy resources. The worst-case projection shows that

the global data center electricity usage will reach 13% of the world’s electricity usage

by 2030, whereas this percentage is as low as 3.3% in the best-case projection (Andrae

and Edler, 2015). Enabling higher efficiency is a key factor that determines where

future data centers will stand between these best- and worst-case scenarios.

A common goal of efficient data center management is to achieve high performance

while avoiding the waste of compute resources. Data center management has vari-

ous areas including server and virtual machine allocation, scheduling, controlling the

deployment and maintenance of applications, pricing, and managing storage, power,

or network. Improving efficiency in any of these areas leads to better utilization of

available resources, improving the overall data center energy efficiency.

Management in today’s data centers is a challenging task due to their complexity,

size, and heterogeneity. While automated anomaly diagnosis can provide a better un-

6

derstanding of system behavior, achieving high efficiency requires a holistic awareness

of the diversity among applications, performance requirements, physical restrictions

such as thermal thresholds, and interactions between applications and hardware com-

ponents such as processors and cooling units.

In this thesis, we specifically focus on two aspects of system management: (1)

power management, which has a direct impact on the energy efficiency of data centers,

and (2) workload management for highly-parallel HPC applications, which has high

impact on application performance and throughput in HPC clusters.

Data Center Power Budgeting: The total available power in a data center is

limited due to the capacity constraints of power infrastructures (Barroso et al., 2013).

Furthermore, limiting the power consumption of a data center can lead to substan-

tial cost savings by avoiding peak power demand charges as well as by enabling

smart-grid demand-side regulation programs (Chen et al., 2014a) and renewable en-

ergy use (Bianchini, 2012). To maximize efficiency under such power constraints, the

available power should be dynamically distributed across computing resources while

taking application performance requirements into account. A good strategy should

intelligently react to changes in workloads and environment, and find the best man-

agement decisions to minimize the energy footprint without sacrificing performance.

Workload Placement in HPC Systems: In addition to power management,

workload management has a significant impact on performance and efficiency. Espe-

cially for highly-parallel HPC applications, poor workload management can increase

running times by 100%, wasting valuable compute cycles (Bhatelé et al., 2013). An

effective way of reducing application communication overhead is topology mapping,

which is the placement of HPC applications to available compute nodes. By be-

ing aware of application communication patterns and the system’s network topology,

7

topology mapping can reduce application communication overhead and improve the

overall application performance. However, topology mapping based on application

communication patterns is an NP-hard problem (Hoefler and Snir, 2011).

We propose data-driven methodologies to improve the efficiency of large-scale com-

puting systems through cooling-aware cluster- and server-level power management as

well as HPC workload management. Our specific contributions are as follows:

• In order to improve data center performance under power constraints, we in-

troduce a novel data center power budgeting policy, CoolBudget (Tuncer et al.,

2014). CoolBudget distributes the given power budget among the cooling units

and servers to maximize the fair speedup of the running applications based on

accurate power, performance, and temperature models that are validated on a

real enterprise server.

• To improve the efficiency of servers, we propose a leakage-aware proactive server

fan control policy based on empirical power models that estimate the static,

dynamic, and thermally-induced power consumption in a server (Zapater et al.,

2015a). Our policy reduces the sum of server leakage power and cooling power by

up to 6% compared to other policies, and proactively avoids thermal violations.

• For efficient placement of HPC applications, we propose a topology mapping

technique, PaCMap (Tuncer et al., 2015). PaCMap uses a holistic view on

HPC job placement by mapping individual application tasks directly onto the

processors of the available compute nodes as opposed to first selecting compute

nodes and then mapping tasks to the processors. Our policy decreases hop-

bytes (i.e., the weighted sum of the traversed network distance for all messages,

weighted by the message size) by up to 30% compared to the state-of-the-art.

• Using large-scale experiments on a state-of-the-art HPC supercomputer, we

8

demonstrate that efficient topology mapping reduces communication time by up

to 47% even when using novel network topologies that are designed to minimize

the communication overhead (Tuncer et al., 2017b).

1.3 Organization

The remainder of this thesis starts with a review of the background and related

work on automated detection of performance anomalies and software misconfigura-

tions as well as data-driven management of large-scale computing systems in Chap-

ter 2. Chapter 3 introduces our learning-based framework for diagnosing performance

anomalies and ConfEx, which is our configuration analytics framework. In Chapter 4,

we present our work on data-driven cluster- and server-level power management and

HPC workload management for improved efficiency. Chapter 5 concludes this thesis

and discusses future research directions.

9

Chapter 2

Background and Related Work

This thesis proposes data-driven techniques for automated problem diagnosis and

efficient system management in large-scale computing systems such as HPC clusters

and cloud data centers. In this chapter, we first present a detailed overview of the

state-of-the-art on detecting performance anomalies, and continue with a discussion

on software configuration analytics. We then describe existing work on data-driven

management of large-scale systems with a focus on workload management in HPC

systems and power management. At the end of each section, we highlight the novel

aspects of our work compared to existing work.

2.1 Detection of Performance Anomalies

Performance anomalies (such as thermally-induced CPU throttling or orphan pro-

cesses) lead to performance variation (Snir et al., 2014), waste of compute re-

sources (Bhatelé et al., 2013), and poor scheduling (Tsafrir et al., 2007) without

necessarily causing failures. In the last decade, there has been growing interest in

building automatic performance anomaly detection tools for large-scale computing

systems (Ibidunmoye et al., 2015). Existing anomaly detection approaches can be

divided into three categories: rule-based methods, statistical time series analysis, and

machine learning based solutions.

Rule-based anomaly detection methods are commonly deployed in large scale sys-

tems. These methods use threshold-based rules on the monitored resource usage

10

metrics, where the rules are set by domain experts based on the performance and

resource usage constraints, application characteristics, and the target system proper-

ties (Ahad et al., 2015; Jayathilaka et al., 2017). Such rules significantly depend on

the target system infrastructure and are not generalizable to other systems.

Time-series analysis methods for anomaly diagnosis build a time-series model

and make predictions based on the observed values of the collected metrics. These

methods raise an anomaly alert whenever the prediction does not match the observed

value. Previous research has employed multiple time-series models including support

vector regression (Jin et al., 2016), auto-regressive integrated moving average (Laptev

et al., 2015), and Holt-Winters forecasting (Ibidunmoye et al., 2016). While such

time-series prediction models successfully detect anomalous behavior, they are not

designed to identify the types of anomalies (i.e., diagnose). Moreover, these models

can lead to high computational overhead when the collected set of metrics is large.

A number of approaches based on machine learning have been proposed to de-

tect anomalies on cloud and HPC systems. These approaches utilize unsupervised

learning algorithms such as affinity propagation clustering (Nair et al., 2015), DB-

SCAN (Zhang et al., 2016), isolation forest (Adhianto et al., 2010), and hierarchi-

cal clustering (Gurumdimma et al., 2016), as well as supervised learning algorithms

such as support vector machines (SVM) (Dalmazo et al., 2016), k-nearest-neighbors

(kNN) (Lan et al., 2010; Jin et al., 2016), random forest (Arzani and Outhred, 2016),

and Bayesian classifier (Wang et al., 2016). These techniques still rely on human

operators to discover the root causes of the anomalies, leading to delayed mitigation

and wasted compute resources. An effective way of decreasing the delay between

anomalies and remedies is to automate the diagnosis of anomalies (Bodik et al.,

2010), which paves the way for automated mitigation.

In machine learning based anomaly detection, feature extraction is an essential

11

step to avoid unacceptable computation overhead and to improve the detection accu-

racy. Besides using common statistical features such as mean and variance (Klinken-

berg et al., 2017), previous works on anomaly detection have also explored features

such as correlation coefficients (Chen et al., 2011) and mutual information gain (Gu-

rumdimma et al., 2016). Researchers also explored advanced feature extraction meth-

ods including principal component analysis (Lan et al., 2010; Yu and Lan, 2016),

independent component analysis (ICA) (Lan et al., 2010; Wang et al., 2016), and

wavelet-transformation (Guan et al., 2013; O’Shea et al., 2016). However, the fea-

tures selection using statistical techniques such as ICA can disregard the features that

are useful for anomaly detection (Tuncer et al., 2017a).

Failure detection and diagnosis on large scale computing systems is related to

performance anomaly detection as these two fields share some common interests and

technologies (Snir et al., 2014). Nguyen et al. proposed a method to pinpoint faulty

components by analyzing the fault propagation through components (Nguyen et al.,

2013). Similarly, a diagnostic tool called PerfAugur has been developed to help trace

the cause of an anomaly by finding common attributes that predicate an anomaly (Roy

et al., 2015).

In this thesis, we design and implement a machine learning based framework for

diagnosing performance anomalies (Tuncer et al., 2017a) (Section 3.1). In contrast

to existing techniques, our approach does not rely on expert knowledge, is not lim-

ited to a specific anomaly type, and identifies the type of anomalies (i.e., conducts

diagnosis) in contrast to solely detecting them. As we demonstrate in Section 3.1.3,

our technique consistently outperforms the state-of-the-art methods in diagnosing

performance anomalies in HPC systems.

12

2.2 Software Configuration Analytics in the Cloud

The configurations of commonly-used cloud applications such as Apache HTTP server

and MySQL are becoming increasingly complex for improved application versatility,

performance, and security. To function correctly, securely, and with high performance,

cloud applications often depend on precise tuning of hundreds of configuration param-

eters (Xu et al., 2015). In typical cloud services that consist of multi-tiered software

stacks, ensuring the desired operation may require correctly configuring thousands of

parameters (Ramachandran et al., 2009).

While configurations are traditionally validated by applications during startup,

recent work has shown that, depending on the software, 14-93% of configuration pa-

rameters in today’s cloud software do not have any special code for checking their

correctness (Xu et al., 2016). Hence, configuration errors (i.e., misconfigurations) have

become one of the major causes of service disruptions and outages in the cloud (Yin

et al., 2011). This problem is exacerbated by the prevalence of open-source software

where developers can easily deploy services using third-party applications without

mastering the configurations of these applications. Hence, automated DevOps sup-

port has become important to reduce engineering costs to develop efficient, robust,

and secure services in the cloud.

Cloud automation tools such as Chef (Taylor and Vargo, 2014) and Ansi-

ble (Hochstein, 2014) focus on deployment and scaling of cloud services, and provide

centralized management support for software configurations. While these tools help

developers manage hundreds of cloud instances (i.e., images, VMs, and containers),

they provide limited support for validating configurations beyond what is needed for

deployment and scaling. The developers who have not mastered the configurations

of the third-party software they use can easily instruct cloud automation tools to

deploy erroneous configurations. As a result, automated configuration validation has

13

received the attention of cloud researchers and engineers.

Automatically verifying the correctness of software configurations are challenging

due to the large number of parameters, parameter dependencies, and the error-prone

nature of human-editable text files. Furthermore, rapidly evolving cloud software

complicate the design and maintenance of configuration validation tools (Zhang and

Ernst, 2014; Xu et al., 2015). A promising approach to address the problem of mis-

configurations is automated error detection without using application-specific expert

knowledge. Such techniques can be applied in a wide set of applications to help

cloud users find and prevent misconfigurations while requiring minimal modification

for each application.

Application-agnostic execution trace analysis through binary instrumentation

have been shown to provide insight on the root causes of configuration errors (At-

tariyan et al., 2012; Zhang and Ernst, 2014). However, such approaches are often

impractical on production workloads due to their intrusiveness. Other techniques

target validating configurations before deployment to avoid service disruptions and

outages. Source code analysis (Xu et al., 2013; Zhou et al., 2017; Nadi et al., 2014)

and natural language processing on software documentations (Potharaju et al., 2015;

Jin et al., 2014) have been used to infer configuration constraints. Configuration

entries that do not comply with these constraints are then marked as errors.

Statistical and learning-based techniques such as PeerPressure (Wang et al., 2004)

and EnCore (Zhang et al., 2014) have gained popularity as low overhead configuration

checkers that can be applied in an application-agnostic manner. Training learning-

based models and using them for validation of configurations requires discovery and

extraction of configurations across large populations of installed applications. How-

ever, configurations in cloud instances (i.e., image, VM, or container) are often stored

in non-standard locations in the file system, which complicates the task of configu-

14

ration discovery. Moreover, configuration parameters are often embedded in human

readable text files that require application-specific domain knowledge to parse reli-

ably. To apply existing analysis techniques, the information extracted from these

files needs to be in the form of key-value pairs, where a key represents a specific

configuration parameter consistently across different files and cloud instances.

In prior studies, the extraction of configuration key-value pairs have performed

using several methods: Parsing files that reside in known paths with custom scripts

(e.g., (Potharaju et al., 2015)), crawling erroneous files from mailing lists and tech-

nical forums (e.g., (Xu et al., 2016)), parsing files located in default paths using

configuration parsing libraries (e.g., (Zhang et al., 2014)), and using standardized

configuration stores such as Windows registry (e.g., (Wang et al., 2004)). Exist-

ing tools for handling configurations focus on centralized management rather than

extracting key-value pairs. CFEngine (Burgess and Ralston, 1997) can parse stan-

dard file formats such as XML and JSON, but not application-specific files formats

such as in httpd and Nginx configurations. Several tools, including Puppet (Loope,

2011) and bcfg2 (Desai, 2005), can edit application-specific files by leveraging Augeas

library (Lutterkort, 2008). In Section 3.2, we demonstrate that using the Augeas

library alone is not sufficient for reliable corpus-based analysis.

In this thesis, we introduce our configuration analytics framework, ConfEx (Sec-

tion 3.2), which is the first framework to enable discovery and extraction of consistent

configuration data and robust configuration analysis in image repositories and multi-

tenant cloud platforms. In contrast to existing techniques, our framework is not

limited by configuration files in known file system paths and discovers text-based

configuration files in cloud instances with over 98% precision and recall. In addi-

tion, our framework enables resolving the inconsistencies in the outputs of existing

configuration parsers to improve the robustness of configuration analysis.

15

2.3 Management of Large-scale Computing Systems

The increasing size and complexity of large-scale computing systems has led re-

searchers to develop heuristics and data-driven approaches for efficient management.

The areas of research for efficient data center management include hardware fault

tolerance (Snir et al., 2014), networking (Kreutz et al., 2015), interconnects (Kachris

and Tomkos, 2012), checkpointing (Egwutuoha et al., 2013), storage (Chen et al.,

2014b), dynamic pricing (Al-Roomi et al., 2013), power management (Kong and Liu,

2015), and workload management (Hoefler and Snir, 2011). Among these aspects,

power management has a direct impact on the energy efficiency of data centers and

can help reducing data centers’ burden on the world’s energy resources. In addition,

workload management can significantly reduce wasted compute resources in HPC sys-

tems by decreasing application running times by up to 50% even in state-of-the-art

HPC clusters (Tuncer et al., 2017b). Hence, this thesis focuses on power management

and HPC workload management.

2.3.1 Power Management

Data center power management is a widely studied area. Researchers have attacked

the problem using different control knobs including scheduling, job allocation, and

server power limiting. As cooling constitutes up to 50% of the total data center power

consumption (Dayarathna et al., 2016), power management should also account for

the cooling of servers. We divide the related work into two groups: cluster-level power

management and server-level cooling management.

Cluster-level Power Management

Moore et al. (Moore et al., 2005) use thermally-aware job allocation to minimize

cooling costs. The performance-aware approaches proposed by Oxley et al. (Oxley

16

et al., 2018) and Kumar et al. (Kumar and Raghunathan, 2016) explore the tradeoffs

among workload co-location, server heterogeneity, and the data center cooling and

computational costs.

Other works focus on reducing energy costs through power provisioning to increase

the overall utilization (Barroso et al., 2013), smart grid integration (Chen et al.,

2014a), and renewable energy usage (Depoorter et al., 2015). These techniques focus

on energy costs rather than controlling data center power consumption, and require

the data centers to have the ability to limit their total power consumption.

Efficiently limiting data center power consumption implies maximizing perfor-

mance under a total power limit through power budgeting. For power budgeting, Liu

et al. considers renewable energy use in the data centers, and limits the computa-

tional power according to the renewable power availability (Liu et al., 2012). The

technique proposed by Lim et al. aims to maximize the computational performance

under a given power cap for virtualized systems (Lim et al., 2011). These techniques,

however, do not budget the available power among cooling and computing, but solely

focus on power distribution among servers.

There are some techniques that jointly address cooling and power budgeting. The

unified workload, power, and cooling management framework introduced by Wang et

al. adjusts server fan speeds to increase cooling efficiency (Wang et al., 2010). Their

technique, however, is not aware of heat recirculation, which can significantly impact

data center cooling costs (Chaudhry et al., 2015). The self-consistent power budget-

ing technique proposed by Zhan et al. (Zhan and Reda, 2015) maximizes the data

center throughput using a multi-choice knapsack algorithm. Their solution allocates

sufficient power for cooling and selects dynamic voltage-frequency scaling (DVFS)

settings for each server to maximize throughput. Their policy depends on compu-

tationally expensive computational fluid dynamics simulations, which may not be

17

feasible for runtime optimization.

In today’s data centers, many servers are over-cooled because the inlet tempera-

ture recommendations of manufacturers, which are based on the worst-case conditions

(utilization, altitude, etc.), leave a large thermal headroom margin between the server

internal temperatures and critical temperatures. Reducing this thermal headroom is

challenging as it can lead to frequent violations of critical temperature thresholds.

CoolBudget, our cooling- and application-aware power budgeting tech-

nique (Tuncer et al., 2014) (Section 4.1), distinguishes from prior work as follows:

CoolBudget is the first to exploit the thermal headroom between the server inter-

nal temperatures and the critical thresholds using accurate power, performance, and

temperature models that we validate based on measurements on a real enterprise

server. By reducing this thermal headroom, CoolBudget increases the data center

air temperatures and decreases cooling power consumption. Moreover, unlike prior

work, CoolBudget uses fair speedup as an optimization goal to achieve both high

performance and fairness among workloads. By using fair speedup, CoolBudget sac-

rifices the performance of individual servers without decreasing fairness to improve

the overall data center throughput.

Server-level Cooling Management

Several works have used fan control to reduce cooling costs in data centers. Han et

al. (Han and Joshi, 2012) propose a runtime fan controller based on offline thermal

modeling validated via simulation. Chan et al. (Chan et al., 2012) approach the

fan control problem both from the energy minimization and fan-induced vibration

perspective. These works do not consider leakage-cooling trade-offs.

Policies such as TAPO-server, proposed by Huang et al. (Huang et al., 2011),

indirectly vary fan speed by controlling the processor thermal threshold at runtime,

to search for the optimum fan speed in a reactive way. Recent work by Pradelle

18

et al. (Pradelle et al., 2014) uses a hill-climbing optimization technique that relies

on utilization as a proxy variable for the estimation of heat dissipation which is not

sufficient to select the optimum cooling for an arbitrary workload. These policies

reactively control cooling and can lead to thermal overshoots.

Our leakage-aware fan control policy (Zapater et al., 2015a) (Section 4.2) is the

first leakage-aware proactive cooling management strategy that is robust against ar-

bitrary workloads. Using empirical models that we develop and validate on a real

enterprise server, our policy minimizes the temperature-dependent portion of the

server power consumption and proactively avoids thermal violations.

2.3.2 Workload Management in HPC Systems

The workload management in HPC systems has two main stages: (1) scheduling,

which is the decision on when to run which job, and (2) topology mapping, which is

the decision on where (i.e, on which nodes) to run a job.

Scheduling of parallel jobs in an HPC system has been extensively studied in the

last decades (Feitelson et al., 1997). Various optimization techniques have been pro-

posed using multiple job queues, where each queue serves a different job type (Lawson

and Smirni, 2002), using soft job deadlines (He et al., 2004), and using backfilling

based on job running times estimated by users (Talby and Feitelson, 1999) or statis-

tical predictors (Tsafrir et al., 2007).

Topology mapping is the placement of parallel HPC application tasks (e.g., MPI

ranks) onto the available compute nodes. HPC applications typically run many times

on the same system with different input data and perform operations such as complex

scientific simulations and financial forecasting. Most of these applications have a

specific communication pattern, which can be extracted in the form of weighted graphs

via source code instrumentation (Preissl et al., 2010) or via analysis of historical

communication traffic (Zhai et al., 2009). Hence, topology mapping can be expressed

19

as mapping an applications’ communication graph onto machines network graph,

which is an NP-hard problem (Hoefler and Snir, 2011).

Topology mapping can be used to reduce the running time of HPC applications,

which can spend over 50% of their execution time for communication, by placing

highly-communicating tasks close to each other (Deveci et al., 2014). In today’s HPC

systems, topology mapping is performed in two steps: First, the system software

allocates available compute nodes to an incoming job without having visibility into the

job’s communication graph, and then, the application software maps the individual

application tasks onto the allocated compute nodes.

Bhatelé et al. proposed task mapping techniques such as step embedding and

folding to map 2D stencil applications into 2D and 3D mesh machines (Bhatelé et al.,

2010), as well as traversal and affine mapping algorithms to map irregular graphs into

meshes (Bhatelé and Kalé, 2011). These techniques focus on contiguous allocation,

where each application is assigned to a contiguous block of machine nodes. Although

contiguous allocation increases application locality, it decreases the machine utiliza-

tion (Subramani et al., 2002). Furthermore, non-contiguous allocation is used in

many recent HPC systems such as Cray XC and XK series1.

For machines with non-contiguous allocation, Albing et al. proposed node allo-

cation techniques using different curves to remove the restrictions on the network

topology and machine dimensions imposed by Hilbert curves (Albing et al., 2011).

These solutions limit the allocation performance by ignoring network links outside

the given curve. Other researchers have introduced clustered allocation schemes to

overcome such limitations. Bender et al. proposed the MC1x1 algorithm, which is a

(2−1/2d) approximation to the optimal solution for minimizing the average pairwise

L1 distance of tasks in a d-dimensional mesh when allocating k processors (Bender

et al., 2008). Their techniques are applicable only on mesh and torus topologies, and

1Cray: http://www.cray.com

20

have primarily focused on stencil communication patterns (Balzuweit et al., 2016).

Deveci et al. considered multi-level partitioning of both the machine and application

geometries (Deveci et al., 2014).

With the emergence of a novel network topologies such as dragonfly (Kim et al.,

2008), researchers proposed node allocation strategies specifically for the new network

topologies. Jain et al. (Jain et al., 2014) compared the performance of six dragonfly-

specific job allocation policies. They observed that random allocation is generally

beneficial in spreading network traffic and reducing communication hot spots. Budi-

ardja et al. (Budiardja et al., 2013) showed that spreading jobs to all groups during

allocation distributes the network traffic, and thus, reduces congestion.

Our job placement policy for HPC systems, PaCMap (Tuncer et al., 2015) (Sec-

tion 4.3), is the first policy that proposes using a holistic view on topology mapping by

combining the system-driven node allocation and the application-driven task map-

ping algorithms. As we demonstrate in Section 4.3.2, this holistic view leads to a

more efficient job placement compared to existing techniques, reducing application

communication volume by up to 30% in terms of hop-bytes. Additionally, PaCMap

is not limited to stencil applications and is applicable on machines that supports

non-contiguous allocation.

21

Chapter 3

Automated Problem Diagnosis in

Large-scale Computing Systems

Detection and diagnosis of misbehavior and failure in large-scale computing systems

(e.g., HPC clusters and cloud platforms) have traditionally relied on the experience

and expertise of human operators. By continuously monitoring and analyzing system

logs, performance counters, and application resource usage patterns, system opera-

tors can assess system health and identify failures and anomalies. As system size

and complexity grows, such manual processing becomes increasingly time-consuming

and error-prone. Hence, automated problem diagnosis is essential for the efficient

operation of future large-scale computing systems.

The majority of existing tools focus on anomaly detection rather than diagnosis

(i.e., identifying the type of the anomaly). These tools largely rely on human opera-

tors to discover the root causes of anomalies, leading to delayed mitigation. Diagnosis

is a substantially harder problem than detection as it requires deep understanding of

healthy and anomalous behavior of various system components. Begin able to pin-

point the root cause of an anomaly becomes more challenging given the vast amount

of noisy and high-dimensional data collected from different system layers.

In this chapter, we propose two novel frameworks for automated problem diag-

nosis. First, we introduce our performance anomaly diagnosis framework (Tuncer

et al., 2017a), which identifies anomalies that do not necessarily cause failures. This

framework leverages machine learning algorithms to learn and identify the signatures

22

of previously-observed anomalies based on compute node resource usage patterns.

Second, we focus on enabling the use of software-specific data for automated problem

diagnosis. We specifically focus on cloud software configurations, which are among the

leading causes of service disruptions and outages in the cloud (Yin et al., 2011). We

design and implement ConfEx, a configuration analytics framework for multi-tenant

cloud environments. ConfEx enables the discovery and extraction of configuration

information from unlabeled cloud system instances such as VMs and containers for

the detection of misconfigurations via intelligent analytics.

3.1 Diagnosis of Performance Anomalies

Performance anomalies (such as thermally-induced CPU throttling) lead to perfor-

mance variation, waste of compute resources (Bhatelé et al., 2013), and poor schedul-

ing (Tsafrir et al., 2007) without necessarily causing failures. The impact of such

anomalies is more prominent in HPC clusters where applications run for hours or

even days on hundreds of compute nodes in parallel. These anomalies manifest them-

selves in the resource usage patterns of applications. However, identifying anomalies

is challenging given the vast amount of noisy and high-dimensional resource usage

data being collected via system monitoring infrastructures (Agelastos et al., 2014).

We design a novel framework to automatically detect compute nodes suffering

from previously observed anomalies at runtime and identify the type of the anomaly

independent of the applications running on the compute nodes. To detect and diag-

nose anomalies, we first extract easy-to-compute statistical features from sliding time

series windows of performance metrics (e.g., number of network packets received) and

resource usage metrics (e.g., CPU utilization), which are already being collected in

lare-scale computing systems. Then, using human-interpretable machine learning al-

gorithms, we identify the subset of features required for detecting the target anomalies

23

and generate concise signatures of these anomalies. At runtime, we compute only the

necessary statistical features and compare them against the generated anomaly sig-

natures to detect and diagnose anomalies. With a diverse training set that represents

the expected application characteristics, our framework enables anomaly detection

even when running applications that are not observed during the training.

We evaluate our framework on a Cray XC30m supercomputer and on a virtual-

ized HPC cluster using multiple benchmark suites and demonstrate that our approach

successfully diagnoses anomalies even when running applications that are not used

during training. We demonstrate that our approach effectively identifies 98% of syn-

thetic anomalies while leading to only 0.08% false anomaly alarms with an F-score

over 0.99 where the F-scores of other state-of-the-art techniques remain below 0.94.

3.1.1 Using Machine Learning for Online Anomaly Diagnosis

Our goal is to quickly and accurately detect whether a compute node is anomalous

(i.e., experiencing anomalous behavior) and classify the type of the anomaly (e.g.,

network contention, orphan process, etc.) at runtime, independent of the application

that is running on the compute node. We target anomalies that are caused by ap-

plications or system software/hardware such as orphan processes, memory leaks, and

shared resource contention. Once an anomaly is detected, mitigative measures can

be taken promptly by administrators, users, or automated management mechanisms.

To detect and classify anomalies, we propose an automated approach based on ma-

chine learning. Figure 3·1 shows an overview of our framework. We leverage historical

resource usage and performance data that is collected from healthy and anomalous

nodes to learn the signatures of target anomalies. As an HPC application can run on

multiple nodes in parallel, if any of these nodes is anomalous, the entire application’s

resource usage and performance patterns may be affected. Hence, our training ex-

cludes data collected from any node that is used together with an anomalous node by

24

m
et

ri
c

1

min
avg

max

W

m
et

ri
c

N

min
avg

max

...App1

App1

App2

App2

healthy node

anomalous node

Known healthy and
anomalous runs

Feature extraction Feature selection

KS test

C
D

F
of

m
et

ri
c

1
 m

ax

feature
p-values

Machine learning
model training

Monitoring of
compute nodes

Node 1

Node 2

Node 3

Node 4

False positive
filter

t
t-1

t-6

t-5

t-4

t-3

t-2

Diagnosis

O
ffl

in
e
 t

ra
in

in
g

R
u
n
ti

m
e

m
et

ri
c

1

max

W

...

Feature
extraction

Model
prediction

Benjamini-Yakutieli
Procedure

Figure 3·1: Our anomaly diagnosis framework. In the offline training
phase, we use resource usage and performance data from known healthy
and anomalous runs to identify statistical time series features that are
useful to distinguish anomalies. The selected features are then used
by machine learning algorithms to extract concise anomaly signatures.
At runtime, we generate features from the recently observed resource
usage and performance data, and predict the anomalies using the ma-
chine learning models. We raise an anomaly alarm only if the anomaly
prediction is persistent across multiple sliding windows.

the same job. Using the data collected from known healthy and anomalous runs, we

extract and identify the statistical features that are useful to detect these anomalies.

Then, based on these features, we use machine learning algorithms to extract concise

anomaly signatures. At runtime, we monitor the compute nodes and extract only

the statistical features that are required for anomaly detection, and compare these

features with the anomaly signatures. The remainder of this section explains these

steps in detail.

Monitoring and Feature Extraction

We leverage data that is already periodically collected in HPC systems to assess

system health. This data typically consists of time series of resource usage and per-

25

formance metrics such as CPU utilization, number of network packets received, and

power consumption. Our framework does not depend on a specific set of collected

metrics and can be coupled with a variety of HPC monitoring tools such as Ganglia1.

For each collected metric, we keep track of the recently observed W values in a

sliding window time series, and calculate the following statistical features:

• The minimum and the maximum values;

• Percentile values (5th, 25th, 50th, 75th, and 95th);

• The first four moments (i.e., mean, variance, skewness, and kurtosis).

The above features retain the time series characteristics and bring substantial

computational and storage savings compared to directly using the raw values. To

enable easy scaling, we extract these statistical features from individual compute

nodes and do not account for the interaction and correlation between multiple nodes.

In each measurement time step, the features are calculated in at most O(logW)

computational complexity for a sliding window size of W . With a constant and small

W , this enables us to generate features at runtime with negligible overhead. The value

of W is determined offline based on the target anomalies and the sampling frequency

of the monitoring infrastructure (see Sec. 3.1.3 for details). While using a large

window size typically makes anomaly detection easier, it delays anomaly detection.

Feature Selection

HPC system monitoring infrastructures may collect hundreds of resource usage and

performance metrics per compute node (Agelastos et al., 2014). Performing anomaly

diagnosis based on only a subset of these metrics and calculating only the statistical

1Ganglia monitoring system: ganglia.info

26

features that are useful for diagnosis can save significant computational overhead.

Furthermore, feature selection can improve the accuracy of classification algorithms.

During training, we first generate all features, and then identify the features that

are useful for anomaly detection using the Kolmogorov-Smirnov (KS) test (Massey Jr,

1951) together with the Benjamini-Yakutieli procedure (Benjamini and Yekutieli,

2001). This methodology has been shown to be successful for selection of time series

features for regression and binary classification (Christ et al., 2016).

For a given feature that is extracted from an anomalous node, the KS test com-

pares the cumulative distribution function (CDF) of that feature with the CDF of the

same feature when running the same application without any anomaly. The diver-

gence of these two CDFs is an indication of the statistical dependence of that feature

and the anomaly (see the feature selection step in Fig. 3·1). Based on comparing the

two CDFs, the KS test provides a p-value, which quantifies the probability of the

given feature being relevant for the prediction of the target anomaly.

The p-value of each feature is then used in the Benjamini-Yakutieli procedure.

The Benjamini-Yakutieli procedure determines the number of features to select based

on a given expected false discovery rate (FDR), which is the proportion of useful

features among all discarded features. As discussed in Sec. 3.1.3 in detail, the FDR

parameter has negligible impact on the number of features selected in our dataset.

The feature selection methodology described above has been proposed for binary

classification (Christ et al., 2016). We adapt this methodology for anomaly diagnosis

via multi-class classification as follows: We select the useful features for each anomaly-

application pair in the training data. We then use the union of the selected features

to train machine learning models. This way, even if a feature is useful only to detect

a specific anomaly when running a specific application, that feature is included in our

analysis.

27

Model Training

We generate the selected features using the data collected from the individual nodes

that are used in the known healthy and anomalous runs. We use these features to

train supervised machine learning models where the label of each node is given as the

type of the observed anomaly on that node (or healthy). In the absence of labeled

data for anomalies, the training can be performed using data collected while running

a diverse set of applications with synthetic anomalies, which are programs that mimic

real-life anomalies.

With training data from a diverse set of applications that represent the expected

workload characteristics in the target HPC system, machine learning algorithms ex-

tract the signatures of anomalies independent of the applications running on the

compute nodes. This allows us to identify previously observed anomaly signatures on

compute nodes even when the nodes are running an unknown application that is not

used during training. Hence, our framework does not need any application-related

information from workload managers such as Slurm2.

We focus on tree-based machine learning models in our framework based on the

following three observations: First, our earlier studies demonstrated that tree-based

machine learning algorithms are superior for detecting anomalies in HPC systems

compared to algorithms such as SVM and kNN (Tuncer et al., 2017a). Second, tree-

based algorithms, in general, generate easy-to-understand models that lend them-

selves to scrutinization by domain experts as opposed to models that provide low

observability into their decision process and reasoning (such as neural networks).

Third, tree-based models allow us to further reduce the set of features that needs to

be generated as follows: For each feature, the learning algorithms calculate how well

the feature distinguishes individual classes in the training data using the Gini index

2Slurm Workload Manager: https://slurm.schedmd.com/

28

criterion, and discard the features that are not helpful for the classification. Hence, at

runtime, we calculate only the features that are selected by both the feature selection

phase and the learning algorithms, further reducing the computational overhead.

Runtime Diagnosis

At runtime, we monitor resource usage and performance metrics from individual

nodes. In each monitoring time step, we use the last W collected metric data to

generate the sliding window features that are selected during the training phase.

These features are then used by the machine learning models to predict whether each

node is anomalous along with the type of the anomaly.

As our goal is to detect anomalies that cause performance variations, raising a false

anomaly alarm may waste the time of system administrators or even cause artificial

performance variations if the anomaly alarm initiates an automated mitigative action.

Hence, avoiding false alarms is more important for us than missing anomalies.

To increase robustness against false alarms, we do not raise an alarm when a node

is predicted as anomalous based on data collected from a single sliding window. In-

stead, we consider an anomaly prediction as valid only if the same prediction persists

for C consecutive sliding windows. Otherwise, we label the node as healthy. Increas-

ing the parameter C, which we refer to as the confidence threshold, decreases the

number of false anomaly alarms while delaying the detection time. We empirically

select a confidence threshold as described in Sec. 3.1.3.

3.1.2 Experimental Methodology

Due to the lack of published and comprehensive labeled data on application resource

usage patterns with and without anomalous behavior, we evaluate the efficacy of

our framework by running controlled experiments on an HPC testbed. We mimic

anomalies observed in this testbed by running synthetic programs simultaneously

29

with various HPC applications, and diagnose the anomalies using our framework and

selected baseline techniques. This section presents the details on our target HPC

testbed as well as the synthetic anomalies and the applications we use.

Large-scale Systems Used for Experiments

We evaluate our framework primarily on Volta, a Cray XC30m testbed supercom-

puter, located at Sandia National Laboratories. In addition, we show that our frame-

work is applicable in different types of data centers by diagnosing anomalies on a

virtualized cluster in Massachusetts Open Cloud (MOC)3.

Volta: Volta consists of 52 compute nodes, organized in 13 fully connected switches

with 4 nodes per switch. Each node has 64GB of memory and two sockets, each with

an Intel Xeon E5-2695 v2 CPU with 12 2-way hyper-threaded cores, leading to a total

of 48 threads per node.

Volta is monitored by the Lightweight Distributed Metric Service (LDMS) (Age-

lastos et al., 2014). At every second, LDMS collects 721 metrics described below:

• Memory metrics (e.g., free, cached, active, inactive, dirty memory);

• CPU metrics (e.g., per-core and overall idle time, I/O wait time, hard and soft

interrupt counts, context switch count);

• Virtual memory statistics (e.g., free, active/inactive pages; read/write counts);

• Cray performance counters (e.g., power consumption, dirty, write-back counters;

received/transmitted bytes/packets);

• Aries network interface controller counters (e.g., received/transmitted packets,

flits, blocked packets).

3Massachusetts Open Cloud: https://massopen.cloud/

30

Out of the collected 721 metrics, we discard 158 metrics that provide system

constants such as the memory page size. In addition, we convert the metrics that

are incremental counters to the number of events that occurred over the sampling

interval (e.g., interrupts per second) by taking their derivative.

MOC: MOC is an infrastructure as a service (IaaS) cloud running in the Mas-

sachusetts Green High Performance Computing Center, which is a 15 megawatt data

center dedicated for research purposes.

In MOC, we use virtual machines (VMs) managed by OpenStack4, where the

compute nodes are VMs running on servers which communicate through the local area

network. Although we take measurements from the VMs, we do not have control or

visibility over other VMs running on the same host. Other VMs naturally add noise

to our measurements, making anomaly detection more challenging.

We periodically collect resource usage data using the monitoring infrastructure

built in MOC (Turk et al., 2016). Every 5 seconds, we collect 53 metrics, which are

subset of node-level metrics read from the Linux /proc/stat and /proc/meminfo

pseudo-files as well as iostat and vmstat tools. The specific set of collected metrics

are selected by MOC developers and can be found in the public MOC code repository5.

Applications

As the impact of performance anomalies are especially high for parallel HPC applica-

tions, we evaluate our framework using a diverse set of HPC benchmark applications

with which we can obtain 10-15 minute running times using three different input

configurations. This running time range is a typical average for the jobs submitted

to various supercomputers (Feitelson et al., 2014).

4OpenStack: https://www.openstack.org/
5MOC Sensu-Puppet module: github.com/CCI-MOC/kilo-puppet/tree/liberty/sensu

31

Table 3.1: Applications used in evaluation

Benchmark Application # of MPI
ranks Description

NAS
Parallel

Benchmarks
(Bailey et al., 1991)

bt 169 Block tri-diagnonal solver
cg 128 Conjugate gradient
ft 128 3D fast Fourier transform
lu 192 Gauss-Seidel solver
mg 128 Multi-grid on meshes
sp 169 Scalar penta-diagonal solver

Mantevo miniMD 192 Molecular dynamics
Benchmark CoMD 192 Molecular dynamics

Suite miniGhost 192 Partial differential equations
(Heroux et al., 2009) miniAMR 192 Stencil calculation

Other kripke 192 Particle transport
(Kunen et al., 2015)

Table 3.1 presents the applications we use in our evaluation. The NAS Parallel

Benchmarks (NPB) are widely used by the HPC community as a representative set

of HPC applications. The Mantevo Benchmark Suite is developed by Sandia Na-

tional Laboratories as proxy applications for performance and scaling experiments.

These applications mimic the computational cores of various scientific workloads. In

addition, we use kripke, which is another proxy application developed by Lawrence

Livermore National Laboratory for the analysis of HPC system performance. All

applications in Table 3.1 use MPI for inter-process and inter-node communication.

On our target platforms, we submit parallel applications that use four compute

nodes, where the nodes are utilized as much as possible by using one MPI rank per

core. In bt and sp applications, we do not fully utilize the compute nodes as these

applications require the total number of MPI ranks to be the square of an integer.

Similarly, cg, ft, and mg require the total number of MPI ranks to be a power of two.

In addition to the 4-node application runs, we experiment with 32-node runs with

four applications (kripke, miniMD, miniAMR, and miniGhost), with which we can

obtain 10-15 minute running times for two input configurations. Using these 32-

node runs, we show that our framework can diagnose anomalies when running large

32

applications after being trained using small applications (see Sec. 3.1.3).

In our experiments, each application has three different input configurations, re-

sulting in a different running time and resource usage behavior. For example, in

miniMD, which is a molecular dynamics application that performs the simulation of

a Lennard-Jones system, one input configuration uses the values of certain physical

constants, while another configuration replaces all constants with the integer 1 and

performs a unitless calculation.

The runs of the same application with the same input configuration leads to

slightly different behavior as the benchmarks randomize the application input data

and also due to the differences in the compute nodes allocated by the system software.

Hence, we repeat each application run five times with the same input configuration

but with different randomized input data and on different compute nodes.

Before generating features from an application run, we remove the first and last 30

seconds of the collected time series data to strip out the initialization and termination

phases of the application. Note that larger applications may need a duration longer

than 30 seconds to initialize or to terminate.

Synthetic Anomalies

The goal of our framework is to characterize and identify the signatures of previously

observed anomalies. To evaluate our approach with controlled experiments, we design

synthetic anomalies that mimic commonly observed performance anomalies caused

by application- or system-level issues.

As shown in Table 3.2, we experiment with three types of anomalies. Orphan

processes typically result from incorrect job termination. These processes continue

to use system resources until their execution is completed or until they are forcefully

killed by an external signal (Brandt et al., 2010; Brandt et al., 2009). Out-of-memory

problems occur due to memory leaks or insufficient available memory on the compute

33

Table 3.2: Injected synthetic performance anomalies

Anomaly type Synthetic anomaly name Target subsystem

Orphan process/
CPU contention

dcopy CPU, cache

dial CPU

Out-of-memory
leak memory

memeater memory

Resource contention linkclog network

nodes (Agelastos et al., 2015). When there is not enough memory, the Linux out-

of-memory killer will terminate jobs. Finally, contention of shared resources such as

network links can significantly degrade performance (Bhatelé et al., 2013).

For each anomaly, we use six different anomaly intensities (2%, 5%, 10%, 20%,

50%, and 100%) to create various degrees of performance variation. We adjust the

maximum intensities of orphan process and resource contention anomalies such that

the anomaly increases the running time of the applications at most by 3X, which is

in line with the performance variation observed in production systems (Skinner and

Kramer, 2005). The intensity of the out-of-memory anomalies are limited by the

available memory in the system, and add up to 10% overhead to the job running time

without terminating the job. We do not mimic job termination due to out-of-memory

errors as we primarily focus on performance variation rather than failures. We use

the following programs to implement our synthetic anomalies:

1. dcopy allocates two equally sized matrices of double type, fills one matrix with

a number, and copies it to the other matrix repeatedly, simulating CPU and

cache interference. After 109 write operations, the matrix size is changed to cycle

between 0.9, 5 and 10 times the sizes of each cache level when the intensity is

100%. The anomaly intensity scales the sizes of the matrices.

2. dial stresses a single CPU core by repeatedly generating random floating-

point numbers and performing arithmetic operations. The intensity sets

34

the utilization of this process: Every 0.25 seconds, the program sleeps for

0.25× (1− intensity) seconds.

3. leak allocates a 200KB char array, which is scaled by the anomaly intensity. It

fills this array with characters, sleeps for two seconds, and repeats the process.

The allocated memory is never released, leading to a memory leak. After 10 iter-

ations, the program restarts to avoid crashing the main program by consuming

all available memory.

4. memeater allocates a 360KB int array, which is scaled by the anomaly intensity.

It fills this array with random integers, and periodically increases the size of the

array using realloc and fills in new elements. After 10 iterations, the program

sleeps for 120 seconds and then restarts.

5. linkclog adds a delay before MPI messages sent out of and into the selected

anomalous node by wrapping MPI functions. The duration of this delay is

proportional to the message size and the anomaly intensity. We emulate network

contention using message delays rather than using external jobs with heavy

communication. This is because Volta’s size and flattened butterfly network

topology with fully-connected routers prevent us from clogging the network

links with external jobs.

As discussed in detail in Sec. 3.1.3, our synthetic anomalies have different char-

acteristics, allowing us to study various aspects of online anomaly diagnosis such as

window size selection, feature selection, and sensitivity against anomaly intensities.

We perform our evaluation under two scenarios: (1) persistent anomalies, where

an anomaly program executes during the entire application run, and (2) random-offset

anomalies, where an anomaly starts at a randomly selected time while the application

35

is running. In the latter scenario, each application has two randomly selected anomaly

start times throughout our experiments.

Implementation Details

We implement our framework in python. We use the SciPy package for the imple-

mention of the KS test during feature selection and the scikit-learn package for the

machine learning algorithms. We use three tree-based machine learning classifiers:

decision tree, adaptive boosting (AdaBoost), and random forest. In scikit-learn, the

default parameters of these classifiers are tuned for a smaller feature set compared to

ours. Hence, we increase the number of decision trees in AdaBoost and random forest

classifiers to one hundred and set the maximum tree depth in AdaBoost to five. To

avoid overfitting to our dataset, we do not extensively tune the classifier parameters.

While training the classifiers and the baseline techniques, we use periodic time

series windows instead of sliding windows. This allows us to perform our extensive

evaluation using hundreds of distinct training sets within a feasible total training

duration. In a production environment, the models need to be trained only once

unless the training set is expanded.

Evaluation Methodology

We collect resource usage and performance counter data during the following appli-

cation runs: We run each application with three different input configurations and

five repetitions for each input configuration. For each of these application runs, we

inject one synthetic anomaly to one of four nodes used by the application during the

entire run. We repeat these runs for every anomaly and three anomaly intensities

(20%, 50%, and 100%) for each anomaly. For each above application run, we repeat

the same run without any anomaly to generate a healthy data set. In total, the above

experiments correspond to 11× 3× 5× 5× 3× 2 = 4950 four-node application runs.

36

We use five fold stratified cross validation to divide the collected data into disjoint

training and test sets as follows: We randomly divide our application runs into five

disjoint equal-sized partitions where each partition has a balanced number of appli-

cation runs for each anomaly. We use four of these partitions to train our framework

and the baseline techniques, and the fifth partition for testing. We repeat this proce-

dure five times where each partition is used once for testing. Furthermore, we repeat

the entire analysis five times with different randomly-generated partitions.

Across all test sets, we calculate the following statistical measures to assess how

well the anomaly detection techniques distinguish healthy and anomalous time win-

dows from each other:

• False alarm rate: The percentage of the healthy windows that are predicted as

anomalous (any anomaly type).

• Anomaly miss rate: The percentage of the anomalous windows that are pre-

dicted as healthy.

Additionally, we use the following measures for each anomaly type to assess how

well the anomaly detection techniques diagnose different anomalies:

• Accuracy : The fraction of correct predictions to all predictions.

• Precision: The fraction of the number of windows correctly predicted with an

anomaly type to the number of all predictions with the same anomaly type.

• Recall : The fraction of the number of windows correctly predicted with an

anomaly type to the number of windows with the same anomaly type.

• F-Score: The harmonic mean of precision and recall.

• Overall F-Score: The F-score calculated using the weighted averages of precision

and recall, where the precision and recall of each class is weighted by the number

37

of instances of that class. A näıve classifier that marks every window as healthy

would achieve an overall F-score of 0.87 as approximately 87% of our data set

consists of healthy windows.

We also evaluate the robustness of our anomaly detection framework against un-

known anomaly intensities, where the framework is trained using certain anomaly

intensities and tested with the remaining intensities. Additionally, we use the same

approach for unknown application input configurations and unknown applications to

show that we can detect anomaly signatures even when running an application that

is not encountered during training.

In addition to the analyses using five fold stratified cross-validation, we perform

the following three studies where our framework is trained with the entire data set

used in the previous analyses: First, we demonstrate that our approach is not specific

to four-node application runs by diagnosing anomalous compute nodes while running

32-node applications. Second, we evaluate our framework when running anomalies

with low intensities (2%, 5%, and 10%), and demonstrate that we can successfully

detect signatures of anomalies even when the anomaly intensities are lower than that

observed during training. Third, we start synthetic anomalies while an application is

running and measure the detection delay.

Baseline Methods

We implement two state-of-the-art algorithms for HPC anomaly detection as baselines

to compare with our work: an independent component analysis based approach de-

veloped by Lan et al. (Lan et al., 2010), referred as “ICA-Lan”, and a threshold-based

fingerprinting approach by Bodik et al. (Bodik et al., 2010), referred as “FP-Bodik”.

ICA-Lan: ICA-Lan (Lan et al., 2010) relies on Independent Component Analysis

(ICA) (Comon, 1994) to detect anomalies on HPC systems. During training, ICA-

Lan first normalizes the collected time series metrics and applies ICA to extract the

38

independent components of the data. Each of these features is a linear combination of

the time series data of all metrics within a sliding window, where the coefficients are

determined by ICA. ICA-Lan then constructs feature vectors composed of the top m

independent components for each node and each sliding window.

To test for anomalies in an input sliding window, ICA-Lan constructs a feature

vector with the coefficients used during training, and compares the Euclidean distance

between the new feature vector and all the feature vectors generated during training.

If the new feature vector is an outlier, the input is marked as anomalous. In the

original paper (Lan et al., 2010), ICA-Lan can tell only whether a node is anomalous

or not without classifying the anomaly. In our implementation, we generalize this

method by replacing their distance-based outlier detector with a kNN (k Nearest

Neighbor) classifier.

The original implementation of ICA-Lan uses the top m = 3 independent com-

ponents. However, in Volta, we collect more than 25 times the number of metrics

used in Lan et al.’s study. Hence, we need more independent components to capture

the important features. As Lan et al. do not provide a methodology to select m, we

study anomaly classification accuracy when using m within the [3-20] range on both

Volta and MOC platforms.

As shown in Figure 3·2, while using m = 3 results in poor prediction performance

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N (# of independent components)

90
92
94
96
98

100

A
cc

u
ra

cy
 (

%
)

Platform 1 (Volta) Platform 2 (MOC)

Figure 3·2: Classification accuracy of ICA-Lan w.r.t. number of inde-
pendent components used in the algorithm. The data is obtained when
using NPB applications (Tuncer et al., 2017a).

39

in Volta, the accuracy does not improve significantly for m > 4. m = 7 and m = 12

provide the highest accuracy on Volta and MOC, respectively. We settle on m = 10

as it provides a good middleground value that results in high accuracy.

FP-Bodik: FP-Bodik (Bodik et al., 2010) uses common statistical features and

relies on thresholding to compress the collected time series data into feature vectors

called fingerprints. Specifically, FP-Bodik first selects the metrics that are important

for anomaly detection using logistic regression with L1 regularization. FP-Bodik then

calculates the 25th, 50th, and 95th percentiles of the selected time series metrics for each

node and each sliding time series window. Then, a healthy range of these percentiles

are identified from the healthy runs in the training phase. Next, each percentile

is further replaced by a tripartite value (-1, 0, or 1) that represents whether the

observed value is below, within, or beyond the healthy range, respectively. FP-Bodik

constructs fingerprints that are composed of all the tripartite values for each node

and each monitoring window. Finally, the fingerprints are compared to each other,

and a fingerprint is marked as anomalous whenever its closest labeled fingerprint (in

terms of L2 distance) belongs to an anomaly class.

3.1.3 Results

In this section, we first describe our parameter selection for sliding time series win-

dow size (W), the false discovery rate (FDR) during feature selection, and the con-

fidence threshold (C). We then compare different anomaly detection and diagnosis

methodologies in terms of classification accuracy and robustness against unknown

applications and anomaly intensities that are not encountered during training. We

demonstrate the generality of our framework by diagnosing anomalies during large

application runs. Finally, we study the anomaly detection delay and the resource

requirements of different diagnosis methodologies.

40

15 30 45 60 90 120
window size (sec)

0.90
0.92
0.94
0.96
0.98
1.00

Ov
er

al
l F

-s
co

re

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

Figure 3·3: The impact of window size on the overall F-score. The
classification is less effective with small window sizes where a window
cannot capture the patterns in the time series adequately.

Window Size Selection

As discussed in Sec. 3.1.1, the size of the time series window that is used to generate

statistical features may affect the efficacy of anomaly detection. While using a large

window size allows capturing longer time series signatures in a window, it delays the

anomaly detection.

Figure 3·3 shows the impact of window size on the overall F-score of baseline

algorithms as well as our proposed framework with three different classifiers. The

results presented in the figure is obtained using all features (i.e., without the feature

selection step).

While the impact of window size on the overall F-score is below 3%, the F-scores of

most classifiers tend to decrease with decreasing window size as small windows cannot

capture the time series behavior adequately. The impact of the window size depends

on the anomaly characteristics. This can be seen in Fig. 3·4, which depicts the per-

class F-scores of the AdaBoost classifier for different window sizes. The F-score for the

memeater anomaly decreases significantly with the decreasing window size. This is

because the behavior of application runs with memeater is very similar to the healthy

41

15 30 45 60 90 120
window size (sec)

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
sc

or
e

dcopy
dial

linkclog
leak

memeater
healthy

Figure 3·4: The impact of window size on the per-class F-scores of
the AdaBoost classifier. The F-score of memeater anomaly decreases
significantly as windows get shorter.

application behavior during memeater ’s sleep phase, which is 120 seconds. Hence, as

the window size gets smaller, more windows occur entirely within memeater ’s sleep

phase both in the training and the testing set, confusing the classifier on memeater ’s

signature. The reduction in the F-score of the healthy class due to this confusion

is less significant than that of the memeater class because our dataset has 42 times

more healthy windows than windows with memeater.

The window size in our framework needs to be determined based on the nature of

the target anomalies and the system monitoring infrastructure. Based on the results

in Figures 3·3 and 3·4, we conclude that a 45-second window size is a reasonable

choice to accurately detect our target anomalies while keeping the detection delay

low. For the rest of this section, we use a window size of 45 seconds.

Feature Selection

Feature selection is highly beneficial for reducing the computational overhead needed

during online feature generation. Our framework’s feature selection methodology

identifies 43-44% of the 6193 features we generate as useful features to identify our

target anomalies for an expected False Discovery Rate (FDR) range between 0.01%

42

dcopy dial linkclog leak memeater
anomaly

 20%
 25%
 30%
 35%
 40%
 45%

%
 o

f s
el

ec
te

d
fe

at
ur

es

bt
cg

ft
lu

mg
sp

kripke
CoMD

miniAMR
miniMD

miniGhost

Figure 3·5: The percentage of features selected for different
application-anomaly pairs. Less than 28% of the features are useful
for the detection of target anomalies except for linkclog, where up to
41% of the features are useful depending on the running application.

and 10%. As the FDR parameter has a negligible impact on the number of selected

features, we simply use FDR = 1%.

Figure 3·5 shows the percentage of selected features for each application-anomaly

pair. While less than 28% of the features are identified as useful for detecting dcopy,

dial, leak, and memeater anomalies, up to 41% of the features can be used as indi-

cators of linkclog. For the applications where the linkclog anomaly is detrimental for

performance such as miniMD, more features are marked as useful. This is because

the resource usage patterns of such applications change significantly when suffering

from linkclog. On the other hand, applications such as bt and sp are not affected

by linkclog as they either have a light communication load or use non-blocking MPI

communication. Fewer features are marked as useful for such applications. Overall,

43% of features are marked as useful, reducing the computational overhead of feature

generation at runtime by more than 50%.

Using a reduced feature set can also improve the effectiveness of certain machine

learning algorithms. For example, random forest contains decision trees that are

trained using a subset of randomly selected features. In the absence of irrelevant

features, the effectiveness of random forest slightly increases as shown in Table 3.3.

43

Table 3.3: The impact of feature selection on anomaly detection.
The effectiveness of random forest improves when using
only the selected features.

False alarm rate Anomaly miss rate

All
features

Selected
features

All
features

Selected
features

Decision tree 1.5% 1.5% 2.0% 2.0%
AdaBoost 0.8% 0.8% 1.9% 1.9%

Random forest 0.2% 0.1% 1.8% 1.4%

1 2 3 4 5 6 7 8 9 10
Number of consecutive windows that are consistently

misclassified as the same anomaly (or healthy)

0.0
0.1
0.2
0.3
0.4
0.5

Fr
ac

tio
n

of
m

isc
la

ss
ifi

ca
tio

ns

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

Figure 3·6: Distribution of consecutive misclassifications. Most mis-
classifications do not persist for more than a few consecutive windows.

The effectiveness of other learning algorithms such as decision tree and AdaBoost are

not impacted by feature selection as feature selection is embedded in these algorithms.

The Impact of the Confidence Threshold

As shown in the Fig. 3·6, the majority of the misclassifications persist only for a few

consecutive windows in all classifiers. To reduce false anomaly alarms, we filter out

the non-persistent misclassifications using a confidence threshold, C. A prediction is

considered as valid only if it persists for C consecutive windows.

Figure 3·7 shows the change in the false anomaly alarm rate and the anomaly miss

rate when using various confidence thresholds. Using C = 5 reduces the false alarm

rate by 23-44% when using the machine learning algorithms and by 25-69% when using

44

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%

Fa
lse

 a
la

rm
 ra

te

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

1 2 3 4 5 6 7 8 9 10
Confidence threshold

 0%
10%
20%
30%
40%
50%

An
om

al
y

m
iss

 ra
te

Figure 3·7: The impact of confidence threshold on the false alarm
rate. Filtering out non-persistent anomaly predictions using a confi-
dence threshold reduces the false alarm rate while increasing anomaly
miss rate.

the baseline anomaly detection algorithms. On the other hand, the anomaly miss rate

increase by 15-30% and 6-34% when using the machine learning algorithms and the

baselines, respectively. To keep the anomaly detection delay low while decreasing the

false alarm rate in all classifiers, we use a confidence threshold of C = 5.

Anomaly Detection and Classification

Figure 3·8 presents the false positive and negative rates for anomaly detection as well

as F-scores for the anomaly types we study for the 5-fold stratified cross validation.

Our proposed machine learning based framework consistently outperforms the base-

line techniques in terms of anomaly miss rate and F-scores. While the FP-Bodik

baseline can achieve fewer false alarms, it misses nearly a third of the anomalies.

As decision tree is a building block of AdaBoost and random forest, it is simpler

and consistently underperforms AdaBoost and random forest as expected. The best

45

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

False
alarm
rate

Anomaly
miss
rate

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0% 4

7%
 3

2%

(a) Detection

dcopy dial
linkclog leak

memeater

Anomaly

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

(b) Diagnosis

Figure 3·8: Anomaly detection and diagnosis statistics of various
classifiers using 5-fold stratified cross-validation. Random forest cor-
rectly identifies 98% of the anomalies while leading to only 0.08% false
anomaly alarms.

overall performance is achieved using random forest, which misses only 1.7% of the

anomalous windows and classifies the target anomalies nearly ideally. It raises false

anomaly alarms only for 0.08% of the healthy windows.

Note that the false anomaly alarm rate can be reduced further by adjusting the

confidence threshold as well as by tuning the parameters of machine learning algo-

rithms. However, even with a false anomaly alarm rate of 0.08%, our framework can

be used in a production environment with thousands of nodes to help administrators

diagnose the root cause of performance anomalies observed in the system.

The F-scores corresponding to memeater are lower than those for other anomalies

as the classifiers tend to mispredict memeater as healthy (and vice versa) during the

sleep phase of memeater, where its behavior is similar to healthy application runs.

Due to the randomized feature selection in random forest, random forest also uses the

features that are not the primary anomaly indicators but are still helpful on anomaly

detection. Thus, random forest is more robust against noise in the data, and can still

detect memeater where other classifiers are unsuccessful. Also note that the memeater

46

anomaly degrades performance only by up to 10% while the dcopy, dial, and linkclog

anomalies can degrade application performance by up to 300%. Hence, the detection

of memeater is harder but is also less critical compared to other anomalies.

As shown in Fig. 3·8, FP-Bodik misses nearly a third of the anomalous windows.

This is because even though FP-Bodik performs metric selection through L1 regular-

ization, it gives equal importance to all the selected metrics. However, metrics should

be weighted for robust anomaly detection. For instance, network-related metrics

are more important for detecting network contention than memory-related metrics.

Tree-based machine learning algorithms address this problem by prioritizing certain

features through putting them closer to the root of a decision tree. Another reason

for FP-Bodik’s poor anomaly miss rate is that FP-Bodik only uses 25th, 50th, and

95th percentiles in the time series data. Other statistics such as variance and skew

are also needed to capture more complex patterns in the time series.

The F-scores achieved by ICA-Lan is lower than that of both FP-Bodik and

our proposed framework primarily due to ICA-Lan’s feature extraction methodol-

ogy. ICA-Lan uses ICA to extract features from time series. This technique is com-

monly used for data analysis to reduce data dimensionality, and provides features that

represent the independent components of the data. While these features successfully

represent deviations, they are not necessarily able to capture anomaly signatures. We

illustrate this by comparing the features and metrics that are deemed as important

by ICA-Lan and random forest.

The most important ICA-Lan metrics are those with the highest absolute weight

in the first ten independent components. In our models, the most important ICA-Lan

metrics are the time series of idle time spent in various CPU cores. Idle CPU core

time is indeed independent from other metrics in our data as some of our applications

do not use all the available CPU cores in a node (see Sec. 3.1.2), and the decision

47

on which cores are used by an application is governed by the operating system of the

compute nodes.

The most important random forest features are those that successfully distinguish

different classes in the training data and are reported by the python scikit-learn

package based on the normalized Gini reduction brought by each feature. In our

random forest models, the most important features are calculated from time series

metrics such as the number of context switches, the number of bytes and packets

transmitted by fast memory access short messaging (a special form of point-to-point

communication), total CPU load average, and the number of processes and threads

created. These metrics are indeed different from those deemed important by ICA-

Lan, indicating that the most important ICA-Lan metrics are not necessarily useful

to distinguish anomalies.

Classification with Unknown Input Configurations

In a real supercomputer, it is not possible to know all input configurations for given

applications during training. Hence, we evaluate the robustness of anomaly diagno-

sis when running applications with unknown input configurations that are not seen

during training. For this purpose, we train our framework and the baseline tech-

niques using application runs with certain input configurations and test only using

the remaining input configurations.

Figure 3·9 shows F-scores for each anomaly obtained during our unknown input

configuration study. Except for the memeater anomaly, our approach can diagnose

anomalies with over 0.8 F-score even when the behavior of the applications are dif-

ferent than that observed during training due to the unknown input configurations.

The F-scores tend to decrease when more input configurations are unknown.

There are two reasons for the decreasing F-scores: First, removing certain input

configurations from the training set reduces the training set size, resulting in a less

48

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

dco
py dia

l

link
clo

g
lea

k

mem
ea

ter

Anomaly

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

(a) One unknown
input configuration

dco
py dia

l

link
clo

g
lea

k

mem
ea

ter

Anomaly

(b) Two unknown
input configurations

Figure 3·9: Anomaly diagnosis statistics when the training data ex-
cludes certain unknown input configurations for each application and
the testing is done using only the excluded input configurations.

detailed modeling of the anomaly signatures. Second, the behavior of an application

with an unknown input configuration may be similar to an anomaly, making diagnosis

more difficult. One such example is the memeater anomaly, where healthy application

runs with certain unknown input configurations are predicted as memeater by the

classifiers.

Classification with Unknown Applications

In a production environment, we expect to encounter applications other than those

used during offline training. To verify that our framework can diagnose anomalies

when running unknown applications, we train our framework and the baseline tech-

niques using all applications except for one application that is designated as the

unknown application, and test using only that unknown application.

Figure 3·10 presents the anomaly detection results when we repeat this proce-

dure where each applications is selected once as the unknown application. With

the AdaBoost and random forest classifiers, the proposed framework achieves over

49

bt cg ft lu mg sp

miniM
D
CoM

D

miniG
ho

st

miniA
MR

kri
pk

e
mea

n

Unknown application

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%

An
om

al
y

m
iss

 ra
te

 0%
 5%

 10%
 15%
 20%
 25%
 30%
 35%
 40%

Fa
lse

 a
la

rm
 ra

te

 9
9%

 9
7%

 5
3%

 5
6%

0.0
0.2
0.4
0.6
0.8
1.0

Ov
er

al
l F

-s
co

re

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

Figure 3·10: Anomaly detection and diagnosis statistics when the
training data excludes one application and the testing is done using
only the excluded unknown application. With the proposed framework,
random forest achieves over 0.97 F-score on the average.

0.94 average F-score, while the average F-score of ICA-Lan is below 0.65. FP-Bodik

achieves a similar F-score but misses 44% of the anomalous windows when unknown

applications are running.

With random forest, the false alarm rate stays below 5% in all cases except when

the unknown application is ft or sp. This rate can be further reduced by increasing

the confidence threshold, C, at the expense of delaying anomaly detection.

When the characteristics of applications are significantly different than those ob-

50

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

dco
py dia

l

link
clo

g
lea

k

mem
ea

ter

Anomaly

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

(a) One unknown
anomaly intensity

dco
py dia

l

link
clo

g
lea

k

mem
ea

ter

Anomaly

(b) Two unknown
anomaly intensities

Figure 3·11: Anomaly diagnosis statistics when the training data
excludes certain unknown anomaly intensities and the testing is done
using only the excluded anomaly intensity.

served during training, the classifiers mispredict the healthy behavior of these appli-

cations as one of the anomalies. When such cases are encountered, the framework

should be re-trained with a training set that includes the healthy resource usage

and performance data of these applications. False alarm rates tend to increase with

unknown applications as unknown applications lead to inconsistent consecutive pre-

dictions, which are filtered out during testing. Based on these results, we observe

that our approach is robust against unknown applications.

Classification with Unknown Anomaly Intensities

We also study how the diagnosis effectiveness is impacted by unknown anomaly in-

tensities where we use distinct anomaly intensities during training and the remaining

intensities during testing. Figure 3·11 shows the F-scores for different anomalies

with unknown intensities. High F-scores indicate that the anomaly signatures do not

change significantly when their intensity changes, and our proposed framework can

successfully diagnose anomalies. For example, the memory usage gradually increases

51

with the leak anomaly in all intensities. Hence, leak can be detected based on the

skew in the time series of the allocated memory size metric.

The slight decrease in the F-scores is mainly caused by the reduction in the training

set. In the dial anomaly, however, the intensity determines the utilization of the

anomaly program. That means with an intensity of 20%, the anomaly sleeps 80% of

the time, minimizing its impact on the application performance as well as its signature

in resource usage patterns. Hence, when trained with high intensities, the algorithms

tend to misclassify low intensity dial as healthy application behavior.

Diagnosing Anomalies with Low Intensities

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

wi
th

in
te

ns
ity

=1
0%

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

wi
th

in
te

ns
ity

=5
%

dcopy dial linkclog leak memeater
Anomaly

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

wi
th

in
te

ns
ity

=2
%

Figure 3·12: Anomaly diagnosis statistics when
the models are trained with anomaly intensities 10,
20, and 100, and tested with low intensities. Most
anomaly signatures are detected when the intensity
is lowered. In the dial anomaly, the intensity sets
the utilization of the synthetic anomaly program,
making it harder to detect with low intensities.

We study anomaly diagnosis ef-

fectiveness when the anomalies

have 1/10th of the intensities

we have used so far. In this

subsection, we train the frame-

work with the anomaly intensi-

ties 20%, 50%, and 100%, and

test with the anomaly intensities

2%, 5%, and 10%. Figure 3·12

shows the resulting per-anomaly

F-scores. In dcopy, leak, and

memeater, the intensity deter-

mines the size of the memory

used in the anomaly program.

With low anomaly intensities,

random forest diagnoses the sig-

natures of these anomalies with

52

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

False
alarm
rate

Anomaly
miss
rate

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0% 2

2%

 4
8%

 3
2%

(a) Detection

dcopy dial
linkclog leak

memeater

Anomaly

0.0
0.2
0.4
0.6
0.8
1.0

F-
sc

or
e

(b) Diagnosis

Figure 3·13: Anomaly detection and diagnosis statistics when the
models are trained with 4-node application runs and tested with 32-
node runs. The results are very similar to those with unknown input
configurations as the 32-node runs use input configurations that are not
used for training.

F-scores above 0.98. In the linkclog anomaly, the intensity determines the delay

injected into the MPI communication functions, which is detected even with low in-

tensities. In the intensity sets the utilization of the dial anomaly. As the intensity

drops, the impact of dial on the application performance and resource usage patterns

decreases, making it harder and also less critical to detect the anomaly.

Classification with Large Applications

Our framework can be used to diagnose anomalies when trained only with small ap-

plication runs. We demonstrate this by using all 4-node application runs for training

and 32-node runs for testing.

Figure 3·13 shows the detection and diagnosis statistics when running 32-node

applications. As our framework checks individual nodes for anomalies and does not

depend on how many nodes are being used in parallel by an application, the ap-

plication size has minimal impact on the F-scores. The decrease in the F-scores is

53

0
20
40
60
80

100
120

Av
er

ag
e

de
te

ct
io

n
de

la
y

(s
)

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

dcopy dial linkclog leak memeater
Anomaly

 0%
 10%
 20%
 30%
 40%
 50%

%
 o

f n
od

es
 w

ith
 a

n
un

de
te

ct
ed

 a
no

m
al

y

Figure 3·14: Anomaly detection delay and percentage of nodes with
undetected anomalies when anomalies start at a random time while the
application is running.

mainly because large application runs use input configurations that are unknown to

the trained models. Hence, the F-scores in Figure 3·13 are similar to those in Fig-

ure 3·9, where the classifiers are trained with certain input configurations and tested

with the remaining ones.

Diagnosis Delay

To analyze the delay during diagnosis, we use random-offset anomalies where the

anomaly starts at a randomly selected time while the application is running. For

each classifier, we record the time difference between the anomaly start time and the

first window where C consecutive windows are labeled as anomalous with the correct

anomaly type.

Figure 3·14 shows the diagnosis delay observed for each anomaly and each clas-

sifier as well as the fraction of the anomalies that are not detected until the appli-

cation execution finished. Random forest achieves only five to ten seconds of delay

54

Table 3.4: Single-threaded computational overhead of model training
and anomaly detection.

Training time using
the entire dataset

Testing time per sliding
window per node

Feature
generation
& selection

Model
training

Feature
generation

Model
comparison

ICA-Lan 10 days 30 s 62 ms 0.03 ms
FP-Bodik 5 days 10 mins 31 ms 148 ms

Decision tree 5 days 7 mins 4 ms 0.01 ms
AdaBoost 5 days 138 mins 13 ms 0.1 ms

Random forest 5 days 6 mins 13 ms 0.03 ms

while diagnosing linkclog and memeater. This delay is due to the fact that the pro-

posed framework requires C = 5 consecutive windows to be diagnosed with the same

anomaly before accepting that diagnosis. The delay is larger for other anomalies,

where the diagnosis is performed with statistics that slowly change as the 45-second

sliding window moves (e.g., mean and variance).

All of the nodes where the linkclog anomaly is not detected run bt and sp appli-

cations. These applications intensively use asynchronous MPI functions, which are in

general not affected by linkclog. Hence, the impact of linkclog on the running time of

bt and sp is negligible, and the detection of linkclog is harder for these applications.

Anomaly Diagnosis Framework Overhead

We assume that the node resource usage data is already being collected from the

target nodes for the purposes of checking system health and diagnostics. State-of-

the-art monitoring tools collect data with a sampling period of one second while using

less than 0.1% of a core on most compute nodes (Agelastos et al., 2014).

Table 3.4 presents the average training and testing time of the baseline techniques

as well as our framework with different machine learning algorithms when using a sin-

gle thread on an Intel Xeon E5-2680 processor. As seen in Table 3.4, all approaches

require the longest time for feature generation and selection. Note that feature gen-

55

eration and selection is an embarassingly-parallel process and is conducted only once

during training.

Decision tree and random forest classifiers are trained within ten minutes. Al-

though a random forest classifier consists of 100 decision trees, its training is faster

than the decision tree classifier. This is because random forest uses a subset of input

features for each of its decision trees whereas all features are used in the decision tree

classifier. The storage requirements for the trained models of decision tree, AdaBoost,

and random forest is a 25KB, 150KB, and 4MB, respectively, whereas the baseline

models both require approximately 60MB.

Detecting and diagnosing anomalies in a single sliding window of a single node

with AdaBoost and random forest takes approximately 13ms using a single thread,

which is negligible given that the window period is one second. Decision tree achieves

the smallest feature generation overhead because it uses only a third of the features

selected by our feature selection method (Sec. 3.1.1), whereas AdaBoost and random

forest use nearly all selected features.

FP-Bodik has the highest overhead for runtime testing. This is because FP-Bodik

calculates the L2 distance of the new fingerprint with all the fingerprints used for

training to find the closest fingerprint. While ICA-Lan has a similar process during

model prediction with kNN classification, the dimensionality of the space used in the

ICA-Lan (10) is significantly smaller than that of FP-Bodik (>1000), leading to a

much faster model prediction.

Anomaly Detection on the MOC

We use a virtual cluster in MOC to demonstrate that our framework is also appli-

cable on platforms that are fundamentally different than Volta. In this analysis, we

calculate the statistical features from a single time series window that contains the

entire application run as opposed to using sliding windows. In addition, instead of

56

ICA-Lan
FP-Bodik

Decision Tree
AdaBoost

Random Forest

0.88
0.90
0.92
0.94
0.96
0.98
1.00

Ov
er

al
l F

-s
co

re

(a) Volta

0.88
0.90
0.92
0.94
0.96
0.98
1.00

Ov
er

al
l F

-s
co

re

(b) MOC

Figure 3·15: Comparison of the overall F-scores achieved in Volta and
MOC platforms.

linkclog, we use the ddot anomaly: ddot allocates two equally sized matrices of double

type, fills them with a number, and calculates the dot product of the two matrices

repeatedly (Tuncer et al., 2017a).

Figure 3·15 shows the F-scores different classifiers achieve in both platforms. Our

framework consistently outperforms the baseline approaches and achieves an over-

all F-score above 0.97 in both platforms with random forest. F-scores are lower in

MOC for all classification algorithms. There are three main factors that can cause

the reduced F-scores in MOC: the number of collected metrics, sampling frequency,

and platform-related noise. To measure the impact of the metric set difference, we

manually choose 53 metrics from the Volta dataset that resemble MOC metrics based

on their description and re-run our analysis with the reduced metric set. We find that

reducing the metric set in Volta does not have a significant impact on the F-scores.

Next, we measure the impact of data collection period by artificially increasing it to

5 seconds on Volta; however, the impact on classification accuracy is negligible. As

a result of this analysis, we believe that the reduction in accuracy in MOC mainly

stems from the noise in the virtualized environment, caused by the interference due

to VM consolidation.

57

3.1.4 Summary

Performance anomalies lead to reduced efficiency and wasted resources in large-scale

systems, especially in HPC clusters. The majority of the existing anomaly detection

tools focus on binary classification of anomalous vs. healthy runs without identifying

the type of the anomaly (i.e., diagnosis), which is a significantly more challenging

problem. In this section, we have introduced our machine learning based framework

that diagnoses performance anomalies at runtime. By leveraging machine learning

algorithms, we are able to learn and identify signatures of anomalies in the collected

resource usage data independent of running applications. Using experiments on real

HPC systems, we demonstrate that our framework successfully diagnoses 98% of the

injected anomalies and consistently outperforms existing techniques. This type of

approach can be used in the future to enable higher levels of automation such as

automated mitigation of anomalies through system management.

3.2 Software Configuration Analytics in the Cloud

So far, we have focused on performance anomalies based on application resource usage

patterns. Another major anomaly type in large-scale computing systems is software

misconfiguration. Configuration errors are among the leading causes of service dis-

ruptions and outages, especially in cloud platforms (Yin et al., 2011; Barroso et al.,

2013). As cloud applications do not adequately verify the correctness of their own

configurations (Xu et al., 2016), application-agnostic and automated verification of

software configurations has received the attention of cloud researchers and engineers.

A promising approach for automated configuration verification is statistical and

learning-based techniques that train on a corpus of configurations and learn common

patterns. These techniques then identify configurations that deviate from the norm

as potential errors. To perform a reliable analysis, these techniques need to be trained

58

with configuration data collected from a large number of working systems.

Cloud environments contain rich configuration data that are curated by differ-

ent users for various purposes, and thus, provide a unique opportunity for applying

learning-based configuration analysis. However, there is no state-of-the-art framework

that enables discovery and extraction of configuration data from third-party cloud in-

stances where the file system contents are unlabeled. Moreover, configurations are

often stored in human readable text files with application-specific syntax. To apply

existing configuration analysis techniques (e.g., (Zhang et al., 2014; Santolucito et al.,

2017)), the information extracted from these files needs to be in the form of key-value

pairs, where a key represents a specific configuration parameter.

We implement ConfEx, a novel framework that enables reliable software configura-

tion analytics in the cloud. This section provides detailed information about software

configurations, describes ConfEx in detail, and presents two use-cases for ConfEx to

identify misconfigurations: outlier analysis and rule-based parameter type validation.

3.2.1 Cloud Software Configurations

Most cloud applications and system services store their configurations in human-

readable text files or in configuration stores such as etcd and Windows registry. We

focus on text file based configurations as it is prevalent for many of the building blocks

of cloud applications (e.g., MySQL, Nginx, and Redis).

Figure 3·16 shows a snippet from an httpd configuration file. Each of the first two

lines contains a parameter followed by a value, separated by a space. Lines 3-6 are

in an application-specific format representing a conditional statement. While parsing

these lines, one needs to retain the relational information between the parameters

defined within the conditional statement, indicating that User and Group belong to

the IfModule unixd module section.

In some configuration files, the file schema is not embedded in the file itself and

59

1 ServerRoot "/var/www"

2 Listen 80

3 <IfModule unixd_module>

4 User daemon

5 Group daemon

6 </IfModule>

parameter value

application-specific
conditional statement

Figure 3·16: Httpd configuration file snippet. Configurations are
stored in an XML-like format.

1 proc swap swap pri=42 0 0

2 tmpfs /dev/shm tmpfs mode=0777 0 0

3 devpts /dev/pts devpts defaults,gid=5 0 0

Figure 3·17: /etc/fstab snippet. Configurations are stored in a table
format where certain table cells contain multiple configuration entries.

requires domain knowledge to understand. One such example is the Linux filesystem

configuration file (/etc/fstab), which defines available filesystems and their mount

options. As shown in Figure 3·17, this file is structured in a table format where some

columns may include parameter-value pairs such as pri=42 (line 1) as well as multiple

comma-separated entries such as defaults,gid=5 (line 3).

Extracting configuration data from text-based files requires expertise on the spe-

cific application file format. Hence, to conduct corpus-based analysis using configura-

tion files that are curated by different tools and users, one should use a community-

driven parsing tool that allows contributions of application domain experts.

Configuration Errors

Table 3.5 summarizes common misconfiguration types we derived from related

work (Ramachandran et al., 2009; Yin et al., 2011; Zhang et al., 2014; Xu et al.,

2013; Chen et al., 2016) and online technical forums (e.g., stackoverflow.com and

serverfault.com). Illegal entries can be identified through syntactic validation. De-

tecting inconsistent entries and invalid ordering requires extracting dependency and

60

Table 3.5: Common configuration error types and example constraints
that lead to errors upon violation.

Error type Example configuration constraint

Illegal entries
In PostgreSQL, parameter values that are not simple identifiers or
numbers must be single-quoted.

Variables must be in certain types (e.g., float).

Inconsistent
entries

In PHP, mysql.max persistent must be no larger than the
max connections in MySQL.

In Cloudshare, service’s redis.host entry (an IP address) must be a
substring of Nginx’s upstream.msg.server entry (IP address:port).

Invalid
ordering

When using PHP in Apache, recode.so must be defined before
mysql.so.

Environmental
inconsistency

In MySQL, maximum allowed table size must be smaller than the
memory available in the system

In httpd, Apache user permissions must be set correctly to enable file
uploads for website visitors.

Missing
parameter

In OpenLDAP, a configuration entry must include ppolicy[].schema to
enable password policy.

Valid entries
that cause

performance
or security

issues

MySQL’s Autocommit parameter must be set to False to avoid poor
performance under “insert” intensive workloads.

In Nginx, setting server root location to “/” allows others to access the
server’s filesystem.

Debug-level logging must be disabled to avoid performance degradation.

correlation information among various parameters. Environmental inconsistencies

occur when application configurations do not match the environmental parameters

such as file permissions and IP addresses. To find such inconsistencies, one needs to

collect and analyze both application and environment configurations. Detecting miss-

ing parameters requires checking the existence of parameters rather than focusing on

the values assigned to parameters. Valid entries that cause performance degradation

or security vulnerabilities do not lead to crashes or error messages.

Configuration analysis tools commonly treat configurations as key-value pairs, in

where each key corresponds to a specific configuration parameter (e.g., (Potharaju

et al., 2015; Wang et al., 2004; Santolucito et al., 2017)). The configuration key-value

pairs can be used for detecting the error types shown in Table 3.5 except for invalid

61

ordering. In this work, we use key-value pairs for configuration analysis and do not

focus on invalid ordering.

3.2.2 Configuration Analytics using ConfEx

(i) Discovery

Target system
(image, VM, container)

File
labelingVocabulary

Liste n 80

<IfMo dule a_m od>
Use r us r
Gro up g rp

</IfM odul e>

Error Doc 404 err. html
myopt ion

omnio rb 8 088/ tcp
omnio rb 8 088/ udp

clc-b uild -dae mon
8990/ tcp
xinet d 90 98/t cp

mande lspa wn 9 359/ udp
mande l

serve r {

l iste n 44 3
defer red http 2 ss l;

r oot /app /www ;

s sl o n;
i nclu de

serve r.d/ *.co nf;}

Liste n 80

<IfMo dule a_m od>
Use r us r
Gro up g rp

</IfM odul e>

Error Doc 404 err. html
myopt ion

Text files

- /etc/httpd.conf
- /config/httpd.conf
- /server.httpd.conf

httpd filesMySQL files
- /etc/mysql/my.cnf
- /etc/my.cnf
- /mysql_conf.cnf

(ii) Extraction
File parser

. . .

Disambiguation

App. File Parameter key Value
httpd /etc/httpd/httpd.conf LoadModule my_mod my_mod_file.so
httpd /etc/httpd/httpd.conf Listen 8080
mysql /etc/mysql/my.cnf mysqld datadir /var/lib/mysql

key value

(iii) Analysis
Outlier

detection
Constraint
generation

. . .

Figure 3·18: ConfEx overview.

We propose a configuration analytics frame-

work, ConfEx, for corpus-based configuration

analysis in image repositories and multi-tenant

cloud platforms. ConfEx discovers the configu-

rations files in cloud system instances with un-

labeled content, extracts consistent configura-

tion data from these files, and applies statisti-

cal and learning-based analysis methods on the

collected data to detect configuration errors.

Figure 3·18 shows an overview of ConfEx. In

the discovery phase, ConfEx uses a vocabulary-

based method we designed to discover configu-

ration files. When a new cloud system instance

with unlabeled configuration files is introduced

(e.g., a new container), ConfEx reads and an-

alyzes the text files in the given cloud instance

and compares the contents of these files with

a vocabulary database that is built offline (de-

tails not shown in Figure 3·18). To maintain

low processing overhead during this discovery phase, ConfEx limits the size of text

files inspected to 200KB. This threshold is supported by our investigation of 4581

Docker Hub images on which the largest configuration file found was 36KB. When

ConfEx discovers a configuration file, it tags the file with a label identifying the soft-

62

ware that is associated with the file. These labels are then used in the extraction

phase to apply software-specific file parsing and disambiguation rules. The extrac-

tion phase generates key-value pairs, which represent configuration data, using keys

that consistently correspond to a single configuration parameter across different cloud

instances. Finally, these key-value pairs are augmented with the software label and

the source file path to enable a comprehensive and robust corpus-based configuration

analysis. The rest of this section explains the phases of ConfEx in detail.

(i) Discovery

A common approach of locating configuration files is to check specific file system paths

based on the locations of standard software installations. While system configuration

file locations are typically consistent across different cloud instances, as we show in

Section 3.2.3, depending on the application, 26-81% of valid configuration files are

located in non-standard locations in popular Docker Hub images. These files are ig-

nored by the configuration parsing tools. As a result, any configuration problems in

these files will not be detected automatically using statistical and learning-based con-

figuration analysis. To resolve this problem, the discovery phase of ConfEx identifies

configuration files of known applications in cloud instances in an application-agnostic

manner, regardless of where the files are located in the file system.

A straightforward way of checking whether a text file in the file system is a con-

figuration file of an application is to compare the input text file’s content with known

configuration files of that application. If the similarity between the input file and

a known configuration file is above a threshold, the input file can be labeled as a

configuration of the target application. However, this approach is not reliable as the

values assigned to configuration parameters may be unique to each user, especially

for environment-specific parameters such as IP addresses, user names, or file paths.

Thus, instead of using the entire content of configuration files for comparison, we

63

Figure 3·19: Discovery phase. A vocabulary is generated for each
known application offline. Input text files are compared with each ap-
plication vocabulary and selected as candidate configuration files upon
a match that is larger than a confidence threshold.

identify important configuration words such as parameter names and configuration

commands. These words are, in general, specific to applications and can be used to

associate configuration files with applications.

Figure 3·19 depicts ConfEx ’s discovery phase. During offline training, using known

configuration files that are labeled with application names, we generate application-

specific vocabularies by extracting the important words in these files as follows: We

first discard commented-out lines as comments typically contain descriptions of con-

figuration options with few or no application-specific words. We consider a line as a

comment if it begins with //, #, or %, excluding the preceding white-space characters

(i.e., tab and space). Then, we focus on the first word of the remaining non-comment

lines as these words typically correspond to parameter names or configuration com-

mands, whereas the subsequent words are user-provided values such as integers and

file paths. While extracting the first word of a line, we use the following characters

64

as delimiters to account for the characters that are commonly used as part of a con-

figuration file syntax: \t, , =, :, <, >, [,], ,. The important words of a text file is

the set of first words of non-comment lines, in that file, and a collection of important

word sets extracted from known configuration files form the application vocabulary.

During testing, we again extract the set of important words in an input text file

using the same methodology. We calculate the similarity of the input important word

set to each important word set in the vocabulary of each application. To calculate

the similarity between two word sets, we use the Jaccard index (Real and Vargas,

1996), J = |W1 ∩W2|/|W1 ∪W2|, where W1 and W2 are two sets. If the maximum

achieved similarity in a vocabulary is larger than a certain threshold, Tconfidence, the

file is labeled as a candidate configuration file of that application.

Note that the calculating the Jaccard index between the input word set, Wtest, and

important word sets for all known configuration files is computationally expensive. We

speed-up this process as follows: Let an important word set of a known configuration

file f be Wf , and the union of all keywords in a vocabulary be Wvocab. Then, the

Jaccard similarity (J) has the following upper bound:

J =
|Wtest ∩Wf |
|Wtest ∪Wf |

≤ Jupper =
|Wtest ∩Wvocab|
|Wtest|

(3.1)

as |Wtest ∩Wf | ≤ |Wtest ∩Wvocab| due to Wf ⊆ Wvocab, and |Wtest ∪Wf | ≥ |Wtest|.

Checking Jupper once per vocabulary eliminates the need to compare Wtest with all

Wf ’s in the vocabulary if Jupper < Tconfidence, which is common as most text files do

not contain any configuration keywords of the target applications.

The syntax of all files that are labeled as configuration files is checked in the

extraction phase. If the file does not conform with the configuration file syntax of the

target application, users can be warned about a potential syntax error.

To discover the configuration files of a new application, a new vocabulary should

be generated from a set of known configuration files of that application as described

65

above. This vocabulary can be extended simply by processing new labeled files with-

out the need of re-processing the entire set of known configuration files.

(ii) Extraction

The purpose of the extraction phase is to parse the labeled configuration files and

generate key-value pairs that represent configurations. For a robust corpus-based

configuration analysis where the input configuration files are curated by different

users, the extracted keys should have the following properties:

• Consistency: A specific key should always refer to the same parameter, both

when observing configurations of a given cloud instance over time, and when

comparing configurations across multiple systems.

• Uniqueness: Each parameter in a file should be represented by a unique key.

However, if two parameters share the same name and context (such as param-

eters defined as a list), they should share the same key.

• Context-preserving: The keys of parameters that appear within the same block

of a configuration file must retain this relational information. For example, in

Figure 3·16, the keys of User and Group entires must express that both param-

eters are under the IfModule section. Such relations become more prevalent in

file formats that keep hierarchical data such as JSON and XML.

While existing studies on configuration analysis have mostly focused on configura-

tion stores that do not require data extraction such as Windows Registry (e.g., (Yuan

et al., 2011)), or configurations with standard file formats such as XML and JSON (e.g.,

(Behrang et al., 2015; Zhang and Ernst, 2015)), most configuration files in today’s

cloud services (such as httpd and Nginx) are kept in human-readable text files that

do not use standard file formats. These files require custom parsing rules based on

66

domain knowledge. However, the variety and rapid evolution of applications make it

expensive and bug-prone to implement parsers for every configuration analysis tool.

Augeas for Parsing Configuration Files: To leverage the knowledge of domain

experts on various applications and re-use an existing code-base that is continuously

maintained, we build our extraction phase on top of Augeas (Lutterkort, 2008), which

is one of the most popular tools available today for automatized configuration parsing

and editing. Augeas has extensive application coverage with 182 lenses, which are

file parsing rules to generate key-value pairs for different applications including httpd,

MySQL, Nginx, PHP, and PostgreSQL. Augeas has been continuously maintained for

more than ten years and has interfaces in different programming languages including

Python, Ruby, Perl, and Java. As a result, Augeas is being used by other configuration

management tools including Puppet (Loope, 2011) and bcfg2 (Desai, 2005), and also

by Encore (Zhang et al., 2014), which is a state-of-the-art configuration analysis tool.

As Augeas is primarily intended for managing configurations in systems with uni-

form and known configuration structure, the keys in its output are often ambiguous,

where a specific key does not necessarily correspond to the same parameter across

different configuration files and the value assigned to a key does not necessarily corre-

spond to the value of a configuration parameter. This ambiguity in the Augeas parser

output complicates key-value-based analysis6. The reasons of this ambiguity can be

seen in the example in Figure 3·20 and are summarized as follows:

The sample input httpd configuration file in Figure 3·20 has two Listen entries,

but these two entries are represented by four key-value pairs by Augeas. Similarly,

although both Listen entries represent the same configuration option, they are refer-

6Augeas output can be directly used for analysis (Zhang et al., 2014) only if the target configu-
ration parameters are already defined by unique keys such as in PostgreSQL configurations or if the
target files have the same parameter ordering.

67

Listen 80
Listen 8080
Redirect /Foo /Bar
<IfModule mymod>
User myuser

</IfModule>

key value
/directive[1] Listen
/directive[1]/arg 80
/directive[2] Listen
/directive[2]/arg 8080

/directive[3] Redirect

/directive[3]/arg[1] /Foo

/directive[3]/arg[2] /Bar

/IfModule/arg mymod
/IfModule/directive User
/IfModule/directive/arg myuser

/h
ttp

d.
co

nf
La

be
l: h

ttp
d

App. File Parameter key Value
httpd /httpd.conf Listen 80
httpd /httpd.conf Listen 8080
httpd /httpd.conf Redirect	\/Foo /Bar
httpd /httpd.conf IfModulemymod/User myuser

Parsing by Augeas

Au
ge

as
 ke

y-
va

lu
e

pa
irs

In
te

rm
ed

ia
te

 tr
ee

 re
pr

es
en

ta
tio

n

Conversion to tree

Disambiguation

D
is

am
bi

gu
at

ed
 tr

ee

Flattening

O
ut

pu
t

httpd.conf

directive[1]	(Listen)

directive[2]	(Listen)

IfModule

arg (80)

arg (8080)

arg (mymod)

directive[3]	(Redirect)

arg[1]	(/Foo)

arg[2]	(/Bar)

directive	(User)

arg (myuser)

httpd.conf

Listen	(80)

Listen	(8080)

IfModule mymod

Redirect /Foo	(/Bar)

User	(myuser)

Figure 3·20: The extraction phase of
our ConfEx framework.

red to using different keys to enforce a unique

key per configuration entry. Such artificial

key-value pairs reduce the reliability of con-

figuration analysis.

Another challenge with the Augeas out-

put stems from the indices assigned to the

keys based on the ordering of entries in the

file. Due to these indices, a different param-

eter ordering can result in a different key

set. For example, in the httpd configura-

tion file in Figure 3·20, if the second and the

third lines were swapped, /directive[2]

and /directive[3] keys would have re-

ferred to Redirect and Listen, respectively,

unlike the Augeas output in Figure 3·20.

Because of the problems described above,

the values of keys in Augeas’ output do

not necessarily correspond to the values of

configuration parameters. For example, the

value of the key /directive[1] in Fig-

ure 3·20 is Listen, which is a configuration

parameter rather than a configuration value

such as 8080. Moreover, Augeas keys do not

correspond to the same configuration consis-

tently across different files. Hence, Augeas

key-value pairs are not effective for corpus-

68

based configuration analysis. Although the Augeas keys do not meet the consistency

property, they can be used for analysis (Zhang et al., 2014) if the target configuration

parameters are already defined by unique keys (such as in PostgreSQL) or if the tar-

get files have the same parameter ordering. However, an identical parameter ordering

across different configuration files is not guaranteed in a multi-tenant cloud platform

where the files are curated by different users.

Disambiguation of the Augeas Output: Figure 3·20 depicts the overall flow in

our extraction phase. First, we parse the discovered files using Augeas, which dis-

cards any file that does not comply with the target application’s configuration file

format. We then disambiguate Augeas’ output to generate reliable key-value pairs

where a key consistently corresponds to the same parameter across different files. For

this purpose, we convert the Augeas output into an intermediate tree that retains the

hierarchical information in the configuration file. We transform this tree using a list

of application-specific rules such that the transformed tree faithfully represents all

parameters in the configuration files. We manually implement these rules using min-

imal domain knowledge and only by examining the document structure, parameters

found in configuration files, and the corresponding output produced by Augeas.

Example disambiguation rules: By examining httpd configuration files and the

Augeas output, we observe that the directive keys are redundant and do not corre-

spond to parameters; hence, we extract the actual parameter names from the values

of the directive keys. We also observe that specific entries such as Redirect do not

represent parameters, but they are configuration commands with multiple arguments.

From a configuration analysis perspective, we are interested in which arguments are

being redirected (/Foo in Figure 3·20) and where they are directed to (/Bar in Fig-

ure 3·20). In this case, we use Redirect /Foo as the key, indicating that /Foo is

69

being redirected, and /Bar as the value assigned to this key. We identify fifteen such

configuration commands in httpd by skimming through the application documenta-

tion. Our final observation is that nodes without values (such as IfModule) indicate

configuration hierarchy. We use such nodes to preserve configuration hierarchy with-

out assigning specific values to them. The above observations can be summarized in

the following three tree transformation rules for httpd configurations:

• We replace directive nodes with the parameter names stored in the value of

the directive. The value of the new node is the value of the child node arg.

• For specific keys that represent configuration commands (such as Redirect), we

append the new key with the value of the child node named arg[1]. The value

of the new node is the concatenation of the values of the remaining children

whose name start with arg.

• We convert nodes without values (such as IfModule) into intermediate nodes

where their key is appended with the value of the concatenation of the values

of the children whose name start with arg.

After this rule-based transformation, the new tree is flattened and converted into

a table as depicted in Figure 3·20. The application label and the file path are also

appended to this table such that all configurations extracted from a cloud instance

are represented in a single standardized format for robust analysis.

To extract reliable key-value pairs from the configuration files of new applica-

tions, one needs to implement application-specific tree transformation rules by exam-

ining the configuration file structure, configuration parameters, and the corresponding

Augeas output using minimal domain knowledge as described above. A new Augeas

lens may be required if the Augeas library does not support the new application.

70

(iii) Analysis

The discovery and extraction phases of ConfEx produces consistent key-value pairs,

enabling the use of a rich variety of configuration analysis techniques in multi-tenant

cloud platforms and image repositories. Analysis of software configurations can be

used both to gain insight on user configuration practices and to detect misconfigura-

tions. Existing automated misconfiguration detection techniques that can be applied

as part of ConfEx include outlier value detection (Wang et al., 2004), parameter

type inference (Zhang et al., 2014; Li et al., 2017), rule-based validation (Huang

et al., 2015; Baset et al., 2017), parameter correlation analysis (Chen et al., 2016),

and matching configuration parameters with the parameters in the source code for

source-based analysis (Zhou et al., 2017; Zhou et al., 2016).

3.2.3 Evaluation

As there is no publicly available, comprehensive, and labeled misconfiguration data

set, we evaluate ConfEx using public images in the Docker Hub repository and con-

trolled injections of real configuration errors. To understand the individual benefits

of discovery and extraction, we evaluate these two phases separately. In addition, we

present two use cases of ConfEx : (1) detecting injected misconfigurations through

outlier analysis and (2) syntactic configuration validation.

We focus on the Docker Hub images that contain either the network services sys-

tem configuration file (/etc/services) or one of the three following popular cloud

applications: httpd, MySQL, and Nginx. For /etc/services, we use the most down-

loaded thousand images and discard the images that do not have /etc/services. For

each application, we use the images that are downloaded at least 50 times and con-

tain the application name in their name or description. We have manually labeled

the application configuration files in these images by examining file contents and file

71

Table 3.6: Statistics on the studied Docker Hub Images

application # of images total # of
configuration files

total # of
text files

httpd 272 9191 330106

MySQL 715 2600 509857

Nginx 2906 22450 313357

Network services 726 726 not used for
discovery

Table 3.7: File paths checked by Augeas to identify httpd configura-
tion files. “*” is a wildcard that represents any file name.

/etc/httpd/conf/httpd.conf
/etc/httpd/httpd.conf
/etc/httpd/conf.d/*.conf
/etc/apache2/sites-available/*
/etc/apache2/mods-available/*
/etc/apache2/conf-available/*.conf
/etc/apache2/conf.d/*
/etc/apache2/ports.conf
/etc/apache2/httpd.conf
/etc/apache2/apache2.conf

paths. Table 3.6 summarizes the number of images we use in our evaluation along

with the number of text files and identified configuration files in these images. In

total, we use 4581 images, where some images contain both the /etc/services file

and one of the target applications.

Accuracy of Configuration File Discovery

We compare ConfEx ’s discovery phase with Augeas’ configuration file discovery ap-

proach, which is checking the existence of files in specific file paths. Table 3.7 shows

the paths checked by Augeas to discover httpd configuration files as an example.

These file paths account for the default application installation paths in various Linux

distributions. The paths checked by Augeas for other applications can be found on

the Augeas website7.

We measure the effectiveness of configuration file discovery separately for each

7Augeas lenses: http://augeas.net/stock_lenses.html

72

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tconfidence

0.95
0.96
0.97
0.98
0.99
1.00

precision
recall

(a) httpd

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tconfidence

0.90
0.92
0.94
0.96
0.98
1.00

precision
recall

(b) MySQL

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tconfidence

0.70
0.75
0.80
0.85
0.90
0.95
1.00

precision
recall

(c) Nginx

Figure 3·21: Configuration file discovery
results using vocabulary-based discovery
w.r.t. confidence threshold. With a con-
fidence threshold above 0.5, ConfEx ’s dis-
covery approach achieves above 0.98 preci-
sion and recall in all applications we study.

application and using five-fold cross val-

idation. That is, for each application,

we randomly divide the images that con-

tain the application into five equal-sized

partitions. We use four of these parti-

tions to train our framework by gener-

ating an application vocabulary, and all

the text files in the images of the fifth

partition as testing set, where configu-

ration discovery predicts whether the in-

put text files are configuration files of the

target application. We repeat this pro-

cedure five times, where each partition

is used as a testing set once. Further-

more, we repeat the five-fold cross valida-

tion ten times with different randomly-

selected partitions.

We use precision and recall as eval-

uation metrics. Precision is the fraction

of true positives (i.e., correctly predicted

configuration files) to the total number of

files predicted as configuration files, and

recall is the fraction of true positives to

the total number of configuration files in

the testing set.

Figure 3·21 shows the precision and recall ConfEx achieves on identifying the

73

httpd MySQL Nginx
Application

0.90
0.92
0.94
0.96
0.98
1.00

Pr
ec

isi
on

Augeas
ConfEx

(a) precision

httpd MySQL Nginx
Application

0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll

Augeas
ConfEx

(b) recall

Figure 3·22: Comparison of the default path-based and ConfEx ’s
vocabulary-based discovery approaches (Tconfidence = 0.5). The default
approach can identify only 19-75% of the application configuration files,
leading to low recall. ConfEx successfully identifies more than 98% of
these files while resulting in less than 2% false positives in Nginx.

configuration files of the three target applications with various Tconfidence. With

Tconfidence > 0.5, ConfEx achieves above 0.98 precision and recall for all three appli-

cations. The precision of discovery typically increases with the increasing Tconfidence.

This is because with a high Tconfidence, the input text files with a few important words

that don’t exist in the vocabulary are labeled as non-configurations, reducing false

positives. Tconfidence has a higher impact on Nginx’s precision compared to httpd

and MySQL as Nginx uses parameter names and command words that are commonly

found in other text files (such as user and include). Increasing Tconfidence also de-

creases recall, but this decrease is negligible because the set of parameter names and

configuration commands used in different configuration files is highly similar.

Having a lower precision is less critical than having a low recall during the dis-

covery phase as ConfEx’s extraction phase filters out the non-configuration files by

checking their syntax. Hence, to avoid missing configuration files that have parameter

names that are unseen during training, we use Tconfidence = 0.5.

Figure 3·22 compares the baseline discovery approach of checking the standard

configuration file paths with the proposed vocabulary-based discovery. The default

74

approach achieves ideal precision, i.e., all labeled configuration files are correctly

labeled without false positives. This is because the standard configuration file paths

(such as those shown in Table 3.7) do not contain text files that are not configurations.

However, only 19% of Nginx configuration files can be found with this approach as

the remaining configurations are not located in the default paths in the target images.

Overall, ConfEx successfully identifies 34156 target configuration files (out of

34241), while the baseline can identify only 12249 of the configuration files. In the

remaining 85 files that are missed by ConfEx, approximately half of the parameter

names are uncommon. As these parameter names are not seen during vocabulary

generation, the corresponding files are labeled as non-configuration files. ConfEx ’s

lowest precision, which is over 98%, is observed with Nginx, where ConfEx labeled 347

of the non-configuration files as Nginx configurations among over 300,000 unlabeled

text files. These mislabeled files contain words that are used as parameter names in

Nginx such as the word include in file /etc/ld.so.conf.

The Impact of Disambiguating Augeas’ Output

The disambiguation process described in Section 3.2.2 significantly impacts the pa-

rameter and value distributions observed across the configuration corpus. We demon-

strate this impact by studying the total number of distinct values each key gets with

and without disambiguation. As the configuration files of the same application may

reside in different paths in different images, we analyze all extracted application key-

value pairs regardless of the paths of the source files.

In Figure 3·23, we focus on the number of distinct values per configuration

key across all known configuration files to show how ConfEx ’s disambiguation step

changes the distribution of the extracted key-value pairs.

When disambiguation is applied to the key-value pairs in the httpd configuration

corpus, the number of distinct values assigned to individual keys reduce significantly.

75

1 10 100 1000
key #

0

50

100

150

of

 d
ist

in
ct

 v
al

ue
s

default
ConfEx

(a) httpd

1 10 100 1000
key #

0
50

100
150
200
250

of

 d
ist

in
ct

 v
al

ue
s

default
ConfEx

(b) MySQL

1 10 100 1000
key #

0

100

200

300

400

of

 d
ist

in
ct

 v
al

ue
s

default
ConfEx

(c) Nginx

1 10 100 100010000
key #

0
10
20
30
40
50
60
70

of

 d
ist

in
ct

 v
al

ue
s

default
ConfEx

(d) /etc/services

Figure 3·23: The number of distinct values per key across application
configuration corpora before and after ConfEx ’s disambiguation. The
keys are sorted individually for each line.

This is because an Augeas key can correspond to different parameters in different

images. For example, directive[1] and directive[2] can correspond to Listen

and Redirect, respectively, in one file, but Redirect and Listen, respectively, in

another, giving the impression that the directive[1] and directive[2] keys both

have two distinct values. This problem is resolved by ConfEx ’s disambiguation, where

a key consistently corresponds to the same parameter across different files and images.

In Figure 3·23b, the impact of disambiguation appears to be less significant

for MySQL. However, upon further inspection, we observed that the keys do not

correspond to the same parameters. For example, the first two disambiguated

keys in Figure 3·23b correspond to the MySQL passwords assigned to client and

mysql upgrade in the configuration file, whereas the first two keys in the default keys

76

correspond to the passwords assigned to mysql, connector python, and mysqladmin

in addition to client and mysql upgrade.

The Nginx distributions shows a decrease in the number of distinct values per key

after disambiguation. The first key in both default and disambiguated distributions,

server/server name, illustrates how the number of distinct values per key decreases.

When using the disambiguated keys, the key server/server name covers all Nginx

server name entries across the images. However, with the default keys, this key is

used only if there is a single server/server name is declared in the configuration

file. If there are multiple server names in the same file, Augeas assigns an index

to the key (server/server name[1], server/server name[2], etc.), preventing the

comparison of server names across images using the same key.

Applying disambiguation to network services configurations reveals an interesting

fact that is not visible when using the default Augeas key-value pairs: There is a

single service, X11, that uses more than 60 ports for both tcp and udp connections.

All other services use at most two ports.

3.2.4 Case Studies

We demonstrate the potential benefits of our framework, ConfEx, using two case

studies to detect misconfigurations in Docker Hub images: detecting injected miscon-

figurations through outlier analysis, and rule-based validation of parameter types.

Detecting Misconfigurations with Outlier Analysis

PeerPressure (Wang et al., 2004) is a tool that finds the culprit configuration entry

in an image with a single configuration error, where configurations are provided as

key-value pairs. For each key-value pair, PeerPressure examines the values assigned

to the key across a trusted corpus, and calculates the probability of the given value

being a misconfiguration based on empirical Bayesian estimation. If a value is an

77

Table 3.8: Injected application misconfigurations

application name description

httpd url Error 401 points to a remote URL
httpd dns Unnecessary reverse DNS lookups
httpd path Wrong module path
httpd mem MaxMemFree should be in KB
httpd req Too low request limit per connection

MySQL enum Enumerators should be case-sensitive
MySQL buf Unusually large sort buffer
MySQL limit Too low connection error limit
MySQL max Invalid value for max number of connections
Nginx files Too few open files are allowed per worker
Nginx debug Logging debug outputs to a file
Nginx access Giving access to root directory
Nginx host Using hostname in a listen directive

outlier among the values that are assigned to the same key across the corpus, the

corresponding entry has a high probability of being misconfigured. Finally, the key-

value pairs are ranked based on the calculated probabilities, so that the pairs that

are ranked higher are outliers, and hence, the most likely errors.

As PeerPressure is designed for Windows registry, it does not have configuration

discovery and extraction capability. We use ConfEx to generate configuration key-

value pairs for PeerPressure’s outlier analysis. Additionally, we show the impact

of ConfEx ’s key-value pair disambiguation on PeerPressure’s accuracy by using the

default Augeas key-value pairs before disambiguation as a baseline.

We use PeerPressure to detect the misconfigurations listed in Table 3.8. We have

identified the application misconfigurations from application websites and technical

forums such as stackoverflow.com, and synthetically generate /etc/services mis-

configurations. For applications, we inject each misconfiguration listed in Table 3.8

to a randomly selected image that contains the target parameter to be misconfig-

ured. To generate /etc/services misconfigurations, we randomly select a service

in a randomly chosen image, and change the port used by the selected service to a

random integer between 1 and 10000. For each target misconfiguration, we repeat

the randomized injection 1000 times. For each injection, we train PeerPressure using

78

url dns
pathmem req enum buf

lim
it

max file
s
debug

acc
esshost

ser
vic

es

Misconfiguration

0.0

0.2

0.4

0.6

0.8

1.0

Th
e

fra
ct

io
n

of
 e

rro
rs

 th
at

 a
re

am
on

g
th

e
to

p
5

su
sp

ec
ts

default
ConfEx

Figure 3·24: The fraction of injected errors that are ranked within the
top five suspects by PeerPressure among 1000 randomized injections.
services is the /etc/services misconfiguration.

the key-value pairs that belong to the target application from all images except for

the misconfigured image. We then run PeerPressure and record its output ranking

for the injected error.

Given an image with an injected misconfiguration, PeerPressure ranks all the

configuration key-value pairs in the image with respect to their probability of being

an error. Figure 3·24 shows the fraction of injected errors that are ranked within

the top five suspects by PeerPressure among 1000 randomized injections of our target

misconfigurations. Using ConfEx ’s disambiguated keys consistently leads to similar or

higher rankings compared to using default Augeas keys, making it easier to pinpoint

the injected error.

With the default keys, PeerPressure suffers from having an incorrect view on the

distribution of configurations as discussed in Section 3.2.2. This problem becomes

more significant when the number of keys are used for the misconfigured parameter

across the corpus is large (e.g., more than five), such as in services misconfigurations.

Moreover, when the misconfigured image has files that have substantially different

79

parameter ordering than the files seen during the training, the parameters in the image

are represented by keys that use different indexing. As a result, common configuration

entries become outliers in the corpus and have high PeerPressure rankings. However,

PeerPressure can still detect the injected errors with the default keys if the parameter

ordering in the misconfigured image is similar to those seen during training.

In files and debug, outlier detection performs poorly both with the default Augeas

keys and ConfEx ’s disambiguated keys. This is because compared to the other in-

jected errors, the parameters being misconfigured in files and debug have a flatter

value distribution with a large number of distinct values across the corpus. Hence,

the injected erroneous value is not perceived as an outlier by PeerPressure. This is

an inherent weakness of outlier analysis and can be avoided by using a larger corpus.

Rule-based Configuration Type Validation

We present a second use case of ConfEx by validating configuration types (such as

integer or file path) through syntactic rules. For this purpose, we randomly select

a configuration file, and for each parameter in this file, we write syntactic type val-

idation rules using regular expressions similar to those used in prior work (Zhang

et al., 2014; Li et al., 2017). For example, if the type of a parameter is IP ad-

dress, the value assigned to this parameter is validated using the regular expression

^\d{1,3}(\.\d{1,3}){3}$. For each rule, we map the rule to the key that points

to the rule’s target value in the selected file. For example, if the selected file is

the one presented in Figure 3·20, we check whether the value assigned to the keys

/directive[1]/arg (for Augeas keys) and Listen (for ConfEx keys) is a port num-

ber across all known configuration files in our corpus.

Based on the randomly selected file, we write syntactic rules for 25, 12, and 25

parameters in httpd, MySQL, and Nginx, respectively. We use these rules to validate

the values assigned to the corresponding keys, and show the impact of disambiguation

80

httpd MySQL Nginx
Application

0
3000
6000
9000

12000
15000
18000

of

 c
he

ck
ed

 c
on

fig
ur

at
io

ns

default
ConfEx

(a) Number of checked con-
figurations

httpd MySQL Nginx
Application

1

10

100

1000

10000

of

 in
va

lid
 c

on
fig

ur
at

io
ns

default
ConfEx

(b) Number of values marked
as invalid

Figure 3·25: The number of configuration entries checked and marked
as invalid using rule-based type validation. With the default keys, all
values that share the same key are checked using the same rule although
they belong to different parameters in httpd, resulting in a high number
false negatives. In MySQL and Nginx, default Augeas keys can capture
only a subset of the target key-value pairs.

on syntactic configuration validation.

Figure 3·25a shows the number of configurations that use the keys for which

we have written syntactic validation rules for both default Augeas and ConfEx ’s

disambiguated keys. As the same default Augeas key can correspond to multiple

parameters in httpd, all values that share the same key are checked using the same

rule even if they correspond to different parameters. This results in over 2500 values

being marked as invalid as seen in Figure 3·25b. The same problem does not occur

with MySQL and Nginx as their Augeas keys are not shared by different parameters.

However, when using the default keys, the validation misses 1068 (19%) and 6894

(46%) of the target MySQL and Nginx parameters, respectively.

With ConfEx ’s keys, the validation rules detect only three invalid values, and one

of these values is also captured with the default keys. We have found that these

values are to be replaced by a script (e.g., one of the values is PORT), and are

indeed syntactically invalid.

81

3.2.5 Summary

Using analytics to accurately find misconfigurations in multi-tenant cloud platforms

has been so far limited to the configurations that are located in default system loca-

tions or configuration stores such as etcd and Windows registry. While researchers

has proposed automated techniques to detect misconfigurations in the cloud, we have

demonstrated that these tools ignore up to 81% of the application configuration files

and suffer from the ambiguity in the outputs of existing configuration parsers.

We implemented ConfEx, a novel framework that enables robust discovery and

extraction of text-based software configurations from unlabeled cloud instances. By

providing visibility into software configurations, ConfEx enables a new level of au-

tomated analysis in cloud platforms through the use of existing application-agnostic

tools that are designed for key-value-based configurations. Given configurations col-

lected from a large number of working systems, such tools can automatically learn

parameter types (Li et al., 2017), value constraints (Zhang et al., 2014), parame-

ter correlations (Chen et al., 2016), or common configuration patterns (Wang et al.,

2004). As we show in our evaluation, these tools can then be used to detect con-

figuration errors in an automated and application-agnostic way to improve service

reliability in future cloud platforms.

82

Chapter 4

Data-driven Management for Improving

Data Center Efficiency

Efficient data center management is a challenging task due to the complexity, size,

and heterogeneity of today’s data centers. The interactions among diverse applica-

tions and hardware components, dynamic constraints such as performance and power

requirements, and physical restrictions such as thermal thresholds necessitate the use

of automated dynamic system management policies that are driven by data collected

from various data center layers. To design such data-driven management policies, one

also needs accurate and scalable modeling of the data center to understand the impact

of various management decisions. Even with accurate system modeling, it is difficult

to find the most efficient operating point with low overhead, which is necessary for

dynamic management at runtime.

In this thesis, we specifically focus on two aspects of data center management:

(1) power management, which has a direct impact on the energy efficiency of data

centers, and (2) workload management for highly-parallel HPC applications, which

can significantly reduce wasted compute resources in HPC systems by decreasing

application running times by up to 34% (Deveci et al., 2014).

We start this chapter by introducing CoolBudget (Tuncer et al., 2014), our cluster-

level power management policy that improves the overall data center performance

under power constraints. Based on power, performance, and thermal models of a data

center, CoolBudget distributes the available power among cooling units and servers in

83

a workload-aware manner to maximize the overall data center performance without

leading to power starvation in any server. To improve the thermal stability in servers,

we also design a server cooling control policy (Zapater et al., 2015a) that proactively

prevents thermal overshoots and minimizes thermally-induced power consumption.

In addition to our power management policies, we introduce our novel workload

management policy, PaCMap (Tuncer et al., 2015), to reduce the communication

overhead of HPC applications. PaCMap provides a holistic view on HPC job place-

ment by considering both the network topology and applications’ communication

topology to obtain more efficient job placement compared to the state-of-the-art.

4.1 Cluster-level Power Management

Today’s data centers typically have total power consumption limitations due to the

capacity constraints of power infrastructures or to avoid peak electricity demand

charges (Barroso et al., 2013). In addition, there is growing interest among data cen-

ters to employ sophisticated energy cost management techniques such as integration

to smart grid through demand-side regulation programs (Chen et al., 2014a). These

techniques require power budgeting, which refers to limiting the total data center

power and distributing the available power across the servers in the data center while

taking the application performance demands into account. As cooling can consume up

to 50% of the total data center electricity (Dayarathna et al., 2016), power budgeting

should also account for cooling.

A good strategy should intelligently react to changes in workloads and environ-

ment, and find the best management decisions to minimize the energy footprint with-

out sacrificing performance. Designing such intelligent strategies requires accurate

and scalable modeling of data center power and performance dynamics. In the fol-

lowing subsections, we first model the interactions between power, performance, and

84

cooling in a data center based on experiments on a real enterprise server. Our models

enable safe reduction of the thermal headroom between the server internal tempera-

tures and the critical thresholds. We then propose a novel power budgeting technique,

CoolBudget, where we formulate an optimization problem to distribute the available

power among servers and cooling units to improve the data center throughput and

fairness among workloads. In Section 4.1.3, we demonstrate that CoolBudget improves

the fair speedup of the data center by over 15% compared to the state-of-the-art.

4.1.1 Modeling of Power, Performance, and Cooling

To make efficient power budgeting decisions for a given set of jobs in a data center,

we need the ability to estimate performance, power, and temperature for each server

under various power distribution scenarios. For this purpose, we model the complex

interactions between power, performance, cooling, and temperature in a data center.

We develop empirical models based on sensor and hardware performance counter

data collected from an enterprise server. Our modeling methodology is applicable to

a wide range of hardware and workload scenarios.

Methodology

We conduct our experiments on an enterprise server with 32 8GB memory modules

and two SPARC T3 CPUs (Shin et al., 2010), providing a total of 256 hardware

threads. Each CPU has 16 8-way hyper-threaded cores, providing a total of 256 si-

multaneous hardware threads. We collect sensor measurements through Continuous

System Telemetry Harness (CSTH) (Lopez, 2007), which is a tool that runs on the

service processor. Using CSTH, we measure processor voltage, current, and tem-

perature for every CPU in the server, as well as total server power and server inlet

temperature data every second. In addition to sensor measurements, we use Solaris

10 OS tools (sar, cpustat, busstat and iostat) to poll the hardware counters for

85

workload characterization. The overhead introduced by polling the counters during

execution is negligible.

To train our developed models and to evaluate our policies, we use the following

benchmarks: SPEC Power ssj20081, SPEC CPU 2006 (Henning, 2006), and the PAR-

SEC multi-threaded benchmark suite (Bienia, 2011) that assesses the performance of

multiprocessor systems. For each PARSEC job, we launch 8 copies of a specific PAR-

SEC application, each running with 32 threads, to stress our enterprise server in

terms of power and temperature. The SPEC CPU applications are selected such that

the subset comprises different workload characteristics (Phansalkar et al., 2007). As

these applications are single-threaded, for each SPEC job, we launch as many copies

of a single application or of an application pair as the number of threads we want to

utilize. For each job, we experiment with 8, 12, 16, 20, 24, 28, and 32 active cores.

Our total experimental database consists of 300 jobs, out of which, 75% are randomly

selected for model training, and the remaining 25% are used for validation. In addi-

tion to the benchmarks, we use a custom-designed synthetic workload tool, LoadGen,

to stress our server with any desired utilization level and to thoroughly model the

temperature-power relationships.

We control the server power consumption using thread packing (Cochran et al.,

2011), i.e., we allocate the software threads in a fewer number of hardware threads

to decrease the power. We apply thread-packing at core level by either activating or

deactivating all 8 threads in a core using Solaris psrset tool. The 32 cores in our

server enables 32 possible power states, providing sufficient capping ability. However,

finer-grained power control can also be implemented if desired (Hankendi et al., 2013;

Shen et al., 2013).

Our target data center consists of 40 racks with 9 servers per rack, providing a

total of 360 servers. The racks in the data center are distributed in 4 rows with a cool-

1http://www.spec.org/power_ssj2008

86

Figure 4·1: BIPS vs. server power relationship for various jobs, when
each job is running with 8, 12, 16, 20, 24, 28, 32 cores.

aisle hot-aisle configuration. Two computer room air conditioning units (CRACs) are

located at the same side of the two hot aisles and use under-floor cooling with room

return. We use TileFlow 2 software to model the data center heat flow dynamics.

Server Power and Throughput

To improve the data center QoS using power budgeting, we first model the relationship

between server power and throughput. We use billions of instructions per second

(BIPS) as the throughput metric. A linear relationship between the server power

cap and BIPS has been observed in prior work using DVFS (Zhan and Reda, 2013)

and hypervisor resource limiting (Hankendi et al., 2013). We also observe a linear

relationship in our system when using thread-packing as the control knob, as shown

in Figure 4·1. Thus, we model BIPS as follows:

BIPS = k0 · Pserver + k1 (4.1)

where ki’s are constants that depend on the job. We calculate the coefficient k0

at runtime using performance counter data and power measurements with a model

proposed in prior work (Zhan and Reda, 2013) as follows:

k0 = k2 +
k3 ·BIPS
Pserver

+ k4e
k5·ndram (4.2)

2http://inres.com/products/tileflow

87

where ndram is the number of DRAM accesses per instruction and k2,3,4,5 are machine-

dependent coefficients found using offline regression analysis. k0 is estimated every

second at runtime. Then, k1 is calculated by Equation 4.1 using BIPS and power

measurements. Our BIPS prediction error has a mean of 0.6 BIPS (corresponding to

only 3% average error) and a standard deviation of 2.5 BIPS.

We extend the model proposed by Zhan et al. by also predicting the BIPS-power

scaling. Note that in Figure 4·1, the increase in throughput stops at a certain power

level for each job. In our experiments, this is either due to a memory bottleneck (see

ferret and mcf), or because increasing the number of active cores further than the

number of software threads does not bring any benefits. We define maxBIPS as the

BIPS achieved by a job when using all 32 CPU cores. To predict the maxBIPS of

a job given its measured BIPS and the number of active hardware threads, we first

assume linear scaling of BIPS with the number of threads:

maxBIPSthreads = BIPS · nsw threads

nhw threads

(4.3)

where nsw threads and nhw threads are the number of software and active hardware

threads, respectively, and BIPS is a runtime measurement. Second, we observe

that the number of DRAM accesses per instruction of an application puts an upper

Figure 4·2: BIPS upper-bound set by the number of DRAM accesses
per instruction. The dots represent individual jobs and the solid line is
the regression result for the upper-bound.

88

bound on maxBIPS as shown in Figure 4·2, where the data belongs to the jobs

whose BIPS-power scaling is limited due to memory bottleneck. The BIPS upper

bound on Figure 4·2 has the following form:

maxBIPSbottleneck = k6 + k7e
k8·ndram (4.4)

where k6,7,8 are regression coefficients. The predicted maxBIPS, is the minimum

of Equations 4.3 and 4.4. Given maxBIPS, the server power consumed by a job

when using all 32 CPU cores, Pserver,max, is calculated using Equation 4.1. Predicting

maximum server power in this way has a mean error of 11W and a standard deviation

of 30W in our server, which consumes between 400-700W in our experiments.

Server Internal Temperatures

Conventional cooling systems target to limit servers’ inlet temperature; however, our

study shows that limiting server internal component temperatures instead leads to

a significant improvement in efficiency. As CPUs are the hottest components in our

server, we focus on CPU temperature, Tcpu. Our methodology can be used to include

other server components such as memories and GPUs.

When assigning power limits to individual servers, we need to ensure that the

CPU temperature threshold is not violated in any server. We achieve this by (1) using

empirical models that correlate server power and internal component temperatures,

and (2) using proactive server cooling (see Section 4.2).

We empirically model the steady-state CPU temperature based on a given server

power cap to ensure reliable CPU temperatures during power budgeting. The steady-

state temperature of a CPU depends on its power consumption, Pcpu, thermal resis-

tance of the hardware, server fan speed, and server inlet temperature. We derive

the thermal characteristics of our CPU at different utilization levels using LoadGen.

We use a constant fan speed of 2400 rpm, which is an empirically selected value

89

that prevents the server leakage power from becoming dominant over the server fan

power for the majority of our jobs in the inlet temperature range from 18◦C to 35◦C.

Consequently, we model Tcpu using the resistance-capacitance thermal model of the

chip (Pedram and Nazarian, 2006) as follows:

Tcpu = Rcpu · Pcpu + Tinlet + k9 (4.5)

where k9 represents an empirical ∆T that reflects the increase in the air temperature

within the server enclosure before reaching the CPU. While using a constant provides

sufficient accuracy for the thermal coupling in our server, other servers may require

finer-grained modeling (Ayoub et al., 2012).

As Pcpu and BIPS are mostly governed by the same workload characteristics, we

model Pcpu using the same methodology in BIPS estimation as follows:

Pcpu = k10 · Pserver + k11 (4.6)

where k10,11 are calculated in the same way as k0,1 in Equation 4.1. Our combined

CPU power-temperature model overpredicts the CPU temperature for a given server

power with a mean of 2.9◦C and a standard deviation of 1.5◦C.

Data Center Thermal Dynamics

The power cap of a server not only changes the server internal temperatures, but also

affects other servers due to heat recirculation. We model the heat recirculation using

the methodology proposed by Tang et al. (Tang et al., 2006). In this model, the inlet

temperature of a server is represented by a linear combination of the CRAC outlet

temperature and the power consumption of each server, formulated as:

Tinlet = DPserver + Tcrac (4.7)

where Tinlet and Pserver are the server inlet temperature and power vectors, respec-

tively, Tcrac is the CRAC outlet temperature, and D is the heat distribution matrix.

90

The D matrix represents the heat recirculation as well as the impact of thermody-

namic constants. We calculate the heat distribution matrix of our target data center

using thermal simulations with TileFlow.

We model the CRAC unit power consumption using the coefficient of performance

(CoP) approach. CoP is defined as CoP = Pcompute/Pcool, where Pcompute is the total

computing power (all servers) and Pcool is the cooling power. We use the CoP model

given by Moore et al. (Moore et al., 2005) as follows:

CoP = 0.0068 · T 2
crac + 0.0008 · Tcrac + 0.458 (4.8)

4.1.2 Telemetry-based Power Budgeting Using CoolBudget

We propose CoolBudget, a data center power budgeting technique, to improve the

overall data center performance under a total power constraint without an unfair

performance degradation for any of the jobs.

Policy Overview

For a workload-aware power budgeting, CoolBudget first collects performance counter

data from all servers and constructs the power and temperature models described in

Section 4.1.1. We then iteratively solve an optimization problem to find the most

efficient power distribution for our data center model.

The policy maximizes the fair speedup, which corresponds to the harmonic mean

of per server speedup, defined as:

Fair Speedup =
N∑N

i (maxBIPSi/BIPSi)
(4.9)

where N is the number of servers and maxBIPS is the estimated maximum BIPS

achievable by the executing job. Fair speedup is both an indicator of overall perfor-

mance and a measure of fairness.

Our policy computes the optimum power distribution among the servers for a

91

Figure 4·3: Typical trend in maximum fair speedup within the prox-
imity of optimum Tcrac, and the policy iteration steps with a starting
point of 20.6◦C

given Tcrac. In order to find the most efficient Tcrac, the problem is iteratively solved

at different CRAC temperatures. Figure 4·3 shows the typical trend in maximum

fair speedup with respect to Tcrac for a given total budget. When Tcrac is increasing,

the fair speedup first increases because of the decrease in the cooling power due to

Equation 4.8. This means that a larger portion of the total power budget is used

for computation, leading to a higher throughput. When Tcrac raises above a certain

level, the performance of the hottest servers are degraded considerably to keep the

temperature under the redline; thus, an increase in the room temperature is not useful

anymore for the overall objective.

Based on the observation above, CoolBudget starts searching for the most efficient

Tcrac using its last known optimal value, which is 20.6◦C in Figure 4·3. The policy

first solves the optimization problem in the proximity of the last optimal Tcrac (steps

1, 2, and 3 in the figure). Then, it iterates in the direction of increasing fair speedup

(4 and 5) until fair speedup starts decreasing (6). Finally, the best solution is selected

(5). We use 0.1◦C resolution for the Tcrac selection.

92

Optimization Problem

The optimization problem finds the best power distribution among the servers for a

given Tcrac, and formulated as follows:

min
Pserver

N∑
i

(maxBIPSi/BIPSi) (4.10a)

s.t. (1 + 1/CoP)
∑
i

P i
server ≤ Pbudget (4.10b)

k9(k10P
i
server + k11) + (DPserver)i

+ Tcrac + k9 ≤ T iredline ∀i (4.10c)

P i
server,idle ≤ P i

server ≤ P i
server,max ∀i (4.10d)

The objective function in (4.10a) is the denominator of Equation 4.9. Con-

straint (4.10b) limits the total power usage, and is derived from the equation

Pcompute + Pcool ≤ Pbudget and CoP equations (see Section 4.1.1). (4.10c) keeps the

temperature of each processor under a given redline by combining Equations 4.5, 4.6,

and 4.7. This constraint also introduces location-awareness to the problem through

the heat recirculation matrix D. Finally, (4.10d) ensures that the power given to a

server falls between the idle power and maximum power for the given job. Note that

as the constraints for each server are written individually, it is straightforward to use

this methodology in a data center with heterogeneous servers or add performance

constraints to specific servers.

CoolBudget is invoked every second. As the jobs we use generally have stable

power profiles when they are executing, and because the thermal time constants of

the CPUs in our server are in the order of tens of seconds, the periodic check of 1

second is sufficient to capture the changes in workload characteristics and to guarantee

thermal constraints.

93

We solve the optimization problem using Matlab CVX3 tool. The policy takes an

average of 1 second on a computer with Intel i3 3.3GHz processor when solving for a

data center of 360 servers. A 1-second overhead on an average desktop demonstrates

that the algorithm can run sufficiently often without noticeable overhead in a data

center environment.

4.1.3 Comparison with Other Policies

During our evaluation, we use data center simulations based on the linear data center

model, and power, BIPS, and temperature data from real-life experiments.

We assume that job arrival times in our data center follow a Poisson distribution

with a mean rate of 1 job per second, and each job has a mean service time of 3

minutes without power capping. This workload results in an approximate utilization

of 50%, which is a typical value for an enterprise data center. An incoming job is

randomly selected from our database, and it is allocated to the idle server whose

temperature is the least affected by other servers. This corresponds to the idle server

with the least row sum in D.

We select the highest allowed processor temperature Tredline as 75◦C, based on two

reasons: (1) Experimental analysis on our server shows that leakage power surpasses

the fan power when Tcpu > 75◦C, and therefore may adversely affect the energy sav-

ings; (2) it is desirable to operate with a margin from reliability-critical temperatures

(e.g., 85-90C) of the CPUs to avoid throttling or accelerated failure probabilities.

First, we present an analysis on the impact of objective function selection. Second,

we show the energy savings obtained only by collapsing the thermal headroom margin

between server inlets and server internals (in our case, CPUs). Finally, we compare

CoolBudget with a state-of-the-art policy to demonstrate the savings achieved by

CoolBudget. We also show the impact of thermally-aware job allocation.

3http://cvxr.com/cvx

94

Objective Function Normalized BIPS Fair Speedup Efficiency

Equal Power 1 79% 82%
max BIPS 1.27 0% 88%

min Max Degrad 0.98 78% 84%
max Fair Speedup 1.26 94% 89%

Table 4.1: Comparison of objective functions

Impact of Objective Function

Table 4.1 shows data center performance and efficiency using different objective func-

tions, averaged over 100 random simulation snapshots with an average of 60% uti-

lization and Pbudget = 200kW . Equal Power function equally distributes the avail-

able power among active servers, max BIPS aims to maximize the total data center

throughput, whereas minMax Degrad minimizes the maximum performance degrada-

tion across jobs. The BIPS results are normalized with respect to Equal Power. The

results show that the proposed Fair Speedup objective function leads to the high-

est efficiency (Pcompute/Pbudget) and a total throughput close to max BIPS. 0% fair

speedup in max BIPS means that minimal power is allocated to some servers, lead-

ing to starvation. The performance degradation results for active servers are given

in Figure 4·4 as histograms. Maximizing fair speedup lets the performance of a few

servers to degrade to increase the overall performance.

 50 100

50
100
150
200

of

 s
er

ve
rs

Equal Power

 50 100

Max BIPS

 50 100

minMax Degrad

 50 100

Fair Speedup

Performance degradation (%)

Figure 4·4: Performance degradation histograms for each objective
function

95

Collapsing the Thermal Headroom in Servers

We compare our approach to a policy called server inlet based power budgeting (SI),

where the only difference is that SI limits the server inlet temperature, Tinlet, instead

of limiting Tcpu. As the CPU redline 75◦C is the worst-case CPU temperature in our

server at 24◦C inlet and 2400 rpm fan speed, we select the Tinlet redline as 24◦C.

With our default settings, SI cannot always find a feasible solution for the power

constraints where CoolBudget displays no performance degradation. In other words,

CoolBudget enables the support of much lower power limits. To be able to compare

the two policies, we use a data center with reduced heat recirculation, where the

recirculation matrix D is magnitude-wise halved.

Policy Normalized BIPS max(Tcpu) max(Tinlet) Tcrac Efficiency

Server Inlet (SI) 1 59.7◦C 24.0◦C 17.9◦C 73%

CoolBudget 1.21 70.2◦C 33.0◦C 26.8◦C 84%

ideal CoolBudget 1.28 75.0◦C 37.9◦C 31.7◦C 88%

Table 4.2: Comparison of server inlet based cooling and CoolBudget

Table 4.2 shows the simulation results with reduced recirculation and with

Pbudget = 230kW , where ideal CoolBudget assumes perfect (zero error) modeling of

the temperature and performance, and the BIPS results are normalized with respect

to SI. Due to the over-prediction in the Tcpu estimation, CoolBudget leaves a tem-

perature headroom of 4.8◦C on the average. Increasing Tcrac by 8.9◦C leads to 21%

increase in BIPS and 15% improvement in the efficiency.

Comparison with Baseline Budgeting Policy

We compare our policy with a prior approach called self-consistent budgeting policy,

SC (Zhan and Reda, 2013). SC allocates a sufficient amount of power for cooling

and budgets the remaining power among the servers. It does not, however, cool down

96

Efficiency Fair Speedup Max Degrad. BIPS/Watt
0

1

2

N
or

m
al

iz
ed

to

 S
C

SC CB SC (rand alloc) CB (rand alloc)

Figure 4·5: Comparison between self-consistent (SC) and CoolBudget
(CB) policies under two job allocation scenarios with Pbudget = 200kW

the hottest servers to reduce the cooling need as our policy does.

Figure 4·5 shows the comparison of SC and CoolBudget in both thermally-efficient

and random job allocation scenarios. By redirecting more of the available power to

computing, CoolBudget improves the fair speed-up by 10% and BIPS per Watt by

20% during efficient allocation. Random allocation does not affect the efficiency

significantly; however, it decreases the fair speedup by 19-36% and the maximum

degradation by more than 50%. This is because both SC and CoolBudget allocate

lower power to thermally inefficient servers to keep a high efficiency, degrading the

performance of the jobs in these servers.

4.1.4 Summary

Efficient data center power budgeting requires awareness of the power, performance,

and temperature dynamics as well as intelligent policies that can improve efficiency

based on the collected resource usage and physical sensor data at runtime. We have

designed CoolBudget, which is based on a novel formulation of data center power bud-

geting problem and accurate power, performance, and temperature models that are

validated on a real server. By leveraging data collected from both servers and other

data center components such as cooling units, CoolBudget enables collapsing the ther-

mal headroom between server inlets and internal components, increasing data center

energy efficiency by over 10%. Furthermore, by using the Fair Speedup objective, we

avoid significant unfairness among workloads while improving the overall efficiency.

97

4.2 Leakage-aware Server Cooling

In the preceding section, we have focused on distributing the available power across

servers while taking data center cooling into consideration. In this section, we further

improve the effectiveness of power budgeting and the overall data center efficiency

by controlling the cooling of individual servers. To this end, we implement a novel

server cooling control policy that proactively avoids thermal violations, providing a

robust environment where the thermal headroom between server inlets and internal

components can safely be collapsed (see Section 4.1). Furthermore, our policy reduces

the thermally-related power consumption in servers by up to 6.4% compared to state-

of-the-art. This section explains power and cooling dynamics in servers in detail and

describes our proactive server cooling policy.

4.2.1 Cooling and Leakage Dynamics

The main purposes of the server fans are to remove the produced heat and to prevent

overheating of the hottest components such as CPUs and memories. The fan speed

should be carefully selected to avoid overcooling, which implies high cooling costs,

and also overheating, which results in shorter component lifetimes and higher power.

To clarify this point, Figure 4·6 shows the cubic increase in fan power with fan speed

1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

Fan speed (RPM)

P
o

w
e

r
(W

)

 Fan power

Fan + leakage, mcf 64 threads

Leakage, mcf 64 threads

Fan + leakage, calculix 256 threads

Leakage, calculix 256 threads

Figure 4·6: Fan and leakage power for various workloads.

98

as well as the exponential increase in leakage power when fan speed decreases for two

particular workloads running on a highly multi-threaded enterprise server providing

256 hardware threads: (i) a memory intensive workload utilizing 25% of the server

(64 copies of mcf) and (ii) a CPU intensive workload fully utilizing the server (256

copies of calculix). We observe that different RPM settings minimize the total fan

plus leakage power for the two workload scenarios.

To find the fan speed where the overall power consumption is minimized, we

propose a proactive fan control policy that is robust to different workloads, workload

allocation policies, and ambient temperatures. To build this proactive policy, we

develop accurate models that predict leakage and cooling power.

Modeling Methodology

We build models for fan power, temperature, and server power using the server setup

and benchmarks described in Section 4.1.1. For model training, we only use the

synthetic workload LoadGen, which allows us to stress the processors at any desired

utilization level.

We enable customized fan control by setting the fan currents through external

Agilent E3644A power supplies. We map the input current values to fan speeds,

which are inferred with high accuracy by taking the Fourier transform of vibration

sensors. In our work, we use a minimum fan speed of 1800RPM, and a maximum of

4200RPM. We avoid using lower fan speeds which lead to unstable fan behavior. On

the other hand, 4200RPM overcools the server under our experimental conditions,

and is above the maximum server default fan speed.

Processor Power

We focus on processors as they exhibit the majority of the temperature-dependent

leakage power (Patterson, 2008). We also studied memory power using synthetic

99

benchmarks and verified that the temperature dependence of memory power is neg-

ligible in our system.

We divide CPU power into leakage and dynamic power as follows:

PCPU = Pidle + Pleak + Pdyn (4.11)

where Pidle is idle power consumption, Pleak is the increase in leakage power due to

temperature, and Pdyn is the CPU dynamic power due to workload execution.

To model the relation between temperature and leakage power, we run LoadGen

with 100% utilization for all the available fan speeds. Because the workload is constant

in all experiments and the only control knob is fan speed, power consumption can

only change due to leakage. We approximate the exponential dependence of leakage

power on temperature using a second order polynomial:

Pleak = α0 + α1 · T + α2 · T 2 (4.12)

where αi’s are regression coefficients, and T is the CPU temperature in Celsius.

Figure 4·7 shows the data regression against the measured samples for both CPUs.

50 55 60 65 70 75 80 85 90
100

110

120

130

Temperature (°C)

P
o
w

e
r

(W
)

CPU0 Samples

CPU1 Samples

CPU0 regression

CPU1 regression

Figure 4·7: CPU leakage model regression for both CPUs.

We validate our model by running SPEC CPU and PARSEC workloads under

different fan speeds, and subtract Pleak from the power traces. Because the executions

of a given workload only differ in fan speed, the remaining power (PCPU−Pleak = Pdyn)

should be the same, and the difference between Pdyn traces under different fan speeds

100

Figure 4·8: Steady-state temperature model and measured samples
for three different fan speeds.

is a direct analytical estimate of the error of our model. The average error of 0.67W

shows very high accuracy.

Processor Temperature

Using our power model, we estimate server leakage power at a given temperature.

To adjust fan speed at runtime and minimize the energy consumption, we also need

to predict future temperature to compensate for thermal delays associated with pro-

cessor and heat sink. For this purpose, we propose a model which first predicts

steady-state temperature based on power measurements and fan speed, and then

estimates transient behavior.

The steady-state temperature of a processor that runs a constant workload is

strongly correlated with dynamic power. Each dynamic power level has a corre-

sponding steady-state CPU temperature for a given fan speed. Hence, we predict

dynamic CPU power using our power model in Equation 4.11.

In our experiments, we observe a linear relationship between the steady-state chip

temperature and the dynamic power consumption for each fan speed as demonstrated

in Figure 4·8. To train our model, we run LoadGen with different duty cycles to vary

average dynamic power, and record the steady-state temperature. We repeat the

101

same procedure for each available fan speed and derive models in the following form:

Tss = ks0 + ks1 · Pdyn + Tamb (4.13)

where Tss is the steady-state CPU temperature, k0, k1 are the model coefficients corre-

sponding to fan speed s, and Tamb is the ambient temperature. We validate our model

by running a set of SPEC CPU2006 workloads at two different ambient temperatures,

22◦C and 27◦C, where we obtain a maximum error of 6.6◦C and root-mean-square

error below 2.1◦C. This accuracy is sufficient for our purposes.

When processor power varies, temperature changes exponentially with a time con-

stant. We compute the thermal time constant of each fan speed by fitting exponential

curves to the temperature measurements obtained while running LoadGen after the

idle steady-state. As seen in Figure 4·9, the time constants, maximum observable

temperatures and temperature range decrease as the fan speed increases. As the

small changes in temperature do not affect the leakage power significantly, we only

need to detect the large changes with time constants in the order of minutes. With

such long time constants, we only predict the average temperature in the next minute

using the closed form integration of our transient temperature model. A more fine-

grained temperature prediction will lead to better approximations to the optimal fan

speed by capturing small changes in the temperature; however, it will also induce

1500 2000 2500 3000 3500 4000 4500

80

120

160

200

Fan speed (rpm)

T
im

e
 c

o
n
s
ta

n
t
(s

e
c
)

60

70

80

90

m
a
x
 t
e
m

p
e
ra

tu
re

 (
°
C

)

time constant

max temperature

Figure 4·9: Thermal time constant and maximum temperature under
various fan speeds

102

unnecessary changes in fan speed and decrease the lifetime of the fans. The duration

of the temperature prediction should be selected considering this trade-off.

4.2.2 Leakage-aware Fan Control

Our fan control policy uses temperature and power measurements to proactively

determine the fan speed that minimizes the fan plus leakage power. Algorithm 1 shows

the pseudo-code of our policy, where f represents functions for models described in

Section 4.2.1. The procedure is called every time epoch of length τwait.

Algorithm 1 Fan control procedure

1: for each CPU p do
2: P p

leak = fleakage(T
p
measured)

3: P p
dyn = P p

measured − P
p
idle − P

p
leak

4: for each fan speed s do
5: T p,sss = ftemperature(P

p
dyn, Tamb, s)

6: T p,savg = ftransient(T
p
measured, T

p,s
ss)

7: if T p,savg ≥ Tcritical then
8: P p,s

leak =∞
9: else

10: P p,s
leak = fleakage(T

p,s
avg)

11: end if
12: end for
13: end for
14: for each fan speed s do
15: P s

total = P s
fan +

∑
p P

p,s
leak

16: end for
17: Set fan speed to argmin

s
(P s

total)

18: Wait τwait while monitoring Pdyn

Our policy first calculates the leakage

power Pleak for each CPU p using the

leakage power model in Equation 4.12

(line 2), and the dynamic CPU power us-

ing Equation 4.11 (line 3). As every Pdyn

corresponds to a steady-state tempera-

ture Tss under a given fan speed (Equa-

tion 4.13), the policy then computes the

expected average temperature over the

next τwait period, using a closed form

integration of the transient temperature

prediction (lines 5-6). Given the average

temperature, expected leakage power is

calculated. We prevent the selection of fan speeds that result in temperatures above

the critical value Tcritical, by setting the corresponding leakage power to infinity.

Finally, the total leakage + fan power is calculated for each fan speed (line 15),

and the fan speed that minimizes power consumption is selected (line 17). The

system then waits τwait seconds while monitoring the system for a workload change.

If the dynamic CPU power changes significantly, this interval is interrupted and the

103

optimum fan speed is re-calculated. This waiting time ensures the stability of the

controller and prevents the fan reliability issues that could arise with very frequent

fan speed changes (i.e. in the order of seconds). For our system, we choose a τwait

value of 1 minute, which is a safe choice considering the large thermal time constants.

We use a 300RPM resolution for the fan speed selection in our policy, which is

a heuristically selected value. This resolution is selected such that the available fan

speeds lead to a sufficient approximation to the optimal cooling conditions. Selecting

an unnecessarily fine resolution will increase the computational overhead of the policy.

The fan speed control policy is run by the DLC-PC. The policy measures and

averages power every second, and decides on the fan speed every minute using look-

up tables and polynomials. The leakage and temperature prediction is computed only

for 9 different fan speeds that cover the entire fan speed range (1800 to 4200RPM)

with a resolution of 300RPM. As these are very simple operations with long periods,

the policy has negligible overhead and can be implemented in the service processor.

4.2.3 Evaluation

This section presents several state-of-the-art policies and compare their performance

against our proposed proactive fan control strategy. In addition, we provide an esti-

mation of the impact of our policy on data center level power consumption based on

power traces from a real data center.

Baseline Policies

Below are the baselines policies used in the evaluation of the proposed policy:

Best fixed: The default server fan policy sets a fixed fan speed that ensures

the server reliability for a worst-case scenario for each ambient temperature, leading

to overcooling. To ensure the fairness of the comparison and evaluate to benefits of

dynamic fan speed selection, we use fixed 2400RPM as a baseline, which minimizes

104

leakage plus fan power for the majority of the workloads.

TAPO: The TAPO fan control policy (Huang et al., 2011) changes the thermal

set point Tsp of the processor to indirectly control the fan speed. Assuming the

workload is constant, once the thermal steady-state is reached, the policy changes

Tsp. Then, it observes the change in the processor temperature and power to decide

whether to increase or decrease Tsp to achieve lower power.

Bang-bang: The bang-bang is a multi-threshold controller that aims to keep

CPU temperature within a desirable range. Our implementation tries to maintain

temperature within the 65◦C-75◦C, thus: (i) if maximum observed temperature Tmax

goes below 60◦C, fan speed is set to 1800RPM (lowest); (ii) if Tmax is in between

60◦C to 65◦C, fan speed is lowered by 600RPM; (iii) if Tmax is between 65 to 75

degrees, no action is taken; (iv) if Tmax rises above 75◦C, fan speed is increased by

600RPM; and, (v) if Tmax is above 80◦C, fan speed is increased to 4200RPM. The

threshold values are heuristically chosen to optimize the tradeoff between high fan

speed change frequency and high temperature overshoots while keeping temperature

in a range that ensures low total power (Zapater et al., 2013).

Lookup table based fan control (LUT): This policy (Zapater et al., 2013)

monitors CPU load periodically and tries to minimize the leakage plus cooling power

by setting the optimum fan speed during run-time depending on the utilization of the

server. For that purpose, a look-up table that holds the optimum fan speed for each

utilization value is generated using LoadGen.

Workload Profiles

We generate 4 different workload profiles: (1) high power and long jobs, (2) low power

and long jobs, (3) high power and short jobs, (4) low power and short jobs. Each

profile consists of 10 randomly selected jobs from SPEC or PARSEC benchmarks

with certain number of copies as described in Section 4.1.1, generated with a Poisson

105

distribution of arrival and service times. The mean arrival and service times are 25

and 20, respectively, for long jobs, and 15 and 10, respectively, for short jobs.

To generate profiles with variable stress in terms of power consumption, all bench-

mark applications are arranged into two classes: high power consumption and low

power consumption.The probability of a job being selected from high power group is

0.8 and 0.2 for high and low power profiles, respectively.

Experimental Results

We evaluate the workloads under two allocation schemes: clustered and distributed.

Clustered allocation packs all the threads together into the first N cores of the server,

and distributed allocation spreads the workload as much as possible into all available

cores. While distributed allocation reduces the maximum temperature, depending

on the workload, it can increase energy consumption as it prolongs workload execu-

tion due to (1) added communication between two CPU sockets and (2) lower cache

utilization. In our experiments, we do not observe a clear winner among the two

allocation schemes in terms of energy consumption.

Figure 4·10: Leakage plus fan energy savings achieved by the proac-
tive fan control policy compared to baseline policies.

Figure 4·10 shows the leakage plus fan energy savings achieved by our proactive

policy under distributed allocation. The proactive policy consistently reduces energy

consumption under all workload profiles and up to 6.4%. Note that the fixed fan

106

(a) Fixed Fan Speed (b) TAPO

(c) Proactive Controller

Figure 4·11: CPU temperature and fan speed traces for workload
profile 1 with clustered allocation using different fan controllers.

speed policy is already selected considering the leakage-cooling trade-offs and reduces

the leakage plus fan energy by more than 8% compared to the default server policy.

Figure 4·11 shows the fan speed and the processor temperature trends of the fixed

fan speed policy, TAPO policy, and the proactive policy running workload profile

4. As the proactive policy adjusts fan speed before the temperature has changed,

it reduces the range of thermal oscillations, which are strongly linked to reducing

lifetime reliability of chips (Xiang et al., 2010).

Impact at Data Center

We calculate the impact of our server fan control policy on the overall data center

based on server power traces of a high-performance computing cluster consisting of

260 computer nodes in 9 racks at the Madrid Supercomputing and Visualization

Center (CeSViMa). By using the telemetry deployed in CeSViMa, we gather 3 hours

107

of real server power traces for 256 servers. We use these power traces to simulate our

proactive policy in a larger-scale scenario with a real workload trace, and compute

the energy savings that our policy would achieve compared to the fixed fan speed

policy and the server default policy.

We account for the effect of different ambient temperatures on the data center

cooling based on data by Miller et al., in which each degree of increase in room tem-

perature yields 4% energy savings in the cooling subsystem (Miller, 2007). As room

temperature raises, the fan speed needed to keep servers within safe environmen-

tal conditions also increases. Hence, in our case study, we use a fixed fan speed of

2400RPM, 2700RPM, and 3000RPM as a baseline for comparison under 22◦C, 27◦C,

and 32◦C ambient temperature, respectively.

Our proactive policy outperforms both the fixed and the default server fan policies

for all power traces and under every ambient temperature scenario. The savings

obtained are 1.9% at 22◦C ambient temperature, 5.5% at 27◦C, and 10.3% at 32◦C

for the whole cluster in leakage plus fan power. This is translated into a reduction of

2.5% in the total CPU energy consumption of the cluster at 27◦C ambient.

4.2.4 Summary

Most existing server fan control policies are reactive and unaware of leakage power. As

we demonstrated in this section, the efficiency of existing fan control policies can be

improved by leveraging the continuously collected CPU power data and using accurate

models of temperature, leakage power, and cooling power. Compared to existing

policies, our approach consistently reduces server energy consumption, reaching up to

6.4% of leakage plus fan energy savings. Moreover, our fan control policy proactively

avoids thermal violations and is application-agnostic.

108

4.3 Efficient Topology Mapping in HPC Systems

This chapter so far focused on power management, which has a direct impact on data

center energy efficiency. However, other aspects of data center management such

as resource allocation can also improve overall energy efficiency by reducing wasted

compute resources. In this thesis, we specifically focus on topology mapping for HPC

applications, which is the placement of parallel application tasks (e.g., MPI ranks)

onto the available compute nodes. As most HPC applications have a specific commu-

nication topology, which can be extracted from historical communication data (Zhai

et al., 2009), topology mapping can be expressed as mapping an applications’ com-

munication graph onto the target machines’ network graph. While topology mapping

is an NP-hard problem (Hoefler and Snir, 2011), placing highly-communicating appli-

cation tasks close to each other using heuristics has been shown to reduce execution

times of HPC applications by up to 34% (Deveci et al., 2014).

In today’s HPC systems, topology mapping includes decisions both from the sys-

tem side and from the application side. The system is responsible for scheduling

and allocation, whereas the application performs task mapping. In this section, we

introduce our HPC job placement policy, PaCMap (Tuncer et al., 2015), which is the

first to use a holistic view on topology mapping by combining the system-driven node

allocation and the application-driven task mapping algorithms. This holistic view

leads to a more efficient job placement compared to existing techniques, reducing

application communication volume in terms of hop-bytes by up to 30%.

Figure 4·12 depicts conventional HPC workload management. The job submission

only supports sending basic requests to the system, such as number of processing

cores, memory requirement, and the worst case execution time (WCET), where a

job refers to a specific instance of an application. Then, as part of system software,

the scheduler determines when to run the job based on machine availability and job

109

SYSTEM

Scheduler AllocatorTIME NODES Task Mapper

APPLICATION

JOB Execu�onCORES

Executable,
resource

requirements

Figure 4·12: Workload management in conventional HPC machines.

queue. Once the job is scheduled, the allocator assigns a set of machine nodes for the

job. Finally, the application’s task mapper places its tasks onto the allocated nodes.

In this work, we assume there is no space sharing, i.e., a machine node cannot be

shared by multiple jobs. This is common in HPC to enable tuning of applications to

the available resources in compute nodes for improved performance.

Due to the limitations of the job submission framework, the system is unaware

of the exact communication pattern of a job for unstructured applications. For task

mapping, however, programmers can specify the communication pattern through in-

terfaces such as MPI (MPI Forum, 2012). Alternatively, the pattern can be profiled

during an application’s first run and used in the future runs. In addition to the

communication pattern, the application side can also discover the physical network

topology through system calls (Subramoni et al., 2012). Based on these information,

task mapping can make an efficient assignment of the application tasks to the machine

nodes to minimize the communication overhead.

Job Allocation

There are two main considerations during job allocation. First, the selected nodes

should be close to each other to reduce the communication distances. Second, the

allocation should not lead to fragmented machine utilization. The allocation algo-

rithms that disregard the second issue can lead to the segmentation of large empty

blocks in the machine, potentially increasing the communication overhead of future

jobs. Consider the example shown in Figure 4·13, where two jobs are scheduled in a

110

6-node machine with a 2D mesh topology. In case (a), the
12

12 2

2

(a) fragmented

21

1 2

2

2

(b) non-fragmented

Figure 4·13: Fragmen-
ted and non-fragmented
job allocation. The boxes
represent machine nodes
and the numbers repre-
sent allocated jobs.

first job is allocated to the middle column. Thus, job 2

must be fragmented into smaller parts, increasing com-

munication distance. However, case (b) assigns job 1 to

the side of the machine, leaving sufficient space for job 2.

The common techniques for non-contiguous job allo-

cation can be classified into two categories: linear and

clustered. We use one algorithm from each category.

Best-fit (linear): The best-fit strategy is a combi-

nation of the ideas proposed by Lo et al. (Lo et al., 1997)

and Leung et al. (Leung et al., 2002). The algorithm first

linearly orders the machine nodes along a curve. Then,

the free nodes are grouped into intervals along this curve. The job is allocated to the

smallest interval that has sufficient nodes. If there is no such interval, the algorithm

selects the nodes that minimize the maximum distance along the curve. This strategy

is commonly used in real HPC machines due to its simplicity and its small time com-

plexity of O(M) in an M -node machine. In machines with a torus or mesh network

topology, linear allocation strategies order the nodes using space-filling curves such

as Hilbert curves to improve locality (Auble and Christiansen, 2014).

MC1x1 (clustered): The MC1x1 algorithm is a variant of the MC algorithm

proposed by Mache et al. (Mache et al., 1997). It is a (2 − 2/k)d approximation to

the optimal solution for minimizing the average pairwise L1 distance of tasks in a d-

dimensional mesh when allocating k processors (Bender et al., 2008). The algorithm

aims to find a compact cluster of free nodes. For each free node n, MC1x1 calculates

an allocation score by counting the number of free nodes in a d-dimensional hypercube

centered on node n. Although MC1x1 finds clustered nodes, it does not address the

111

fragmented allocation problem and it is not applicable in network topologies other

than mesh and torus. The time complexity of this approach depends on the machine

state. In the worst case, calculating the score of a free node requires checking the

availability of all the nodes in the machine, whereas the best case checks only the

nearest J nodes of J free nodes. Hence, depending on the machine state, allocating

nodes with MC1x1 takes between O(M2) and Ω(J2), where M is the number of nodes

in the machine.

Task Mapping

Task mapping considers the assignment of the individual application tasks to the

machine nodes, which are selected by the job allocation stage (Section 4.3). Unlike job

allocation, task mapping is able to use information provided by the application such

as the communication pattern. We focus on three different task mapping techniques

and use them as baselines for the evaluation of the proposed PaCMap algorithm.

(a) Original matrix (b) RCM permutation

Figure 4·14: RCM applied on a sample sparse matrix

Reverse Cuthill-Mckee (RCM): RCM (Cuthill and McKee, 1969) reduces the

bandwidth of a symmetric matrix via permutation, i.e., it reorders the matrix such

that the non-zero entries that are far from the diagonal are eliminated as demonstrated

in Figure 4·14. When applied on a task communication matrix, which shows the

communication links between the tasks, this corresponds to reducing the maximum

112

distance between the tasks when the tasks are linearly ordered.

In machines with contiguous allocation, RCM can be applied both on the network

and the communication graphs with O(JD logD) complexity, where D is the max-

imum degree of the application graph. Then, in-order mapping of the tasks to the

nodes can effectively reduce the communication distance for sparse communication

patterns (Bhatelé et al., 2010). In machines that allow non-contiguous job allocation,

the machine network cannot be directly used as it results in an unconnected graph.

Instead, the tasks are mapped in-order along the curve of a linear allocation.

Recursive Graph Bisection (RGrB): RGrB algorithm uses the task commu-

nication graph and the network topology graph. It recursively splits both graphs into

equal halves using minimum weighted edge-cuts, and maps the remaining task(s) to

the remaining node at the end of the recursion. This algorithm has been used for con-

tiguous allocation by software packages such as LibTopoMap (Hoefler and Snir, 2011)

and SCOTCH (Pellegrini and Roman, 1996b). As there is no RGrB variant specific

to non-contiguous allocation, we apply RGrB by building a virtual all-to-all graph

for the machine network, where the edges are weighted based on the hop distance

between the nodes. Due to the all-to-all graph, RGrB takes O(J3) for non-contiguous

allocation for mapping J tasks (Hoefler and Snir, 2011). Our implementation of RGrB

is based on LibTopoMap, and uses the METIS library (Karypis and Kumar, 1998)

for bisectioning. Although this technique demonstrated efficient mappings, it is also

shown that it may result in poor p-way partitions (Simon and Teng, 1997).

Recursive Geometry Bisection (RGeoB): Similar to the RGrB, RGeoB is

based on recursive bisections. Instead of using the graphs, however, RGeoB splits

the application and the machine geometries into equal halves such that the maximum

dimension length is minimized (Deveci et al., 2014). The application geometry can be

inherent to the application, such as the coordinates of an object in a computational

113

fluid dynamics simulation, or it can be generated from the communication graph.

Similarly, the machine geometry can be defined as x, y, z coordinates of a 3D mesh

network topology. When a generic sorting algorithm with O(J log J) is used for the

geometric bisectioning, the complexity of RGeoB becomes O(J log2 J) as shown by the

master theorem (Cormen et al., 2001). The effectiveness of RGeoB strictly depends

on how well the communication is represented by the given application geometry. For

3D stencil computations, this technique is shown to perform better than RGrB on a

Cray XE6 (Deveci et al., 2014).

Interplay of Allocation and Mapping

As mentioned earlier in this section, the allocator is unaware of application commu-

nication patterns in current HPC systems. Hence, allocation decision can decrease

the potential efficiency of the task mapping algorithm. Consider the example in

Figure 4·15. A communication-aware allocation algorithm will allocate a 3x3 mesh

(Figure 4·15b) for an application with a 3x3 stencil communication pattern, so that

task mapping can reduce the average message hop distance to 1. However, if the

allocator is unaware of the communication pattern, it can select the nodes as in

Figure 4·15c, where the minimum achievable average message hop distance is 2.

Similar effects can also be observed in larger scales. Consider a 3D stencil ap-

(a) Communication graph (b) Efficient allocation

(c) Inefficient allocation

Figure 4·15: Communication graph of a 3x3 stencil application, and
(b) communication-aware and (c) -unaware allocation examples

114

plication with dimensions 2x8x32. If this application is allocated to a 2x8x32 mesh,

the minimum average hop distance would be 1. However, when it is allocated to a

8x8x8 cubical mesh instead, the RGeoB task mapping algorithm, being the best task

mapper for this case, results in an average hop distance of 1.92, increasing the com-

munication overhead. These example cases create sufficient motivation to develop

algorithms that jointly consider allocation and mapping.

4.3.1 Joint Job Allocation and Task Mapping with PaCMap

Add neighbors of center node and
TG to the frame lists

Map the heaviest TG to the framing
node with the least overhead

Update frame lists

Are all TGs
mapped?

Return mapping

Yes

No

Partition the communication graph
into k task groups (TGs)

Select center node and center TG,
map them to each other

Figure 4·16: PaCMap overview

We propose a topology mapping algorithm

called PaCMap (Partitioning And Cen-

ter MAPping) to improve the workload

placement. PaCMap unifies system- and

application-controlled workload placement

algorithms to exploit asymmetries and irreg-

ularities in both data center network topol-

ogy and application’s communication topol-

ogy. PaCMap can be used for any applica-

tion with a distinct communication pattern

in machines with both contiguous and non-

contiguous allocation.

As shown in Figure 4·16, PaCMap first

partitions the communication graph into k

task groups (TGs) such that each group can

fit into a single node in the cluster. This step

consolidates the highly-communicating tasks to be executed on the same machine

node. After this step, the problem reduces to mapping the TGs into the available

machine nodes. In our implementation, the partitioning is done by the multilevel

115

k-way partitioning algorithm from the METIS library (Karypis and Kumar, 1998).

Next, PaCMap selects a center TG from the partitioned graph and maps it to a

selected center node in the cluster. Then, it expands the allocation by picking a node

and mapping a TG to it based on the network topology and on the communication

graph until all tasks are mapped.

PaCMap can also be used only for allocation by ignoring the mapping decision,

or only for task mapping by limiting the nodes the algorithm can use. The rest of

this section explains in detail how the center node and the center TG are selected

and how the expansion is performed, along with a complexity analysis.

Center Machine Node Selection

As discussed in Section 4.3, the allocation determines how efficiently the cluster is

utilized. The algorithm should select a collected group of nodes and should not lead

to fragmented allocation of future jobs. Our solution is a heuristic that addresses

both issues.

For each available node n, we look at the other available nodes in the proximity of

n and calculate a node score NSn,J , where J is the number of nodes to be allocated.

To calculate the score, we first create a list of available nodes around n within a

communication distance of R using breadth-first expansion. Then, we sort this list

with respect to the distance to n. Starting from the closest node, we increase NSn,J

for the first J nodes, and penalize it for the remaining extra nodes as follows:

NSn,J =
J∑
i=1

f(distn,i) −
∑
i=J+1

f(distn,i) (4.14)

where f(distn,i) is a function of distn,i, which is the communication distance between n

and node i in the list. To avoid fragmented allocation, R should be selected such that

the number of nodes within the network distance of R is larger than J . Additionally,

f(distn,i) should prioritize the nodes that are closer to node n to improve locality.

116

R and f(distn,i) are selected based on the network topology. We use the following

heuristics for 3D torus topologies: The maximum number of nodes within a network

hop distance of r equals 4r3/3 + 2r2 + 8r/3 + 1 in a 3D torus. Using a pre-calculated

look-up table based on this formula, we first find the minimum distance rmin that

contains J nodes. We then select R = rmin + 2 to check the excessive availability

around the node n. This number can be adjusted for different machines if the above

formula becomes invalid due to asymmetrical torus dimensions. We use f(distn,i) =

1/(4dist2n,i + 2) so that the maximum total impact of the nodes equidistant to n on

NSn,J is 1. We do not observe a significant change in the allocation performance by

the selection of f(distn,i) as long as the nodes closer to n have more impact than

others. In other network topologies such as Dragonfly (Kim et al., 2008), the same

methodology can be followed to select R and f(distn,i).

Center Task Group Selection

PaCMap expands the allocation from the center node and the center TG, while al-

locating nodes and mapping TGs at each expansion step. As the center machine

node selection stage scores the nodes based on the availability around them without

prioritizing any direction, an efficient node selection requires the expansion to be

symmetric in all directions. This can be done by selecting a proper center TG. The

center TG is selected as the one with the minimum cumulative shortest-path distance

to all other TGs. To find the center, we run Dijkstra’s algorithm on all TGs.

Expansion

After allocating the center TG to the center node, we create two lists for the ex-

pansion: (1) a list of machine nodes that frame the current partial allocation, (2) a

list of TGs that frame the currently allocated TGs. The frames are the neighboring

nodes/TGs in the corresponding graphs, as demonstrated in Figure 4·17. The edge

117

A

B

C

D

F

E

2

3
3

1

3

(a) Communication graph

BA

C

1

2

3

4

(b) Network graph

Figure 4·17: Partially allocated application. The solid shapes are
current allocation/mapping, the dashed shapes are the frames, and
striped squares are busy nodes.

weights in the machine graph (the network links) are all 1, whereas the edge weights

in the TG graph are given in the figure.

For each expansion step, we select the heaviest TG, i.e., the unmapped TG that

has the largest communication volume with the currently allocated tasks. In Fig-

ure 4·17a, D would be selected for the next step with a total weight of 2 + 3 = 5.

We map this TG to the node that leads to the least total communication overhead,

calculated as follows:

overheadn =
∑
i

distn,i ·Wn,i (4.15)

where Wn,i is the communication weight between the TGs mapped to nodes n and

i. In Figure 4·17b, node #2 would be selected for task D with an overhead of

1 · 2 + 1 · 3 = 5. If there is a tie between the nodes, we select the closest node to the

center to maintain the symmetry of the expansion.

After mapping the heaviest TG to the selected node, we update the frames by

adding the neighbors of the allocated node and the mapped TG. If there is no free

node among the direct neighbors of the allocated node, we increase the search distance

until a free node is found.

118

Overhead of PaCMap

Given that most HPC applications are re-run with different parameters or inputs,

partitioning of the communication graph into TGs and selection of the center TG

need to be done only once per application. The results can be re-used for the future

submissions of the same application. Alternatively, this information can be passed to

the system along with the job submission.

Selection of the center node and expansion should be done at runtime. The

overhead of the center node selection strictly depends on the underlying network

topology. We make use of the coordinate information of the 3D torus topology, and

we check the availability of O(R3) = O(J) nodes for each available node. This can

be done in parallel for the total number of nodes in the machine, M .

During expansion, finding and deleting the heaviest TG for J TGs takes O(J log J)

with TG frame as Fibonacci heap and node frame as a linked list. Selecting the

node that leads to the least communication requires calculating the communication

overhead for all neighbors of the heaviest TG and for all nodes in the frame. During

the entire mapping process, J nodes will be mapped and the communication weight of

C links will be calculated. In addition, at any time, there will be a maximum of O(J)

nodes in the frame as the number of ports of a router in a 3D torus network is bounded.

Hence, selecting nodes during mapping takes a total of O(J2 + JC) = O(JC) for

connected graphs. Note that the best node can be also selected in parallel. Updating

the task frame is done by breadth-first search, where each step includes updating the

weights of the unmapped neighboring TGs in the Fibonacci heap, leading to a total

of O(J + C). The complexity of updating the node frame depends on the machine

utilization, where worst-case requires checking the availability of O(M) nodes, leading

to O(MJ) during the entire mapping process.

As a result, the complete allocation and mapping process has a time complexity

119

of O(MJ + JC) for a connected communication graph and for 3D torus machines.

This complexity is feasible in terms of real-life implementation and scalability, and it

is comparable to our best-performing baselines.

4.3.2 Evaluation

As real HPC machines do not have the infrastructure to support combined alloca-

tion and task mapping, we use simulations for our evaluation. For this purpose, we

use the Structural Simulation Toolkit (SST), which is an architectural simulation

framework designed by Sandia National Laboratories to assist in the design, evalua-

tion and optimization of HPC architectures and applications (Rodrigues et al., 2012).

We extend the scheduler module in SST to consider task mapping and implement

a communication-aware performance model to evaluate PaCMap. We also create

realistic HPC workload traces and communication patterns to feed the simulator.

Target Machine

Our target machine uses static mapping, i.e., it does not support task migration at

runtime. We use a 3D torus network topology, which is commonly used in HPC

machines due to its low cost, ease of design and installation, and high bisection

bandwidth (i.e., the total bandwidth of links placed between two equal-sized node sets

after partitioning). Example machines that use 3D torus include IBM BlueGene/L,

Cray XE6, and Cray XK7 (Alverson et al., 2012). During our simulations, we use

static shortest path dimension-ordered (x-y-z) routing in the network.

Workloads

In order to compare the task mapping algorithms, we need a comprehensive set of

unstructured sparse communication graphs as well as application geometries. For

this purpose, we use the University of Florida Sparse Matrix Collection (Davis and

120

Hu, 2011) as a proxy for communication and geometry information. This collec-

tion is commonly used for the evaluation of graph algorithms such as bisectioning

(e.g. (Holtgrewe et al., 2010)), and consists of data from real applications in various

fields such as circuit simulations, financial modeling, and chemical process simula-

tions. We use the applications in the collection with 2D or 3D geometry information

with up to 115K tasks. We assume uniform communication between the tasks as it

is the expected case for well-balanced HPC applications.

The comparison of non-contiguous allocation algorithms requires using an already

populated machine. Additionally, our analysis should account for the impact of the

allocation decision on the performance of future jobs. To address both issues, we use

the logs provided in the Parallel Workloads Archive (PWA) (Feitelson et al., 2014) as

inputs to our simulation, and evaluate entire workload traces. PWA logs are collected

from real large scale parallel systems, and provide information on job arrival times,

execution times, and job sizes, but no information on the communication. Hence,

we assign communication patterns to the jobs by matching them with the proxy

communication matrices in the sparse matrix collection. As the job sizes in PWA

do not necessarily match with the matrix sizes in the collection, we apply binning

to the PWA, in which the job sizes are changed to the closest available size in our

application set.

Among the logs in the archive, LLNL-Atlas and CEA-Curie traces lead to the

most balanced application counts after binning. LLNL-Atlas and CEA-Curie are

collected from machines with 36864 and 93312 cores, respectively. These are the

largest machine sizes in the archive after ANL-Intrepid, which leads to an unbalanced

binning and biases the results by prioritizing only a few applications in our input set.

Logs from the newer and larger machines are not available in the archive due to the

explosive growth of machine sizes and the lag in collecting data for research. We

121

use the first two weeks of these two traces in our evaluation as machines like Cray

Cielo4 are usually taken down for maintenance every two weeks. Our LLNL-Atlas

and CEA-Curie traces consist of 1001 and 3291 jobs, respectively.

Performance Model

During our simulations, we modify the execution time of a job based on its commu-

nication pattern and mapping. To extract the relationship between communication

time and the network-related metrics, we conduct real-life experiments on the Cray

XE6 Cielo supercomputer located at Los Alamos National Laboratories. Cielo con-

sists of 8944 compute nodes and additional service nodes. Each compute node has

a dual AMD Opteron 6136 eight-core “Magny-Cours” socket, providing a total of 16

cores. The nodes are connected using a Cray Gemini 3D torus network topology with

the dimensions of 16x12x24 and two nodes per Gemini.

We use the miniGhost application (Barrett et al., 2012), which is a part of the

miniapps developed by the DOE community to represent the computational core of

various HPC applications. MiniGhost focuses on the nearest neighbor inter-process

communication strategy, with computation mainly serving to provide enough data

and separation of the boundary exchanges from some computation. Its core is based

on CTH, an application for modeling complex multi-dimensional problems that are

characterized by large deformations and/or strong shocks (Hertel et al., 1993).

We run miniGhost with sizes of powers of 2, from 64 to 65536. For each size,

we run miniGhost under 5 allocation schemes and using 11 task mapping techniques,

providing 55 executions for the same application. The task mapping techniques in-

clude all algorithms introduced in Section 4.3, all algorithms in LibTopoMap (Hoefler

and Snir, 2011), and the system defaults. During the experiments, we collect time

spent for communication and computation, number of bytes sent between machine

4Cray Cielo supercomputer: http://www.lanl.gov/projects/cielo/index.php

122

10
8

10
10

10
12

10
14

10
16

0

0.5

1

1.5

2

2.5

n
o

rm
a

liz
e

d

c
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

hop−bytes per second

experimental data

estimation

fit

Figure 4·18: Relationship between communication and hop-bytes.
The communication time represents the time spent in communication
when the computation time equals 1.

nodes, maximum congestion, and message hop count.

We examine several metrics that have been associated with the communication

overhead in the literature. These are maximum dilation (i.e., the maximum network

hop distance a message travels), average dilation, average hops per byte, maximum

network congestion, and hop-bytes as defined in Equation 4.16.

hop-bytes =

messages∑
i

hop-distancei · bytesi (4.16)

Hop-bytes represents the total communication volume in the network. Our exper-

imental results show high correlation between hop-bytes and communication time, as

shown in Figure 4·18. Based on the experimental data, we formulate the execution

time of a job as follows:

Texec = (1 + 0.0019 · hop-bytes0.16+τ) · Tbase (4.17)

where Tbase is the execution time without considering the overhead introduced by

topology mapping decision, and τ is a uniformly distributed random number between

−0.013 and 0.013 that represents the variation in the experimental results. As the

123

application tasks run on individual processing cores without consolidation, we assume

that the computation time is independent of the mapping decision.

Results

We start by analyzing the task mappers independently from the allocation algorithms.

For this purpose, we run each application in an empty machine using the same allo-

cation. We use best-fit allocator with Hilbert curves to provide a fair comparison for

RCM, which maps the tasks in-order to the allocated nodes. For each application,

we use the smallest empty cubical machine with single core per node, where the ma-

chine dimensions are selected as powers of 2 so that efficient Hilbert curves can be

generated. We use PaCMap only as a task mapper in this analysis.

0

2

4

6

8

10

N
o
rm

a
liz

e
d
 h

o
p
−

b
y
te

s

st
ra

nk
e9

4

G
D
97

 b

G
D
99

 b

G
D
96

 c

sa
nd

i a
ut

ho
rs

G
D
98

 c

gr
id
1

du
al

gr
id
1

sp
he

re
3

m
es

h2
e1

U
SAir9

7

ne
tz
45

04
 d

ua
l L

st
uf

e

uk
er

be
1

du
al

ne
tz
45

04
di
ag

m
in
ne

so
ta

gr
id
2

du
al

gr
id
2

ai
rfo

il1 3e
lt

s3
rm

t3
m

3

s1
rm

q4
m

1

uk
er

be
1

ba
rth

4

ai
rfo

il1
 d

ua
l

3e
lt
du

al

w
hi
ta

ke
r3

cr
ac

k
L−

9

w
hi
ta

ke
r3

 d
ua

l

cr
ac

k
du

al

bi
pl
an

e−
9

st
uf

e−
10

bi
g

du
al

sh
oc

k−
9

br
ac

k2

lu
xe

m
bo

ur
g

RCM RGeoB RGrB

Figure 4·19: Hop-bytes comparison of task mappers for all applica-
tions in our input set. The values are normalized to the hop-bytes
resulting from PaCMap.

Figure 4·19 shows the resulting hop-bytes for all applications in our input set. The

results are normalized with respect to the hop-bytes of PaCMap. The applications

in the x-axis are ordered from smallest with 10 tasks (stranke94) to the largest with

115K tasks (luxembourg). Note that all cases use the same allocator so that the

benefits of combined allocation and mapping is not exploited.

In the figure, we observe that the RCM performance decreases as the application

size increases. The first reason for this scalability problem is that RCM ignores

the network links that are not along the curve. Second, the performance of RCM

124

depends on the correlation between the average and the maximum distance in the

communication matrix, which typically decreases with the application size. For the

application diag, for example, RCM increases the average communication distance

more than 4 times of the original matrix while reducing the maximum distance.

A
B

C
D

(a) Application Coordinates

A

B

C

D

(b) Network Graph

Figure 4·20: Mismatch-
ing coordinates and alloca-
tion. The dashed lines repre-
sent the bisection cuts.

The performance of the RGeoB depends on (1)

how well the geometry represents actual communica-

tion, and (2) the similarity between the coordinates

and the allocated node structure. For the latter,

consider the example given in Figure 4·20. Because

only coordinates are used during bisectioning, RGeoB

places the tasks B and C far from each other and in-

creases the message hop distance. This problem also

occurs when the tasks have 2D coordinates but are

mapped into a 3D topology. It has a significant impact on the communication over-

head in larger scale, where thousands of tasks are placed far apart (e.g. crack in

Figure 4·19). To avoid this problem in torus/mesh networks for structured commu-

nication, researchers have introduced methods such as folding (Bhatelé et al., 2010).

However, no solution exists on this issue for arbitrary communication patterns.

RGrB performance the best among our baselines. One weakness of RGrB is that

the heuristics used for graph bisectioning, which is also an NP-hard problem, perform

poorly with all-to-all graphs. Additionally, RGrB can lead to less efficient solutions

depending on the communication and machine graphs as well as how the recursive

branches of these two graphs are mapped to each other (Pellegrini and Roman, 1996a).

We have performed the same analysis using average message hop distance and

per-job congestion metrics and verified that our algorithm do not worsen another

network metric. The performance of PaCMap is reduced as the allocation is not

125

adapted to the communication graph during the aboves analyses. We compare our

technique with others in the following section.

Analysis with Workload Traces

Analyzing how the allocation decision affects the task mapping performance in a

machine with non-contiguous allocation requires an already-populated machine. For

this purpose, we use entire workload traces and compare the execution time of the

jobs. The target HPC machine used in this analysis has 16 processing cores per

node as in the real-life experiments we use for calibrations. For each input trace, the

machine size is selected as the actual machine size the logs are collected from.

RGrB PaCMap
0.9

0.95

1

1.05

1.1
x 10

5

(a)

c
u
m

u
la

ti
v
e
 r

u
n
n
in

g

 t
im

e
 i
n
 h

o
u
rs

best−fit mc1x1 PaCMap

RGrB PaCMap
(b)

Figure 4·21: Cumulative running time of the jobs that use multiple
nodes in (a) LLNL-Atlas and (b) CEA-Curie traces. The horizontal
axis shows different task mappers; whereas bar colors are different al-
locators.

Figure 4·21 shows the cumulative execution time of all jobs that use multiple

nodes (i.e., jobs with at least 16 tasks) in the traces with different allocator and task

mapper pairs. Each bar group uses a different task mapper, and each bar in a group

uses a different allocator. Note that PaCMap can be used as an allocator and/or as

a task mapper.

Although intuitively clustered allocations should be more useful for RGrB than

curve-following allocations, we observe that for LLNL-Atlas, RGrB leads to 7% less

cumulative execution time than MC1x1 with the best-fit allocator. This is because

126

0.5

1

1.5

2

 N

o
rm

a
liz

e
d
 a

v
e
ra

g
e

h
o
p
−

b
y
te

s
 p

e
r

a
p
p
lic

a
ti
o
n

G
D
99

 b

G
D
98

 c

sp
he

re
3

U
SAir9

7

ne
tz
45

04
 d

ua
l L

st
uf

e

uk
er

be
1

du
al

ne
tz
45

04
di
ag

m
in
ne

so
ta

gr
id
2

du
al

gr
id
2

ai
rfo

il1 3e
lt

s3
rm

t3
m

3

s1
rm

q4
m

1

ba
rth

4

ai
rfo

il1
 d

ua
l

3e
lt
du

al

cr
ac

k
L−

9

cr
ac

k
du

al

st
uf

e−
10

bi
g

du
al

sh
oc

k−
9

best−fit−RGrB mc1x1−RGrB

(a) LLNL-Atlas trace

1

2

3

4

5

 N

o
rm

a
liz

e
d
 a

v
e
ra

g
e

h
o
p
−

b
y
te

s
 p

e
r

a
p
p
lic

a
ti
o
n

G
D
97

 b

G
D
99

 b

sa
nd

i a
ut

ho
rs

G
D
98

 c

gr
id
1

du
al

sp
he

re
3

m
es

h2
e1

U
SAir9

7

ne
tz
45

04
 d

ua
l L

st
uf

e

uk
er

be
1

du
al

ne
tz
45

04
di
ag

ai
rfo

il1 3e
lt

ba
rth

4

ai
rfo

il1
 d

ua
l

3e
lt
du

al

cr
ac

k
L−

9

st
uf

e−
10

bi
g

du
al

sh
oc

k−
9

br
ac

k2

best−fit−RGrB mc1x1−RGrB

(b) CEA-Curie trace

Figure 4·22: Average per-application hop-bytes in two workload
traces with different allocator & task mapper pairs. The results are
normalized with respect to PaCMap.

the Hilbert curves provide very high locality in this particular case. However, for

CEA-Curie, the RGrB & MC1x1 pair leads to 3% shorter execution than with best-

fit. The topology mapping performance not only depends on the allocator and the

task mapper, but also on in which order the jobs arrive.

Complete topology mapping (both allocation and task mapping) with PaCMap

decreases the cumulative execution time by 2% and 3% for LLNL-Atlas and CEA-

Curie, respectively, compared to the best case of RGrB for each trace. Note that

this reduction corresponds to 3000 hours of cumulative active node computation time

in two weeks, which implies power and energy savings besides the execution time.

The improvement is expected to grow with increasing application sizes based on our

following analysis.

In order to verify that this difference in the execution time is not due to specific

127

workloads, we compare the average per-application hop-bytes in Figure 4·22. As

we generate the communication patterns by binning job sizes in the traces to the

closest available size in the sparse matrix collection, the traces do not contain all the

applications. Thus, some applications are not present in the figures. The values in

Figure 4·22 are normalized with respect to the results of PaCMap.

In both traces, RGrB performs better than PaCMap for applications with less

than 1K tasks. As the application size increases, however, PaCMap leads to smaller

hop-bytes up to 30% compared to the best case of RGrB, excluding sandi authors and

mesh2e1 in the CEA-Curie trace. These two applications have very large hop-bytes

because they have a few instances in the trace, which are allocated poorly in this

particular case.

4.3.3 Topology Mapping in Dragonfly Networks

Dragonfly (Kim et al., 2008) is a network topology that leverages high-radix routers

reduce application communication overheads by constructing a constant-diameter

network. This topology has been implemented in large-scale supercomputers such

as Cray XK7 (Alverson et al., 2012), Cray cascade (Faanes et al., 2012), and IBM

PERCS (Arimilli et al., 2010).

While recent real system experiments on dragonfly topologies argue that the im-

pact of topology mapping is minimal on dragonflies (e.g., (Budiardja et al., 2013)),

we show that the impact of topology mapping is still significant for large-scale ap-

plications in state-of-the-art HPC systems and demonstrate that topology mapping

remains a major cause of performance variation.

Dragonfly Topology

A dragonfly consists of groups of routers which act as high-radix virtual routers

connected to compute nodes. Figure 4·23 depicts a single dragonfly group consisting

128

Figure 4·23: A dragonfly group with all-to-all local connections.
Boxes are routers, circles are nodes, solid lines are electrical local links,
and dashed lines are optical global links.

of 4 routers, where each router is connected to 2 nodes, 3 other routers within the

group, and 2 routers in other groups that contain four routers and two compute nodes

per router. While the intra-group connections use electrical links as in traditional

HPC topologies such as torus, the inter-group connections use optical links.

The Impact of Task Mapping at Large Scale

We assess the impact of task mapping on dragonfly systems using the Trinity super-

computer5, two mini-applications developed by the Department of Energy community

for performance evaluation in HPC systems, and three task mapping algorithms.

Target System: Trinity is a 8.1PFlop/s, 4.2MW supercomputer with a Cray XC30

architecture. It consists of over 9000 compute nodes with 32 processing cores per node,

and is the tenth most powerful supercomputer in the June 2017 Top500 list6. Trinity

uses a dragonfly topology with 26 groups, each with 384 nodes. The nodes within

a group are connected to each other with flattened butterfly topology, whereas the

groups are connected to each other with all-to-all topology..

Applications: We use the Mantevo benchmark suite (Heroux et al., 2009), which is

designed for performance evaluation and network scaling studies and represents the

computational cores of various HPC applications. We select two mini-applications

5Trinity supercomputer: http://www.lanl.gov/projects/trinity/
6Top 500 Supercomputer Sites: http://www.top500.org/

129

that are sensitive to task mapping in torus networks: MiniGhost, which represents

modeling of complex multi-dimensional problems such as large deformations and/or

strong shocks, and MiniMD, which is a proxy for the force computations in molecular

dynamics applications. While both applications focuses on a 3D problem with nearest-

neighbor communication, MiniMD also uses MPI Allreduce for FFT calculations and

sends messages to the MPI ranks that are not nearest neighbors but a few hops away

from the source rank in the problem geometry, in a single time step.

Task Mapping Algorithms: We use the following task mapping algorithms:

• In-order is the default task mapper. It assigns the MPI ranks in-order to the

cores of the allocated compute nodes, which are sorted by the allocation order.

• Random randomly assigns the MPI ranks to cores.

• RCB (Deveci et al., 2014) recursively splits the allocated system nodes as well

as the MPI ranks of a given 3-D application into equal halves based on the x, y,

and z coordinates of the nodes/ranks. In both network space and the application

space, the split is performed on the longest dimension. At the end of recursive

splits, the remaining rank is mapped to the remaining core. RCB is originally

built for 3-D mesh topologies. To adapt this algorithm to dragonfly, we use the

group number of a compute node as its z-coordinate, and the row and column

numbers within the group as the x- and y-coordinates of that node. While our

adapted version loses some information on the exact dragonfly topology such as

the global link locations, it can reduce the distance messages must travel.

Experiments Conducted: We run the selected applications on 1, 2, 4, . . . , 4096

nodes. For each application size (i.e., number of nodes), we repeat our experiments 8

times using different sets of nodes that are assigned by the system software depending

130

on the system state. For each node allocation, we fully utilize the given nodes by

running one thread on each core using 6 different openMP settings, where we use 1,

2, 4, . . . , 32 threads per MPI rank. For each OpenMP setting, we re-run the same

application using different task mappers.

Results

Figure 4·24 shows the time spent during MPI communication as reported by the

applications. For each set of parameters, the communication time with the task

mappers are normalized with respect to the in-order (default) mapper. To eliminate

the impact of node allocation on the results, we show the median communication time

(out of the 8 runs). In our experiments, the mapping overhead is negligible compared

to application communication times.

Our results demonstrate that task mapping can change the communication time

significantly when running parallel programs on dragonfly networks. In Fig. 4·24(a),

RCB mapper reduces the communication time by 47% when MiniGhost is running

on 128K threads with 1 thread per rank, whereas in Fig. 4·24(c), random mapper

increases the communication time by 210% when MiniMD is running on 64K threads

with the OpenMP setting as 1 thread per rank.

Because the two applications differ in their communication patterns, they benefit

from different task mapping strategies. In Fig. 4·24(a) when running MiniGhost, RCB

is up to 47% better than in-order mapper; meanwhile in Fig. 4·24(c) when running

MiniMD, in-order mapper is always better than the others.

We find that the task mapper performance is also sensitive to application scale.

Along the horizontal axis in Fig. 4·24(a), we see that the normalized communication

time of RCB mapper varies more than 134%, from 0.53 to 1.25. RCB tends to perform

worse than in-order mapper with less than 8K threads (corresponds to 256 nodes in

our system), whereas with more than 8K threads, RCB turns out to be the best choice

131

(a) MiniGhost with 1 thread per rank

(b) MiniGhost with 32 threads per rank

(c) MiniMD with 1 thread per rank

(d) MiniMD with 32 threads per rank

Figure 4·24: Application communication time normalized with re-
spect to the in-order task mapper. The results show that task mapping
affects the communication overhead significantly.

132

among the three task mappers. These results show that conclusions from small-scale

experiments may not be extended to large-scale experiments.

Another factor that affects the impact of task mapping is the OpenMP settings

(i.e., number of threads per rank). While the performance difference between task

mappers is less than 7% in Fig. 4·24(b), with a different threads-per-rank setting in

Fig. 4·24(a), the performance difference reaches up to 47%.

4.3.4 Summary

Topology mapping of HPC applications have a significant impact on the execution

time, especially at the macro-scale, where the applications use thousands of machine

nodes in parallel. We have designed a novel algorithm, PaCMap, that simultaneously

applies job allocation and task mapping to minimize the execution time of applications

with unstructured communication patterns. PaCMap is applicable to any network

topology, and it can be also used as a mere allocator or task mapper. Furthermore,

we have developed an execution time estimation model based on real life experiments

on a Cray XE6, which is used to calibrate the simulations of long HPC workload

traces. Our results show that PaCMap reduces application network traffic volume

in terms of hop-bytes by up to 30% compared to state-of-the-art approaches in HPC

machines with non-contiguous allocation.

In addition to presenting PaCMap, using large-scale experiments on the Trinity

supercomputer, we have demonstrated that topology mapping remains an important

factor for HPC application performance in exascale computing. Our experiments have

shown that topology mapping is responsible for up to a 2X increase in communication

times even in HPC systems that use state-of-the-art network infrastructures. We

believe that topology mapping driven by application communication patterns can

be targeted for novel network topologies in the future to further reduce application

execution times.

133

Chapter 5

Conclusions and Future Directions

5.1 Summary of Major Contributions

Traditional problem diagnosis and system management techniques that are based

on heuristics and manual labor are insufficient to achieve high efficiency in today’s

increasingly complex HPC and cloud data centers. This thesis has claimed that to im-

prove robustness and efficiency of large-scale computing systems, significantly higher

levels of automated support than what is available in today’s systems are needed, and

this automation should leverage the data continuously collected from various system

layers. To this end, this thesis has provided frameworks to automatically diagnose

performance and software configuration problems, and data-driven dynamic system

management policies to improve the efficiency of large-scale computing systems.

This thesis has addressed automated problem diagnosis in two fronts: identifica-

tion of performance anomalies and software configuration analytics. We first intro-

duced a machine learning based online anomaly diagnosis framework that leverages

the resource usage and performance data that are already being collected in large-scale

systems to identify the signatures of previously-observed performance anomalies. We

evaluated our framework using experiments on real HPC clusters and demonstrated

that our approach effectively identifies 98% of the synthetic anomalies while leading to

only 0.08% false anomaly alarms, consistently outperforming the state-of-the-art on

anomaly diagnosis. We demonstrated that our approach can learn the anomaly sig-

natures independent of the executing applications, enabling anomaly diagnosis even

134

when running applications that are not seen during training. This type of approach

can be used in the future to enable higher levels of automation such as automated

mitigation of anomalies through system management.

We have also addressed a different type of major large-scale system anomaly: soft-

ware misconfiguration. As errors in software configurations are prominent in the cloud

where developers do not need expertise on third-party applications to deploy services

using these applications, we have focused on cloud platforms. We have designed Con-

fEx, a framework to discover and analyze text-based software configurations in the

cloud. ConfEx achieves over 98% precision and recall on identifying configuration

files and resolves the ambiguation in configuration parser outputs. Our approach

enables a new source of information, software configurations, to improve the level of

automation in cloud platforms. As an example for such automation, we have demon-

strated two use cases of ConfEx with existing configuration analysis techniques that

are designed for key-value pairs: outlier analysis and syntactic validation.

This thesis also proposed data-driven system management techniques to improve

energy efficiency, particularly using power, thermal, and workload management. For

cluster-level power management, we have proposed CoolBudget, a novel data cen-

ter power budgeting policy that optimally partitions the given power limit across

the servers and cooling units. Our policy uses temperature and power models to

safely collapse the thermal headroom margins in the servers, and improves the overall

throughput without an unfair performance degradation across the jobs. Experimental

evaluation based on real servers shows that our policy achieves 21% higher throughput

compared to the other state-of-the-art power budgeting techniques. The stable and

predictable temperatures leveraged by CoolBudget are achieved using our leakage-

aware proactive server fan control policy. This policy reduces the sum of server

leakage power and cooling power by up to 6% compared to other policies without

135

incurring any performance overhead on the executing workloads.

This thesis also demonstrated via experiments on real HPC systems that topology

mapping causes up to 50% variation in application running times when the application

size reaches thousands of nodes. To mitigate this variation and to reduce application

communication overhead, we proposed PaCMap, a topology mapping algorithm that

unifies system-driven node allocation and application-driven task mapping. PaCMap

finds topology mappings that are better-suited for the application communication

patterns compared to existing approaches, reducing hop-bytes by up to 30%.

In summary, the proposed techniques in this thesis significantly improve the ro-

bustness and efficiency of large-scale computing systems using intelligent approaches

based on data collected from various system layers. Based on our results, we believe

that the automated problem diagnosis and data-driven system management can be

combined in the future to enable automated mitigation of system anomalies in an

energy-efficient way, paving the way to exascale computing. Next, we discuss open

research problems and specific directions that could immediately follow this thesis.

5.2 Future Research Directions

5.2.1 Diagnosing Performance Anomalies in Production HPC Systems

The increasing size and complexity of large-scale computing systems such as su-

percomputers and cloud data centers necessitate automated anomaly diagnosis to

maintain robust operation. In this thesis, we have proposed using machine learning

algorithms for automated and robust anomaly diagnosis with application resource

usage data, which is already being monitored in supercomputers. Due to the lack

of comprehensive and labeled resource usage data of anomalous system behavior,

we have evaluated our framework with synthetic anomaly injection and controlled

experiments.

136

Detection Output
Is there an
anomaly?

yes
“Node 3” has “Anomaly 1”

Feature Extraction
Extract statistical features of each metric

(max, median, skew, …)

Model
Comparison

Offline Model Training
Predictors (e.g., python object with predict

method) for identified anomalies (e.g., network
congestion, orphan process, memory leak)

LDMS LDMS LDMS

LDMS SOS

SOS query
Get data for given job ID

Compute nodes

Aggregator node

…

node	ID Feature 1 Feature	2 ... Feature	F

Node	1

Node 2

…

Node N

node	ID Metric	1 Metric	2 ... Metric	M

Node	1

Node 2

…

Node N

Figure 5·1: The integration automated our anomaly diagnosis frame-
work with LDMS.

To address the lack of comprehensive and labeled data, a currently-ongoing stage

of our research is the integration of our framework with the Light-weight Distributed

Metric Service (Agelastos et al., 2014), which will enable us to evaluate our approach

on production systems. Figure 5·1 depicts the initial design for this integration. The

data collected by LDMS from indivudual compute nodes are aggregated into the

aggregator node, and written into Scalable Object Store1 (SOS), which is designed

Open Grid Computing for continuous monitoring of HPC systems. After the resource

usage data of a job is fed into SOS, our framework queries this data, extracts features,

and uses offline-trained machine learning models to detect and diagnose anomalies.

We envision that this integration would both enable the detection of known anomaly

signatures in production systems and help with the labeling of anomalies via user

feedback.

Another open problem is anomaly diagnosis without learning the exact signatures

of anomalies. By combining our online anomaly diagnosis approach with existing

anomaly detection (e.g., (Klinkenberg et al., 2017)) or log analysis (e.g., (Gainaru

1Scalable Object Store: https://github.com/ovis-hpc/ovis

137

et al., 2012)) approaches, one can identify the subsystem (e.g., memory, application,

network interface) that causes the anomaly, which would be very helpful for system

administrators to maintain robust operation.

5.2.2 Configuration Analytics

As the cloud infrastructure becomes more affordable and the open-source software

becomes more prevalent, it gets easier for developers to deliver new cloud services

without necessarily having the expertise needed for configuration tuning. As a result,

configuration errors become increasingly widespread. While some researchers aim to

overcome such errors by simplifying configurations (Xu et al., 2015; Tang et al., 2015),

current trends in the open-source software configurations demonstrate that developers

tend to prioritize software functionality over configuration usability, necessitating

other approaches to avoid misconfigurations.

Our framework, ConfEx, enables configuration analytics using image repositories

and third-party cloud instances. One gap in our configuration file discovery approach

is that it can include the configuration files that are not actively used by applications

in analysis, raising false positives for the errors existing in these inactive files. To

address this issue, we are designing an active configuration file identification method

that tracks system calls to filter out passive files during application initialization.

Another open research direction is finding configuration-related problems via cor-

relating application resource usage patterns with configurations. One way of extract-

ing the correlation between application behavior and configurations is to extend our

performance anomaly diagnosis framework (see Section 3.1) to analyze configura-

tions. By including configuration-related information during training, our framework

can help understand what kind of application behavior is expected under given config-

uration settings. For this purpose, the learning algorithms in our anomaly diagnosis

framework need to be modified to support semi-supervised or unsupervised learning.

138

5.2.3 Data-driven System Management

Power Management

As it is hard to conduct experiments on real data centers due to security and perfor-

mance concerns, the research on data center power management has so far primarily

relied on simulations (Kong and Liu, 2015). While some of these simulations use

system models that need to be tuned for modern data center hardware and technolo-

gies (Moore et al., 2005), others use custom models based on technical documentations

and published data (Zapater et al., 2015b) or conduct experiments on small-scale data

centers with tens of servers. However, these approaches have not been evaluated on

large data centers with hundreds or thousands of servers. Research-oriented data cen-

ters such as the Massachusetts Green High Performance Computing Center2 can be

leveraged in the future to explore new challenges in managing the power consumption

of real large-scale computing systems.

Workload Management in HPC Systems

Workload management in HPC systems is a widely studied topic. The technological

advances and increasing application and system sizes, however, create new challenges

and inefficiencies in the HPC systems.

As discussed in Section 4.3.3, topology mapping has high impact on performance

even in emerging networks such as dragonflies. However, efficient topology mapping

has not yet been investigated thoroughly for these state-of-the-art networks. In our

recent work (Zhang et al., 2018), we developed a job-size aware policy for machines

with dragonfly topologies and demonstrated that by being aware of the size of the

submitted jobs alone can reduce the application communication overhead by 16% on

the average.

2https://www.mghpcc.org/

139

There is more information available on the communication patterns of HPC ap-

plications that can be exploited to further reduce communication overheads. One

open problem is to use the dynamic communication traces of these applications dur-

ing topology mapping. In prior work, topology mapping only considers the average

communication traffic of an application. However, knowledge of how the communi-

cation of an application changes over the duration of its execution can help finding

better mapping solutions that lowers network congestion. The information on an ap-

plication’s dynamic communication can be extended further by considering how the

application interacts with the file system for data I/O as well as for checkpointing.

Another open problem on topology mapping is combining the scheduling and

allocation stages of HPC workload management. For example, if the topology mapper

had information that the future jobs in the queue require large chunks of contiguous

nodes, it could leave empty blocks of nodes in the machine even if that means a less

efficient mapping for the currently running jobs. Similarly, the scheduler could tune

its backfilling algorithm with information on the topology of the available nodes.

References

Aceto, G., Botta, A., De Donato, W., and Pescapè, A. (2013). Cloud monitoring: A
survey. Computer Networks, 57(9):2093–2115.

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
and Tallent, N. R. (2010). Hpctoolkit: Tools for performance analysis of optimized
parallel programs. Concurrency Computation Practice and Experience, 22(6):685–
701.

Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Fullop, J., Gentile, A.,
Monk, S., Naksinehaboon, N., Ogden, J., Rajan, M., Showerman, M., Stevenson,
J., Taerat, N., and Tucker, T. (2014). The lightweight distributed metric service:
A scalable infrastructure for continuous monitoring of large scale computing sys-
tems and applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages 154–165.

Agelastos, A., Allan, B., Brandt, J., Gentile, A., Lefantzi, S., Monk, S., Ogden, J.,
Rajan, M., and Stevenson, J. (2015). Toward rapid understanding of production
HPC applications and systems. In IEEE International Conference on Cluster
Computing, pages 464–473.

Ahad, R., Chan, E., and Santos, A. (2015). Toward autonomic cloud: Automatic
anomaly detection and resolution. Proceedings - 2015 International Conference on
Cloud and Autonomic Computing, ICCAC 2015, pages 200–203.

Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., and Ahmad, I. (2013). Cloud com-
puting pricing models: a survey. International Journal of Grid and Distributed
Computing, 6(5):93–106.

Albing, C. et al. (2011). Scalable node allocation for improved performance in regular
and anisotropic 3d torus supercomputers. In Proceedings of the European MPI
Users’ Group Conference on Recent Advances in the Message Passing Interface,
EuroMPI, pages 61–70.

Alverson, B., Froese, E., Kaplan, L., and Roweth, D. (2012). Cray XC series network.
Technical report, Cray Inc. White paper.

Andrae, A. S. and Edler, T. (2015). On global electricity usage of communication
technology: trends to 2030. Challenges, 6(1):117–157.

140

141

Arimilli, B., Arimilli, R., Chung, V., Clark, S., Denzel, W., Drerup, B., Hoefler,
T., Joyner, J., Lewis, J., Li, J., Ni, N., and Rajamony, R. (2010). The PERCS
high-performance interconnect. In IEEE Symposium on High Performance Inter-
connects.

Arzani, B. and Outhred, G. (2016). Taking the blame game out of data centers
operations with netpoirot. ACM Conference of the Special Interest Group on Data
Communication (SIGCOMM), pages 440–453.

Attariyan, M., Chow, M., and Flinn, J. (2012). X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI, pages 307–320.

Auble, D. and Christiansen, B. (2014). SLURM workload manager overview. Poster
presented at the ACM/IEEE International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC).

Ayoub, R., Nath, R., and Rosing, T. (2012). JETC: Joint energy thermal and cooling
management for memory and CPU subsystems in servers. In IEEE Symposium on
High Performance Computer Architecture (HPCA), pages 1–12.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum,
L., Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon,
H. D., Venkatakrishnan, V., and Weeratunga, S. K. (1991). The NAS parallel
benchmarks - summary and preliminary results. In Proceedings of the ACM/IEEE
Conference on Supercomputing, pages 158–165.

Balzuweit, E., Bunde, D. P., Leung, V. J., Finley, A., and Lee, A. C. (2016). Local
search to improve coordinate-based task mapping. Parallel Computing, 51:67–78.

Barrett, R. F., Vaughan, C. T., and Heroux, M. A. (2012). Minighost: a miniapp
for exploring boundary exchange strategies using stencil computations in scientific
parallel computing. Technical report, Sandia National Laboratories, Albuquerque,
NM.

Barroso, L. A., Clidaras, J., and Hölzle, U. (2013). The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 8(3):1–154.

Baset, S., Suneja, S., Bila, N., Tuncer, O., , and Isci, C. (2017). Usable declarative
configuration specification and validation for applications, systems, and cloud. In
Proceedings of the Industrial Track of the International Middleware Conference.

142

Behrang, F., Cohen, M. B., and Orso, A. (2015). Users beware: Preference inconsis-
tencies ahead. In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE, pages 295–306.

Bender, M. A., Bunde, D. P., Demaine, E. D., Fekete, S. P., Leung, V. J., Meijer,
H., and Phillips, C. A. (2008). Communication-aware processor allocation for
supercomputers: Finding point sets of small average distance. Algorithmica, pages
279–298.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in
multiple testing under dependency. Annals of Statistics, 29:1165–1188.

Bhatelé, A., Gupta, G. R., Kalé, L. V., and Chung, I. H. (2010). Automated map-
ping of regular communication graphs on mesh interconnects. In International
Conference on High Performance Computing (HiPC), pages 1–10.

Bhatelé, A. and Kalé, L. (2011). Heuristic-based techniques for mapping irregular
communication graphs to mesh topologies. In IEEE International Conference on
High Performance Computing and Communications (HPCC), pages 765–771.

Bhatelé, A., Mohror, K., Langer, S. H., and Isaacs, K. E. (2013). There goes the
neighborhood: Performance degradation due to nearby jobs. In Proceedings of
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 41:1–41:12.

Bianchini, R. (2012). Leveraging renewable energy in data centers: present and
future. In International symposium on High-Performance Parallel and Distributed
Computing, pages 135–136.

Bienia, C. (2011). Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, Princeton, NJ, USA.

Bodik, P., Goldszmidt, M., Fox, A., Woodard, D. B., and Andersen, H. (2010).
Fingerprinting the datacenter: Automated classification of performance crises. In
Proceedings of the 5th European Conference on Computer Systems, pages 111–124.

Brandt, J., Chen, F., De Sapio, V., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thomp-
son, D., and Wong, M. (2010). Quantifying effectiveness of failure prediction and
response in HPC systems: Methodology and example. In Proceedings of the In-
ternational Conference on Dependable Systems and Networks Workshops, pages
2–7.

Brandt, J., DeBonis, D., Gentile, A., Lujan, J., Martin, C., Martinez, D., Olivier, S.,
Pedretti, K., Taerat, N., and Velarde, R. (2015). Enabling advanced operational
analysis through multi-subsystem data integration on trinity. Proc. Cray Users
Group.

143

Brandt, J., Gentile, A., Mayo, J., Pébay, P., Roe, D., Thompson, D., and Wong, M.
(2009). Methodologies for advance warning of compute cluster problems via sta-
tistical analysis: A case study. In Proceedings of the 2009 Workshop on Resiliency
in High Performance, pages 7–14.

Budiardja, R. D., Crosby, L., and You, H. (2013). Effect of rank placement on cray
xc30 communication cost. In The Cray User Group Meeting.

Burgess, M. and Ralston, R. (1997). Distributed resource administration using
cfengine. Software: practice and experience, 27(9):1083–1101.

Chan, C. S., Jin, Y., Wu, Y.-K., Gross, K., Vaidyanathan, K., and Rosing, T. (2012).
Fan-speed-aware scheduling of data intensive jobs. In Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design, pages 409–414.

Chaudhry, M. T., Ling, T. C., Manzoor, A., Hussain, S. A., and Kim, J. (2015).
Thermal-aware scheduling in green data centers. ACM Computing Surveys,
47(3):39:1–39:48.

Chen, H., Caramanis, M. C., and Coskun, A. K. (2014a). Reducing the data center
electricity costs through participation in smart grid programs. In International
Green Computing Conference (IGCC), pages 1–10.

Chen, M., Mao, S., and Liu, Y. (2014b). Big data: A survey. Mobile networks and
applications, 19(2):171–209.

Chen, W., Wu, H., Wei, J., Zhong, H., and Huang, T. (2016). Determine configu-
ration entry correlations for web application systems. In IEEE Annual Computer
Software and Applications Conference (COMPSAC), volume 1, pages 42–52.

Chen, X., He, X., Guo, H., and Wang, Y. (2011). Design and evaluation of an online
anomaly detector for distributed storage systems. Journal of Software, 6(12 SPEC.
ISSUE):2379–2390.

Christ, M., Kempa-Liehr, A. W., and Feindt, M. (2016). Distributed and parallel
time series feature extraction for industrial big data applications. arXiv preprint
arXiv:1610.07717.

Cisco (2017). Cisco bug: Csctf52095 - manually flushing os cache during load impacts
server. https://goo.gl/375oDm.

Cochran, R., Hankendi, C., Coskun, A. K., and Reda, S. (2011). Pack & cap: adap-
tive dvfs and thread packing under power caps. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 175–185.

Comon, P. (1994). Independent component analysis, a new concept? Signal process-
ing, 36(3):287–314.

144

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. MIT Press and McGraw-Hill, 2nd edition.

Cuthill, E. and McKee, J. (1969). Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the National Conference, ACM, pages 157–172.

Dalmazo, B. L., Vilela, J. P., Simoes, P., and Curado, M. (2016). Expedite feature
extraction for enhanced cloud anomaly detection. Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS), pages 1215–1220.

Davis, T. A. and Hu, Y. (2011). The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1:1–1:25.

Dayarathna, M., Wen, Y., and Fan, R. (2016). Data center energy consumption
modeling: A survey. IEEE Communications Surveys Tutorials, 18(1):732–794.

Dean, J. and Barroso, L. A. (2013). The tail at scale. Communications of the ACM,
56(2):74–80.

Depoorter, V., Oró, E., and Salom, J. (2015). The location as an energy efficiency
and renewable energy supply measure for data centres in europe. Applied Energy,
140:338–349.

Desai, N. (2005). Bcfg2: A pay as you go approach to configuration complexity.
Australian Unix Users Group (AUUG2005), 10.

Deveci, M., Rajamanickam, S., Leung, V. J., Pedretti, K., Olivier, S. L., Bunde,
D. P., atalyrek, U. V., and Devine, K. (2014). Exploiting geometric partitioning
in task mapping for parallel computers. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 27–36.

Dongarra, J., Meuer, M., Simon, H., and Strohmaier, E. (2017). Top500 supercom-
puter ranking. https://www.top500.org/lists/2017/11/.

Dorier, M., Antoniu, G., Ross, R., Kimpe, D., and Ibrahim, S. (2014). Calciom:
Mitigating I/O interference in HPC systems through cross-application coordination.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 155–164.

Egwutuoha, I. P., Levy, D., Selic, B., and Chen, S. (2013). A survey of fault tol-
erance mechanisms and checkpoint/restart implementations for high performance
computing systems. The Journal of Supercomputing, 65(3):1302–1326.

Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson,
T., Kopnick, J., Higgins, M., and Reinhard, J. (2012). Cray cascade: A scalable
hpc system based on a dragonfly network. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages 1–9.

145

Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., Sevcik, K. C., and Wong, P. (1997).
Theory and practice in parallel job scheduling. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 1–34.

Feitelson, D. G., Tsafrir, D., and Krakov, D. (2014). Experience with using the paral-
lel workloads archive. Journal of Parallel and Distributed Computing, 74(10):2967
– 2982.

Gainaru, A., Cappello, F., Snir, M., and Kramer, W. (2012). Fault prediction under
the microscope: A closer look into HPC systems. In Proceedings of International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pages 77:1–77:11.

Guan, Q., Fu, S., De Bardeleben, N., and Blanchard, S. (2013). Exploring time
and frequency domains for accurate and automated anomaly detection in cloud
computing systems. Proceedings of IEEE Pacific Rim International Symposium
on Dependable Computing, PRDC, pages 196–205.

Gurumdimma, N., Jhumka, A., Liakata, M., Chuah, E., and Browne, J. (2016).
CRUDE: Combining resource usage data and error logs for accurate error detec-
tion in large-scale distributed systems. IEEE Symposium on Reliable Distributed
Systems (SRDS).

Han, X. and Joshi, Y. (2012). Energy reduction in server cooling via real time
thermal control. In IEEE Semiconductor Thermal Measurement and Management
Symposium (SEMI-THERM), pages 20–27.

Hankendi, C., Reda, S., and Coskun, A. K. (2013). vcap: Adaptive power capping for
virtualized servers. In IEEE International Symposium on Low Power Electronics
and Design (ISLPED), pages 415–420.

He, L., Jarvis, S. A., Spooner, D. P., Chen, X., and Nudd, G. R. (2004). Dy-
namic scheduling of parallel jobs with qos demands in multiclusters and grids. In
IEEE/ACM International Workshop on Grid Computing, pages 402–409.

Henning, J. L. (2006). Spec cpu2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17.

Heroux, M. A., Doerfler, D. W., Crozier, P. S., Willenbring, J. M., Edwards, H. C.,
Williams, A., Rajan, M., Keiter, E. R., Thornquist, H. K., and Numrich, R. W.
(2009). Improving performance via mini-applications. Technical report, Sandia
National Laboratories, Albuquerque, NM.

Hertel, E. S., Bell, R. L., Elrick, M. G., Farnsworth, A. V., Kerley, G. I., McGlaun,
J. M., Petney, S. V., Silling, S. A., Taylor, P. A., and Yarrington, L. (1993). CTH:

146

A software family for multi-dimensional shock physics analysis. In Proceedings of
the International Symposium on Shock Waves, pages 377–382.

Hochstein, L. (2014). Ansible: Up and Running: Automating Configuration Manage-
ment and Deployment the Easy Way. O’Reilly Media, Inc.

Hoefler, T. and Snir, M. (2011). Generic topology mapping strategies for large-
scale parallel architectures. In Proceedings of the International Conference on
Supercomputing (ISC), pages 75–84.

Holtgrewe, M., Sanders, P., and Schulz, C. (2010). Engineering a scalable high quality
graph partitioner. In IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–12.

Huang, P., Bolosky, W. J., Singh, A., and Zhou, Y. (2015). Confvalley: A systematic
configuration validation framework for cloud services. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys ’15, pages 19:1–19:16.

Huang, W., Allen-Ware, M., Carter, J. B., Elnozahy, E., Hamann, H., Keller, T.,
Lefurgy, C., Li, J., Rajamani, K., and Rubio, J. (2011). TAPO: Thermal-aware
power optimization techniques for servers and data centers. In International Green
Computing Conference and Workshops (IGCC), pages 1–8.

Ibidunmoye, O., Hernández-Rodriguez, F., and Elmroth, E. (2015). Performance
anomaly detection and bottleneck identification. ACM Computing Surveys,
48(1):1–35.

Ibidunmoye, O., Metsch, T., and Elmroth, E. (2016). Real-time detection of perfor-
mance anomalies for cloud services. IEEE/ACM 24th International Symposium on
Quality of Service (IWQoS), pages 1–2.

IDC (2014). IDC finds growth, consolidation, and changing ownership patterns in
worldwide datacenter forecast. Technical report, International Data Corporation.
https://www.idc.com/getdoc.jsp?containerId=prUS25237514.

Jain, N., Bhatele, A., Ni, X., Wright, N. J., and Kale, L. V. (2014). Maximizing
throughput on a dragonfly network. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pages 336–347.

Jayathilaka, H., Krintz, C., and Wolski, R. (2017). Performance monitoring and
root cause analysis for cloud-hosted web applications. Proceedings of the 26th
International Conference on World Wide Web (WWW), pages 469–478.

Jin, D., Cohen, M. B., Qu, X., and Robinson, B. (2014). Preffinder: Getting the right
preference in configurable software systems. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE, pages 151–162.

147

Jin, S., Zhang, Z., Chakrabarty, K., and Gu, X. (2016). Accurate anomaly detec-
tion using correlation-based time-series analysis in a core router system. IEEE
International Test Conference (ITC), pages 1–10.

Kachris, C. and Tomkos, I. (2012). A survey on optical interconnects for data centers.
IEEE Communications Surveys & Tutorials, 14(4):1021–1036.

Karypis, G. and Kumar, V. (1998). Multilevelk-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed computing, 48(1):96–129.

Kim, J., Dally, W. J., Scott, S., and Abts, D. (2008). Technology-driven, highly-
scalable dragonfly topology. In International Symposium on Computer Architecture
(ISCA), pages 77–88.

Klinkenberg, J., Terboven, C., Lankes, S., and Muller, M. S. (2017). Data mining-
based analysis of hpc center operations. 2017 IEEE International Conference on
Cluster Computing (CLUSTER), pages 766–773.

Kong, F. and Liu, X. (2015). A survey on green-energy-aware power management
for datacenters. ACM Computing Surveys (CSUR), 47(2):30.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., and
Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceed-
ings of the IEEE, 103(1):14–76.

Kumar, M. R. V. and Raghunathan, S. (2016). Heterogeneity and thermal aware
adaptive heuristics for energy efficient consolidation of virtual machines in infras-
tructure clouds. Journal of Computer and System Sciences, 82(2):191–212.

Kunen, A., Bailey, T., and Brown, P. (2015). Kripke-a massively parallel transport
mini-app. Technical report, Lawrence Livermore National Laboratory (LLNL),
Livermore, CA.

Lan, Z., Zheng, Z., and Li, Y. (2010). Toward automated anomaly identification
in large-scale systems. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 21(2):174–187.

Laptev, N., Amizadeh, S., and Flint, I. (2015). Generic and scalable framework for
automated time-series anomaly detection. Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining (KDD), pages 1939–1947.

Lawson, B. G. and Smirni, E. (2002). Multiple-queue backfilling scheduling with
priorities and reservations for parallel systems. In Job Scheduling Strategies for
Parallel Processing, pages 72–87.

148

Leung, V. J., Arkin, E. M., Bender, M., Bunde, D., Johnston, J., Lal, A., Mitchell,
J. S. B., Phillips, C., and Seiden, S. S. (2002). Processor allocation on cplant:
achieving general processor locality using one-dimensional allocation strategies. In
IEEE International Conference on Cluster Computing, pages 296–304.

Li, W., Li, S., Liao, X., Xu, X., Zhou, S., and Jia, Z. (2017). Conftest: Generating
comprehensive misconfiguration for system reaction ability evaluation. In Proceed-
ings of the International Conference on Evaluation and Assessment in Software
Engineering (EASE), pages 88–97.

Lim, H., Kansal, A., and Liu, J. (2011). Power budgeting for virtualized data centers.
In USENIX Annual Technical Conference (ATC), volume 59.

Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., and
Hyser, C. (2012). Renewable and cooling aware workload management for sustain-
able data centers. In Proceedings of the ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Computer Sys-
tems, pages 175–186.

Lo, V., Windisch, K. J., Liu, W., and Nitzberg, B. (1997). Noncontiguous processor
allocation algorithms for mesh-connected multicomputers. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 8(7):712–726.

Loope, J. (2011). Managing Infrastructure with Puppet: Configuration Management
at Scale. ”O’Reilly Media, Inc.”.

Lopez, L. (2007). Advanced electronic prognostics through system telemetry and
pattern recognition methods. Microelectronics Reliability, 47:1865–1873.

Lutterkort, D. (2008). Augeas–a configuration api. In Linux Symposium, Ottawa,
ON, pages 47–56.

Mache, J., Lo, V., and Windisch, K. (1997). Minimizing message-passing contention
in fragmentation-free processor allocation. In Proceedings of the International
Conference on Parallel and Distributed Computing Systems, pages 120–124.

Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. Journal
of the American statistical Association, 46(253):68–78.

Miller, R. (2007). Data center cooling set points debated. Data Center Knowledge.

Moore, J., Chase, J., Ranganathan, P., and Sharma, R. (2005). Making scheduling
”cool”: Temperature-aware workload placement in data centers. In Proceedings of
the USENIX Annual Technical Conference (ATEC), pages 5–5.

MPI Forum (2012). MPI: A message-passing interface standart. Version 3.0. http:

//www.mpi-forum.org.

149

Nadi, S., Berger, T., Kästner, C., and Czarnecki, K. (2014). Mining configuration
constraints: Static analyses and empirical results. In Proceedings of the Interna-
tional Conference on Software Engineering, ICSE, pages 140–151.

Nair, V., Raul, A., Khanduja, S., Sundararajan, S., Keerthi, S., Bahirwani, V.,
Shao, Q., Herbert, S., and Dhulipalla, S. (2015). Learning a hierarchical mon-
itoring system for detecting and diagnosing service issues. Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 2029–2038.

Nguyen, H., Shen, Z., Tan, Y., and Gu, X. (2013). Fchain: Toward black-box online
fault localization for cloud systems. Proceedings - International Conference on
Distributed Computing Systems, pages 21–30.

O’Shea, D., Emeakaroha, V. C., Pendlebury, J., Cafferkey, N., Morrison, J. P., and
Lynn, T. (2016). A wavelet-inspired anomaly detection framework for cloud plat-
forms. CLOSER 2016 - Proceedings of the 6th International Conference on Cloud
Computing and Services Science, 1(April).

Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Burns,
P. J., and Koenig, G. A. (2018). Rate-based thermal, power, and co-location
aware resource management for heterogeneous data centers. Journal of Parallel
and Distributed Computing, 112:126–139.

Patterson, M. (2008). The effect of data center temperature on energy efficiency.
In Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM),
pages 1167 –1174.

Pedram, M. and Nazarian, S. (2006). Thermal modeling, analysis, and management
in vlsi circuits: Principles and methods. Proceedings of the IEEE, 94(8):1487–1501.

Pellegrini, F. and Roman, J. (1996a). Experimental analysis of the dual recursive
bipartitioning algorithm for static mapping. Technical report, TR 1038-96, LaBRI,
URA CNRS 1304, Univ. Bordeaux I.

Pellegrini, F. and Roman, J. (1996b). Scotch: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In Proceedings
of the International Conference and Exhibition on High-Performance Computing
and Networking, HPCN Europe, pages 493–498.

Phansalkar, A., Joshi, A., and John, L. K. (2007). Subsetting the spec cpu2006
benchmark suite. ACM SIGARCH Computer Architecture News, 35(1):69–76.

Potharaju, R., Chan, J., Hu, L., Nita-Rotaru, C., Wang, M., Zhang, L., and Jain,
N. (2015). Confseer: Leveraging customer support knowledge bases for automated

150

misconfiguration detection. Proceedings of the VLDB Endowment, 8(12):1828–
1839.

Pradelle, B., Triquenaux, N., Beyler, J. C., and Jalby, W. (2014). Energy-centric
dynamic fan control. Computer Science-Research and Development, 29(3-4):177–
185.

Preissl, R., Schulz, M., Kranzlmüller, D., de Supinski, B. R., and Quinlan, D. J.
(2010). Transforming MPI source code based on communication patterns. Future
Generation Computer Systems, 26(1):147–154.

Rabkin, A. and Katz, R. H. (2013). How hadoop clusters break. IEEE Software,
30(4):88–94.

Ramachandran, V., Gupta, M., Sethi, M., and Chowdhury, S. R. (2009). Determining
configuration parameter dependencies via analysis of configuration data from multi-
tiered enterprise applications. In Proceedings of the 6th International Conference
on Autonomic Computing, ICAC, pages 169–178.

Real, R. and Vargas, J. M. (1996). The probabilistic basis of jaccard’s index of
similarity. Systematic biology, 45(3):380–385.

Rodrigues, A., Cooper-Balis, E., Bergman, K., Ferreira, K., Bunde, D., and Hemmert,
K. S. (2012). Improvements to the structural simulation toolkit. In Proceedings of
the International Conference on Simulation Tools and Techniques, pages 190–195.

Roy, S., König, A. C., Dvorkin, I., and Kumar, M. (2015). Perfaugur: Robust
diagnostics for performance anomalies in cloud services. Proceedings - International
Conference on Data Engineering, 2015-May:1167–1178.

Santolucito, M., Zhai, E., Dhodapkar, R., Shim, A., and Piskac, R. (2017). Synthe-
sizing configuration file specifications with association rule learning. Proceedings
of the ACM on Programming Languages, 1:64:1–64:20.

Shen, K., Shriraman, A., Dwarkadas, S., Zhang, X., and Chen, Z. (2013). Power
containers: An os facility for fine-grained power and energy management on mul-
ticore servers. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 65–76.

Shin, J. L., Tam, K., Huang, D., Petrick, B., Pham, H., Hwang, C., Li, H., Smith,
A., Johnson, T., Schumacher, F., Greenhill, D., Leon, A. S., and Strong, A. (2010).
A 40nm 16-core 128-thread cmt sparc soc processor. In International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC).

Simon, H. D. and Teng, S.-H. (1997). How good is recursive bisection? SIAM
Journal on Scientific Computing, 18(5):1436–1445.

151

Skinner, D. and Kramer, W. (2005). Understanding the causes of performance
variability in HPC workloads. In IEEE International Symposium on Workload
Characterization, pages 137–149.

Snir, M., Wisniewski, R. W., Abraham, J. A., Adve, S. V., Bagchi, S., Balaji, P., Be-
lak, J., Bose, P., Cappello, F., Carlson, B., Chien, A. A., Coteus, P., Debardeleben,
N. A., Diniz, P. C., Engelmann, C., Erez, M., Fazzari, S., Geist, A., Gupta, R.,
Johnson, F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra, S., Munson, T.,
Schreiber, R., Stearley, J., and Hensbergen, E. V. (2014). Addressing failures
in exascale computing. International Journal of High Performance Computing
Applications, pages 129–173.

Subramani, V., Kettimuthu, R., Srinivasan, S., Johnston, J., and Sadayappan, P.
(2002). Selective buddy allocation for scheduling parallel jobs on clusters. In
IEEE International Conference on Cluster Computing, pages 107–116.

Subramoni, H., Potluri, S., Kandalla, K., Barth, B., Vienne, J., Keasler, J., Tomko,
K., Schulz, K., Moody, A., and Panda, D. K. (2012). Design of a scalable infini-
band topology service to enable network topology aware placement of processes.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 70:1–70:12.

Talby, D. and Feitelson, D. G. (1999). Supporting priorities and improving utiliza-
tion of the ibm sp scheduler using slack-based backfilling. In Proceedings of the
International Symposium on Parallel and Distributed Processing, pages 513–517.

Tang, C., Kooburat, T., Venkatachalam, P., Chander, A., Wen, Z., Narayanan, A.,
Dowell, P., and Karl, R. (2015). Holistic configuration management at facebook.
In Proceedings of the Symposium on Operating Systems Principles, pages 328–343.

Tang, Q., Mukherjee, T., Gupta, S. K., and Cayton, P. (2006). Sensor-based fast ther-
mal evaluation model for energy efficient high-performance datacenters. In Inter-
national Conference on Intelligent Sensing and Information Processing (ICISIP),
pages 203–208.

Taylor, M. and Vargo, S. (2014). Learning Chef: A Guide to Configuration Manage-
ment and Automation. ”O’Reilly Media, Inc.”.

Technavio (2017). Global data center server market 2017-2021. Technical report,
Technavio. https://goo.gl/ues2i8.

Tsafrir, D., Etsion, Y., and Feitelson, D. G. (2007). Backfilling using system-
generated predictions rather than user runtime estimates. IEEE Transactions
on Parallel and Distributed Systems (TPDS), 18(6):789–803.

152

Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V., Egele, M., and
Coskun, A. K. (2017a). Diagnosing performance variations in hpc applications
using machine learning. In International Supercomputing Conference (ISC-HPC),
pages 355–373.

Tuncer, O., Leung, V. J., and Coskun, A. K. (2015). Pacmap: Topology mapping
of unstructured communication patterns onto non-contiguous allocations. In Pro-
ceedings of the ACM International Conference on Supercomputing, pages 37–46.

Tuncer, O., Vaidyanathan, K., Gross, K., and Coskun, A. K. (2014). Coolbudget:
Data center power budgeting with workload and cooling asymmetry awareness. In
IEEE International Conference on Computer Design (ICCD), pages 497–500.

Tuncer, O., Zhang, Y., Leung, V. J., and Coskun, A. K. (2017b). Task mapping
on a dragonfly supercomputer. In IEEE High Performance Extreme Computing
Conference (HPEC).

Turk, A., Chen, H., Tuncer, O., Li, H., Li, Q., Krieger, O., and Coskun, A. K. (2016).
Seeing into a public cloud: Monitoring the massachusetts open cloud. In USENIX
Workshop on Cool Topics on Sustainable Data Centers.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes, J.
(2015). Large-scale cluster management at google with borg. In Proceedings of
the European Conference on Computer Systems (EuroSys), page 18.

Villars, R. L., Perry, R., and Scaramella, J. (2012). Converging the datacenter infras-
tructure: Why, how, so, what? Technical report, International Data Corporation.
https://goo.gl/mMCBfk.

Wang, D., Bhatelé, A., and Ghosal, D. (2014). Performance variability due to job
placement on edison. In Poster presented at the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).

Wang, G., Yang, J., and Li, R. (2016). An anomaly detection framework based on
ica and bayesian classification for iaas platforms. KSII Transactions on Internet
and Information Systems (TIIS), 10(8):3865–3883.

Wang, H. J., Platt, J. C., Chen, Y., Zhang, R., and Wang, Y.-M. (2004). Automatic
misconfiguration troubleshooting with peerpressure. In Proceedings of the USENIX
Symposium on Opearting Systems Design & Implementation, OSDI, pages 17–17.

Wang, Z., Tolia, N., and Bash, C. (2010). Opportunities and challenges to unify
workload, power, and cooling management in data centers. In Proceedings of the
Fifth International Workshop on Feedback Control Implementation and Design in
Computing Systems and Networks, pages 1–6.

153

Xiang, Y., Chantem, T., Dick, R. P., Hu, X. S., and Shang, L. (2010). System-level
reliability modeling for mpsocs. In International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 297–306.

Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., and Talwadker, R. (2015). Hey,
you have given me too many knobs!: Understanding and dealing with over-designed
configuration in system software. In Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE, pages 307–319.

Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., and Pasupathy, S. (2016).
Early detection of configuration errors to reduce failure damage. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI.

Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., and Pasu-
pathy, S. (2013). Do not blame users for misconfigurations. In Proceedings of the
ACM Symposium on Operating Systems Principles, SOSP, pages 244–259.

Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., and Pasupathy, S.
(2011). An empirical study on configuration errors in commercial and open source
systems. In Proceedings of the ACM Symposium on Operating Systems Principles,
SOSP, pages 159–172.

Yu, L. and Lan, Z. (2016). A scalable, non-parametric method for detecting per-
formance anomaly in large scale computing. IEEE Transactions on Parallel and
Distributed Systems, 27(7):1902–1914.

Yuan, D., Xie, Y., Panigrahy, R., Yang, J., Verbowski, C., and Kumar, A. (2011).
Context-based online configuration-error detection. In Proceedings of the USENIX
Annual Technical Conference, USENIXATC, pages 28–28.

Zapater, M., Ayala, J. L., Moya, J. M., Vaidyanathan, K., Gross, K., and Coskun,
A. K. (2013). Leakage and temperature aware server control for improving energy
efficiency in data centers. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 266–269.

Zapater, M., Tuncer, O., Ayala, J. L., Moya, J. M., Vaidyanathan, K., Gross, K.,
and Coskun, A. K. (2015a). Leakage-aware cooling management for improving
server energy efficiency. IEEE Transactions on Parallel and Distributed Systems,
26(10):2764–2777.

Zapater, M., Turk, A., Moya, J. M., Ayala, J. L., and Coskun, A. K. (2015b). Dy-
namic workload and cooling management in high-efficiency data centers. In Inter-
national Green and Sustainable Computing Conference (IGSC), pages 1–8.

154

Zhai, J., Sheng, T., He, J., Chen, W., and Zheng, W. (2009). Fact: Fast com-
munication trace collection for parallel applications through program slicing. In
Proceedings of the Conference on High Performance Computing Networking, Stor-
age and Analysis (SC), pages 27:1–27:12.

Zhan, X. and Reda, S. (2013). Techniques for energy-efficient power budgeting in
data centers. In Design Automation Conference (DAC), pages 1–7.

Zhan, X. and Reda, S. (2015). Power budgeting techniques for data centers. IEEE
Transactions on Computers, 64(8):2267–2278.

Zhang, J., Renganarayana, L., Zhang, X., Ge, N., Bala, V., Xu, T., and Zhou, Y.
(2014). Encore: Exploiting system environment and correlation information for
misconfiguration detection. In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS,
pages 687–700.

Zhang, S. and Ernst, M. D. (2014). Which configuration option should i change? In
Proceedings of the International Conference on Software Engineering, ICSE, pages
152–163.

Zhang, S. and Ernst, M. D. (2015). Proactive detection of inadequate diagnostic
messages for software configuration errors. In Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA, pages 12–23.

Zhang, X., Meng, F., Chen, P., and Xu, J. (2016). Taskinsight : A fine-grained
performace anomaly detection and problem locating system. IEEE International
Conference on Cloud Computing (CLOUD), pages 2–5.

Zhang, Y., Tuncer, O., Kaplan, F., Olcoz, K., Leung, V. J., and Coskun, A. K. (2018).
Level-spread: A new job allocation policy for dragonfly networks. In Proceedings of
the IEEE International Parallel and Distributed Processing Symposium (IPDPS).
Manuscript accepted for publication.

Zhou, S., Li, S., Liu, X., Xu, X., Zheng, S., Liao, X., and Xiong, Y. (2017). Easier
said than done: Diagnosing misconfiguration via configuration constraints anal-
ysis: A study of the variance of configuration constraints in source code. In
International Conference on Evaluation and Assessment in Software Engineering,
EASE’17, pages 196–201.

Zhou, S., Liu, X., Li, S., Dong, W., Liao, X., and Xiong, Y. (2016). Confmapper:
automated variable finding for configuration items in source code. In IEEE In-
ternational Conference on Software Quality, Reliability and Security Companion
(QRS-C), pages 228–235.

CURRICULUM VITAE

156

157

