
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Improving data center efficiency
through smart grid integration and
intelligent analytics

https://hdl.handle.net/2144/19505
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

IMPROVING DATA CENTER EFFICIENCY

THROUGH SMART GRID INTEGRATION AND

INTELLIGENT ANALYTICS

by

HAO CHEN

B.S., Zhejiang University, 2010

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

c© 2016 by
HAO CHEN
All rights reserved

Approved by

First Reader

Ayse K. Coskun, Ph.D.
Associate Professor of Electrical and Computer Engineering

Second Reader

Michael C. Caramanis, Ph.D.
Professor of Mechanical Engineering
Professor of Systems Engineering

Third Reader

Ioannis Paschalidis, Ph.D.
Professor of Electrical and Computer Engineering
Professor of Systems Engineering
Professor of Biomedical Engineering

Fourth Reader

Sherief Reda, Ph.D.
Associate Professor of Engineering
Brown University

Logic will get you from A to B.
Imagination will take you everywhere. Albert Einstein

iv

Acknowledgments

During my PhD study in Boston University, I am lucky to have met so many great

people who have given me assistance, friendship, and encouragement along the way.

First and foremost, I would like to express my deepest gratitude to my PhD

advisor, Prof. Ayse Coskun, for her inspirational guidance and constant support

throughout my PhD study. I am always motivated by her enthusiasm in scientific

research as well as in other aspects of life. I cannot really point out what I learned the

most from her since it would be too much to say. She has been not only a supportive

advisor but also a role model for me.

I am also very grateful to my PhD co-advisor, Prof. Michael Caramanis, for his

guidance and valuable feedback on my research as well as his helpful career advice

and suggestions. He has shown me the wonders of science, the fun and pleasure in

working hard, and how to respect new ideas. I feel very fortunate and honored that

I have worked with him.

I sincerely thank my dissertation committee members, Prof. Ioannis Paschalidis,

Prof. Sherief Reda, and Prof. Orran Krieger for taking their precious time and giving

invaluable comments on my dissertation. My dissertation could not be at this level

without their advice.

I would like also to express my sincerest appreciation to Dr. Sastry Duri, Dr.

Canturk Isci, and Dr. Vasanth Bala for their advice and support during my intern-

ships at IBM T.J. Watson Research Center. I would also like to thank Meng Wang,

Yi Li, Dr. Yushan Chen, Tianqiang Liu, and Xing Meng for their encouragement,

support, and company at Orbeus.

I am grateful to our collaborators and co-authors: Prof. Adam Wierman at

Caltech, Prof. Zhenhua Liu at Stony Brook University, Dr. Bowen Zhang, Dr. Ata

Turk, Dr. Can Hankendi and Ozan Tuncer at Boston University for their productive

v

collaboration and all the stimulating discussions.

I was very fortunate to work with my friends, roommates, and colleagues in the

PeacLab and also other labs around the world. Many thanks to all of them for all the

inspiring discussions and great time we had together. I am also grateful to those who

made my PhD study at BU a pleasant journey: Cali Stephens, Prof. Alan Pisano,

Prof. Babak Kia, and many others.

Finally, I would like to thank my family. I owe my deepest gratitude to my

parents for bringing me up, for understanding me, for providing the strongest and

unconditional support, and for always giving me freedom to pursue what I want. I

am also very grateful to my dear Jia He for her constant love, support and company.

I would like to dedicate this dissertation to them.

The research that forms the basis of this dissertation has been partially supported

by NSF grant 1038230, Sandia National Laboratories, VMware, Inc., Oracle Corpo-

ration, Decision Detective Corporation, and IBM Corporation.

The contents of Chapter 3 are in part reprints of the material from the papers,

Hao Chen, Ayse K. Coskun and Michael C. Caramanis, “Real-Time Power Control

of Data Centers for Providing Regulation Service”, in Proceedings of Conference on

Decision and Control (CDC), 2013, Hao Chen, Can Hankendi, Michael C. Cara-

manis and Ayse K. Coskun, “Dynamic Server Power Capping for Enabling Data

Center Participation in Power Markets”, in Proceedings of International Conference

on Computer-aided Design (ICCAD), 2013, Hao Chen, Michael C. Caramanis and

Ayse K. Coskun, “The Data Center as a Grid Load Stabilizer”, in Proceedings of

Asia and South Pacific Design Automation Conference (ASPDAC), 2014, Hao Chen,

Michael C. Caramanis and Ayse K. Coskun, “Reducing the Data Center Electricity

Costs Through Participation in Smart Grid Programs”, in Proceedings of Interna-

tional Green Computing Conference (IGCC), 2014, Hao Chen, Zhenhua Liu, Ayse K.

vi

Coskun and Adam Wierman, “Optimizing Energy Storage Participation in Emerging

Power Markets”, in Proceedings of International Green and Sustainable Computing

Conference (IGSC), 2015, and Hao Chen, Bowen Zhang, Michael C. Caramanis and

Ayse K. Coskun, “Data Center Optimal Regulation Service Reserve Provision with

Explicit Modeling of Quality of Service Dynamics”, in Proceedings of Conference on

Decision and Control (CDC), 2015.

The contents of Chapter 5 are in part reprints of the material from the papers,

Hao Chen, Sastry S. Duri, Vasanth Bala, Nilton T. Bila, Canturk Isci and Ayse K.

Coskun, “Detecting and Identifying System Changes in the Cloud via Discovery by

Example”, in Proceedings of International Conference on Big Data, 2014, and Hao

Chen, Ata Turk, Sastry S. Duri, Canturk Isci, and Ayse K. Coskun, “Automated

System Change Discovery and Management in the Cloud”, in IBM Journal of Research

and Development, 2015.

vii

IMPROVING DATA CENTER EFFICIENCY

THROUGH SMART GRID INTEGRATION AND

INTELLIGENT ANALYTICS

HAO CHEN

Boston University, College of Engineering, 2016

Major Professors: Ayse K. Coskun, Ph.D.
Associate Professor of Electrical and Computer
Engineering

Michael C. Caramanis, Ph.D.
Professor of Systems Engineering
Professor of Mechanical Engineering

ABSTRACT

The ever-increasing growth of the demand in IT computing, storage and large-

scale cloud services leads to the proliferation of data centers that consist of (tens of)

thousands of servers. As a result, data centers are now among the largest electric-

ity consumers worldwide. Data center energy and resource efficiency has started to

receive significant attention due to its economical, environmental, and performance

impacts. In tandem, facing increasing challenges in stabilizing the power grids due to

growing needs of intermittent renewable energy integration, power market operators

have started to offer a number of demand response (DR) opportunities for energy

consumers (such as data centers) to receive credits by modulating their power con-

sumption dynamically following specific requirements.

This dissertation claims that data centers have strong capabilities to emerge as

viii

major enablers of substantial electricity integration from renewables. The participa-

tion of data centers into emerging DR, such as regulation service reserves (RSRs),

enables the growth of the data center in a sustainable, environmentally neutral, or

even beneficial way, while also significantly reducing data center electricity costs. In

this dissertation, we first model data center participation in DR, and then propose

runtime policies to dynamically modulate data center power in response to indepen-

dent system operator (ISO) requests, leveraging advanced server power and workload

management techniques. We also propose energy and reserve bidding strategies to

minimize the data center energy cost. Our results demonstrate that a typical data

center can achieve up to 44% monetary savings in its electricity cost with RSR pro-

vision, dramatically surpassing savings achieved by traditional energy management

strategies. In addition, we investigate the capabilities and benefits of various types

of energy storage devices (ESDs) in DR. Finally, we demonstrate RSR provision in

practice on a real server.

In addition to its contributions on improving data center energy efficiency, this dis-

sertation also proposes a novel method to address data center management efficiency.

We propose an intelligent system analytics approach, “discovery by example”, which

leverages fingerprinting and machine learning methods to automatically discover soft-

ware and system changes. Our approach eases runtime data center introspection and

reduces the cost of system management.

ix

Contents

1 Introduction 1

1.1 Data Center Sustainability . 2

1.2 Emerging Opportunities in Smart Grid 2

1.3 The Contributions and Significance of the Dissertation 3

1.4 Other Aspects of Data Center Management 7

1.5 Organization . 9

2 Background and Related Work 10

2.1 Power Markets and Capacity Reserves 10

2.2 Demand Response (DR) Programs 11

2.3 Power and Workload Management in Data Centers 17

2.3.1 Server Power Management . 17

2.3.2 Data Center Level Power Management 18

2.3.3 Workload Scheduling and Control 19

2.4 Data Centers Participation in DR . 21

2.5 Energy Storage Devices (ESDs) in DR 22

2.6 Distinguishing Aspects from Prior Work 23

3 Data Center Demand Response 25

3.1 Overview . 25

3.2 The Model of Data Center in DR . 29

3.2.1 The Model of Servers . 29

3.2.2 The Model of the Computational Unit 33

x

3.2.3 The Model of Data Center Workloads 35

3.3 An Initial Study: Single Server RSR Provision 37

3.3.1 Runtime Policy and Optimal Bidding 37

3.3.2 Experimental Results . 39

3.4 The Best Tracking Runtime Policy 45

3.4.1 Policy Details . 45

3.4.2 Energy and Reserve Bidding 48

3.4.3 Experimental Results . 50

3.5 Comparison of Energy Cost Saving Strategies 54

3.6 The Stochastic Dynamic Programming (DP) Runtime Policy 61

3.6.1 The Formulation of Stochastic DP Problem 62

3.6.2 Policy Details . 68

3.6.3 Energy and Reserve Bidding 71

3.6.4 Policy Comparison . 72

3.7 The EnergyQARE Runtime Policy 73

3.7.1 Policy Details . 74

3.7.2 Energy and Reserve Bidding 87

3.7.3 Experimental Results . 89

3.8 A Prototype Implementation of Data Center RSR 100

3.8.1 Real Server RSR Provision Capability Test 101

3.8.2 Power - Resource Limits Model 102

3.8.3 Runtime Control Knobs and Policy Implementation 103

3.8.4 Real Server RSR Signal Tracking Performance 104

3.9 Energy Storage Devices (ESDs) in DR 106

3.9.1 Background on ESDs . 106

3.9.2 Modeling ESDs . 107

xi

3.9.3 Market Opportunities for ESDs 110

3.9.4 Discussion . 122

3.9.5 Managing Participation of ESDs in RSR 123

3.9.6 Comparison of Data Centers with ESDs in RSR Provision . . 129

3.10 Summary . 130

4 Open Problems in Data Center DR 132

4.1 Optimization with Numerical and Analytical Methods 132

4.2 DR Participation by Data Centers with ESDs 134

4.3 Real-life Implementation of DR on Data Centers 135

5 Software and System Discovery in Data Center Cloud 138

5.1 Overview . 138

5.2 Related Work . 141

5.3 The Framework of Discovery . 143

5.4 Change Set Creation . 144

5.5 Fingerprint Creation and Learning 147

5.5.1 Fingerprint Creation . 147

5.5.2 Learning with Fingerprints . 152

5.6 Discovery by Examples . 154

5.6.1 Experimental Methodology . 155

5.6.2 Results . 157

5.7 Summary and Open Problems . 159

6 Conclusions 163

References 166

Curriculum Vitae 178

xii

List of Tables

3.1 Descriptions of symbols on server power states. 33

3.2 The electricity monetary costs via different workload types and (P̄ , R),

in single server RSR provision. 43

3.3 Performance comparison of optimal RSR provision and provision with-

out regulation on single server. 44

3.4 Performance and savings of data center RSR provision with different

types of workloads using the best tracking policy. 54

3.5 The hourly electricity bill of a 1000-server data center with RSR pro-

vision via different (P̄ , R), using the stochastic DP policy. 73

3.6 Descriptions of major symbols in Eq. (3.28) to Eq. (3.48). 77

3.7 Workload properties in experiments - Trace 1. 89

3.8 Workload properties in experiments - Trace 2. 89

3.9 Workload properties in experiments - Trace 3. 90

3.10 A selection of today’s typical capacities of ESDs, based on space con-

straints. 115

3.11 Optimal solutions for ESDs in peak shaving. 120

3.12 Comparing the optimal net profit of multiple types of ESDs (with Ecap,

Pcap listed in Table 3.10) in participating different DR programs. . . 123

3.13 Capacities and costs of ESDs in provision of 550 kW RSR. 130

xiii

List of Figures

2·1 Typical PJM 150sec ramp rate (F) and 300sec ramp rate (S) RSR

signal trajectories (PJM, 2016). 15

3·1 Data center DR participation framework. 26

3·2 The model of data center in DR participation. 30

3·3 The relation between server power and throughput (in RIPS) for ap-

plications in PARSEC-2.1 benchmark suite. Dots are the real mea-

surements and lines are the linear fitting curves. 32

3·4 Results of Blackscholes with P̄ = 117.65W and R = 30W in single

server RSR provision. (i) Ptgt(t) = P̄ + y(t)R and Pcon(t) trajectories

(in Watts) over a 11-hour period (10 replications of a 1-hour period,

the first hour data is not used because of the warming up process). The

tracking error statistics: ε̄ = 0.20, σε = 0.60. (ii) HPQ QoS degrada-

tion for each job arrival shown as a red dot on the time trajectory. The

overall statistics: D̄H
bls = 2.91, σDH

bls
= 1.22. (iii) LPQ QoS degradation

for each job arrival shown as a red dot on the time trajectory. The

overall statistics: D̄L
bls = 11.27, σDL

bls
= 9.31. 41

xiv

3·5 Results of mixed workload of Blackscholes and Canneal in single server

RSR provision with P̄ = 115.33W and R = 30W . (i) Ptgt(t) = P̄ +

y(t)R and Pcon(t) trajectories (in Watts). The tracking error statistics:

ε̄ = 0.20, σε = 0.58. (ii) HPQ QoS degradation trajectory with overall

statistics: for Blackscholes D̄H
bls = 3.53, σDH

bls
= 2.02 and for Canneal

D̄H
can = 2.64, σDH

can
= 1.01. (iii) LPQ QoS degradation trajectory with

overall statistics: for Blackscholes D̄L
bls = 16.84, σDL

bls
= 11.63 and for

Canneal D̄L
can = 8.36, σDL

can
= 5.77. 42

3·6 The flowchart of the best tracking policy. 46

3·7 The probability density function (PDF) of tracking error (a, b, c) and

job QoS degradation (d, e, f) in different cases with the best track-

ing policy. All the cases are with the (homogeneous) workload set of

Blackscholes. 50

3·8 Comparison of hourly energy consumption, peak power and monthly

electricity bill of different energy cost reduction strategies in various

scenarios. (a), (b), and (c) are results under different data center

utilization U = 20%, 50% and 80%; (d), (e), and (f) are results with

different workload types, i.e., Blackscholes and Streamcluster; (g), (h),

and (i) are results with servers using shallow or deep sleep states. . . 59

3·9 Mean of the QoS degradation is characterized by the integration of

the past power consumption. Strong anti-correlation -0.97 is found

between two curves. 64

3·10 Variance of QoS degradation is characterized by the number of job

departure (i.e., finished) in 4 seconds. The higher departure number

results in higher uncertainty to the system, and thus higher variance. 66

xv

3·11 The optimal stochastic DP policies u(t) via y(t) and z(t) given d(t) =

1, of three cases: (a) PCtrack(t) >> PCQoSD(t), i.e., the tracking

cost dominates in the overall period cost function; (b) PCtrack(t) <<

PCQoSD(t), i.e., the cost of QoS degradation dominates in the overall

period cost function; (c) PCtrack(t) and PCQoSD(t) are on the same

order of magnitude. 69

3·12 The flowchart of the EnergyQARE runtime policy. 75

3·13 Mean of the signal tracking error and the QoS degradation via different

P̄ and R (normalized to the maximal possible value Rmax given P̄) in

EnergyQARE. (a) and (b) are results of the workload trace 1; (c)

and (d) are results of the workload trace 2. (b) is for the Canneal

application in trace 1 and (d) is for the Dedup application in trace 2. 91

3·14 Results of RSR signal tracking and QoS degradation for the workload

trace 1 with (P̄ , R) at their optimal values in EnergyQARE. (a) is

the real dynamic power Pcon(t) compared with the signal power cap

Ptgt(t) during the 1-hour simulation. (b) is the cumulative distribution

function (CDF) of the tracking error ε(t). The green lines show the

tracking error probabilistic constraints, i.e., (εtol, ηε). (c) and (d) are

the CDF of the QoS degradation of Canneal and Freqmine applications,

respectively. The green lines are the SLAs, i.e., (Qj, ηj). 93

3·15 The impact of the size of the feedback window T to the tracking error

and workload QoS in EnergyQARE. The probabilities of the track-

ing error and the QoS degradation that are smaller than εtol, and Qj

for Canneal and Freqmine applications respectively, are shown in the

figure. 94

xvi

3·16 The energy monetary costs in three scenarios: “optimal RSR”, ”fixed

cap” and “without cap” in different cases. All the costs are normalized

to the largest value in each figure. In (b) we also calculate the absolute

value of the cost savings from the “optimal RSR” scenarios to their

corresponding “fixed cap” scenarios, and represent the absolute savings

in the black line. 96

3·17 The CDF of tracking error and QoS degradation of both the Ener-

gyQARE and the best tracking policy for workload trace 1. The blue

curves represent the best tracking policy, and the red curves represent

the EnergyQARE. The green lines represent the tracking error and the

workload SLA probabilistic constraints, i.e., (εtol, ηε) and (Qj, ηj). . . 97

3·18 Power- CPU resource limits models for the PARSEC applications. . 101

3·19 The overview of the runtime power capping technique. Our technique

receives input from the ISO and the VM (e.g., CPUused, etc.) to make

CPU resource limit adjustments so as to keep the power consumption

close to the current power cap. 103

3·20 1-hour RSR signal power capping of Streamcluster application by ad-

justing the CPU resource limits. We both show the real power con-

sumption and the power cap values (top figure) and the dynamic ad-

justment of CPU resources (bottom figure). 104

3·21 1-hour power profile of the server running the heterogeneous workloads

when we apply our proposed power capping technique. 105

xvii

3·22 ESDs in RSR provision. (a) and (b) show the optimal net profit via

varying energy and power capacities for LI batteries and UCs; (c) and

(d) show the optimal net profit via varying amount of reserve provision,

and the varying reserve price ΠR, respectively for various ESDs. The

black dashed line in (d) shows the current ΠR. 114

3·23 The optimal net profit via varying contingency reserve prices ΠCR for

ESDs with today’s typical capacities. The black dashed line shows the

current ΠCR. 117

3·24 ESDs in peak shaving. (a) is an example of the daily power curve before

peak shaving; (b) (c) and (d) are the optimal net profit via varying

energy and power capacities (Ecap, Pcap), for LI batteries, UCs and

CAES respectively; (e) and (f) are the optimal net profit via varying

cap-ex and op-ex peak power prices respectively for multiple ESDs.

The black dash lines show where the current market prices are around. 121

3·25 The revenue of providing RSR via varying ρ2, for LI batteries (in (a))

and UCs (in (b)), with three heuristic offline solutions, respectively.

The revenue is normalized to the value of ρ2 = 1. 125

3·26 The revenue of providing RSR via varying ρ2, for LI batteries (in (a))

and UCs (in (b)), respectively, with offline and online solutions. The

revenue is normalized to the value of ρ2 = 1 in the offline solution. . 129

4·1 The communication between the master and slave nodes. 136

5·1 Flowchart of change set creation. Snapshots of the system are captured

before and after the system change event. Then, a diff operation is

calculated on these two snapshots, and the change set is generated. . 144

xviii

5·2 Training and discovery phases of the system change discovery frame-

work. Labels and extracted fingerprints from change sets are input

to learning algorithms to train the model in the training phase. The

learned model is then used to discover and label the new-coming uniden-

tified changes during discovery. 145

5·3 A sample change set. It contains all features that are created, modified

or deleted during the system change event, e.g., OS, files, packages,

processes and configurations. 146

5·4 The flowchart of the histogram fingerprint generation. 150

5·5 Two-dimensional (2D) vectors created by w2v for a set of filenames

when file tree information is supplied to it. Created vectors retain

the semantic relationship among the software objects they represent.

Vector dimensions are indicated by x and y. 151

5·6 Discovery accuracy for multiple fingerprinting methodologies and learn-

ing algorithms. Results are grouped by learning algorithms. 157

xix

List of Abbreviations

ACE Area Control Error
AWS Amazon Web Service
CAES Compressed Air Energy Storage
CDF Cumulative Distribution Function
DP Dynamic Programming
DR Demand Response
DVFS Dynamic Voltage and Frequency Scaling
ESD Energy Storage Device
FC Frequency Control
FCFS First Come First Serve
FW Flywheel
HPC High Performance Computing
HPQ High Priority Queue
ISO Independent System Operator
LA Lead-acid
LI Lithium-ion
LPQ Low Priority Queue
MOC Massachusetts Open Cloud
MPC Model Predictive Control
PDF Probability Density Function
QoS Quality of Service
RBF Radial Basis Function
RIPS Retired Instructions Per Second
RSR Regulation Service Reserve
SLA Service Level Agreement
SVM Support Vector Machine
UC Ultra/super-capacitor
UPS Uninterruptible Power Supply
VM Virtual Machine
Word2vec w2v

xx

1

Chapter 1

Introduction

Data centers are among the key enabling technologies for the rapidly evolving IT

industry. The ever-increasing growth in the demand of IT computing, storage and

large-scale cloud services leads to the proliferation of data centers that consist of

hundreds to millions of servers. According to a 2011 report, there are more than

500,000 data centers worldwide (Miller, 2011). The number is predicted to continue

growing to 8.6 million in 2017 (Sverdlik, 2014). The number of servers in large data

centers has reportedly passed the 100,000 mark (Katz, 2009). Data centers have

accounted for a global market size of 152 billion US dollars by 2016 (Dayarathna

et al., 2016), and have become one of the largest worldwide electricity consumers. As

a result, data center energy and resource efficiency has started to receive significant

attention due to its economical, environmental and performance impacts.

This dissertation aims to improve data center energy and resource efficiency

through enabling data centers to participate in smart grid demand response (DR) pro-

grams. The dissertation claims that data centers have strong capabilities to emerge

as major enablers of substantial electricity integration from renewables into the grid.

The participation of data centers into emerging DR, such as regulation service reserves

(RSRs), enables the growth of the data centers in a sustainable, environmentally neu-

tral, or even beneficial way, while also significantly reducing data center electricity

costs.

2

1.1 Data Center Sustainability

Electricity used by data centers in the US accounts for around 3% of the total electric-

ity consumption (Koomey, 2011), with an estimated growth rate of 12% per year (Rao

et al., 2012). To put this in context, 3% of the US electricity production is about 120

billion kWh or equivalent to the average consumption of a large city with 11.6 million

households. The steep increase in usage, along with the growth of the electricity

price, double the electricity bill of a typical data center every five years (Dayarathna

et al., 2016). Energy costs have become a significant portion of the overall data center

cost of ownership today, and have even exceeded the hardware purchasing costs in

some cases (Rivoire et al., 2007). Furthermore, the fast growth of data center energy

usage has tremendous environmental impacts. A 2009 McKinsey Corporation report

states that the world’s 44 million servers produce 0.2 percent of all carbon dioxide

emissions, or 80 megatons a year, approaching the emissions of entire countries like

Argentina or the Netherlands (Katz, 2009), and the number has been growing fast.

There is an urgent need to make the growth of data centers sustainable.

1.2 Emerging Opportunities in Smart Grid

Energy efficiency and environmental sustainability objectives of the whole society are

pushing the integration of an aggressively growing amount of renewable energy gener-

ation (e.g., hydropower, wind power, and solar energy). Currently, the vast majority

of electricity production comes from fossil fuels, which is long-term unsustainable

and has a tremendous environmental impact. The EU has set the goal of reaching

a 20% share of renewable energy in gross energy consumption by 2020 (Bohringer

et al., 2009). In the US, 38 states have long term renewable portfolio standards and

14 states have installed more than 1,000 MW of wind power (AWEA, 2015). It is

3

expected that the total renewable generating capacity will have a growth of 52% till

2040 in the US (EIA, 2014).

The volatility and intermittency of renewable generation, however, combined with

the lack of reliable large-scale energy storage solutions, create challenges for grid

independent system operators (ISOs) who need to match supply and demand by

securing commensurate flexible capacity reserves in forward markets and dispatching

them in real time. In response to this challenge, emerging ancillary power markets

(e.g., PJM (PJM, 2016), NYISO (NYISO, 2016)) provide sizable monetary incentives

for the consumers to perform DR, which refers to a consumer adjusting its own

electricity usage following a set of constraints or directives given by ISOs.

Recent advanced server power management techniques, such as dynamic voltage

and frequency control (DVFS) (Li and Martinez, 2006), power budgeting (Zhan and

Reda, 2013) and workload management (Ghatikar, 2014) have enabled data centers

to use the flexibility in their power consumption to manage cost and energy use. We

envision that data centers offer a unique opportunity to participate in emerging DR

programs, and it would be highly appealing if they were enabled to participate in these

opportunities in practiced scenarios as well. By doing so, data centers can decrease

a large portion of their energy costs, while helping satisfy most of the growth in data

center energy consumption from the renewable energy, and also provide additional

reserves to other less flexible uses of electricity in the society.

1.3 The Contributions and Significance of the Dissertation

Differing from a considerable body of prior research that has focused on reducing

data center energy consumption and improving energy efficiency through intelligent

power management techniques such as DVFS (Li and Martinez, 2006), workload

consolidation (Teodorescu and Torrellas, 2008), power budgeting (Rajamani et al.,

4

2006; Zhan and Reda, 2013), job scheduling (Mu’alem and Feitelson, 2001), or efficient

data center cooling (Patel et al., 2003), our work mainly studies the integration of

data center with smart grid through DR participation. While some prior work has

studied the participation of data centers in legacy DR programs, such as dynamic

energy pricing (Liu et al., 2014), peak shaving (Wang et al., 2012; Aksanli et al.,

2013), and emergency demand reduction (Zhang et al., 2015; Tran et al., 2016; Islam

et al., 2016), the demand side RSR provision is entirely new to data centers. The

RSR market is especially of our interest because considerable monetary savings are

easily anticipated for data centers as participants due to the high reserve market

clearing prices, which are, on average, as valuable as energy clearing prices in today’s

markets (PJM, 2013; NYISO, 2016). We foresee that the monetary savings from the

RSR markets could be several times higher than those from legacy DR programs.

Furthermore, we focus on RSR provision because on one hand their requirements

are expected to increase rapidly with increasing renewable energy integration in the

grid (Makarov et al., 2009), while on the other hand data centers have a comparative

advantage in offering RSRs relative to other demand side reserve providers.

Our work is the first to thoroughly study and evaluate the data center participation

in RSR market, on both the capabilities and the profits, from multiple perspectives

including software, hardware, math and control. We claim that data centers offer a

unique opportunity to provide RSRs, which not only enables the growth of the data

center in a sustainable, environmentally neutral, or even beneficial way, but also re-

duces data center energy monetary costs tremendously. Specifically, the contributions

are as follows:

• We introduce practical models of the data center in RSR provision, which con-

sider heterogeneities in workload (i.e., different types of application running),

multiple server power states, the associated time delay and energy loss during

5

server state transition, power budgeting, workload allocation and queuing, and

the workload service level agreements (SLAs), etc. (Chen et al., 2013a; Chen

et al., 2016a);

• We propose real-time dynamic policies targeting different scenarios in power

management and workload servicing to modulate the data center power follow-

ing the RSR signal requirement broadcast by ISOs. These policies are:

1. The best tracking policy that tracks the RSR signal as accurately as pos-

sible. The policy is the first to enable data center level RSR provision on

the practical data center model, and is suitable for the scenario with a

tight signal tracking constraint but loose workload QoS constraints (Chen

et al., 2014a);

2. The stochastic dynamic programing (DP) policy that leverages the statis-

tics of the RSR signal and the workload servicing performance in optimiz-

ing the tradeoff between the signal tracking and workload QoS. The policy

is optimal and applicable on a simplified data center model (Chen et al.,

2015c);

3. The EnergyQARE, i.e., the energy and QoS-aware RSR enabler policy

that builds upon a real-life practical data center model, which considers

heterogeneities in workload, various server power states, the time delay and

energy loss during server state transition, as well as workload SLAs. The

policy not only enables data centers to track the RSR signal accurately, but

also guarantees workload QoS constraints that are determined by SLAs.

The policy is suitable for general and practical data center scenarios with

tight workload QoS constraints (Chen et al., 2016a).

• We formulate an optimization problem to solve the optimal energy and reserve

6

bidding strategy in data center RSR provision to minimize the data center

energy monetary cost, with constraints on RSR signal tracking requirements,

workload SLAs, and system specifics (Chen et al., 2013a; Chen et al., 2016a);

• We evaluate the overall capabilities and profits of data center RSR provision,

and make comparisons to other energy cost saving strategies. Our results

demonstrate that data centers in a general scenario can achieve up to 44%

energy monetary savings by providing RSRs compared to a regular energy use

without any reserve provision, which are much higher than the savings from

transitional energy cost reduction strategies (Chen et al., 2014b; Chen et al.,

2016a);

• We implement the designed optimization framework and runtime policies of

RSR provision on a real server as a prototype of the data center level implemen-

tation. This initial implementation provides guidance for the future deployment

of our techniques onto real-life data centers for practical industrial uses (Chen

et al., 2013b; Turk et al., 2016b);

• In addition to data centers, energy storage devices (ESDs) are also potential

candidates for DR provision. In fact, some studies model data centers as large-

scale ESDs, and evaluate the equivalent capacities of ESDs that data centers

can offer (Liu et al., 2014). To better understand and compare data centers and

ESDs in DR programs, in this dissertation we also investigate the capabilities

and profits of different types of ESDs in participating various DR programs.

This investigation also provides clues for future studies on the DR participation

by the combination of data centers and their associated ESDs together (Chen

et al., 2015a; Chen et al., 2015b).

7

1.4 Other Aspects of Data Center Management

In tandem with the growing challenges of data center energy and environmental sus-

tainability, the expansion of the data center size leads to an increasingly complex

management problem, including a great variety of issues from different sources, such

as hardware failures, software vulnerabilities, network congestion, and malicious at-

tacks. As a result, today’s data centers are experiencing tremendous operation and

management costs. According to the IDC study in 2012, approximately 70% of data

center spending is on management and administration (Villars et al., 2012). In order

to reduce the overall data center costs, emerging data center platforms require more

efficient, scalable, automated and intelligent data center management and analytics

solutions.

As part of this dissertation, we specifically target the problem of efficient soft-

ware and system discovery, which plays a significant role in system management and

analytics, problem detection, and diagnosis. A typical data center today hosts hun-

dreds of thousands of instances (i.e., virtual machines (VMs) or containers). These

instances evolve differently from the time they are booted. Consider the following

scenario: we discover a vulnerability on one instance after a system update or a soft-

ware installation, and we would like to understand how many other instances in the

data center have similar update, as these instances may encounter the similar vulner-

ability. Moreover, the discovery needs to be fast and efficient, so that users can be

early warned and problems can be solved in time. Traditionally, the system discovery

is conducted with designed rules, which check for the existence of certain files and

their attributes (OpenLogic, nd; OpenIOC, nd). The rule-based approaches, however,

are fragile, require high expertise and constant maintenance, indicating a substantial

amount of manual effort. A great amount of today’s software is released or updated

multiple times a week, and many systems change every day. Rule-based approaches

8

have difficulties in keeping up with the pace of software and system changes. As a

result, more scalable, automated and intelligent discovery approaches are essential in

today’s data center environment.

In this dissertation, we propose a novel direction: using discovery by example as

an alternative solution to the rule-based approaches in software and system discovery.

We believe the solution is substantially more efficient in data center and cloud man-

agement, as it is more generalized and scalable, and it is able to learn automatically

and incrementally. The specific contributions are as follows:

• We introduce an automated system discovery and analytics solution for the

cloud, “discovery by example”, that generates fingerprints of changes in system

state, and utilizes these fingerprints in a machine learning platform for software,

system change discovery and management (Chen et al., 2014c);

• We propose multiple novel feature extraction methods, such as histogram and

natural language processing based vectors (Mikolov et al., 2013a), to gener-

ate condensed fingerprints from the comprehensive metadata associated with

software and system changes. The designed feature extraction methodologies

primary focus on the file system features. They can learn the hidden context

behind filenames, and represent them with vectors utilizing the file tree struc-

ture and/or file co-location information to capture the semantic relationships

of files (Chen et al., 2016b);

• We build an adaptive knowledge-base that enables fast comparison of software

and system changes with previously labeled data. Specifically, we learn the

discovery models from the knowledge-base with learning algorithms and then

predict new software and system changes using these models (Chen et al., 2014c;

Chen et al., 2016b);

9

• We evaluate and compare the discovery speed and accuracy on a variety of

feature extraction and machine learning methods. Our results show that our

mechanism can be utilized for fast (in a few milliseconds or seconds) and accu-

rate (up to 98.75%) discovery (Chen et al., 2016b).

1.5 Organization

The rest of this dissertation starts with a review of the background and related work on

data center power and workload management, DR programs and ESDs in Chapter 2.

Chapter 3 studies the data center participation in DR programs, especially the RSR.

The data center participation model is first introduced, followed by our dynamic

control policies and our optimal energy and reserve bidding strategy. The chapter then

evaluates the performance and data center energy cost savings from RSR provision,

and also compares the savings to those from other energy cost reduction strategies.

After that, an implementation of the RSR provision framework and the runtime

policies on a real system – a real server is introduced. At the end of Chapter 3,

the capabilities and profits of different types of ESDs in various DR programs are

evaluated. Chapter 4 discusses the open problems and future research directions in

data center DR participation.

We believe a significant orthogonal problem to data center energy efficiency is the

efficiency of software and system management in data centers. To the end, Chapter 5

investigates an intelligent analytics solution in data center management, i.e., the

discovery by example approach, and its framework as an automated and scalable

solution for software and system vulnerability discovery. Chapter 6 summarizes the

dissertation.

10

Chapter 2

Background and Related Work

2.1 Power Markets and Capacity Reserves

Power markets, introduced in the US in 1997 (Ott, 2003), have been widely adopted.

Today they serve the majority of high-voltage-connected generators and large con-

sumers. Soon after their introduction, power markets evolved to co-optimize or co-

clear energy and capacity reserves, whose system-level requirements reflect contin-

gency planning for uncertainty in energy balance, transmission, and generating ca-

pacity availability. Social-welfare contributions of competitive power markets are ar-

guably due to the fact that they enable distributed, yet collaborative, decisions which

(i) take advantage of locally known uncertainty and dynamical-response-capability

information, and (ii) can respond efficiently to price or other system-wide state suf-

ficient statistics, such as frequency and Area Control Error (ACE) and associated

reserve requirement signals. These sufficient statistics enable local decisions to be

made efficiently and in a manner that is adaptive to power system requirements.

Synchronized power systems may become unstable when generation and consump-

tion are not carefully balanced in practically real-time. To this end, Independent Sys-

tem Operators (ISOs) solicit and secure sufficient quantities of a mix of reserves with

different dynamic delivery properties. Bi-directional reserve contracts are secured at

least an hour in advance and promise to respond in real-time to ISO-broadcasted fast

changing system requirements.

11

Each type of reserves is characterized by the time scale and the frequency of the

reserve commands deployed. For the time-scale, focusing on the short-term markets

that are most relevant to this work, there are (i) day-ahead markets that close at

noon of the previous day and clear energy and reserve bids for each of the 24 hours

of the next day, (ii) hour-ahead adjustment markets that close an hour in advance of

each hour, allowing participants to adjust their day ahead positions on both energy

and reserves at clearing prices that reflect the new information, and (iii) 5-minute

close-to-real-time economic dispatch markets that determine ex post marginal cost

of energy employed to adjust participant revenues and costs for deviating from the

quantities cleared in the previous two markets (Kranz et al., 2003; NYISO, 2016; Ott,

2003). Based on different frequencies of the reserve commands deployment, there

are primary (or frequency control, i.e., FC), secondary (i.e., regulation service) and

tertiary reserves, in which reserve requests are deployed respectively in millisecond,

second and minute intervals (PJM, 2016).

Capacity reserves have been offered primarily by centralized generators, but mar-

ket rules are changing to allow the demand side to offer reserves as well. For example,

PJM, one of the largest US ISOs, has allowed electricity loads to participate in re-

serve transactions since 2006 (PJM, 2005), with other ISOs contemplating to follow

the suit. Demand side capacity reserves, as an emerging type of demand response

(DR), is starting to play a significant role in stabilizing power systems, and is par-

ticularly beneficial as intermittent and volatile renewable generation is integrated at

ever increasing rates. Next, we review both legacy and emerging DR opportunities.

2.2 Demand Response (DR) Programs

Demand response (DR) refers to electricity consumers regulating their power usage

following market requirements. Widely studied DR programs pertain to a few legacy

12

programs such as dynamic energy pricing (Wierman et al., 2014; Zhu et al., 2013),

peak shaving (Govindan et al., 2011; Wang et al., 2012), and emergency load reduc-

tion (Zhang et al., 2015; Tran et al., 2016; Islam et al., 2016). In dynamic energy

pricing, the demand side modulates its power consumption so as to consume more

power at the valley of the energy price and less as prices peak. Medium to large com-

mercial and industrial power consumers are often under coincident peak pricing rates

that charge a very high cost for usage during the hour that is coincident to the system

peak hour (FortCollins, nd). In addition to charges on energy, these medium to large

power consumers are also charged for their peak power over an agreed upon period,

e.g., over a month (Govindan et al., 2011). Sometimes there are even strict limits

on the peak power consumed during periods with shortage of supply. In these cases,

limiting the peak power, known as peak shaving (Wang et al., 2012), has been used

to reduce costs and enable stability of power systems. In emergency load reduction,

the power market operator coordinates large electricity consumers for load reduction

in emergency situations, in order to prevent major economic losses and catastrophic

events such as blackouts (Zhang et al., 2015).

Recently, power markets start to allow demand side to provide capacity reserves

as an emerging DR. In demand side capacity reserves, power consumers complement

generators in buying of energy and offering all kinds of capacity reserves in dynamic

market. Thus, consumers are obliged to regulate their power consumption to track

some dynamic power targets based on the amount of reserve that they have offered

in the market time scale (Hansen et al., 2014). As introduced before, there are

mainly three types of reserves. We consider all three types of power capacity reserves

under the following notation: primary reserves or FC, R1, secondary reserves or

RSR, R2 and tertiary or contingency reserves, R3. Providers are obliged to modulate

their power consumption so as to track a stochastic non-anticipatory dynamic power

13

target, Ptgt,i(t) for i ∈ 1, 2, 3. For primary and secondary reserves, the target varies

symmetrically about a fixed average power level P̄i allowing energy neutral time

averaged consumption. Although Ptgt,i(t) dynamics are stochastic and are revealed

to reserve providers only with short notice, their statistical behavior is well known.

Primary Reserves or FC

A primary reserve provider that has offered R1 in the hour ahead market, must mod-

ulate its power consumption Pcon(t) in real time to track a target Ptgt,1(t) that is

determined as a function of the local (and hence fully distributed) frequency mea-

surement ω(t). Denoting frequency deviations from 60Hz by ∆ω(t) = ω(t) − 60, we

have Ptgt,1(t) as follows:

Ptgt,1(t) =

P̄1 −R1, ∆ω(t) ≤ −0.2,

P̄1 + (∆ω(t)+0.02)
0.2−0.02

R1, −0.2 < ∆ω(t) < −0.02,

P̄1, |∆ω(t)| ≤ 0.02,

P̄1 + (∆ω(t)−0.02)
0.2−0.02

R1, 0.02 < ∆ω(t) < 0.2,

P̄1 +R1 ∆ω(t) ≥ 0.2.

Ptgt,1(t) is a piecewise linear function of ∆ω(t), representing the local impact of

system-wide supply-demand imbalances. Under most circumstances the statistical

behavior of ∆ω(t) constitutes a zero mean white noise, whose variance is well known

at the beginning of the hour.

In FC, Ptgt,1(t) varies in real time according to ˙∆ω(t). We approximate the real

time dynamics of ω(t) by discrete time dynamics with a small time increment of 0.1

seconds. ˙∆ω(t) is generally unconstrained, but Ṗcon(t) is of constant magnitude. More

precisely, Ṗcon(t) = SGN(Ptgt,1(t)−Pcon(t))R1/30 MW/sec. When Pcon(t) = Ptgt,1(t)

then and only then Ṗcon(t) = 0. As such, there is no tracking error allowed in FC

14

reserve power output modulation, as is instead the case with secondary reserves.

Although primary reserves are not yet cleared in power markets, and are in fact

provided by centralized generation facilities (Zhao et al., 2012), in anticipation of

markets evolving in this direction, we assume for purposes of obtaining a reasonable

estimate of primary reserve clearing prices, ΠR1 , that ΠR1 equals several times of

the value of energy clearing prices ΠE. This is a reasonable assumption given that

primary reserves are more valuable than secondary reserves where we assume that

ΠR2 is of the same order of magnitude as ΠE. In the numerical results reported in

the later chapters, we use the relationship ΠEP̄1 − ΠR1R1 to evaluate the effective

energy cost of a data center that offers FC reserves R1.

Secondary Reserves or RSR

A significant difference compared to primary reserves of RSR is that each provider

is obligated to track the same relative target determined generally by an ISO signal

that we denote by y(t). In fact, y(t) is the output of an ISO specified integral propor-

tional filter of the ACE (that measures the difference between actual and scheduled

net imports from adjacent balancing areas) and frequency excursions outside of the

tolerance interval (i.e., [59.980, 60.020Hz]). It is unpredictable and unaffected by be-

havior of any individual market participant. The statistical behavior of y(t), however,

is known ahead. It is a zero mean scalar taking values in the interval [−1, 1], and

follows a well behaved two level Markov model whose transition probabilities can be

usually calibrated a few hours in advance. The signal is centrally determined and

broadcasted every 4 seconds by the ISO, with the increments in each 4 seconds not

exceeding ±R2/(τ/4) where τ is 150 seconds for the fast (F) RSR and 300 seconds for

the slower (S) RSR (PJM, 2016). Figure 2·1 depicts actual historical data trajectories

of y(t) corresponding to two different normalized speeds of 1/150 and 1/300 MW/sec.

15

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
e

g
u

la
ti

o
n

S

ig
n

a
l

Time

F: 10/1/11

S: 9/1/10

Figure 2·1: Typical PJM 150sec ramp rate (F) and 300sec ramp rate
(S) RSR signal trajectories (PJM, 2016).

An RSR provider who has offered R2 in the hour ahead market is obliged to

modulate its power consumption Pcon(t) to track the target Ptgt,2(t) = P̄2 + y(t)R2 at

a constant, albeit slower, speed than FC. With energy and reserve market clearing

prices, ΠE and ΠR2 , that are of similar value, an RSR provider sees an effective energy

cost of ΠEP̄2 − ΠR2R2. The credit received may be further reduced as a function of

the tracking error ε(t) (usually of its statistics, such as the mean ε̄ of it), which is

measured during the hour as1:

ε(t) =
|Pcon(t)− Ptgt,2(t)|

R2

. (2.1)

Furthermore, the reserve provider may lose its contract in further RSR provision, if

the tracking error ε(t) exceeds a probabilistic tolerance constraint (εtol, ηε), i.e.,:

Probability {ε(t) > εtol} > 1− ηε. (2.2)

1Since this dissertation mainly studies RSR provision, for simplicity, by default we use R, Ptgt(t),
P̄ , and ΠR to denote the parameters in RSR, i.e., R2, Ptgt,2(t), P̄2, and ΠR2 in the following chapters.

16

Tertiary or Contingency Reserves

Tertiary reserve provision is typically scheduled in the 5-minute power markets. It

involves rescheduling of the provider’s consumption from a pre-contingency or pre-

congestion level P̄3 to a post contingency or post congestion level that is as much

as R3 lower. That lower level must then be maintained for up to a few hours. The

speed at which tertiary reserves must be offered is far slower than that of primary or

secondary reserves. Tertiary reserves are often operated with load migration (Wang

et al., 2014; Chiu et al., 2012; Liu et al., 2011) discussed further below.

Significance of Data Centers in Emerging DR

It is the aforementioned role of providing emerging DR, i.e., the capacity reserves

we envision for data centers, and more broadly, for computing systems. In today’s

grid, the FC and RSR needed to ensure stability by guaranteeing tolerable ACE and

frequency deviation errors amount to about 0.1% for FC and 1% for RSR related

to the total electricity load. This amount is in fact comparable to the 2-3% figure

attributed to electricity consumption by data centers (Koomey, 2008).

Considering today’s market conditions, secondary reserves are traded at a price

comparable to the price of energy, while, if primary reserves are introduced into

power markets, they will probably command higher clearing prices. This implies that

a data center able to provide RSRs equal to 50%, or alternatively FC reserves equal

to 10%, of its average energy consumption, may be able to reduce its energy cost

by up to 50%. There are, therefore, substantial increasing economic incentives for

data center operators to participate in jointly clearing energy and reserve markets.

In addition, the associated societal and sustainability benefits that may result from

greater adoption of renewables enabled by effective data center reserve provision are

also clearly enormous.

17

In the following sections, we overview the state-of-the-art power and workload

management techniques of data centers as well as the data center participation in DR

programs.

2.3 Power and Workload Management in Data Centers

Power management techniques in both server level and data center level, along with

the workload management in the data center have all been advanced significantly

in recently years. These techniques provide the data centers with the capability to

modulate their power at fine granularity. In this section, we survey the state-of-the-art

techniques in these areas.

2.3.1 Server Power Management

The majority of the processors today are designed to support various energy-aware

operation settings (Burd and Brodersen, 1995). Widely used control knobs include

dynamic voltage-frequency scaling (DVFS) and power gating features to turn off

idle units (Li and Martinez, 2006). Multi-core processors offer additional degrees of

freedom for managing power through workload allocation (Teodorescu and Torrellas,

2008). Recently, voltage and frequency islands have been introduced for achieving

fine-grained system level power management (Ogras et al., 2007).

Dynamic power management at the processor level typically focuses on designing

efficient techniques to put idle units into sleep states while minimizing the perfor-

mance overhead from switching between states (Benini et al., 2000). PowerNap is a

similar approach at the server level for eliminating the server idle power and reducing

the state transition overhead (Meisner et al., 2009). Isci et al. (Isci et al., 2013) ex-

plore the feasibility of low-latency power states implemented at the server hardware

and introduce a power-aware virtualization management policy.

18

Today’s systems also employ power capping mechanisms to prevent the power

from exceeding the peak power constraints. DVFS is a popular control knob for cap-

ping (Fan et al., 2007). For multi-threaded applications, DVFS can be combined with

thread allocation and migration to perform finer granularity power capping (Cochran

et al., 2011; Rangan et al., 2009).

As the virtualization technique has advanced significantly in recent years and

provides advantages in ease of management and consolidation, a number of power

management techniques specifically address virtualized servers. vGreen tries to im-

prove energy efficiency of virtualized servers by linking workload characterization

to dynamic virtual machine (VM) scheduling (Dhiman et al., 2009). Other work

studies the power management effectiveness of CPU consolidation on virtualized sys-

tems (Hwang et al., 2012). Turning CPU resource limits is a recently introduced

power management control knob on virtualized server that can achieve finer gran-

ularity power consumption compared to DVFS (Hankendi et al., 2013). However,

DVFS settings can be altered more frequently, whereas CPU resource limits can be

changed at second level granularities.

2.3.2 Data Center Level Power Management

A data center consists of many servers. In addition to the power management ca-

pabilities available within the servers, a data center offers other power management

knobs, including power budgeting and server provisioning.

Several power budgeting approaches consider the heterogeneous set of applications

and divide total power caps based on application properties (Rajamani et al., 2006;

Zhan and Reda, 2013). Gandhi et al. develop a queuing model and produce theo-

rems that determine the optimal power allocation under different scenarios includ-

ing different arrival rates of jobs, power-to-frequency relationships in the processors,

19

etc (Gandhi et al., 2009). The power budgeting problem has also been studied on

virtualized systems (Nathuji et al., 2008; Nathuji et al., 2009).

Server provisioning, which decides how many servers should be active at a given

time, is another essential topic in the data center. Many data centers today leave

all the unused servers in idle states as a conservative approach for guaranteeing high

performance. Leaving many servers idle, however, causes tremendous waste of energy.

Some data center researchers leverage sleep states to improve energy efficiency (Chase

et al., 2001; Meisner et al., 2011); however, they typically ignore the wake-up costs

from sleep states or use hypothetical server states. Gandhi et al. (Gandhi et al.,

2012) propose a SoftReactive dynamic power management policy, which determines

the state of servers in the data center based on the dynamic workload arrival rate,

and introduce a timeout-based mechanism to sleep servers.

2.3.3 Workload Scheduling and Control

Data centers serve hundreds of thousands of workloads per day. How to schedule

and allocate these workloads to servers impacts both the data center power and QoS

performance. A number of scheduling algorithms have been proposed and evaluated.

The first come and first serve (FCFS) is a simple but popularly used strategy in

today’s system. The backfilling policy is to improve system resource utilization by

identifying “holes” in the scheduling plan and moves forward small jobs to fit the

“holes” (Mu’alem and Feitelson, 2001). Recently, scheduling algorithms that give

small jobs higher priorities are especially of interest. The shortest job first is first

proposed to always serve the shortest job in the system in a non-preemptive manner.

A few of extensions on it, e.g., shortest remaining processing time and preemptive

shortest job first are then proposed, which serve short jobs in the preemptive man-

ner, and are proved to be able to achieve low mean delay and short mean queue

20

length (Yang et al., 2012). Processor sharing is a policy that shares service capacity

evenly among all requests (Aalto et al., 2007). A multi-class adaption of the proces-

sor sharing, i.e., the generalized processor sharing is designed to share capacity based

on some weight factors to all non-empty classes of workloads (Parekh and Gallager,

1993). Jobs within each class are usually assumed to form a FCFS queue to be served.

Generalized processor sharing is suitable for the scenario where data centers are split

into multiple clusters, with each cluster serving a type of workload. Processor shar-

ing and generalized processor sharing offer more fairness among workloads than other

scheduling algorithms such as the shortest job first.

Data center power is also highly related to the workload arrival rates. When the

workload arrival rates are high, a large amount of power is consumed in order to serve

the workloads and guarantee QoS. Recent studies propose several workload control

methods to regulate workload arrival so as to control the data center power. Widely

studied workload control methods include load shedding, shifting and migration. Load

shedding is to simply reduce temporary load by turning off servers, without any future

pay back. Load shifting is to temporarily turn off servers and reschedule loads to a

future spot (Ghatikar, 2014). Load migration is to shift load geographically to other

data centers or clusters (Wang et al., 2014). Unlike load shedding and shifting that

are usually accompanied with QoS degradation, load migration usually causes less

or even no degradation in workload servicing. Load migration also contributes to

grid balancing and helps reduce power network congestion. A number of migration

strategies and online algorithms have been proposed, and the potential environmental

benefits are evaluated (Chiu et al., 2012; Hu et al., 2016; Liu et al., 2011; Lin et al.,

2012). VM based migration techniques are also introduced for geographic workload

migration (Wang et al., 2013a).

21

2.4 Data Centers Participation in DR

Studies on data center participation in DR programs have been significantly ad-

vanced in recent years. A recent survey provides valuable insight into opportunities

and challenges of data center in both legacy and emerging DR programs (Wierman

et al., 2014). Kirpes et al. evaluate multiple compensation models for data centers

in common DR programs (Kirpes and Klingert, 2016). Real-time dynamic energy

pricing (Le et al., 2016), peak shaving (Wang et al., 2012; Govindan et al., 2011) and

emergency load reduction (Zhang et al., 2015; Tran et al., 2016; Islam et al., 2016)

are three popular legacy DR programs. Many studies investigate data center legacy

DR program participation through load shedding, shifting and migration (Ghamkhari

and Mohsenian-Rad, 2012; Liu et al., 2014; Wang et al., 2014; Cioara et al., 2016).

There is growing interest in data center participation in emerging DR programs,

i.e., capacity reserves. Aikema et al. review multiple types of ancillary service mar-

kets for data center to participate, and evaluate the capability and potential benefit

(Aikema et al., 2012). Ghasemi-Gol et al., propose an offline optimization framework

to minimize electric bill of data center in RSR provision (Ghasemi-Gol et al., 2014).

Aksanli et al., propose a battery-based design framework for data centers to provide

RSR (Aksanli and Rosing, 2014). Li et al. study the joint management of data cen-

ter and employee plug-in hybrid electric vehicles in RSR provision to further increase

the profit (Li et al., 2014). Most of existing studies, however, use simplified data

center models for RSR provision, and do not investigate a real-life practical model

of data centers that considers heterogeneous workloads, different server power states,

their transition delays and energy loss, and workload SLAs, etc. Moreover, most of

the studies ignore the optimization problem on power and reserve value bidding (i.e.,

capacity planning) in their designed optimization frameworks, which is in fact one of

the key problems in the overall optimization of data center RSR provision.

22

2.5 Energy Storage Devices (ESDs) in DR

In addition to data centers, ESDs are considered as promising options for participation

in power markets and DR. Today’s most popular ESDs include batteries, flywheels

(FW), ultra-capacitors (UC) and other emerging techniques, e.g., compress air energy

storage (CAES), etc (McCluer and Christin, 2008; Smith et al., 2008). These ESDs

are modeled, for either ideal or non-ideal behaviors, and their system performance is

evaluated (Wang et al., 2012; Ghiassi-Farrokhfal et al., 2015). Recently, the hybrid

electric energy storage system is designed and investigated to enlarge the system

storage capacity and improve the efficiency (Pedram et al., 2010).

A few previous studies propose control policies and evaluate the benefit of ESDs

in real-time dynamic energy pricing programs (Wang et al., 2013b; Zhu et al., 2013),

peak shaving (Wang et al., 2012; Aksanli et al., 2013), power grid stabilization and

primary reserve provision (Oudalov et al., 2007; Cho et al., 2013), respectively. In the

space of RSR, some prior work surveys potential market chances and evaluates ma-

turity of the ESD participation in RSR (Walawalkar et al., 2007; Kumaraswamy and

Cotrone, 2013; Vu et al., 2009; Fooladivanda et al., 2014), but without formulating

the detailed models of participation and evaluating the optimal solutions. Kim et al.

investigate the optimization solution of ESDs in RSR provision (Kim et al., 2014),

however, their study uses a simplified RSR participation model that does not consider

the details of regulation accuracy constraints and penalties. Furthermore, it assumes

that the RSR signal always follows a statistical distribution known a priori, and with-

out considering the reserve value and capacity planning for different ESDs. Overall,

there also lacks a systematic evaluation and comparison on the optimal capabilities

and profits from various types of ESDs in different DR programs in literature.

23

2.6 Distinguishing Aspects from Prior Work

Our work proposes a novel approach to improve the data center energy efficiency and

reduce the energy costs through data center participation in emerging DR programs.

We specifically investigate an emerging capacity reserve market, the RSR provision,

which is a brand new market for data centers. More specifically:

• Rather than reducing the data center power consumption and electricity costs

through power management techniques as most prior studies focus on, our

research aims to improve data center energy efficiency and reduce the costs

through integration of data centers into DR programs in the smart grid. In the

programs, the data center also contributes to the power grid stabilization and

the integration of renewables into power markets;

• For those studies on data center DR participation, most of them still only focus

on legacy programs, such as peak shaving, dynamic energy pricing, or emergency

load reduction, while this dissertation targets for an emerging DR program, the

RSR provision, which is much more profitable for data centers than those legacy

programs;

• Our work is the first to design a practical data center model in RSR provision.

By “practical” here, we refer to modeling a wide range of real-life factors in

data centers such as the heterogeneities in workload (i.e., different types of

applications running), multiple server power states and server provisioning, the

associated time delay and energy loss during server state transitions, workload

scheduling and allocation, and workload QoS requirements determined by SLAs,

etc. The practical model is aware of both data center hardware and software

characteristics;

24

• We design policies based on this practical model. Our policies not only handle

those real-life factors and accurately track the RSR signal, but also provide

workload QoS guarantees during the RSR provision. We are also the first to

not only consider efficient runtime policies, but also the optimal energy and

reserve bidding (i.e., capacity planning) to the power market as well in the

optimization framework to minimize the data center energy monetary cost with

RSR provision;

• We are the first to provide detailed models, evaluate and optimize the profits of

various ESD technologies in not only legacy, but also emerging DR, by proposing

detailed reserve value and capacity planning as well as online ESD operational

policies;

• This dissertation does not merely formulate the data center RSR provision prob-

lem and seek to theoretic solutions, but also implements the proposed techniques

on a real-life system using existing control knobs in virtualized servers. Such

an implementation is the first to provide guidance for future implementation of

large-scale data center DR participation systems.

25

Chapter 3

Data Center Demand Response

3.1 Overview

Today’s smart grids incorporate a larger percentage of intermittent renewable energy

sources in power generation. These new volatile energy sources create challenges for

grid independent system operators (ISOs) to stabilize the grid load and match the

power supply with demand in real time. Therefore, ISOs adopt novel mechanisms in

modern power markets to ensure stability. Demand response (DR) is one such mech-

anism, where the demand side participant receives monetary benefits upon regulating

its power consumption based on ISO requests.

In tandem with the development in the power markets, electricity used by the

data centers has grown to account for 3% of the overall consumption in the US to-

day (Koomey, 2011). Recent advancements in power capping and power management

techniques for the servers in the data centers (Li and Martinez, 2006; Isci et al., 2013;

Meisner et al., 2009) have enabled the data centers to provide some flexibility in their

energy consumption. Therefore, data centers offer a unique opportunity for provid-

ing DR. Exploiting this flexibility can help satisfy most of the growth in data center

energy consumption from the renewable energy, and also provide additional reserves

to other less flexible uses of electricity in our society.

This chapter focuses on evaluating the capabilities and benefits of data center

participation in the power market for providing DR. Among a variety of DR pro-

26

Workload arrivals

ISOs

Load
forecasting &
bidding in the
energy market Racks

Multi-core server

Multi-level
load queues

Optimal
control &
allocation
of power

caps

Regulation
requests

Data Center

Pcooling

Pcomputing

Sensor
feedback

Data center
cooling
control

Performance,
power &

 temperature
models

Figure 3·1: Data center DR participation framework.

grams, the demand side regulation service reserves (RSRs) are especially of interest

as their market clearing prices are, on average, as valuable in today’s markets as

energy clearing prices (PJM, 2013; NYISO, 2016). More importantly, we focus on

RSRs because on one hand their requirements are expected to increase rapidly with

increasing renewable energy integration in the grid (Makarov et al., 2009), while on

the other hand data centers have comparative advantages in offering RSRs relative

to other demand side reserve providers.

Figure 3·1 shows how the different sub-components of the data center DR partic-

ipation problem (i.e., mainly the RSR provision in this dissertation) come together.

The whole data center DR participation includes the following steps:

1. The data center first acquires the information of workload arrivals for the next

time period (e.g., next hour). If such information is not available, the data

center forecasts the workload based on the historical workload patterns;

2. Using an estimation of future workload arrivals and the ISO requirements of the

27

program that the data center decides to participate in, the data center computes

the demand reserves it can provide, and bids in the power market;

3. Once the ISO approves the bid, the request signal is sent to the data center

from the ISO. Then the data center optimally distributes the total power cap

calculated based on the request signal to the cooling units and to each server.

The data center also performs workload allocation to servers. Based on the

condition of both the power caps and the workloads, the data center control

unit also determines the number of servers that should be turned on, put into

sleep or tuned off;

4. The cooling system maintains the thermal constraints and gives temperature

feedback to the data center control unit. Because of the larger time constants

involved in cooling temperature dynamics, ideally cooling power adjustment is

performed less frequently compared to server power regulation;

5. Each server has multiple cores and different levels of load queues. Workloads

run on the servers and dynamic power capping is applied to track a given server-

level cap. Performance and Quality-of-Service (QoS) feedback from each server

is sent back to the control unit;

6. Based on the feedback from the cooling units and servers, the data center re-

allocates power caps and workloads, and re-determines the server states, so as

to follow the ISO request and to improve performance;

7. The data center repeats the steps above for each time period.

In this dissertation, we focus on the power regulation of the computational units

(i.e., servers) for fast regulation, as cooling power can only be regulated as part of

slower frequency markets due to the thermal time constants. The overall objective of

the problem is to minimize data center energy monetary costs under the constraints

28

of RSR signal tracking and the workload QoS (as determined by users or service level

agreements (SLAs)), by designing efficient data center runtime policies, as well as the

smart energy and reserve bidding strategies. In this chapter, we first model the data

center DR participation problem by introducing the real-life server model, compu-

tational unit model and the workload model in Section 3.2. Then in Section 3.3 we

conduct an initial study on the RSR provision problem with a single server, which

is the main building block of the data center level problem. After that we propose

and evaluate three RSR provision runtime policies, namely, the best tracking policy

(Section 3.4), the optimal stochastic dynamic programing (DP) policy (Section 3.6),

and the EnergyQARE policy (Section 3.7), to dynamically regulate the data cen-

ter power following the RSR signal, by leveraging server power capping techniques,

multiple server power states, and the workload arrangement, etc. With the dynamic

policies, we also introduce the optimal energy and reserve bidding strategies for data

centers to minimize the energy costs subjected to the signal tracking and workload

QoS constraints. To evaluate the benefits from RSR participation, in Section 3.5, we

make heuristic comparisons of the energy cost savings from RSR provision (with the

best tracking policy) to other energy cost saving strategies. Section 3.8 introduces a

real-life implementation of the designed optimization framework and runtime policies

on a multi-core server, which provides guidance for the future deployment of the DR

participation onto real-life large scale data centers. Since data centers sometimes are

thought as special types of large scale energy storage devices (ESDs) in power market

and DR (Liu et al., 2014), in order to compare the capabilities and profits of DR

participation by data centers to typical ESDs, we investigate performance of different

types of ESDs in various DR programs in Section 3.9. Section 3.10 summarizes the

chapter.

29

3.2 The Model of Data Center in DR

A data center1 system is composed of two major parts: the computational unit and

the cooling unit. The computational unit consists of a number of servers2, and the

cooling unit consists fans, computer room air conditioners, water cooling systems,

etc. Due to the large thermal time constants involved in temperature dynamics, the

adjustment of cooling power is usually less frequent than server power regulation, and

thus, the cooling unit may not be as suitable for RSR as the computational unit. In

this dissertation, we specifically focus on regulating the computational power. Our

technique, however, can be combined with power budgeting techniques (Zhan and

Reda, 2013) that distribute a given total power cap into power caps of the sub-

components of the data center, while cooling unit can be regulated to participate

slower frequency demand capacity reserve market. Figure 3·2 depicts the overall data

center model in DR participation. In the following sections, we first discuss a single

server model, followed by the model of the computational unit as a whole. Finally,

we introduce the model of the data center workloads.

3.2.1 The Model of Servers

Servers in the data center can be assigned to different states. Typical states include:

active, idle, sleep and off (Isci et al., 2013). When a server is running a job, it is

“active”. We use Ps(t) to denote the power consumption of an active server s at

time t. Ps(t) is composed of the dynamic power, Pdyn,s(t), and the static power,

Pstatic,s. The dynamic power changes based on the characteristics of the running

job, and can be modulated by power management techniques, such as DVFS (Li and

1We define data centers in this dissertation broadly including both enterprise data centers and
high performance computing (HPC) clusters.

2the computational unit also includes networking, storage, uninterruptible power supply (UPS)
and other elements. This dissertation focuses on providing RSR using server-level controls.

30

Figure 3·2: The model of data center in DR participation.

Martinez, 2006), CPU resource limits (Hankendi et al., 2013), etc. The static power

is a constant3, and exists as long as the server is turned on.

Regulating the dynamic power affects the server throughput (i.e., service rate).

Prior studies have demonstrated a linear relation between dynamic power and the

server throughput for active servers (Dayarathna et al., 2016) as:

Pdyn,s(t) = kj · us(t), (3.1)

where us(t) is the server throughput of the server s at time t, kj is a constant which

is specific to the type of the job j that is serviced in the server s at time t.

To examine this model, we conduct our experiments on a 1U server that has an

AMD Magny Cours (Opteron 6172) processor, which has 12 processing cores on a

single chip. The server is virtualized by the VMware vSphere 5.1 ESXi hypervisor.

We use the CPU resource limits control knob in the hypervisor to control the power-

3The static power, in fact, is temperature dependent. We assume that there is no temperature
change in this dissertation.

31

performance settings at runtime (Hankendi et al., 2013). CPU resource limits enable

dynamically changing the resources allocated to a virtual machine (VM) quickly and

at a fine granularity. For example, cutting the resource limits for a VM to half of the

original setting (without limits) cuts the server’s power consumption also to half of

the original power level while running that VM. Similarly, we can set the performance

of the server to any level we need. As more than 50% of the data center servers are

virtualized today, controlling the power and performance for the applications through

changing the resource limits for the VM is a practical and efficient method.

We run each application from the PARSEC-2.1 (Christian, 2011) benchmark suite

on a VM in isolation (by itself, without consolidation) in our experiments and ap-

ply regression on the data collected to derive the model between the server power

consumption Ps(t) and the server throughput us(t). The server throughput in the

experiments is represented by the Retired Instructions Per Second (RIPS). A job run-

ning on a server is composed of a number of instructions. Finishing a job is equivalent

to executing all its instructions. RIPS is a metric showing the number of instructions

finished in each second, and is commonly used for evaluating the performance of the

processor. A higher RIPS represents a faster processor service rate. We construct the

following model with a mean square error of less than 5%:

Ps(t) = kj · us(t) + Pstatic,s, (3.2)

which matches with the classical used model introduced in Eq. (3.1). The data and

model fits are shown in Figure 3·3.

A server is “idle” if it is turned on but is not running any jobs. An idle server

consumes power at a constant rate, Pidle,s, which is equal to Pstatic,s. In the “sleep”

state, the server consumes a very low constant power, Pslp,s. We assume to have

homogeneous servers in our study, and thus we omit the notation s in those constant

32

0 0.5 1 1.5 2 2.5 3 3.5

x 10
9

60

80

100

120

140

160

180

RIPS

P
o

w
e

r(
W

a
tt

s
)

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanimate

freqmine

raytrace

streamcluster

swaptions

vips

x264

Figure 3·3: The relation between server power and throughput (in
RIPS) for applications in PARSEC-2.1 benchmark suite. Dots are the
real measurements and lines are the linear fitting curves.

values for simplicity in the rest of the dissertation. There are time delays and energy

loss of resuming a server from or suspending it to a “sleep” state. The suspending

time delay, Tsusp, is usually small and can be ignored, while the resuming time delay,

Tres, is notable and requires explicit consideration (Gandhi et al., 2012; Isci et al.,

2013). During both the suspending and resuming periods, the power consumption is

similar and denoted as Ptran, which is close to the maximal server power, Pmax (Isci

et al., 2013). The energy loss of the resuming period is estimated as Eloss = Tres ·Ptran

and of the suspending period can be ignored.

Many servers in today’s data centers are able to be set into different sleep states.

In this dissertation without loss of generality, we study two types of sleep states: the

shallow sleep state and the deep sleep state. Servers in the deep sleep state can save

more power, whereas the time delay and the energy loss of them in the rebooting

process are larger than those of servers using shallow sleep state. Based on recent

studies (Gandhi et al., 2012; Isci et al., 2013), in our work we assume parameters as

33

Table 3.1: Descriptions of symbols on server power states.

Symbol Description

Eloss Energy loss during the server resuming process.

Ps(t) The power of active server s at time t.

Pdyn,s(t) The dynamic power of active server s at time t.

Pstatic Static power of server.

Pidle Server power in the idle state.

Ptran Server power during the transition state.

Pslp Server power in the sleep state.

Pmax The maximal possible server power.

Tsusp Suspending time delay to the sleep state.

Tres Resuming time delay from the sleep state.

us(t) Server throughput (i.e., service rate) of the server s at time t.

follows: the sleep power in the shallow and deep sleep states is P S
slp = 10%Pmax and

PD
slp = 5%Pmax, and the resuming time is T Sres = 10s and TDres = 200s, respectively.

During the transition process, servers consume constant power: P S
tran = PD

tran = Pmax.

Servers in data centers can be completely turned off, which indicates a fourth

state, “off”, with no power consumption. However, the “off” state does not frequently

appear due to the very large time delays and energy loss of resuming and suspending

process. Thus, we do not consider the “off” state in this dissertation. Table 3.1 lists

the descriptions of all the major symbols introduced in this section on the server

power states.

3.2.2 The Model of the Computational Unit

As shown in Figure 3·2, in our data center model, servers in the computational unit

are classified into several sub-units based on their states and the types of workloads

that they are serving. All the idle servers are assigned into the idle server pool, and

all the sleeping servers are in the sleeping server pool. At runtime, active servers

are dynamically classified into several clusters depending on the workload types they

are serving, with each cluster containing servers that specifically serve one type of

34

workload. In this way, though the overall data center receives heterogeneous work-

loads, each cluster always serves homogeneous workload. This model is, in principle,

similar to the design of today’s high performance computing (HPC) clusters, where

dedicated and optimized sets of servers are assigned to specific jobs. For example,

if there are M different types of workloads in the data center, then the data center

contains M active server clusters, one idle server pool, and one sleeping server pool

at that moment. M = 1 if the data center only serves homogeneous workload. All

the active server clusters share the common idle server pool, i.e., idle servers in the

pool are dynamically assigned by the central controller to clusters as needed. Active

servers are immediately released back to the idle server pool from the clusters if they

finish their jobs. In other words, servers in active clusters are all active. The number

of servers in each active server cluster, as well as the power budget for each cluster,

are dynamically modulated by the central controller based on multiple system states

such as the length of the job waiting queue in each cluster, the value of the RSR

signal and the QoS constraint of each workload type, etc. The sleeping server pool

only interacts with the idle server pool. As introduced in Section 3.2.1, we ignore the

time delay of suspending a server from idle to sleep state. Thus idle servers that are

put into sleep are immediately moved to the sleeping server pool. On the other hand,

if sleeping servers are resumed, they are first in the transition state for a certain time

before they become idle and join in the idle server pool.

In each active server cluster, we assume there is a first come first serve (FCFS)

queue for holding the incoming jobs submitted by the users. Once a job arrives, it

is first put into the queue and waits to be scheduled for service. We use the FCFS

queue because it is simple but efficient, and is one of the most widely used scheduling

policies in today’s systems. Moreover, as each cluster contains only homogeneous

workload, other scheduling policies such as shortest job first and shortest remaining

35

processing time (Yang et al., 2012) do not provide additional benefits. In addition,

we assume that each server can only serve one job a time; thus, we do not consider

server consolidation, which is the typical case in HPC data centers. We also assume

that a running job cannot be stalled or preempted, to preserve both job QoS and

fairness in the service.

Utilization is an important parameter to describe how busy the data center (com-

putational unit) is. It is defined as the average number of active servers at each time

interval. For example, U = 50% means each server is active for half of the whole

period, and is in idle or sleep state for the rest of the time. We can also comprehend

this as, at each moment, half of total servers in the data center are serving jobs. The

utilization depends on the arrival frequency and the servicing time of workloads.

3.2.3 The Model of Data Center Workloads

Workloads in data centers mainly fall into two catalogs: (1) interactive jobs such as

email clients, web search, stock transactions, etc., which are highly sensitive to the

latency, and (2) batch jobs that are more tolerable to latency. Some of the batch jobs

can be accumulated and run later when there is availability in the data center (Liu

et al., 2012; Verma et al., 2015). Therefore, batch jobs provide additional flexibilities

in data center power consumption, and clusters with batch jobs are more suitable for

DR participation. In our work, we focus on DR provision on data center clusters that

mainly serve batch jobs. In a general data center scenario with a mixture of both

interactive and batch jobs, it is possible to enable that clusters with interactive jobs

mainly focus on workload servicing, and provide only a few to none reserves, while

clusters with batch jobs actively participate in DR programs.

In data center, the system time Tsys,i (i.e., waiting time plus processing time) is

one of the most significant QoS indexes for each job i. Different types of workloads,

36

however, can have very different processing time, which makes the simple comparison

of system time Tsys,i among different workloads unfair. To unify the QoS among all

types of workloads, we normalize the system time Tsys,i to the shortest processing time

for the job i, i.e., Tmin,i, which refers to running the job without any power capping

restrictions and without any waiting time in the queue. Tmin,i is a constant for a given

job i and can be known ahead by profiling the workload. Hence, Ti = Tsys,i/Tmin,i,

where Ti is the normalized system time of job i. Sometimes the QoS degradation Di,

i.e, Di = Ti − 1, is also used instead of Ti. Ti and Di are basically equivalent QoS

measures. Di = 1 means that there is no QoS degradation (i.e., the job is finished in

the shortest possible time).

We then propose the service level agreement (SLA) based on Di (or Ti) in our

study. SLAs today are mainly defined as the availability of the service, e.g., 99.9%

of the time the service is guaranteed to be available (Amazon, 2013). However,

customers and service operators start to include performance measures of the service,

e.g., the throughput, or the delay of service, into SLAs (Ghamkhari and Mohsenian-

Rad, 2012). In our work, we propose to design SLAs based on the job system time

(i.e., based on the QoS degradation), as it is one of the key measures to evaluate

the job servicing performance. We further propose to design SLAs in a probabilistic

form, which is suitable for more general uses. Since each active server cluster j serves

homogeneous workload, we use parameters (Qj, ηj) to characterize the SLA for the

workload in cluster j as:

Probability
{
Di,j ≤ Qj

}
≥ ηj, (3.3)

which represents that the job i in cluster j is required to be served within a certain

threshold of QoS degradation, i.e., Qj, with a probability larger than ηj.

37

3.3 An Initial Study: Single Server RSR Provision

We start to focus on problems of RSR provision. In this chapter, we first conduct an

initial study on the RSR provision with a single server, which constitutes the main

building block of the overall framework of the data center in Figure 3·2, to provide

the proof-of-concept for capabilities and benefits of a data center in RSR provision.

3.3.1 Runtime Policy and Optimal Bidding

In the single server scenario, we do not need to solve any power budgeting or server

provisioning problems (we assume the only server is never put to sleep). To better

mimic the data center scenario, we assume multiple workload queues with different

servicing priorities. We use a simple runtime policy for the single server RSR provision

as follows:

1. Upon completion of servicing a job, the server selects a new job from the highest

priority queue that is not empty, using a FCFS protocol;

2. The server has a range of power consumption rates for that job. The policy, in

real time, selects an allowable consumption rate that minimizes the instanta-

neous tracking error ε(t).

Next, we formulate the optimization problem to solve the optimal bidding values

of energy and reserve, i.e., (P̄ , R). The optimal bid should minimize the electricity

monetary costs while meeting the ISO requirements and user SLA constraints.

We study the sample frequency distributions of the tracking error ε(t) and the

degradation Dp
j (p, j here denote the priority and workload type, respectively) tra-

jectories for a sufficiently large number of simulations, and notice that they mostly fit

the Gamma distribution, Γ, with parameter shape k: kε = ε̄2/σ2
ε , kDp

j
= D̄p

j

2
/σ2

Dp
j

and

scale θ: θε = σ2
ε/ε̄, θDp

j
= σ2

Dp
j
/D̄p

j , for ε(t) and Dp
j , where ε̄, σε, D̄

p
j , σDp

j
are means

38

and standard deviations of ε(t) and Dp
j . Hence when we solve the optimal bidding

problem, we use Gamma distribution to construct the probabilistic constraints. The

parameters of tracking error probabilistic constraints are (εtol, ηε), and of SLAs are

(Qp
j , η

p
j), respectively as introduced before.

Finally, we apply limits on dynamic power consumption based on the maximal

achievable power value Pmax, and the server idle power Pidle that is basically the

minimal achievable power value, assuming that the server is never put to sleep or

turned off. The optimization problem is formulated as follows:

minimize
P̄ ,R, policy

ΠEP̄ − (ΠRR− Πε · ε̄)

subject to Γ(kε, θε, ε
tol) ≥ ηε,

Γ(kDp
j
, θDp

j
, Qp

j) ≥ ηpj ,

P̄ +R ≤ Pmax,

P̄ −R ≥ Pidle,

P̄ ≥ 0, R ≥ 0,

(3.4)

where ΠE is the hour ahead clearing price of energy and ΠR is the hour ahead clearing

price of reserve, both in $/kWh, introduced in Section 2.2. Today, the power market

has ΠR ≈ ΠE for RSR (PJM, 2016). Πε is the penalty price on the signal tracking

error.

We design a bidding engine to calculate the optimal bid. The electricity price

information (ΠE, ΠR and Πε), a sample RSR signal y(t), the tracking error tolerance

given by the ISO (εtol, ηε) and the server specific information, e.g., Pidle are saved in the

engine. The inputs of the engine are the information on the workloads and customer

SLAs for the next hour. Using the workload information, a power-throughput model

(see Section 3.2.1) is derived first. Then along with the power-throughput model, all

39

these inputs are sent to a simulator that simulates the whole RSR provision process.

The simulator uses exhaustive search to find the optimal (P̄ , R) values that satisfy the

constraints. It is possible to first conduct a sensitivity analysis on P̄ and R and use

the results to construct a more structure search. Using exhaustive search, simulation

takes only a few seconds; so it is not necessary to optimize the search for the problem

size we focus.

We assume that workload information (i.e., workload types and arrival rates) for

the following hour is provided in advance in our study. This is reasonable as for many

real-life cases in the data centers, information of workloads is provided by customers

to the data center some time before they start executing (e.g., in the case of batch

job submissions in HPC clusters). Mechanisms for workload forecasting can be also

designed and used in conjunction to our optimization technique.

3.3.2 Experimental Results

In our experiments, without loss of generality, we assume that all jobs are classified

in two priority levels: high and low. Thus, we have one high priority queue (HPQ)

and one low priority queue (LPQ). We assume that jobs arrive to the server following

a Poisson process, and we set job arrival rates to achieve a system utilization around

50%, which is typical in today’s data centers. Jobs with different priorities arrive at

different arrival rates; i.e., higher priority jobs have a lower arrival rate, as in general

the number of higher priority jobs will be smaller than that of the low priority jobs.

Similarly, high priority jobs are more urgent in general, and hence operate under

tighter SLA constraints. We assume that the arrival rate of the low priority jobs is

three times larger than that of high priority jobs. We generate the job queues using

Monte Carlo simulation. Finally, in order to measure statistics of tracking error and

QoS, we simulate a 1-hour period 10 times to achieve statistical confidence.

40

Tracking Performance and QoS Evaluation

We first investigate the performance under the circumstance of homogeneous workload

but with different priorities. Figure 3·4 shows the performance of signal tracking

along with HPQ and LPQ QoS degradation of the jobs Blackscholes. We see from

the signal tracking figure that at the given near-optimal (P̄ , R) setting and under the

policy proposed in Section 3.3.1, our system is able to track the RSR signal with small

errors in most time. Larger errors only appear when both queues are empty, in which

case the server is forced to stay in the idle state with power consumption of Pidle and

cannot be regulated. The QoS degradation figures show that the degradation of LPQ

is much larger than that of HPQ. This is because LPQ has a larger arrival rate and

it is always served after the HPQ jobs are served. Experiments on other workloads

show similar results in both signal tracking and QoS performance, which imply that

providing RSR is not constrained by the job type.

We next investigate a heterogeneous case; i.e., jobs arriving at the server are of

different types. Without loss of generality, we assume all the jobs are either Blacksc-

holes or Canneal. Figure 3·5 shows the signal tracking and the QoS degradation of

each job type separately at P̄ = 115.33W and R = 30W (i.e., a near-optimal setting).

The result has limited differences compared to the homogeneous case, which implies

that RSR can be provided for a set of heterogeneous jobs arriving at the system.

Optimal Solution and Monetary Savings

Then we study the optimal solution of the single server RSR provision and estimate

the corresponding data center electricity monetary savings. The objective function

in Eq. (3.4) is based on the monetary costs for a single server per hour, when the

server consumes power at an average level P̄ W and provides RSR of R W. A data

center generally contains thousands of servers. Table 3.2 shows the electricity mone-

41

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

50

100

150

P
o
w

e
r

(W
a
tt
s
)

P
tgt

P
con

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

2

4

6

8

H
P

Q
 D

e
g
ra

d
a
ti
o
n

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

10

20

30

40

time(sec)

L
P

Q
 D

e
g
ra

d
a
ti
o
n

Figure 3·4: Results of Blackscholes with P̄ = 117.65W and R = 30W
in single server RSR provision. (i) Ptgt(t) = P̄ + y(t)R and Pcon(t)
trajectories (in Watts) over a 11-hour period (10 replications of a 1-
hour period, the first hour data is not used because of the warming up
process). The tracking error statistics: ε̄ = 0.20, σε = 0.60. (ii) HPQ
QoS degradation for each job arrival shown as a red dot on the time
trajectory. The overall statistics: D̄H

bls = 2.91, σDH
bls

= 1.22. (iii) LPQ
QoS degradation for each job arrival shown as a red dot on the time
trajectory. The overall statistics: D̄L

bls = 11.27, σDL
bls

= 9.31.

tary costs ($/h) for a data center that has 10, 000 servers of the same type running

both homogeneous and heterogeneous job cases at various (P̄ , R) values. The bold

highlighted line is the optimal solution of the Eq. (3.4) solved by brute force method

at a sufficiently fine granularity. In solving Eq. (3.4), the following parameters are

used: ΠR = ΠE = Πε = 0.1$/kWh, ηε = ηpj = 0.85, ∀p, j, εtol = 0.2, Pidle = 66W ,

QH
j = 5 and QL

j = 25, ∀j. Pmax changes between 130W and 170W depending on the

job type.

The results show that in all cases, the solution is optimal when the reserve R is

42

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

50

100

150

P
o
w

e
r

(W
a
tt
s
)

P
tgt

P
con

0 1 2 3 4

x 10
4

0

5

10

15

H
P

Q
 D

e
g
ra

d
a
ti
o
n

Blackscholes

0 1 2 3 4

x 10
4

0

2

4

6

8
Canneal

0 1 2 3 4

x 10
4

0

20

40

60

time(sec)

L
P

Q
 D

e
g
ra

d
a
ti
o
n

0 1 2 3 4

x 10
4

0

10

20

30

time(sec)

Figure 3·5: Results of mixed workload of Blackscholes and Canneal
in single server RSR provision with P̄ = 115.33W and R = 30W . (i)
Ptgt(t) = P̄ + y(t)R and Pcon(t) trajectories (in Watts). The tracking
error statistics: ε̄ = 0.20, σε = 0.58. (ii) HPQ QoS degradation trajec-
tory with overall statistics: for Blackscholes D̄H

bls = 3.53, σDH
bls

= 2.02

and for Canneal D̄H
can = 2.64, σDH

can
= 1.01. (iii) LPQ QoS degrada-

tion trajectory with overall statistics: for Blackscholes D̄L
bls = 16.84,

σDL
bls

= 11.63 and for Canneal D̄L
can = 8.36, σDL

can
= 5.77.

around 30% of its corresponding P̄ , and 23% of the Pmax (Pmax of each job type is

shown in the bottom row of the table). Such a result also implies that the optimal

percentage of RSR provision does not change much among different types of jobs. In

addition, comparing the monetary costs under the optimal solution (P̄ , R) to those

in the first row of the table, which do not have any RSR provision (i.e., R=0), we see

that the monetary savings are approximately 30%, which is highly promising. Note

that ‘N/A’ in the table means that there is no feasible solution for the corresponding

(P̄ , R) pair according to Eq. (3.4).

43

Table 3.2: The electricity monetary costs via different workload types
and (P̄ , R), in single server RSR provision.

Blackscholes Bodytrack Canneal Facesim Streamcluster Blackscholes + Canneal

P̄ R Cost P̄ R Cost P̄ R Cost P̄ R Cost P̄ R Cost P̄ R Cost

117.65 0 117.65 103.63 0 103.63 113 0 113.00 115.04 0 115.04 117.65 0 117.65 115.33 0 115.33

117.65 10 N/A 103.63 10 94.36 113 10 104.36 115.04 10 N/A 117.65 10 N/A 115.33 10 N/A

117.65 20 98.45 103.63 20 83.83 113 20 93.35 115.04 20 95.48 117.65 20 N/A 115.33 20 96.12

117.65 30 88.03 103.63 30 73.73 113 30 83.17 115.04 30 85.24 117.65 30 87.91 115.33 30 85.70

117.65 35 82.94 103.63 31 72.72 113 33 80.14 115.04 34 81.20 117.65 35 82.84 115.33 34 81.63

117.65 40 N/A 103.63 40 N/A 113 40 N/A 115.04 40 N/A 117.65 40 N/A 115.33 40 N/A

152.95 0 152.95 134.72 0 134.72 146.9 0 146.90 149.55 0 149.55 152.94 0 152.94 149.92 0 149.92

Table 3.3 shows the comparison in QoS degradation statistics and monetary costs

between the case of optimal RSR provision and the case of provision without power

regulation (Non-reg.) for different job types. We see that the QoS values in these

two cases are very close. Thus, we do not sacrifice much QoS, while we are able to

save 30% monetary costs by providing RSR.

Sensitivity Analysis

In real-life data centers, the QoS requirements and the utilization (job arrival rates) of

the system frequently change. As a result, the optimal operating point (P̄ , R) needs

to be adjusted. Sensitivity analysis studies how tracking error and QoS degradation

vary if (P̄ , R) changes, and provides information on which direction to search for the

new optimal point. Thus, sensitivity analysis can highly improve the efficiency of the

brute force method. Many approaches have been proposed for performing sensitivity

analysis. In our work, we use the Finite Difference (Maly and Petzold, 1996) method.

We conduct sensitive analysis experiment for the homogeneous case with Blacksc-

holes, and measure the changes of tracking error, HPQ and LPQ QoS degradation

44

Table 3.3: Performance comparison of optimal RSR provision and
provision without regulation on single server.

D̄H
j σDH

j
D̄L
j σDL

j
Cost($/h)

Blackscholes Optimal: 3.01 1.40 11.58 9.60 82.94

(117.65, 35/0) Non-Reg: 2.73 0.99 10.92 9.31 117.65

Bodytrack Optimal: 3.27 1.27 13.65 7.22 72.72

(103.63, 31/0) Non-Reg: 2.97 0.83 12.37 7.01 103.63

Canneal Optimal: 3.06 1.35 13.17 7.35 80.14

(113, 33/0) Non-Reg: 2.64 0.76 12.30 6.97 113.00

Facesim Optimal: 2.53 0.70 7.00 3.53 81.20

(115.04, 34/0) Non-Reg: 2.71 0.63 7.11 3.44 115.04

Streamcluster Optimal: 2.33 0.62 6.43 3.27 82.84

(117.65, 35/0) Non-Reg: 2.46 0.55 6.52 3.18 117.65

Blackscholes Optimal, Bls: 3.73 2.20 16.94 11.70 81.63

+ Canneal Optimal, Can: 2.72 1.05 8.44 5.79

(115.33, 34/0) Non-Reg, Bls: 3.18 1.16 17.17 12.09 115.33

Non-Reg, Can: 2.42 0.57 8.59 5.92

statistics when either P̄ or R is increased by 1%. The results show that while increas-

ing P̄ by 1%, first, tracking error increases. This is because higher P̄ increases the

idle time of the system, in which the system power cannot be regulated. Secondly,

the LPQ QoS degradation highly decreases, but the HPQ QoS degradation has no

notable change. As expected, increasing P̄ leads to QoS improvement, especially for

LPQ that has lower priority in job servicing. HPQ jobs are always given priorities for

execution, hence the improvement in their QoS is limited. On the other hand, while

increasing R by 1%, neither tracking performance nor QoS have notable changes.

Such results show that both tracking performance and QoS are more sensitive to P̄

than R. Therefore, when searching for the new optimal (P̄ , R), determining P̄ based

on new system restrictions and requirements is necessary before selecting R.

45

3.4 The Best Tracking Runtime Policy

Now we study the RSR provision of the data center. The RSR provision problem on

the data center is more complex than that of a single server, as many additional factors

are required to be considered, such as power budgeting among servers, workload

allocation, and server provisioning, etc. In this section, we propose a best tracking

runtime policy, the first policy that handles data center level RSR provision. The best

tracking policy leverages multiple server power states to minimize the instantaneous

tracking error, while also reducing energy waste and avoiding job stalling in the

systems. The policy is suitable for a scenario when high signal tracking accuracy

is required with relatively loose workload QoS constraints. As a starting point, we

study the policy with a homogeneous set of workloads. The policy, however, is able

to be easily extended to heterogeneous workload scenarios utilizing existing power

budgeting techniques (Zhan and Reda, 2013; Nathuji et al., 2008).

3.4.1 Policy Details

The main idea of the best tracking policy is to modulate the data center power con-

sumption Pcon(t) to track the RSR signal power cap Ptgt(t) = P̄ + y(t)R as accurate

as possible, under some basic rules on workload QoS guarantee and energy conser-

vation. The available controls for modulating the data center power consumption in

the policy include: (a) regulating power consumption of active servers; (b) resuming

sleeping servers; (c) suspending idle servers to sleep; (d) activating idle servers with

queued jobs. The basic rules on workload QoS guarantee and energy conservation are

designed as follows:

1. Running jobs are non-preemptive, and must be served at the power with a

minimal bound Pmin. This rule is designed to avoid jobs being stalled in the

system. Pmin can be determined by (Qj, ηj) in SLAs;

46

Figure 3·6: The flowchart of the best tracking policy.

2. Server state transition rules: if and only if a server s has been in idle for

Tidle,s(t) that is longer than a timeout threshold, i.e., Tout, then it automatically

goes to sleep for energy conservation. This timeout mechanism is also designed

to avoid over-frequent server transitions, which may cause tremendous energy

waste. The threshold is determined based on prior work (Gandhi et al., 2012):

Tout =
Ptran · Tres

Pidle
. (3.5)

In addition, in order to maximize the number of sleeping servers to save energy,

idle servers with the smallest Tidle,s(t) are always first selected to be activated

and serve the queued jobs. Similarly, if some servers are required to be put into

sleep, servers with the largest Tidle,s(t) are selected at first.

Since the best tracking policy sets signal tracking as the highest priority goal,

the main state used for decision making is the dynamic signal power Ptgt(t). The

flowchart of the best tracking policy is in Figure 3·6. We use q(t) and Nidle(t) to

47

denote the total number of jobs in the queue and the number of idle servers at time

t, respectively, then the policy is as follows:

Case 1- If Pcon(t) < Ptgt(t+ 4), i.e., the power consumption needs to be increased to

meet the signal, then we do the following three steps in the order until Pcon(t) meets

the power cap Ptgt(t+ 4):

1. Increase power consumption Ps(t) of some active servers s that are not running

at maximal capability to Pmax;

2. If q(t) > 0 and Nidle(t) > 0, then activate some idle servers and run them at

maximal capability with power consumption at Pmax;

3. Resume sleeping servers following the server state transition rules.

Case 2- If Pcon(t) > Ptgt(t + 4), i.e., the power consumption needs to be decreased,

then we do the following three steps in the order until Pcon(t) meets the power cap

Ptgt(t+ 4):

1. Decrease power consumption Ps(t) of some active servers s that are not running

at maximal capability to Pmin;

2. Decrease power consumption Ps(t) of some active servers s that are running at

maximal capability to Pmin;

3. Suspend idle servers to sleep state following the server state transition rules.

Note that in the policy we attempt to maximize the number of servers that run

at their maximal capability in order to save energy. This is because that the rela-

tion between power consumption and server throughout is linear as introduced in

Section 3.2.1. Setting the server at its maximal throughput to reduce the processing

time helps minimize the energy waste caused by the server static power Pstatic.

48

3.4.2 Energy and Reserve Bidding

Since in the best tracking policy we assume to have loose SLA constraints, the op-

timization problem in Eq. (3.4) can be simplified. Instead of solving the optimal

energy and reserve bidding with simulations and exhaustive search, in this section,

we propose a way to directly estimate an analytical solution of proper bidding values.

Similar to previous settings, we assume the arrival of workloads is a Poisson process

with an arrival rate λ (per hour). The value of λ can be controlled by allocating

overall load among geographically dispersed data centers to exploit spatiotemporal

variations in energy prices (Wang et al., 2014). The λ considered here is the one after

such allocation. Each job i is composed of a number of instructions, namely, Ii. Since

we assume the homogeneous workload, then all Ii, i = 1, 2... are equal and denoted

as I. Finishing a job is equivalent to executing all the instructions.

Having λ and I, we can estimate the average number of required active servers,

N̄act, in order to finish all jobs during the hour. Since our designed policy tries to

always enable active servers running at their maximal capability, then N̄act = λ·I
umax

,

where umax is the maximal available server throughput. Then the average power

consumption from the active servers is estimated as N̄act · Pmax.

Next, we estimate the energy loss during transition periods. As introduced before,

each resuming process has an energy loss as Eloss. Assuming the total number of times

that servers are resumed during the hour is Nh
res, then the total energy loss during

the hour is: Eh
loss = Eloss ·Nh

res. We estimate Nh
res as follows: since the dynamic range

of RSR signal y(t) is [−1, 1], and we use the best tracking policy, when y(t) = −1,

the data center ideally should be at its lowest power consumption, Plow, and when

y(t) = 1, the data center should be at its highest power consumption, Phigh. In order

to maximize the possible reserve value R so that the reserve credits can be maximized,

Phigh − Plow should be maximized, i.e., Plow should be minimized and Phigh should

49

be maximized. The ideal minimal Plow that can be achieved is to put all servers to

sleep, and the ideal maximal Phigh is to active all servers with their maximal power.

Thus, every time RSR signal increases from -1 to 1, all the servers in the data center

are resumed at least once. On the other hand, since our designed policy applies the

idle server timeout mechanism to prevent servers from being resumed and suspended

back and forth, most of server resuming processes only happen when the power signal

has a large increase. We denote the times of the large increases in power signal

value during the hour as ψ, and estimate Nh
res as Nh

res = ψ ·N , where N is the total

number of servers in the data center. Based on the observation of the signal pattern,

a reasonable estimation of ψ is ψ = 3 ∼ 4.

Now we estimate the average power consumption P̄ as follows:

P̄ =

∫ 1h

0
(P̄ +Ry(t))dt

1h
= N̄act · Pmax + N̄idle · Pidle + N̄slp · Pslp +

Eh
loss

1h
, (3.6)

where N̄act, N̄idle and N̄slp are the average number of active, idle and sleeping servers,

Pmax, Pidle and Pslp are the maximal, idle and sleep power of servers. N̄act + N̄idle +

N̄slp = N . In our work, we select N̄idle/N̄slp = 1 to provide every idle server a sleeping

server for backup.

Next, we estimate reserve R. The constraints on R are:

P̄ −Ry(t) ≥ N · Pslp,

P̄ +Ry(t) ≤ N · Pmax, ∀t.
(3.7)

Since y(t) ∈ [−1, 1], then:

R ≤ min
{
N · Pmax − P̄ , P̄ −N · Pslp

}
. (3.8)

Prior results on single server RSR provision have shown that the value of R does

not notably affect the tracking performance or the QoS degradation. Moreover, the

50

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Signal Tracking Error

P
D

F

single server

data center

(a) Single Server vs. Data Cen-
ter

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Signal Tracking Error

P
D

F

shallow sleep

deep sleep

(b) Shallow vs. Deep Sleep

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Signal Tracking Error

P
D

F

utilization=25%

utilization=50%

utilization=75%

(c) Multiple Utilization

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

QoS Degradation

P
D

F

single server

data center

(d) Single Server vs. Data Cen-
ter

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

QoS Degradation

P
D

F

shallow sleep

deep sleep

(e) Shallow vs. Deep Sleep

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

QoS Degradation

P
D

F

utilization=25%

utilization=50%

utilization=75%

(f) Multiple Utilization

Figure 3·7: The probability density function (PDF) of tracking error
(a, b, c) and job QoS degradation (d, e, f) in different cases with the
best tracking policy. All the cases are with the (homogeneous) workload
set of Blackscholes.

results have also shown that the optimal R is close to min
{
P̄ −Pidle, Pmax− P̄

}
, i.e.,

its maximal possible value. Considering that data centers have even more flexibilities

in providing RSR compared to a single server, we estimate the optimal R as the value

at the bound of Eq. (3.8).

3.4.3 Experimental Results

In this section, we evaluate data center RSR provision in different scenarios with

the best tracking policy. We run simulations with a data center cluster containing

N = 100 servers. By default the data center utilization is 50%. We use the shallow

sleep as the default sleep state. We simulate a 1-hour period experiment 10 times

and evaluate the RSR signal tracking, workload QoS, and the energy monetary cost.

51

Single Server vs. Data Center

First, we compare the results of data center RSR provision with default settings to the

single server results presented in Section 3.3. Figure 3·7(a) is the probability density

function (PDF) of the signal tracking error ε(t) over time t. It shows that in most of

the time, the tracking errors are close to 0 for the data center RSR provision, while for

the single server the tracking errors are mostly around 0.1, i.e., 10% of the reserve R.

Moreover, the data center has smaller deviation in the tracking error. The maximal

tracking error of the data center is less than 1, while that of the single server reaches

up to 2.5. Since sometimes ISOs put strict limitations on the peak tracking error, a

data center has this additional advantage in providing RSR compared to the single

server in this scenario. Overall, the data center can perform much better than a single

server in RSR signal tracking. Figure 3·7(d) shows the PDF of job QoS degradation

introduced in Section 3.2.3. Results demonstrate that the QoS degradation of the

data center in RSR provision is on average much smaller than that of a single server.

We then check the energy cost savings from RSR provision in both cases. As

introduced in Eq. (3.4), the net cost of the energy for providing RSR is ΠEP̄ −

ΠRR − cΠR · ε̄. After the calculation, the energy cost saving of the optimal RSR

provision compared to the case of no reserve provision (i.e., R = 0), for the single

server is 29.7%, while for the data center is 56.8%, which is almost doubled.

Overall, providing RSR brings dramatic energy monetary savings (56.8%) to data

centers, with close to zero power tracking error for most of the time, and no major

QoS degradation. Compared with the single server RSR provision, the signal tracking

performance, the workload QoS, and the energy cost savings are all significantly im-

proved in the data center scenario. These results are expected, as data centers contain

more flexibilities in their power and workload management that can be leveraged for

RSR provision.

52

Shallow Sleep vs. Deep Sleep

Next, we study the impact of different server sleep states to results. Figure 3·7(b)

shows the PDF of RSR signal tracking errors in the cases of the data center servers

with the shallow sleep and the deep sleep, respectively. Parameters of these sleep

states are introduced in Section 3.2.1. Results show that the signal tracking perfor-

mance is similar and accurate in both cases. This is because the best tracking policy

gives signal tracking the highest priority, and the data center power keeps tracking

the signal cap no matter what types of sleep states are used for servers. Thus, the

RSR signal tracking performance is not sensitive to different server sleep states.

Figure 3·7(e) is the PDF of job QoS degradation in two cases. Results show that

QoS degradation in both cases is small on average. Using the shallow sleep state for

servers results in smaller QoS degradation, i.e., better QoS performance, compared

to using the deep sleep state. This is because the larger time delay of resuming a

server with the deep sleep state leads to larger negative effects on the job servicing

performance.

For a data center with the shallow sleep state, the energy monetary saving of the

optimal RSR provision compared to no reserve provision is 56.8%, while with the

deep sleep state, the saving is only 36.9%, for the reason that the shallow sleep state

is able to react more rapidly to ISO requests than the deep sleep state, due to smaller

transition delays, and thus is capable of providing more reserves without violating

the signal tracking constraint. Overall, RSR provision in both cases bring significant

energy monetary savings to the data center, with close to zero signal tracking error

for most of the time, and small QoS degradation, while using the shallow sleep state

further increases the savings and workload QoS.

53

Impact of Data Center Utilization

Different data centers, or data centers at different time periods may have varying

utilization. We evaluate the impact of different data center utilization on results

of RSR provision. Figure 3·7(c) shows the PDF of RSR signal tracking error under

three different utilization settings: 25%, 50% and 75%. The figure shows that tracking

performance in different utilization is similar, and most of errors are close to zero.

This is because in all cases the best tracking policy gives the highest priority to signal

tracking. The utilization does not have much influence on the tracking performance.

Figure 3·7(f) shows the PDF of job QoS degradation under various utilization, i.e.,

25%, 50% and 75%. In all three cases, the degradation is small.

We then compare the energy cost monetary savings of three utilization cases. For

U=25%, 50%, 75%, the savings (the cost of the optimal RSR provision compared to

that of the no reserve provision) are 78.0%, 56.8%, and 21.8%, respectively, which

demonstrates that the savings decrease when the utilization increases. This is due

to the reason that higher utilization requires higher average power consumption P̄

for job servicing, which limits the regulation room for providing reserve R. However,

even with 75% utilization, there is still 21.8% energy cost saving by providing RSR,

which indicates significant profits of data centers in RSR participation.

Impact of Different Workloads

All previous experiments are conducted by using homogeneous Blackscholes jobs. In

this part we study the data center RSR problem with different types of workloads.

Table 3.4 shows the experimental results on four different workloads. We list their

signal tracking statistics, QoS degradation statistics, and monetary savings. D̄j and

σDj
are the mean and standard deviation of QoS degradation for workload type j, ε̄

and σε are the mean and standard deviation of the tracking error. The results show

54

Table 3.4: Performance and savings of data center RSR provision with
different types of workloads using the best tracking policy.

Blackscholes Canneal Streamcluster Facesim

P̄ /kW 9.75 9.71 9.84 9.84

R / kW 5.54 4.98 5.46 5.11

D̄j 1.13 1.13 0.21 0.22

σDj
1.54 0.69 0.26 0.27

ε̄ 0.03 0.03 0.03 0.03

σε 0.10 0.09 0.09 0.09

R/P̄ 56.8% 51.3% 55.5% 52.0%

that the signal tracking performance is not influenced by the workload type, while

the QoS degradation is. From the table, workloads with longer shortest possible

processing time, i.e., Tmin,j, such as Streamcluster and Facesim (whose Tmin,j are

larger than 100 seconds, while Tmin,j of Blackscholes and Canneal are only 20-40

seconds), have smaller QoS performance degradation. This is because the waiting

time is relatively short (compared to the processing time) for workloads with larger

Tmin,j. Since our policy applies rules (e.g., Pmin) to guarantee the job processing

time, waiting time becomes the major uncertainty in QoS degradation. Overall, both

the QoS degradation and the tracking error with all types of workloads are small. In

addition, in all cases, data centers can achieve approximately 50% monetary savings

(based on the R/P̄ rate from the table). Hence data center level RSR is expected

to have small tracking errors and QoS degradation along with dramatic monetary

savings for a broad range of workloads.

3.5 Comparison of Energy Cost Saving Strategies

To better evaluate the energy cost savings from RSR provision, in this section, we com-

pare the energy consumption, peak power and energy monetary costs (i.e., monthly

55

electricity bill) of a number of advanced data center energy cost saving strategies,

including multiple power management policies, and data center participation in a

variety of DR programs. Since the main purpose is to investigate the capabilities on

energy cost savings, in this section we apply loose QoS constraints on these strategies,

to offer more flexibility for them to achieve cost savings. For simplicity, we consider

the scenario with the homogeneous workload. The strategies that we study include:

• All-on: The data center does not participate in DR, and servers in data center

are always turned on and never put to sleep, no matter the workload situation.

This is one of the typical policies implemented in today’s data centers, in order to

guarantee the best workload QoS. However, large amount of energy is wasted.

• SoftReactive: The data center does not participate in DR, but servers are smartly

put into sleep state to save energy, if they have been idle longer than a timeout

threshold. This policy is introduced in Gandhi et al.’s work (Gandhi et al., 2012).

• QoS-feedback: SoftReactive does not take the job QoS into account while making

decisions in server state transition. It simply wakes up equal number of servers

to the number of arrival jobs at every time interval. If large QoS degradation is

tolerable, then more energy could be potentially saved with a better policy. We

introduce a QoS-feedback policy that is based on the SoftReactive, but applies the

real-time workload QoS as feedback in decision making. The main idea of QoS-

feedback is to determine the minimal number of active servers needed at time t,

based on the current length of job queue and the overall QoS performance till t.

The detail of the policy is referred to prior work (Chen et al., 2014b).

• PeakShaving: Participating the peak shaving program helps the data center elim-

inate the peak power so as to reduce the costs. We study the savings from data

center peak shaving with a PeakShaving policy that leverages both server power

56

capping and server provisioning. Assuming the original peak power of the data

center is Ppeak, and a β percent of peak is required to be shaved to, i.e., during

the peak shaving time period (i.e., an hour or a month), the data center has a

strict power cap, βPpeak that is not allowed to be violated. Unlike the ISO sig-

nal power constraint in RSR that is dynamically changed, the power constraint

in peak shaving program is fixed at βPpeak during the time period. Moreover, in

RSR, data centers track the power signal with some degrees of tolerable tracking

error, while in peak shaving, though the power consumption is strictly capped at

βPpeak, there is no further constraint on power consumption as long as the power

is lower than the cap. The PeakShaving policy is slightly modified from the best

tracking policy for RSR provision introduced in Section 3.4. The detail of the

PeakShaving policy is referred to prior work (Chen et al., 2014b).

• RS: The data center participates in RSR provision with the best tracking policy

introduced in Section 3.4.

• FC: The data center participates in the frequency control (FC) introduced in

Section 2.2. Today, FC is provided by generators through annual contracts, and

there is no short term market price discovery for it. However, in anticipation

of markets evolving in this direction, we assume for purposes of studying data

center FC participation. In contrast to RSR provision that uses a centralized

ISO signal broadcast every few seconds, the signal of FC is generated based on

the local frequency deviation observation, and typically varies continuously, or

changes much faster (e.g., 10x) than the ISO signal in RSR. In addition, demand

side in FC is required to react immediately and exactly to follow the dynamics

of the signal with its maximal possible capability. These two requirements cause

much more difficulties for demand side to participate in FC than RSR. However,

57

the price of reserves in FC is in anticipation much higher (e.g., 5x) than that of

reserves in RSR, which could lead to more energy cost savings for demand side. In

our FC policy, the data center only leverages server dynamic power management

techniques (i.e., CPU resource limits), and does not apply server provisioning as

the control knob, for the reason that the delay of resuming a server from the sleep

state is too large to meet the requirements of FC. Therefore, only active servers can

provide FC reserves. Today, DVFS can be modulated with µs-level overhead, and

CPU resource limits can be modulated at ms-level in current hypervisors (Gong

et al., 2010), thus, practically at real-time for our purposes. We expect future

hypervisors or OS to provide finer granularity, lower overhead resource control

options. The main idea of the FC policy is, given the workload information and

data center utilization U , we estimate the number of servers that are needed to

be activated during the hour. These servers are always turned on and never put

to sleep. We put all the rest servers into sleep state and do not use them during

the hour. The detail of the policy is referred to prior work (Chen et al., 2014b).

We conduct experiments with a 1000-server data center to compare above listed

strategies. Two types of server sleep modes are used in comparison: the shallow

sleep (the default setting) and the deep sleep, as introduced in Section 3.2.1. By

default the data center is with 50% utilization, and the workload trace is generated

from a homogeneous set of the Streamcluster application. All policies are under the

same SLA constraint (Qj, ηj) = (2, 95%). The price of the energy that we use in

the comparison is ΠE = 10.7cent/kWh, and the peak power price is ΠP=12 $/kW

(monthly) based on prior work (Govindan et al., 2011). For emerging smart grid

programs, e.g., RSR and FC, peak power is not charged separately. In order to make

a fair comparison, we calculate the converted clearing price of energy in RSR and FC,

58

i.e., ΠE
cvt, by taking peak power price into account, as follows:

ΠE
cvt =

ΠE · Em + ΠP · P peak
m

Em
(3.9)

where Em is the monthly energy consumption and P peak
m is the peak power in the

month. In our experiment, we assume that a monthly power trace is 24·30 repetitions

of an hourly power trace, then we have Em = 24 · 30 · Eh and P peak
m = P peak

h , where

Eh and P peak
h are energy consumption and the peak power of the hourly power trace.

After the conversion4, ΠE
cvt=12.58 cent/kWh. In addition, we assume that the prices

of reserves are: ΠR2 = ΠE
cvt in RSR, and ΠR1 = 5ΠE

cvt in FC.

The policies evaluated in the experiment include: All-on, SoftReactive, QoS-

feedback, PeakShaving, RS and FC. For All-on, SoftReactive, QoS-feedback and Peak-

Shaving, the total data center monthly electricity bill is calculated as the sum of the

cost on monthly energy use and the cost on peak power, as ΠE ·Em+ΠP ·P peak
m , while

for RS and FC, the electricity bill is calculated as 24 · 30 · (ΠE
cvtP̄2 −ΠR2R2 + Πε · ε̄),

and 24 · 30 · (ΠE
cvtP̄1−ΠR1R1), where P̄2, P̄1, R2, R1 are the average power consump-

tion and reserves in the bid, for RS and FC respectively. Figure 3·8(a) to 3·8(i) are

results of data center hourly energy consumption, peak power, and monthly bill for

listed energy saving strategies in different scenarios. For the energy consumption, we

also calculate the Oracle as a baseline in comparison. Oracle is the minimal energy

required for the data center to finish all job servicing, which maximizes the number

of servers in the sleep state, assuming all the job arrivals are known ahead.

Figure 3·8(a) shows the results of data center hourly energy consumption for

listed strategies under different data center utilization (i.e., 20%, 50% and 80%).

4The hourly power trace used to do the price conversion in Eq. (3.9) is generated in the follow-
ing way: a workload arrival trace is first randomly generated, in the scenario of 50% data center
utilization, with the homogeneous Streamcluster workload. Then the workload trace is served with
the All-on policy.

59

U=20% U=50% U=80%
0

50

100

150

200
Total Energy Consumption (1 hour)

K
W

h

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(a)

U=20% U=50% U=80%
0

50

100

150

200

250
Peak Power During the Hour

K
W

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(b)

U=20% U=50% U=80%
0

2

4

6

8

10

12

14

16
Monthly Bill for Various Strategies

C
o

s
t

(k
 $

)

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(c)

blackscholes streamcluster
0

50

100

150

200
Total Energy Consumption (1 hour)

K
W

h

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(d)

blackscholes streamcluster
0

50

100

150

200

250
Peak Power During the Hour

K
W

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(e)

blackscholes streamcluster
0

2

4

6

8

10

12

14

16
Monthly Bill for Various Strategies

C
o

s
t

(k
 $

)

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(f)

deep sleep shallow sleep
0

50

100

150

200
Total Energy Consumption (1 hour)

K
W

h

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(g)

deep sleep shallow sleep
0

50

100

150

200

250
Peak Power During the Hour

K
W

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(h)

deep sleep shallow sleep
0

2

4

6

8

10

12

14

16
Monthly Bill for Various Strategies

C
o

s
t

(k
 $

)

All−on

SoftReactive

QoS−feedback

PeakShaving

RS

FC

(i)

Figure 3·8: Comparison of hourly energy consumption, peak power
and monthly electricity bill of different energy cost reduction strategies
in various scenarios. (a), (b), and (c) are results under different data
center utilization U = 20%, 50% and 80%; (d), (e), and (f) are results
with different workload types, i.e., Blackscholes and Streamcluster; (g),
(h), and (i) are results with servers using shallow or deep sleep states.

60

From the figure, QoS-feedback always achieves the lowest energy consumption. It

saves 8% - 46.4% energy costs comparing to All-on, and is only 1.2% - 2.4% greater

than the Oracle. The energy consumption of SoftReactive is close to QoS-feedback

and Oracle. It is interesting to see that PeakShaving also has relatively low energy

consumption. When increasing the data center utilization, the differences in energy

consumption of various strategies get smaller, because the flexibilities in data center

energy consumption with high utilization are small.

Figure 3·8(b) shows that PeakShaving always achieves the lowest peak power in

all scenarios, which is as expected. It reduces the peak power around 10.3% -46.8%

comparing to All-on. RS always achieves the highest peak power. This is because

in order to maximize the reserve provision and thus maximize the monetary savings,

RS tends to achieve a very large dynamic power range. For FC, however, since we

put spare servers always in the sleep state and only regulate those active servers, the

peak power is not as high as that of RS.

Figure 3·8(c) shows the data center monthly bill of different strategies. Results

present that comparing to All-on, all the other strategies have smaller bills. Among

them RS and FC save the most. RS saves from 17.1% to 81.2%, and FC saves from

67.1% to 71.7%. When utilization is low, RS saves the most, and when utilization

is getting higher, FC starts to outperform. This is because RS leverages different

server power states to provide reserves, and when utilization is lower, there is more

flexible room for RS to enlarge reserves and savings. However, FC does not utilize

server power states in reserve provision, hence its savings are not that sensitive to

utilization.

Figure 3·8(d) to 3·8(f) compare the hourly energy consumption, peak power and

monthly bill of listed strategies with two different types of workloads, i.e., Blackscholes

and Streamcluster, at 50% utilization. We select these two types of workloads to

61

compare because they have quite different profiles in terms of the power-throughput

curve, processing time, etc. These figures show that there are no notable differences

in all the results between these two workloads. Thus, the results of these strategies

are not sensitive to types of workloads.

Figure 3·8(g) to 3·8(i) are results of using different sleep states: the shallow sleep

and the deep sleep. One notable change is, the monthly bill (in Figure 3·8(i)) of RS

increases by 66.4% from using shallow sleep to using deep sleep, demonstrating that

the shallow sleep state is more efficient for RSR provision in bill reduction. The bill of

FC is not sensitive to different sleep states, as it does not utilize these states in reserve

provision. In addition, there are notable increases in peak power of SoftReactive and

QoS-feedback when the deep sleep state is used. This is because that resuming servers

from the deep sleep state takes longer time (e.g., 200 sec), during which servers are at

the maximal power. Thus, servers have higher probabilities of staying in a constant

high power state, leading to higher peak power of the data center.

Overall, among all strategies, participating in emerging smart grid DR programs,

such as RS and FC, helps data centers achieve the largest electricity bill savings.

When the utilization of data center is high or the deep sleep state is applied, FC

outperforms RS. Otherwise, RS offers the largest savings. Savings of all strategies

are insensitive to types of workloads.

3.6 The Stochastic Dynamic Programming (DP) Runtime

Policy

The best tracking policy does not explicitly consider workload QoS constraints, and

thus is easy to fail to guarantee workload servicing performance. In fact, workload

QoS is one of the key metrics in evaluation of today’s data center and cloud servicing.

In this section, we introduce a stochastic dynamic programming (DP) runtime policy

62

that optimizes the trade off between the signal tracking and the workload QoS. For

simplicity, we consider the homogeneous workload, and mainly focus on two most

common states of the server in emerging data centers – the active state and the idle

state, while leaving rest of states to be considered in future work.

3.6.1 The Formulation of Stochastic DP Problem

Since we assume the homogeneous workload, we assume that all servers in active state

have the same controllable service rate u(t) at time t, i.e., the total data center power

budget is always uniformly distributed to each server, so that the fairness among all

servers is kept. The period cost function of the stochastic DP is composed of (i) the

cost of inaccurate RSR signal tracking, i.e., PCtrack(t), characterized by the deviation

between the data center power consumption Pcon(t) and the targeted power Ptgt(t)

based on the RSR signal y(t), and (ii) the cost on QoS degradation, i.e., PCQoSD(t),

characterized by the PDF of QoS degradation. In later discussion, we introduce to

represent the PDF of QoS degradation by its mean and variance.

(i) Tracking cost PCtrack(t): denoting the service rate of an individual server by

us(t), it has been shown that the server power consumption Ps(t) is linearly related

to us(t) with a function fp(·) in Eq. (3.2). Since all servers operate at the same

controllable service rate u(t) for fairness, the whole data center energy consumption

is Nfp(u(t)), where N represents the total number of servers in data center. Given

the RSR signal y(t), the tracking error period cost is defined as:

PCtrack(t) = Πε|Nfp(u(t))− (P̄ + y(t)R)|, (3.10)

where Πε is a constant, representing the penalty price on per unit of tracking error.

(ii) Cost on QoS degradation PCQoSD(t): we start with simulating a data center

with N = 1000 servers extensively to characterize the distribution of the dynamic QoS

63

degradation for each 4 seconds5. Assuming each server’s maximal possible service rate

is umax, we simulate the scenario that jobs arrive following a Poisson process with

the parameter λ = 50% · Numax, where Numax represents the maximal processing

capability of the data center. A job arrival rate at 50% of maximal capability is

selected here for the reason that an utilization around 50% is a typical scenario in

emerging data centers.

Based on queuing theory, in order to guarantee that the system is stable, the

average service rate of the whole data center, i.e., Nū, should be greater than the job

arrival rate λ = N · 0.5umax. Hence the constraints on the data center RSR bidding

values (P̄ , R), where P̄ = Nfp(ū), are as follows:

Nfp(umax) ≥ P̄ > Nfp(0.5umax),

min
{
Nfp(umax)− P̄ , P̄ −NPidle

}
≥ R ≥ 0.

(3.11)

We simulate by using a 24-hour historical PJM RSR signal data (PJM, 2013) as

y(t), and test on different selections of (P̄ , R) that satisfy Eq. (3.11). In addition,

since different control policies lead to varying tracking errors, for the general purpose

we involve the tracking error ε(t) = Nfp(u(t)) − (P̄ + y(t)R) as a Gaussian random

variable in simulation, i.e., ε(t) ∼ N
(
µε(t), σ

2
ε (t)
)
, where µε(t) is changed for every

t = 5 minutes, obeying a uniform distribution as µε(t) ∼ U(−0.1R, 0.1R), and σ2
ε (t) =

|4µε(t)|. During the simulation, jobs are served with service rate u(t) that is calculated

based on the assigned data center power budget P̄ + y(t)R+ ε(t). We record the QoS

degradation of every job that departs the system in the 4-second interval to generate

the distribution of QoS degradation for every 4 seconds.

Simulation results show that in every 4 seconds the QoS degradation is uniformly

distributed. Therefore it is necessary and sufficient to characterize the PDF by its

5As mentioned in Section 2.2, 4 seconds is the frequency of the RSR signal regulated. For the
rest of this section, by default the time interval t is every 4 seconds.

64

0 500 1000 1500 2000 2500 3000 3500 4000
−10

−5

0

5

10

15

20

25

Modeling of E_QoSD(t)

Time (sec)

In
te

g
ra

ti
o
n
 o

f
P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

E
_
Q

o
S

D
(t

)

Figure 3·9: Mean of the QoS degradation is characterized by the
integration of the past power consumption. Strong anti-correlation -
0.97 is found between two curves.

mean and variance. We begin by formulating the mean of QoS degradation E QoSD(t)

for every 4 seconds6. Based on the standard queuing theory, the mean of QoS degra-

dation depends only on the mean of queuing length µW of the system, when the data

center does not provide RSR and consumes power steadily at level P̄ . When pro-

viding RSR, if the power consumption Nfp(u(t)) is higher than P̄ , then it results in

a smaller value of µW and therefore smaller E QoSD(t), and vice versa. We further

observe a strong anti-correlation (−0.97) between the integration of the past history

of power consumption (with P̄ as the reference value), i.e.,
t∫

0

(Nfp(u(τ))− P̄)dτ and

E QoSD(t), which is shown in Figure 3·9. Hence, we propose to model E QoSD(t)

with linear regression as follows:

E QoSD(t) = αDP

t∫
0

(Nfp(u(τ))− P̄)dτ + g(µW) + ωDP,1, (3.12)

6E QoSD(t) denotes the mean of the QoS degradation, i.e., Di, of all jobs i that depart during
the 4-second interval at time t.

65

where g(µW) is the proper function that transforms the mean of queue length to mean

of system degradation, αDP can be determined from simulation, and ωDP,1 is a zero

mean random variable with known variance. Since fp(u(t)) = kju(t) + Pstatic from

Eq. (3.2), and P̄ = Nfp(ū) = N(kjū+ Pstatic), Eq. (3.12) can be simplified as:

E QoSD(t) = αDPNkj

t∫
0

(u(τ)− ū)dτ + g(µW) + ωDP,1, (3.13)

in which we linearly transform the integration of power consumption to the integration

of the service rate.

The variance of the QoS degradation, V QoSD(t), is affected by the number of job

departures Dep(t) in every 4 seconds from the observation7. A larger Dep(t) results

in more sample uncertainties, and therefore larger V QoSD(t). Figure 3·10 is the

scattered plot between Dep(t) and V QoSD(t), whose correlation is 0.94. With linear

regression we have:

V QoSD(t) = βDP (Dep(t)− 1) + ωDP,2, (3.14)

where Dep(t) can be estimated as a Poisson random variable with λ = Nu(t)∆t

(∆t = 4 seconds) based on simulation results. βDP and ωDP,2 can be determined from

simulation.

Given E QoSD(t) and V QoSD(t), the PDF of the uniformly distributed QoSD(t)

is

p(QoSD(t)) =

1√

12V QoSD(t)
QoSD(t) ∈ [a, b]

0 otherwise

, (3.15)

7V QoSD(t) denotes the variance of the QoS degradation, i.e., Di, of all jobs i that depart during
the 4 second interval at time t.

66

0 50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

Dep(t) every 4 seconds

V
_
Q

o
S

D
(t

)
e
v
e
ry

 4
 s

e
c
o
n
d
s

Linear prediction of V_QoSD based on Dep(t)

Figure 3·10: Variance of QoS degradation is characterized by the
number of job departure (i.e., finished) in 4 seconds. The higher de-
parture number results in higher uncertainty to the system, and thus
higher variance.

where the lower and upper bounds are

a = E QoSD(t)−
√

3V QoSD(t),

b = E QoSD(t) +
√

3V QoSD(t).

(3.16)

If the data center operator signs a contract with users in which a penalty C(QoSD(t))

is added when the QoS degradation exceeds a pre-defined level Q, then the expected

period cost per job departure incurred by QoSD(t) is

∞∫
Q

p(QoSD(t))C(QoSD(t))dQoSD(t)− ΠSV , (3.17)

where ΠSV represents the credit earned from per job departure. The overall period

cost of QoS degradation for every 4 seconds equals to the expected cost of all job

67

departures in that 4-second interval:

PCQoSD(t) =

E
[
Dep(t)

(∞∫
Q

p(QoSD(t))C(QoSD(t))dQoSD(t)− ΠSV
)]
.

(3.18)

Finally, based on Eq. (3.10) and Eq. (3.18), the total period cost function for every

4 seconds is

PCtotal(t) = PCtrack(t) + PCQoSD(t) = Πε|Nfp(u(t))− (P̄ + y(t)R)|+

E
[
Dep(t)

(∞∫
Q

p(QoSD(t))C(QoSD(t))dQoSD(t)− ΠSV
)]
.

(3.19)

Next, we formulate the state dynamics of the stochastic DP. Clearly E QoSD(t)

in Eq. (3.13) is not Markov with respect to u(t). We transform the variable into a

memoryless one by adding an auxiliary variable z(t) representing the integration of

the service rate u(t) corresponding to ū up to time t. Letting z(0) = 0, we have the

dynamic of z(t) as

z(t+ 4) = z(t) + (u(t)− ū). (3.20)

Substituting z(t) into Eq. (3.13), we have

E QoSD(t) = αDPNkjz(t) + g(µW) + ωDP,1. (3.21)

The dynamics of the RSR signal can be formulated by a Markov chain with two

states: the value of y(t) and the sign of y(t)− y(t− 4), namely d(t), representing the

direction of the signal changes at time t. Conceptually this can be represented as:

y(t+ 4) = f1(y(t), d(t)),

d(t+ 4) = f2(y(t), d(t)).
(3.22)

Since the statistical behavior of the RSR signal is known ahead, function f1 and

68

f2 can be calculated in advance. They can also be mined from historical ISO RSR

signal data. Detailed discussion on Eq. (3.22) is referred to the prior work (Zhang

et al., 2014a).

We formulate the stochastic DP problem as a discounted cost infinite horizon DP.

If we denote the value function as J(y, d, z) and the overall state dynamics by

x(t+ 4) = f(x(t)), (3.23)

where x(t) is composed of {y(t), d(t), z(t)}, then the Bellman Equation is

J(y, d, z) = PCtotal(y, d, z, u) + ηDPE
[
J(f(y, d, z, u))

]
, (3.24)

where ηDP is the discounted rate.

To conclude, the state variables are {y(t), d(t), z(t)}, the control variable is u(t),

the disturbances are E QoSD(t),V QoSD(t), and the discounted cost infinite horizon

DP is to solve the following problem

min Eq. (3.24) over u

s.t. Eq. (3.14), (3.15), (3.20), (3.21), (3.22).
(3.25)

3.6.2 Policy Details

We then use the simulation method (i.e., the value iteration method) to solve for

the optimal control policy u of our discounted rate infinite horizon DP problem. We

normalize and discretize the control variable u(t) into 11 levels in the range of [0,1],

with the granularity at 0.1. For the state variable z(t) introduced in Eq. (3.20), we

simulate extensively and study its distribution to acquire its possible range. Based

on the distribution, a range of [-20, 20] can include more than 95% values of z(t). For

|z(t)| > 20, we truncate them to 20. Since z(t) is the integral of u(t), we discretize

z(t) using the same granularity as u(t). We discretize the state variable y(t) at the

69

−1

−0.5

0

0.5

1

−20

−10

0

10

20
0

0.2

0.4

0.6

0.8

1

y(t)

PC
track

(t) >> PC
QoS

(t)

z(t)

u
(t

)

(a)

−1

−0.5

0

0.5

1

−20

−10

0

10

20
0

0.2

0.4

0.6

0.8

1

y(t)

PC
track

(t) << PC
QoS

(t)

z(t)

u
(t

)

(b)

−1

−0.5

0

0.5

1

−20

−10

0

10

20
0

0.2

0.4

0.6

0.8

1

y(t)

PC
track

(t), PC
QoS

(t) on same magnitude

z(t)

u
(t

)

(c)

Figure 3·11: The optimal stochastic DP policies u(t) via y(t) and
z(t) given d(t) = 1, of three cases: (a) PCtrack(t) >> PCQoSD(t), i.e.,
the tracking cost dominates in the overall period cost function; (b)
PCtrack(t) << PCQoSD(t), i.e., the cost of QoS degradation dominates
in the overall period cost function; (c) PCtrack(t) and PCQoSD(t) are
on the same order of magnitude.

granularity of 0.1. Since the state variable d(t) = ±1, there are 16842 (= 401×21×2)

different states in total.

By understanding the real-life data center SLA, we define the cost function of the

QoS degradation in Eq. (3.17) as

C(QoSD(t)) =

{
0, if QoSD(t) ∈ [1, Q)

ΠDQoSD(t), otherwise
, (3.26)

which is a discontinuous function. ΠD is a constant, representing the penalty price

on per unit of the QoS degradation. We select the threshold Q = 3 in simulation. ΠD

here and ΠSV in Eq. (3.18) are estimated based on the price information of Amazon

Web Service (AWS) (Amazon, 2015). In general, ΠD and ΠSV have the same order

of magnitude.

The optimal policy can be quite different while selecting different values of Πε

and ΠD. A large Πε can lead to PCtrack(t) >> PCQoSD(t), while large ΠD can have

PCtrack(t) << PCQoSD(t). Figure 3·11 shows the optimal control policy u via key

state space variables y(t) and z(t) given d(t) = 1, of the following three cases:

70

(i) Πε is large, i.e., PCtrack(t) >> PCQoSD(t). In this case the cost of tracking

error is much larger than that of the QoS degradation, the optimal policy tends to

always track the RSR signal y(t) as accurate as possible to minimize the overall

costs. So the policy is sensitive to and monotonically varies with y(t), and is almost

independent of z(t);

(ii) ΠD is large, i.e., PCtrack(t) << PCQoSD(t). In this case the cost of tracking

error is much smaller than that of the QoS degradation, the optimal feedback policy

is a bang-bang controller that either sets u(t) at the minimal or at the maximal

level. Specifically, if the mean of QoS degradation E QoSD(t) is large because of a

small z(t), then u(t) = 0 and the policy decreases the number of departure jobs at

t, i.e., Dep(t). If E QoSD(t) is small because of a large z(t), then u(t) = 1 and the

policy increases the number of departure jobs at t, so as to minimize the overall costs.

Overall, the optimal policy in this case is only sensitive to z(t) and is independent of

y(t);

(iii) PCtrack(t) and PCQoSD(t) have the same order of magnitude. While (i) and

(ii) are two extreme cases, case (iii) requires to balance between the signal tracking

costs and the QoS degradation costs. From Figure 3·11(c) we find that the optimal

policy depends on both z(t) and y(t). The policy shows that: 1) for the same z(t),

the optimal service rate u(t) increases when the signal y(t) increases, so as to better

track the signal; 2) for the same y(t), the optimal service rate generally increases

as z(t) increases, which shows that when the mean of QoS degradation is small, the

optimal policy tries to finish and depart more jobs during that moment; 3) there

is a non-monotonic behavior of the optimal policy around z(t) = 10 to z(t) = 15.

This region of z(t) corresponds to the region of E QoSD(t) around threshold Q in

Eq. (3.26), which is the discontinuous turning point of the QoS degradation penalty

cost function, while below which there is no degradation penalty and above which

71

the penalty linearly increases. Such non-monotonic behavior of u(t) can be explained

as follows: When z(t) corresponds to E QoSD(t) that is near the left extreme of

threshold Q, at which there is still no penalty of QoS degradation, the policy applies

larger service rate u(t) to finish and depart more jobs to minimize the overall costs.

When z(t) is larger, e.g., z(t) = 20, however, the data center operator does not

necessarily use large service rate, as there would be also no penalty if jobs are finished

and depart later when z(t+ ∆) = 15 for small ∆. Instead, the system can focus more

on eliminating tracking errors at that moment to minimize the overall costs. This

explains the phenomenon that the optimal service rate u(t) can be larger for z(t) = 15

than z(t) = 20.

The optimal policy of d(t) = −1 is similar to that of d(t) = 1, except that there is

a small shift in the figure along the direction of z(t) axis. This is because that when

d(t) = −1, there is a higher probability that the RSR signal y(t) is going to decrease

in the future than when d(t) = 1. In order to eliminate the overall tracking error,

the optimal policy of d(t) = −1 prefers lower u(t) than that of d(t) = 1. Overall, the

shift is small, which shows that the policy is not very sensitive to the state variable

d(t).

3.6.3 Energy and Reserve Bidding

Acquiring the optimal policy, we then study the optimal hour-ahead bidding strategies

for the data center operator in the energy and reserve market. For the scenario of

the data center with 1000 servers and the utilization of 50%, Eq. (3.11) provides the

constraints of the bidding values. Obeying the constraints, we run simulations with

different (P̄ , R) and measure the data center’s hourly overall bill as

B(P̄ , R) = ΠEP̄ − ΠRR + Jtotal(P̄ , R), (3.27)

72

where Jtotal(P̄ , R) is the summed value of the tracking error cost and the cost of QoS

degradation in DP formulation, introduced in Section 3.6.4.

For simplicity of notation, we denote Nfp(0.5umax), i.e., the lower bound of P̄ in

Eq. (3.11) as Plb. Table 3.5 shows the overall hourly bill (in dollars) of a 1000-server

data center with P̄ = 1.001, 1.1 and 1.2 Plb respectively in each row8. For each

selected value of P̄ , the maximal possible reserve value is: Rmax = min(Nfp(umax)−

P̄ , P̄ −NPidle) from Eq. (3.11). In the table, we measure the bill via R = 20%, 40%,

60%, 80% and 100% Rmax respectively, for each P̄ . The price information used in

simulation is estimated based on real power market (PJM, 2013; Aikema et al., 2012)

and AWS (Amazon, 2015) data, i.e., ΠE = ΠR = Πε = 0.2$/kWh, ΠD = ΠSV =

0.1$/h. These price values lead PCtrack(t) and PCQoSD(t) to share the same order of

magnitude, and thus the scenario falls in the category (iii) introduced in Section 3.6.2.

The table shows that, satisfying the constraints in Eq. (3.11), the overall hourly

bill of the data center in RSR provision increases monotonously as P̄ increases, and

decreases monotonously as R increases. Therefore, in order to minimize the monetary

costs, the optimal bidding mechanism for the data center RSR is to choose the smallest

P̄ and the largest R that satisfy Eq. (3.11).

3.6.4 Policy Comparison

We compare the stochastic DP policy with the best tracking policy introduced in

Section 3.4. We consider the same scenario for both policies: a data center with

N = 1000 servers, jobs arrive following the Poisson distribution with the arrival rate

as λ = 50% · Numax. Since the stochastic DP policy does not use the sleep state,

to make a fair comparison, we disable the server sleep state in the best tracking

policy as well. We run simulation with a real 24-hour historical RSR signal data

81.001Plb is selected because Plb itself does not satisfy Eq. (3.11), however, a power value slightly
larger than Plb is able to, e.g., 1.001Plb.

73

Table 3.5: The hourly electricity bill of a 1000-server data center with
RSR provision via different (P̄ , R), using the stochastic DP policy.

100% 80% 60% 40% 20%

1.001 $31.33 $34.89 $38.23 $41.36 $43.90

1.1 $40.79 $43.55 $46.43 $49.58 $53.00

1.2 $47.99 $49.49 $50.82 $52.02 $53.19

a1.001, 1.1 and 1.2 represent P̄ = 1.001Plb, 1.1Plb and 1.2Plb respectively, with Plb = Nfp(0.5umax).
b100%, 80%, 60%, 40% and 20% represent R = 100%Rmax, 80%Rmax, 60%Rmax, 40%Rmax and 20%Rmax

respectively, with Rmax = min(Nfp(umax)− P̄ , P̄ −NPidle).

from PJM (PJM, 2013) as our y(t), and use only data from the 2nd to the 23rd hour

(data from the 1st and the last hour is not clean and stable due to the effects of the

initialization and termination of the experiment). We treat this 22-hour simulation

as 22 repetitions of the 1-hour experiment and then measure the statistics in order to

achieve statistical confidence. The price information used in simulation is the same

as that introduced in Section 3.6.3.

We measure the tracking cost Jtrack and the cost of QoS degradation JQoSD, and

recall that the overall cost Jtotal equals to Jtrack + JQoSD. Comparing to the best

tracking policy, our DP policy incurs larger Jtrack, which is expected, as the best

tracking policy tracks signal as accurate as possible. However, the stochastic DP

policy leads to much smaller JQoSD, due to the fact that the QoS degradation is

carefully taken into account. Overall, the total cost, Jtotal of the stochastic DP policy

is on average 4.55% smaller than the cost of the best tracking policy.

3.7 The EnergyQARE Runtime Policy

While the best tracking policy does not explicitly take workload QoS into account

in decision making, the stochastic DP policy uses the simplified data center model

and does not support multiple server power states, in this section, we introduce an

74

EnergyQARE, the Energy and QoS Aware RSR Enabler runtime policy that han-

dles the more general and practical scenarios for our data center model shown in

Figure 3·2: the heterogeneous workloads and power budgeting, multiple server states

and server provision, workload scheduling and allocation are all taken into account.

In addition, the EnergyQARE policy guarantees the workload QoS by applying not

only the signal tracking performance, but also the QoS as feedback. Specifically, En-

ergyQARE dynamically monitors signal tracking and workload QoS, and adaptively

makes decisions on which of them (i.e., tracking error or QoS) should be given higher

priority. Comparing with prior introduced two policies, EnergyQARE is more suit-

able for a general real-life data center scenario, and with tight constraints on both

signal tracking and workload QoS.

3.7.1 Policy Details

The flowchart of the EnergyQARE runtime policy is shown in Figure 3·12. The

principal philosophy of the policy is to dynamically make online decisions based on

monitored signal tracking and workload QoS state variables. At each time t, the main

state variables that are monitored include:

1. the mean of the tracking error, i.e., ε̄(t) during a past time window [t− T, t];

2. the mean of the QoS degradation, i.e., D̄j(t) for each cluster j during the past

time window [t− T, t];

3. the total number of additional required active servers Nreq(t) to meet the SLAs

based on the Little’s Law (Leon-Garcial, 2008), which is highly correlated with

the length of the job queue;

4. the states of jobs and servers;

5. the value of RSR signal y(t).

75

Figure 3·12: The flowchart of the EnergyQARE runtime policy.

76

Based on these state variables, EnergyQARE selects one or more from the follow-

ing actions:

1. wake up sleeping servers;

2. put idle servers into sleep;

3. assign idle servers to clusters to serve waiting jobs;

4. regulate the power and service rate of the active servers.

In the following sections, we introduce the details of the state variables and actions,

as well as the overall runtime policy. Table 3.6 lists the descriptions of some major

symbols used in Eq. (3.28) to Eq. (3.48). Other prior defined symbols are referred to

Section 3.2.

State variables in EnergyQARE

The system states are measured and updated at the beginning of each time interval

t. The main state variables used for decision making in EnergyQARE are as follows:

1. The mean of the tracking error ε̄(t). ε̄(t) is the mean of the instantaneous signal

tracking error ε(t) (defined in Eq. (2.1)) during a past time window [t − T, t],

i.e.,:

ε̄(t) =
1

T

t∑
τ=t−T

ε(τ). (3.28)

The size of the time window T is selectable.

2. The mean of the QoS degradation D̄j(t). Similar to the way that we calculate

ε̄(t), we calculate the mean of the QoS degradation D̄j(t) for each cluster j at

time t as an average of degradation Di,j introduced in Section 3.2.3 for all jobs

i in cluster j that are finished their servicing and depart the system in a past

time window [t− T, t]:

D̄j(t) =

∑Depj(t)

i=1 Di,j

Depj(t)
, (3.29)

77

Table 3.6: Descriptions of major symbols in Eq. (3.28) to Eq. (3.48).

Symbol Description

Nj(t) The number of servers in cluster j at t.

Nidle(t) The number of servers in the idle pool at t.

Nslp(t) The number of servers in the sleep pool at t.

Ntran(t) The number of servers in the transition state at t.

Nreq,j(t) The number of additional active servers required by cluster j at t.

Nreq(t) The total number of additional active servers required for all clusters at t.

Nrdslp(t) The number of servers that are ready to be put into sleep at t.

Nup(t) The number of servers to be waken up at t.

Ntoslp(t) The number of servers to be put into sleep at t.

Nassg,j(t) The number of idle servers that are assigned to cluster j at t.

Nassg(t) The total number of idle servers that are activated and assigned to all clusters at t.

Tres Time delay for waking up a server.

Tw,s(t) Time that a server s has been in the transition state at t.

Tidle,s(t) Time that a server s has been in the idle state at t.

Tout The timeout value used to determine whether to put a server into the sleep state.

pj(t) The number of running jobs in cluster j at t.

qj(t) The number of waiting jobs in cluster j at t.

uj(t) Service rate of servers in cluster j at t.

umax,j The maximal possible service rate for jobs in cluster j.

umin,j(t) The minimal service rate for jobs in cluster j at t to meet SLAs.

where Depj(t) is the number of jobs that are finished and depart in the time

window [t− T, t] in cluster j.

3. The total number of additional active servers required for all clusters Nreq(t).

We first calculate the number of additional servers required by each cluster

j, i.e., Nreq,j(t), for j ∈ 1, 2, 3..,M , where M is the number of clusters. We

calculate Nreq,j(t) based on Little’s Law (Leon-Garcial, 2008): we denote the

number of waiting jobs and running jobs in cluster j as qj(t) and pj(t) at time

t, respectively. Since each cluster contains homogeneous workload, we assume

all servers in each cluster are always running at the same service rate uj(t) for

cluster j, so that there is fairness of servicing among jobs of the same type.

78

Then the average job system time calculated from Little’s Law for cluster j at

time t is:

T̄Lsys,j(t) =
qj(t) + fr(pj(t))

uj(t)nj(t)
, (3.30)

where nj(t) is the number of servers in cluster j at time t. We use superscript

L to denote that this average system time is calculated from Little’s Law, so as

to distinguish it with the notation T̄sys,j(t), i.e., the average system time from

the real measurement. Function fr(·) is used to transform the unfinished parts

of running jobs to the number of full jobs, i.e.,:

fr
(
pj(t)

)
=

pj(t)∑
i=1

Ir,i(t)

Ii
, (3.31)

where Ir,i(t) is the number of unfinished instructions of job i at time t, Ii is the

total number of instructions of the job i. A job can be considered as a set of

instructions, and finishing a job is equivalent to execute all instructions of that

job.

The job system time is constrained by SLAs introduced in Eq. (3.3). We deduce

a constraint on the average system time T̄Lsys,j(t) from Eq. (3.3) as:

T̄Lsys,j(t) ≤ (βQj + 1) · Tmin,j, (3.32)

where β is the coefficient determined by the probability distribution of Tsys,i,

i.e., the system time of the job i. Putting Eq. (3.30) into Eq. (3.32), we obtain

a constraint on the number of servers in cluster j:

nj(t) ≥
qj(t) + fr(pj(t))

(βQj + 1) · Tmin,juj(t)
. (3.33)

Prior work has shown that serving jobs at the maximal possible service rate

umax in general provides best energy efficiency (Gandhi et al., 2012; Chen et al.,

79

2014b). Hence in this work we assume that by default all the jobs are served at

their maximal possible rate, and we use umax,j to substitute uj(t) in Eq. (3.33).

Since umax,j · Tmin,j = 1 (recalling that Tmin,j is the shortest possible processing

time when the job is served at the maximal possible service rate umax,j), Eq.

(3.33) is simplified to:

nj(t) ≥
qj(t) + fr(pj(t))

βQj + 1
. (3.34)

The right hand side of Eq. (3.34) is the minimal number of required servers for

cluster j at time t, in order to meet the system time constraint from Little’s

Law. Assuming currently there are Nj(t) active servers in cluster j, the number

of additional servers required for cluster j to meet the QoS constraint is:

Nreq,j(t) = max
{

0,
qj(t) + fr(pj(t))

βQj + 1
−Nj(t)

}
. (3.35)

The total number of required servers for all the clusters at time t, i.e., Nreq(t),

is the summation of the number of the required servers in all clusters:

Nreq(t) =
M∑
j=1

Nreq,j(t). (3.36)

In addition to these listed three state variables, the state of each job and server,

as well as the RSR signal value y(t) are directly monitored and recorded.

The Overall EnergyQARE Runtime Policy

In this section we explain the EnergyQARE runtime policy shown in the flowchart

in Figure 3·12. In the figure, we mark each action with a letter. Similar actions are

marked with the same letter.

At the beginning of each time interval t, the system states are updated. The

updates include:

80

• Check whether any servers have finished their jobs. Servers that finished jobs

are put back into the idle server pool. The QoS of finished jobs is calculated;

• Check whether any servers have finished their transition processes. Servers that

have finished their transition processes are put into the idle server pool;

• Monitor new coming jobs in the waiting queue for each cluster.

After these updates, we calculate major state variables introduced in Section 3.7.1.

Then we compare the mean of the tracking error (normalized by its tolerance εtol

in Eq. (2.2)), i.e., ε̄(t)
εtol

, with the mean of the QoS degradation (normalized by its

tolerance Qj in Eq. (3.3)), i.e., γmax
j

Dj(t)

Qj
. Here max

j

D̄j(t)

Qj
represents the worst mean

of QoS degradation (normalized by the tolerance Qj) among all clusters at time t. γ

is the coefficient given to the QoS degradation in comparison with the tracking error.

Different γ indicates different focuses in terms of tracking error and workload QoS,

e.g., a small γ can be used if the tracking error is more costly. We also compare the

number of required servers Nreq(t) with the number of idle servers Nidle(t). We move

from the main flow to one of the three sub-flows based on these two comparisons.

The three sub-flows are:

1. ε̄(t)
εtol

> γmax
j

D̄j(t)

Qj
. In this scenario, the signal tracking performance is relatively

worse than the QoS performance, so the policy selects actions to track the

signal accurately. The real power Pcon(t) and the targeted power Ptgt(t + 4)

are calculated and compared. If Pcon(t) > Ptgt(t+ 4), i.e., the real power needs

to be reduced, then we first slow down some servers and reduce their power

in Action d. After that if we still have the condition Pcon(t) > Ptgt(t + 4),

then we put some servers into sleep in Action g. We regulate the server power

before putting servers into the sleep state in reducing the power, so as to avoid

server transitions that may bring large cost in terms of time delay and energy

81

loss later when servers are required to be waken up. On the other hand, if

Pcon(t) < Ptgt(t + 4), i.e., the real power needs to be increased, then we first

activate idle servers with waiting jobs and assign them to clusters in Action f .

After that if we still have the condition Pcon(t) < Ptgt(t+ 4), we wake up some

sleeping servers in Action e. Similarly here we give the server transition action

(waking up servers in Action e) a lower priority due to the concern of additional

energy loss and time delay.

2. ε̄(t)
εtol
≤ γmax

j

D̄j(t)

Qj
, and Nreq(t) ≤ Nidle(t). In this scenario, the QoS performance

is relatively worse than the signal tracking performance, but the number of

current idle servers is sufficient to improve QoS to meet the SLA requirements.

We first activate and assign Nreq(t) idle servers to all clusters to serve waiting

jobs in Action a. Then we focus on the signal tracking and move to Sub-flow 1.

3. ε̄(t)
εtol
≤ γmax

j

D̄j(t)

Qj
and Nreq(t) > Nidle(t). In this scenario, the QoS performance

is relatively worse than the signal tracking performance, and the number of

idle servers is not sufficient to meet the requirement. We first activate all idle

servers with waiting jobs in Action b. Then we wake up additional servers so as

to meet the requirement Nreq(t) in Action c. After that, we consider the signal

tracking. If Pcon(t) > Ptgt(t + 4), we slow down servers in Action d. Here we

no longer consider to put servers to sleep, because prior to this action we have

already been required to wake up servers in Action c. On the other hand, if

Pcon(t) < Ptgt(t + 4), since all the idle servers have been activated in Action b,

the only action to increase Pcon(t) is to wake up additional sleeping servers in

Action e.

The details of each action will be introduced in the next section.

82

Detailed Actions in EnergyQARE

All the actions in Figure 3·12 fall into four basic groups: wake up sleeping servers

(Actions c and e), put idle servers into sleep (Action g), assign idle servers to clusters

to serve waiting jobs (Actions a, b and f), and regulate the power and service rate of

the active servers (Action d). Below we discuss each of them in detail.

1. Wake up sleeping servers. In Figure 3·12, both Actions c and e wake up some

sleeping servers. Action c is called due to a “QoS crisis” (i.e., QoS of jobs in

some clusters tends to violate the SLAs), and the number of idle servers at time

t is smaller than the number of required servers. Therefore, additional servers

are required to be waken up in order to increase QoS. The number of servers to

be waken up, i.e., Nup(t) is determined as:

Nup(t) = min
{
Nreq(t)−Nidle(t)− feqv(Ntran(t)), Nslp(t)

}
, (3.37)

where Nslp(t) is the number of servers in sleep state at t. Here we also take

the number of servers in the transition state, i.e., Ntran(t), into account by a

function feqv(·). feqv(·) calculates the equivalent number of idle servers that the

number of servers in transition is, based on the time that these servers have

spent in the transition state. Specifically, assuming that a server s has been

in the transition state for Tw,s(t) seconds at time t, and the waking up process

takes Tres seconds introduced in Section 3.2.1, then this server s is equivalent

to Tw,s(t)/Tres idle server. Hence,

feqv(Ntran(t)) =

∑Ntran(t)
s=1 Tw,s(t)

Tres
. (3.38)

In Action e, Nup(t) is determined for the purpose of achieving better signal

83

tracking. Waking up a server can increase its power from Pslp to Ptran. Hence:

Nup(t) = min
{Ptgt(t+ 4)− Pcon(t)

Ptran − Pslp
, Nslp(t)

}
, (3.39)

where Ptran and Pslp are the power consumption of the server in the transition

state and in the sleep state introduced in Section 3.2.1, respectively.

2. Put idle servers into sleep. In Action g, the number of idle servers to be put

into sleep state, i.e., Ntoslp(t), is determined for the purpose of achieving better

signal tracking, as putting an idle server into the sleep state can reduce its power

from Pidle to Pslp. Therefore,

Ntoslp(t) = min
{Pcon(t)− Ptgt(t+ 4)

Pidle − Pslp
, Nrdslp(t)

}
, (3.40)

where Pidle is the server idle power, Nrdslp(t) is the number of servers that

are ready to be put into the sleep state at time t. Nrdslp(t) is introduced to

avoid waking up servers or putting servers into sleep over frequently. Here we

apply the similar timeout mechanism that is used in the best tracking policy in

Section 3.4, in which only when a server has been in the idle state for the time

longer than Tout introduced in Eq. (3.5), it can be put into the sleep state. We

use Tidle,s(t) to denote the time period that the server s has been in the idle

state till time t. If Tidle,s(t) ≥ Tout, then the server s is ready to be put into the

sleep state. Therefore:

Nrdslp(t) =

Nidle(t)∑
s=1

I{Tidle,s(t)≥Tout}. (3.41)

3. Assign idle servers to clusters to serve waiting jobs. If there are both waiting

jobs and idle servers in the system, we can assign idle servers to clusters to

84

serve some of the waiting jobs9. Since all M clusters share the idle server pool,

the number of idle servers assigned to each cluster j, i.e., Nassg,j(t) needs to be

determined. The first step is to determine the total number of idle servers that

are going to be activated and assigned, i.e. Nassg(t). In Figure 3·12, Actions a

and b are called because of the “QoS crisis”, hence Nassg(t) is calculated based

the QoS requirement. In Action a, since the number of idle servers is not smaller

than the number of required servers, i.e., Nidle(t) ≥ Nreq(t), we simply activate

and assign Nreq(t) servers to clusters, i.e., Nassg(t) = Nreq(t). In Action b, since

Nidle(t) < Nreq(t), i.e., the idle servers are not sufficient, thus all the idle servers

at time t require to be activated, i.e., Nassg(t) = Nidle(t).

Differing from Actions a and b, In Action f , Nassg(t) is determined for the

purpose of achieving better signal tracking, hence Nassg(t) is calculated as:

Nassg(t) = min
{Ptgt(t+ 4)− Pcon(t)

Pmax − Pidle
, Nidle(t), q(t)

}
,

where Pmax is the server maximal power, q(t) is the total number of queued jobs

in the whole system at time t, i.e., q(t) =
∑M

j=1 qj(t). The equation represents

that the number of activated servers must be smaller than the current number of

idle servers Nidle(t) and the number of queued jobs q(t). Note that in Actions a

and b, q(t) has been considered in the calculation of Nreq(t) in Eq. (3.35), hence

we do not need to consider it separately here. Overall we have:

Nassg(t) =

Nreq(t), in Action a,

Nidle(t), in Action b,

min
{Ptgt(t+4)−Pcon(t)

Pmax−Pidle
, Nidle(t), q(t)

}
, in Action f .

(3.42)

9If the signal tracking has a higher priority than the workload QoS and the power cap determined
by our policy is not sufficient to support additional active servers, even if there are both waiting
jobs and idle servers in the system, idle servers are not activated for job servicing.

85

Next, we determine the number of idle servers assigned to each cluster j. First,

the number of assigned servers to each cluster j, i.e., Nassg,j(t) cannot be larger

than the number of jobs waiting in the queue in that cluster, i.e., qj(t):∑M
j=1Nassg,j(t) = Nassg(t),

Nassg,j(t) ≤ qj(t), ∀j.
(3.43)

There are many different ways to allocate idle servers to each cluster. Simple

methods of the allocation include round robin, random, or shortest job first.

From experiments, we find that an “urgent QoS first” strategy that allocates

idle servers based on workload QoS and its constraints can provide better perfor-

mance in both QoS guarantee and signal tracking than other popular methods

in our scenario. Specifically, the “urgent QoS first” strategy is as follows: the

mean of the QoS degradation of each cluster j in the past time window [t−T, t],

i.e., D̄j(t) is first calculated as introduced in Eq. (3.29); then we calculate the

weight for each cluster:

wj(t) =
D̄j(t)

Qj

,∀j ∈ 1, 2, ...M. (3.44)

We assign Nassg(t) idle servers to each cluster based on the sorted order of wj(t).

The larger wj(t) represents a more “urgent” scenario in terms of satisfying the

SLAs, and thus clusters with larger wj(t) are given higher priorities in receiving

idle servers. The cluster with the largest wj(t) first receives its required number

of servers Nreq,j(t), followed by the cluster with the second largest wj(t), and so

on. Note that clusters with lower priorities may not receive sufficient servers at

t to meet with their requirements Nreq,j(t), but since the QoS feedback D̄j(t)

is updated dynamically at every time interval, these clusters would get higher

priorities later, and receive sufficient servers to meet their SLAs in the long run.

86

In Action f , it is possible that after satisfying Nreq,j(t) for every cluster j, there

are still idle servers required to be assigned in order to better track the RSR

signal. In this case, these additional activated idle servers that are only for the

signal tracking purpose and have no constraints on QoS are allocated to clusters

in a round robin manner to keep fairness.

4. Regulate the power and service rate of active servers. By default all servers

are running at their maximal service rate for the purpose of overall energy

conservation and QoS guarantee. However, sometimes in order to better track

the signal, servers are required to be slowed down when the signal power cap is

low, i.e., in Action d, as decreasing the service rate can reduce the server power,

which has been introduced in Section 3.2.1.

Since each cluster runs a homogeneous set of jobs, we have assumed that all

servers in each cluster j are always running at the same service rate uj(t), and

thus the same power Pj(t). We determine uj(t) by considering both signal

tracking and QoS requirements. To guarantee QoS, we set a minimal bound

of uj(t) for each cluster j at time t, i.e., umin,j(t), based on Eq. (3.30) and

Eq. (3.32), i.e.,:

umin,j(t) = umax,j ·min
{

1,
D̄j(t) + 1

βQj + 1

}
. (3.45)

Eq. (3.45) represents that if the current average job system time in cluster

j satisfies the constraint in Eq.(3.32), i.e., T̄sys,j(t) = (D̄j(t) + 1) · Tmin,j <

(βQj + 1) · Tmin,j, then there is room to slow down active servers from the

default maximal service rate umax,j, otherwise, all active servers must run at

their maximal service rate. This minimal bound on the service rate also prevents

jobs stalling in the server forever.

87

We then calculate the total maximal possible reduction in data center power

consumption at t based on Eq.(3.1) and (3.45) as:

Pmax,rd(t) =
M∑
j=1

Nj(t) · kj
(
umax,j − umin,j(t)

)
. (3.46)

We define a coefficient δ(t) as:

δ(t) = max
{

1,
Pcon(t)− Ptgt(t+ 4)

Pmax,rd(t)

}
, (3.47)

where Pcon(t)−Ptgt(t+4) is the required amount of data center power reduction

in order to perfectly track the signal. Then the service rate uj(t) for each cluster

j is:

uj(t) = umax,j − δ(t) ·
(
umax,j − umin,j(t)

)
. (3.48)

In this way, the power reduction is fairly distributed to clusters based on their

minimal bounds in service rate.

3.7.2 Energy and Reserve Bidding

With the proposed EnergyQARE runtime policy introduced in the prior section, in

this section we investigate the optimal power and reserve bidding strategies. Sim-

ilar to the optimization problem formulated in the single server RSR provision in

Section 3.3.1 and Eq. (3.4), the problem on data center RSR provision here is to

minimize the data center energy monetary costs under the constraints of both the

tracking error and the workload QoS introduced in Eq. (2.2) and Eq. (3.3), respec-

tively. We conduct similar studies in the sample frequency distributions on the 1-hour

trajectories of the tracking error ε(t) and the QoS degradation of jobs i in each cluster

j (i.e., Di,j) for a sufficiently large number of simulations, as what we did in the single

server case, and find that they also fit the Gamma distribution Γ(k, θ) with shape k:

88

kε = ε̄2/σ2
ε , kDj

= D̄2
j/σ

2
Dj

and scale θ: θε = σ2
ε/ε̄, θDj

= σ2
Dj
/D̄j, where ε̄, σε, D̄j, σDj

are mean and standard deviation of the tracking error and QoS degradation of jobs

in cluster j during the hour. Then the optimization problem is formulated as:

minimize
P̄ ,R, policy

ΠE · P̄ − ΠR ·R + Πε · ε̄

subject to Γ(kε, θε, ε
tol) ≥ ηε,

Γ(kDj
, θDj

, Qj) ≥ ηj, ∀j,

P̄ +R ≤ N · Pmax,

P̄ −R ≥ N · Pslp,

P̄ ≥ 0, R ≥ 0,

(3.49)

recall that N is the total number of servers in the data center, Pmax and Pslp are the

maximal possible server power and power of sleep state, respectively. N · Pmax and

N ·Pslp are maximal and minimal possible power consumption of the data center. We

assume the given data center runs the EnergyQARE runtime policy introduced in

Section 3.7.1 as the “policy”, and solve the optimal bidding value (P̄ , R) accordingly.

Due to the complexity of the problem, instead of applying analytical methods, we

solve the optimal solution using numerical methods. We conduct exhaustive search

(P̄ , R) over a sufficient fine granularity. For each pair of (P̄ , R), we first simulate a 1-

hour RSR provision period multiple times with varying signals and workload arrival,

so as to estimate the mean and standard deviation statistics of ε(t) and Di,j. Then we

apply these statistics to Eq. (3.49) and search for the optimal (P̄ , R). An alternative

solution is to build regression models on statistics of the tracking error and the QoS

degradation via (P̄ , R) through extensive simulations, and leverage these regression

models to solve Eq. (3.49).

89

Table 3.7: Workload properties in experiments - Trace 1.

Application Name Shortest Runtime Arrival Rate QoS Degradation

j Tmin,j (sec) λj (# of jobs / sec) Tolerance Qj

Canneal 44.3 0.11 0.3

Bodytrack 51.0 0.10 2.0

Ferret 74.3 0.20 1.0

Freqmine 95.2 0.11 0.1

Facesim 149.6 0.10 0.5

Table 3.8: Workload properties in experiments - Trace 2.

Application Name Shortest Runtime Arrival Rate QoS Degradation

j Tmin,j (sec) λj (# of jobs / sec) Tolerance Qj

Blackscholes 23.5 0.43 1.0

Vips 24.5 0.20 0.7

Raytrace 42.4 0.07 0.8

Dedup 58.8 0.14 0.3

Ferret 74.3 0.07 0.2

Fluidanimate 93.3 0.14 2.0

Steamcluster 151.2 0.05 0.5

3.7.3 Experimental Results

In this section, we simulate data center RSR provision with EnergyQARE in different

scenarios, and evaluate the signal tracking performance, workload QoS, and the data

center energy monetary savings.

Methodology

We simulate the (heterogeneous) workload arrival as the Poisson process (i.e., the

arrival time interval follows exponential distribution) with Monte Carlo simulation

methods. Different applications are randomly selected from the PARSEC-2.1 bench-

mark suite in simulation. The power-throughput profiles of each application are taken

from real-life measurements, as introduced in Section 3.2.1. The workload arrival rate

is calculated based on the size of the data center, i.e., the total number of servers N

90

Table 3.9: Workload properties in experiments - Trace 3.

Application Name Shortest Runtime Arrival Rate QoS Degradation

j Tmin,j (sec) λj (# of jobs / sec) Tolerance Qj

Raytrace 42.4 0.12 0.5

Canneal 44.3 0.29 0.2

Bodytrack 51.0 0.25 2.0

Swaptions 74.0 0.07 0.8

Fluidanimate 93.3 0.11 1.0

Steamcluster 151.2 0.03 0.4

in the data center, and the utilization U , i.e., the percentage of servers that are in

active state on average. By default, we use the data center consisting of 100 servers

and at 50% utilization. Results of different data center sizes and utilization are eval-

uated in case studies. We use the shallow sleep (Tres = 10s, Pslp = 10%Pmax) as

the default sleep state. We simulate a 1-hour period experiment multiple times with

different RSR signal and workload arrival traces, and evaluate the signal tracking,

QoS performance, and the energy monetary savings.

Signal Tracking Performance and Workload QoS

We first conduct experiments on the default settings with multiple random workload

arrival traces. In each workload arrival trace, the types of application j that are

contained, the arrival rate of each of them, λj, and the QoS tolerance in SLAs,

i.e., Qj are randomly generated. All these workload arrival traces are constrained

to have utilization at U = 50%. To better evaluate the capability of our policy in

guaranteeing SLAs, we set some Qj to small values (shown in Table 3.7, Table 3.8

and Table 3.9), so that some SLAs are tight and easy to be violated with random

policies. ηj is set to 90% in all SLAs. The tracking error probabilistic constraint is

set as (εtol, ηε) = (0.3, 90%) based on today’s market information (PJM, 2016).

Since different workload arrival traces lead to varying results (though the differ-

91

0.5

1

1.5

x 10
4

0

50

100

−2

0

2

Avg. Power
(Watts)

Normalized Reserve
to Maximum (%)

A
v
g

.
T

ra
c
k
in

g
 E

rr
o

r
(i

n
 L

o
g

a
ri

th
m

)

(a)

0.5

1

1.5

x 10
4

0

50

100
−4

−2

0

2

4

Avg. Power
(Watts)

Normalized Reserve
to Maximum (%)

A
v
g

.
Q

o
S

 D
e
g

ra
d

a
ti

o
n

(i
n

 L
o

g
a
ri

th
m

)

(b)

0.5

1

1.5

x 10
4

0

50

100

−2

0

2

Avg. Power
(Watts)

Normalized Reserve
to Maximum (%)

A
v
g

.
T

ra
c
k
in

g
 E

rr
o

r
(i

n
 L

o
g

a
ri

th
m

)

(c)

0.5

1

1.5

x 10
4

0

50

100

−4

−2

0

Avg. Power
(Watts)

Normalized Reserve
to Maximum (%)

A
v
g

.
Q

o
S

 D
e
g

ra
d

a
ti

o
n

(i
n

 L
o

g
a
ri

th
m

)

(d)

Figure 3·13: Mean of the signal tracking error and the QoS degrada-
tion via different P̄ and R (normalized to the maximal possible value
Rmax given P̄) in EnergyQARE. (a) and (b) are results of the workload
trace 1; (c) and (d) are results of the workload trace 2. (b) is for the
Canneal application in trace 1 and (d) is for the Dedup application in
trace 2.

ences are small from the observation in experiments), in order to achieve generalized

results, we test on multiple different workload arrival traces, and evaluate the statis-

tics of results. In this section, we randomly select three of them to demonstrate the

results. Properties of three selected workload traces are listed in Table 3.7, Table 3.8

and Table 3.9.

Figure 3·13 shows the signal tracking performance and the workload QoS via

different pairs of bidding values (P̄ , R), where R is normalized to its maximal possible

value Rmax given P̄ , i.e., Rmax = min
{
N ·Pmax−P̄ , P̄−N ·Pslp

}
. Figure 3·13(a) is the

92

average tracking error during the 1-hour experiment via (P̄ , R) pairs for the workload

trace 1. From the figure, tracking error is more sensitive to the average power P̄ than

the reserve R. The average of the signal tracking error is large when the average

power P̄ is either low or high; in other words, the best tracking performance appears

in the middle of the range of P̄ . When P̄ is low, the overall power budget to the

data center is insufficient to guarantee workload SLAs. As a result, in order to satisfy

the SLAs, the signal power cap is frequently violated, resulting in low signal tracking

accuracy. When P̄ is high, workloads are fast served and queues are often empty.

Then servers are frequently in the idle or sleep states, in which the power cannot be

regulated, leading to poor signal tracking performance.

Figure 3·13(b) is the average QoS degradation of the Canneal application in work-

load trace 1. From the figure, the QoS degradation is also more sensitive to P̄ than

R. However, unlike the tracking error, the QoS degradation has a monotonic relation

to P̄ : the higher P̄ is, the smaller the QoS degradation will be. When P̄ is high,

the power budget is sufficient to run workloads faster. Similar results are found in

the QoS degradation of all the other applications in trace 1. In addition, we notice

that the QoS is more sensitive to R when P̄ is low. When P̄ is low, a higher R pro-

vides larger range in power and more flexibilities in power budgeting and workload

servicing, and thus leads to better QoS performance.

Figure 3·13(c) and Figure 3·13(d) are results of the tracking error and the workload

QoS via different pairs of (P̄ , R) for the workload trace 2. These results are similar

to the case of workload trace 1. Similar results are also found in not only workload

trace 3, but also all the other workload traces we have tested in experiments.

Next, we evaluate the signal tracking and the QoS in the runtime given (P̄ , R) at

the optimal values in Figure 3·14 (for workload trace 1). Figure 3·14(a) visualizes the

real power consumption Pcon(t) and the RSR signal power cap Ptgt(t) dynamically

93

0 1000 2000 3000
0.8

0.9

1

1.1

1.2

1.3

1.4

x 10
4

Time (sec)

P
o

w
e

r
(W

a
tt

s
)

Real Power

RS Signal Power

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Tracking Error

C
D

F

(b)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

QoS Degradation

C
D

F

(c)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

QoS Degradation

C
D

F

(d)

Figure 3·14: Results of RSR signal tracking and QoS degradation
for the workload trace 1 with (P̄ , R) at their optimal values in En-
ergyQARE. (a) is the real dynamic power Pcon(t) compared with the
signal power cap Ptgt(t) during the 1-hour simulation. (b) is the cumu-
lative distribution function (CDF) of the tracking error ε(t). The green
lines show the tracking error probabilistic constraints, i.e., (εtol, ηε). (c)
and (d) are the CDF of the QoS degradation of Canneal and Freqmine
applications, respectively. The green lines are the SLAs, i.e., (Qj, ηj).

for the 1-hour trace. In most of time, Ptgt(t) is well tracked by Pcon(t), with only a

few of notable violations when the signal values are high, and there are no sufficient

workloads in the system. In fact, from the experiments, the tracking accuracy can

be further increased if a lower P̄ is selected, however, the workload SLAs are then

violated as a side effect. Our solution can better handle the trade-off between signal

tracking and QoS.

Figure 3·14(b) is the cumulative distribution function (CDF) of the tracking error

ε(t) during the 1-hour simulation. The green lines represent the probabilistic con-

94

0 1000 2000 3000 4000
0.5

0.6

0.7

0.8

0.9

1

Size of Window (sec)

P
ro

b
a
b

il
it

y

Tracking Error

Canneal

Freqmine

Figure 3·15: The impact of the size of the feedback window T to the
tracking error and workload QoS in EnergyQARE. The probabilities of
the tracking error and the QoS degradation that are smaller than εtol,
and Qj for Canneal and Freqmine applications respectively, are shown
in the figure.

straints (εtol, ηε). Figure 3·14(c) and 3·14(d) are the CDF of the QoS degradation of

two selected applications from workload trace 1 with the tightest SLA constraints,

i.e.,: the Canneal and the Freqmine applications (see in Table 3.7). The green lines

represent the SLA probabilistic constraints (Qj, ηj). Tracking error and workload QoS

all meet the constraints from the figures. The rest of three applications (not shown

here) in workload trace 1 have even better QoS (i.e., higher probabilities ηj in satis-

fying the tolerances Qj) due to their loosen SLA constraints. Moreover, all the other

tested traces show similar results to these figures. Overall, EnergyQARE enables the

data center to participate in the RSR provision with accurate signal tracking, while

also guaranteeing workload QoS.

Figure 3·15 shows the impact of different sizes T of the feedback window (de-

scribed in Eq. (3.28)) on the tracking error and workload QoS. The probabilities of

the tracking error and QoS degradation (of both Canneal and Freqmine) that are

95

smaller than εtol and Qj respectively are shown in the figure. From the figure, the

QoS is poor with a small window size. When the window size is small, the policy

makes decisions only based on recent observation of the performance, hence decisions

are with higher variances. Since the system time of applications in simulation varies

from a few seconds to minutes, short observation in a small window fails to effectively

characterize the overall workload QoS, and thus leads to inaccurate feedback and

poor decisions. In terms of the signal tracking, however, the policy with a small win-

dow size tends to make decisions based on the instantaneous tracking error, which is

similar to what a best tracking policy (introduced in Section 3.4) does, and therefore

leads to better tracking performance. In addition, the figure also demonstrates that

the tracking performance and workload QoS are both getting to constants after the

window size increases and reaches to a certain value.

Energy Monetary Savings

Next, we evaluate the energy monetary savings of data center participation in RSR.

In Figure 3·16(a), we compare the optimal monetary costs of data centers with RSR

provision by EnergyQARE, i.e., “optimal RSR”, to the “fixed cap” scenario and the

“without cap” scenario, for workload traces 1, 2 and 3, respectively. The “fixed

cap” scenario represents that the data center consumes the average power at P̄ (so

the overall energy consumption is close to that of “optimal RSR”), but with no

reserve provision, i.e., R = 0. The “without cap” scenario represents that the data

center serves workloads without any constraints on the power consumption. The

energy monetary costs in “fixed cap” and “without cap” scenarios are calculated

simply based on the total energy consumed, i.e., ΠE ·E, where E is the total energy

consumed during the simulation period (i.e., 1-hour). To better evaluate the savings,

we normalize the energy monetary cost of each scenario to the largest value in all

96

Trace 1 Trace 2 Trace 3
0

0.2

0.4

0.6

0.8

1

M
o

n
e

ta
ry

 C
o

s
ts

 (
N

o
rm

a
li

z
e

d
)

Optimal RSR Fixed Cap Without Cap

(a) Different Workload Traces

10% 25% 50% 75%
0

0.2

0.4

0.6

0.8

1

M
o

n
e

ta
ry

 C
o

s
ts

 (
N

o
rm

a
li

z
e

d
)

Optimal RSR Fixed Cap Without Cap

(b) Different Utilization

Shallow Sleep Deep Sleep
0

0.2

0.4

0.6

0.8

1

M
o

n
e

ta
ry

 C
o

s
ts

 (
N

o
rm

a
li

z
e

d
)

Optimal RSR Fixed Cap Without Cap

(c) Different Sleep States

100 Servers 500 Servers 1000 Servers
0

0.2

0.4

0.6

0.8

1

M
o

n
e

ta
ry

 C
o

s
ts

 (
N

o
rm

a
li

z
e

d
)

Optimal RSR Fixed Cap Without Cap

(d) Different Data Center Sizes

Figure 3·16: The energy monetary costs in three scenarios: “optimal
RSR”, ”fixed cap” and “without cap” in different cases. All the costs
are normalized to the largest value in each figure. In (b) we also cal-
culate the absolute value of the cost savings from the “optimal RSR”
scenarios to their corresponding “fixed cap” scenarios, and represent
the absolute savings in the black line.

scenarios demonstrated in each figure10. We use ΠE = ΠR = Πε = 0.1$/kWh based

on today’s markets (PJM, 2016; Aikema et al., 2012).

From Figure 3·16(a), savings in different workload traces are similar: the extensive

simulations on different workload arrival traces demonstrate a less than 5% variation

in energy monetary savings. Providing RSR with EnergyQARE, the data center saves

on average 41% energy cost compared to the “fixed cap” scenario, and 44% compared

to the “without cap” scenario, while also satisfying the workload SLAs.
10The largest cost is most likely to appear in one of the “without cap” scenarios in each figure.

97

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Tracking Error

C
D

F

EnergyQARE

Best Tracking

(a) CDF of Tracking Error

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

QoS Degradation

C
D

F

EnergyQARE

Best Tracking

(b) QoS CDF of Canneal

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

QoS Degradation

C
D

F

EnergyQARE

Best Tracking

(c) QoS CDF of Freqmine

Figure 3·17: The CDF of tracking error and QoS degradation of both
the EnergyQARE and the best tracking policy for workload trace 1.
The blue curves represent the best tracking policy, and the red curves
represent the EnergyQARE. The green lines represent the tracking er-
ror and the workload SLA probabilistic constraints, i.e., (εtol, ηε) and
(Qj, ηj).

Comparison of Policies

We then compare the results of EnergyQARE with the prior introduced best tracking

policy in Section 3.4. The best tracking policy simply regulates the data center power

dynamically to track the instantaneous RSR signal as accurate as possible, but does

not explicitly consider workload QoS.

Figure 3·17 shows the results of the EnergyQARE and the best tracking policy

with workload trace 1. The CDF of the tracking error, and the CDF of the QoS

degradation of Canneal and Freqmine are shown in Figure 3·17(a), 3·17(b) and 3·17(c),

respectively. Green lines represent the probabilistic constraints on the tracking error

and the SLAs, i.e., (εtol, ηε) and (Qj, ηj). From the figure, though the best tracking

policy provides better tracking performance in Figure 3·17(a), because it minimizes

the instantaneous tracking error, the workload QoS of the policy is much worse than

that of the EnergyQARE based on Figure 3·17(b) and Figure 3·17(c). The workload

SLAs are violated by the best tracking policy in both of the figures, due to the fact that

the best tracking policy does not take QoS feedback into account in decision making.

98

The EnergyQARE, on the other hand, satisfies all signal tracking and workload SLA

constraints.

Case Study 1: Multiple Utilization Settings

We now study how the utilization of the data center impacts the performance and

the savings in RSR provision. We simulate the workload arrival traces using the

same type of applications and the same SLAs to workload trace 1, but with different

utilization as: 10%, 25%, 50% and 75%. All information in Table 3.7 remains the

same, except for the arrival rates of applications, which are scaled up for the 75%

utilization scenario and scaled down for the 10% and 25% utilization scenarios. The

same RSR signal trace is used in all scenarios.

Figure 3·16(b) shows the data center energy monetary costs of the “optimal RSR”,

the “fixed cap”, and the “without cap” scenarios in different utilization settings. Costs

in all the scenarios and settings are normalized to the maximal value in the figure. For

10%, 25%, 50% and 75% utilization cases, the savings from the “optimal RSR” to the

“fixed cap” scenario are 63.7%, 59.3%, 36.0% and 15.1%, and to the “without cap”

scenario are 77.4%, 65.9%, 40.4% and 16.4%, respectively. We see that the percentage

of savings increases when the utilization decreases, though it is getting saturated when

the utilization further decreases. We also calculate the absolute values of the savings

from the “optimal RSR” scenarios to the corresponding “fixed cap” scenarios for all

utilization settings, and present the results in the black line in Figure 3·16(b). We

notice that the largest absolute value of the monetary saving (i.e., corresponding to

the largest amount of reserve provision) appears in the middle level of the utilization.

When the utilization is high, the data center is busy with job servicing, and has little

flexibility in regulating the power and tracking the signal. When the utilization is low,

the data center does not have sufficient jobs to be served, which limits the number of

servers that can be activated, and thus limits the power regulation capability of the

99

data center. Therefore, the amount of RSR provision is small when the data center

utilization is either too high or too low.

Case Study 2: Shallow Sleep vs. Deep Sleep

As introduced before, many servers in today’s data centers support different sleep

states. So far by default we have used a shallow sleep state that has relatively high

sleep power but short transition delay. In this section, we experiment on another sleep

state, the deep sleep state that has longer transition period for waking up, but lower

sleep power. We compare the results of shallow and deep sleep states. Parameters of

different sleep states used in this case study are introduced in Section 3.2.1. We apply

the workload trace 1 and the same RSR signal trace to both cases for fair comparison.

Figure 3·16(c) shows the monetary costs in the “optimal RSR”, the “fixed cap”,

and the “without cap” scenarios using the shallow sleep and the deep sleep state,

respectively. Using the shallow sleep, the savings from the “optimal RSR” to the

“fixed cap” and the “without cap” are 36.0% and 40.4%, respectively, while using

the deep sleep, both numbers drop to 24%. Since RSR provision requires fast and

frequent data center power regulation to track the fast changed signal, the shallow

sleep state is more suitable to be used due to the short delay in state transition, and

therefore leads to higher savings than the deep sleep state. Such results well match

with our previous observation in the best tracking policy in Section 3.4. In addition,

we find that with a deep sleep state, having a fixed power cap (i.e., “fixed cap”) does

not provide energy cost savings compared to “without cap” from the figure. When

having a power cap, servers are frequently forced to be put into sleep in order to meet

the cap, and waken up later once needed. The deep sleep state leads to tremendous

time delay and energy loss during these frequent transitions. Therefore, having a

power cap on servers with deep sleep states is not an efficient strategy in terms of the

energy cost savings.

100

Case Study 3: Scalability via Data Center Size

Finally, we study the scalability of the performance and savings via the size of the

data center, i.e., the number of servers in it. We simulate the workload arrivals

based on workload trace 1, at 50% utilization with different number of servers. All

information in Table 3.7 remains the same, except for the arrival rates, which are

scaled up and down based on the number of servers. Still, we use the same RSR signal

trace in simulation. Figure 3·16(d) shows the energy monetary costs for data centers

containing 100, 500 and 1000 servers. From the figure, we see similar percentage of

savings from RSR provision in all three cases, which demonstrates that the savings

are scalable via the size of data center.

3.8 A Prototype Implementation of Data Center RSR

So far we have mainly modeled and simulated the data center RSR provision. Being

able to demonstrate the capabilities and benefits of RSR provision on the real data

center clusters would further achieve significant impacts on industrial society. In this

section, we design a prototype of data center RSR provision on a real-life system -

a real multi-core server. Specifically, we implement our optimization framework and

the runtime policy (for the single server, introduced in Section 3.3) on a multi-core

virtualized server, i.e., a 1U server that has an AMD mangy Cours (Opteron 6172)

processor, with 12 cores on a single chip, virtualized by VMware vSphere 5.1 ESXi

hypervisor, leveraging the CPU resource limits control knob. We test the capabilities

of the real server power capping technique in tracking the RSR signal. This initial

test can provide guidance for the future deployment of our techniques onto real-life

data centers for practical uses.

101

facesim
canneal
streamcluster
blackscholes

Po
w

er
 (W

)

60

80

100

120

140

160

CPU Resource Limit (MHz)
0 5000 10000 15000 20000

Figure 3·18: Power- CPU resource limits models for the PARSEC
applications.

3.8.1 Real Server RSR Provision Capability Test

In practice, before issuing a contract to an RSR provision candidate, ISO first gives

the candidate a test signal to track and examines its performance mainly on three

aspects: (1) the capability of consuming a stable power for a period of time (i.e., 5

minutes); (2) the time required for power consumption to ramp up to P̄ + R and

down to P̄ −R; (3) the capability of making dynamic power changes at a sufficiently

fine granularity (PJM, 2013). Our experimental results on the 1U server show the

following:

• Power Stability: We keep the resource limit at a fixed setting for 10 minutes

and observe the fluctuation of the power consumption. The standard deviation

of the power consumption when a given PARSEC application is in its parallel

phase is 1-3W, which is only 1-2% of P̄ ;

• Ramp-up Capability: Our server shows the ability to ramp up to 153W and down

to 66W (66W is the server idle power, 153W is the maximal power consumption

of Blackscholes) at 1s interval;

102

• Granularity of Modulation: The resource limit control knob is able to modulate

the power consumption in a granularity of a few milliwatts.

These results show that our server, a typical virtualized server in data centers,

can meet all the ISO test requirements using the CPU resource limits control knob,

and it has sufficient capability for providing RSRs.

3.8.2 Power - Resource Limits Model

Since we use the CPU resource limits as the power capping control knob, the relation

between CPU resource limits and power consumption should be studied. Figure 3·18

shows the power consumption of four PARSEC applications as a function of the CPU

resource limits. For most of the applications, power and CPU resource limits are

linearly correlated; therefore, the peak power consumption is observed at the highest

CPU resource limit. However, for applications such as Facesim, power consumption is

constant after reaching a certain amount of CPU resource, as the application cannot

continue to utilize the resource efficiently.

To capture the various relationships between power and CPU resource limits, we

monitor the overall CPU usage (in MHz) (i.e., CPUused) and the amount of CPU

resource that is not utilized because of the existing CPU resource limits on the sys-

tem (i.e., CPUready). VM statistics (i.e., CPUused and CPUready) are polled every 2

seconds using the vSphere SDK for GuestOS library. CPUready metric allows us to

capture the saturating performance effects (e.g., Facesim), as it reflects the amount

of CPU resource needed to reach the maximal performance. The CPUused value

captures the utilization levels.

We also use feedback from the power meter to update the power/CPU resource

limits models dynamically at runtime. In other words, power measurements (i.e.,

Pcon) are fed into the power-CPU resource limit model to estimate the CPU resource

103

CPUused (Ptgt −Pidle)
Pcon −Pidle

Ptgt (t) = P + y(t)R

Pcon (t −1)

y(t)

(P,R)

c	

RLcap

Figure 3·19: The overview of the runtime power capping technique.
Our technique receives input from the ISO and the VM (e.g., CPUused,
etc.) to make CPU resource limit adjustments so as to keep the power
consumption close to the current power cap.

limit that meets the power cap. We first remove the idle power consumption from

the measured total power to compute the dynamic power, Pdyn = Pcon−Pidle. In our

runtime policy, we estimate the CPU resource limit value, i.e., RLcap that meets the

given power cap by using the Eq. (3.50), where Ptgt is the power cap value. From our

experiments, the estimation error of this model is less than 5%:

RLcap(MHz) =
CPUused · (Ptgt − Pidle)

Pcon − Pidle
. (3.50)

3.8.3 Runtime Control Knobs and Policy Implementation

The goal of the runtime policy is to track the RSR signal on a virtualized server

environment. Figure 3·19 shows the overview of our implementation. Our power

capping technique receives three inputs: (1) (P̄ , R) from the optimization engine,

(2) the real-time power measurements (i.e., Pcon(t − 1)) from the power meter and

(3) CPU resource usage statistics from the VM. The output of the power capping

module is the CPU resource limit that is expected to keep the power consumption of

the server close to the current power cap Ptgt(t).

After receiving the RSR signal y(t), we derive the corresponding power cap value,

104

Power Consumption
Power Cap
CPU Limit

C
PU

 L
im

it
(M

H
z)

0

20000

Po
w

er
 (W

)

100

150

Time (s)
0 500 1000 1500 2000 2500 3000 3500

Tracking the Power Cap - streamcluster

Figure 3·20: 1-hour RSR signal power capping of Streamcluster ap-
plication by adjusting the CPU resource limits. We both show the
real power consumption and the power cap values (top figure) and the
dynamic adjustment of CPU resources (bottom figure).

i.e., Ptgt(t) = P̄ + y(t)R. We then calculate the CPU resource limit that matches

the Ptgt. After calculating the CPU resource limit, our policy communicates with

the ESXi host to reconfigure the VM CPU resource limits by using the vSphere SDK

library. We monitor the power consumption and the power cap every second, and

adjust the CPU resource limits if the average absolute tracking error over the last 2

seconds is larger than 2W.

3.8.4 Real Server RSR Signal Tracking Performance

We first investigate the homogeneous workload case. Figure 3·20 shows 1-hour long

power profile for Streamcluster application. The result shows that except for the idle

period at the very beginning, during which time we are unable to tune the power by

resource limits control knobs, our runtime policy enables our server to dynamically

track the RSR power cap accurately. The average tracking error is 18% of R including

idle period and 6% of R without considering the idle period. For the homogeneous

Blackscholes application, which is a CPU intensive workload (while Streamcluster is

a memory-intensive workload), the average tracking error is 15% of R including the

idle period and 5% without considering the idle period.

We then investigate the heterogeneous workload case, where the workload con-

105

Power Consumption
Power Cap

Po
w

er
 (W

)
100

150

Time (s)
0 500 1000 1500 2000 2500 3000 3500

Tracking the Power Cap - Heterogenous Workload Set - 1

Power Consumption
Power Cap

Po
w

er
 (W

)

100

150

Time (s)
0 500 1000 1500 2000 2500 3000 3500

Tracking the Power Cap - Heterogenous Workload Set - 2

Power Consumption
Power Cap

Idle period

Po
w

er
 (W

)

100

150

Time (s)
0 500 1000 1500 2000 2500 3000 3500

Tracking the Power Cap - Heterogenous Workload Set - 3

Figure 3·21: 1-hour power profile of the server running the heteroge-
neous workloads when we apply our proposed power capping technique.

sists of different applications. The results of the three experiments are shown in

Figure 3·21. We achieve high tracking performance for all three experiments, with

the average tracking errors as 15%, 10% and 16% of R including the idle period and

7%, 8% and 7% without considering the idle periods, respectively. Note that the

tolerance value in the ISO requirements for the tracking error is typically 20%-30%.

All the results confirm that our runtime policy is able to track the RSR signal based

power cap accurately and satisfy the tracking error tolerance in both homogeneous

and heterogeneous workload cases. This result is promising as it shows that the

success of the policy is not constrained by the workload type.

106

3.9 Energy Storage Devices (ESDs) in DR

In addition to data centers, energy storage devices (ESDs) also provide promising

opportunities in DR participation. Traditionally, large scale ESDs have been deemed

too expensive for widespread use in power systems; however this is beginning to

change. It is interesting more than ever to understand and compare the capabilities

and profits of data centers and ESDs in DR provision. Moreover, modern data centers

are designed and built with ESDs as the uninterruptible power supply (UPS) units

that are mainly for the purpose of bridging the time gap upon a utility failure, which

in fact rarely happens. We envision that accompanied with these ESDs, data centers

can provide better performance in meeting with the DR program requirements and

workload QoS constraints, leading to more energy cost savings.

To this point, it is difficult to understand which storage technologies are suited

for which market opportunities, and how much profit can be gained through par-

ticipation. This is because different energy storage technologies have very different

capabilities and constraints. In this section, we provide an overview of some potential

storage technologies and define a model that enables us to study the participation of

each ESD in various market opportunities.

3.9.1 Background on ESDs

We focus on five popular ESDs, namely, lead-acid (LA) batteries, lithium-ion (LI)

batteries, ultra/super-capacitors (UCs), flywheels (FWs), and compressed air energy

storage (CAES). In the following, we briefly highlight important characteristics of

each. The interested reader can refer to prior work (Wang et al., 2012) for more

information.

Lead-Acid (LA) batteries are widely used in daily life, e.g., in car batter-

ies. They have very low self-discharge loss rates, which make them suitable for the

107

DR programs with long durations, e.g., hours. Additionally, they have moderate

energy cost and power cost, and therefore are robust under different market scenar-

ios. However, the key disadvantage of LA batteries is the relatively small number

of charge/discharge cycles and shorter float life. LA batteries can only be used for

several thousand circles.

Lithium-Ion (LI) batteries are also widely used in our daily life, and have

similar characteristics to LA batteries. The key difference is that LI batteries have

relatively higher costs, longer lifetimes, more cycles, and higher efficiency.

Ultra/super-Capacitors (UCs) differ dramatically from LI and LA batteries.

UCs have an extremely high tolerance for frequent charging/discharging. Addition-

ally, UCs have high efficiency and power density. However, they have a high energy

cost (around $10,000/kWh) and high self-discharge rate.

Flywheels (FWs) represent a middle ground between LI/LA batteries and UCs.

Like UCs, they have high efficiency and power density, but also high energy cost and

a high self-discharge rate.

Compressed Air Energy Storage (CAES) has a very low energy cost and

self-discharge rate. However, it has a very slow ramping time (10 min vs. 1ms in the

other four ESDs). This means that it cannot adapt quickly, which limits participation

of CAES in some market programs. Additionally, it has a very low energy density

(large space needed) and a high power cost.

3.9.2 Modeling ESDs

There are two key components in modeling ESDs: costs (both of procurement and

operation) and operation constraints (self-discharging, ramping, etc.). Operation

constraints can be classified into (i) constraints imposed by the ESD technology and

(ii) constraints imposed by the DR program. Constraints of type (i) are discussed

108

here, and constraints of type (ii) are discussed in Section 3.9.3.

ESD Costs: The life span of an ESD is normally years with one-time upfront

purchase/installation cost, yet participation in a DR program can span a year, a

month, or even a day. In order to handle the mismatch in time granularity, we

amortize the upfront cost evenly over the lifespan of the ESD. Let Pcap (in kW)

and Ecap (in kWh) represent the power capacity and energy capacity of the ESD,

respectively, and CP (in $/kW) and CE (in $/kWh) are the corresponding prices.

Then the one-time upfront cost is11:

CPPcap + CEEcap. (3.51)

Two factors that need to be considered to calculate the duration of use are

the face-plate lifetime Tmax and the maximal number of charge/discharge cycles

Lcyc. Assuming the charge/discharge frequency is f , the effective duration of use

is min
{
Tmax,

Lcyc

f

}
. Since many of the DR programs clear the credits daily, we amor-

tize the cost of ESDs into daily prices, namely, for each type of ESD k, we define its

daily power and energy capacity prices as CP,d
k and CE,d

k as:

CP,dk =
CPk

min
{
Tmax,

Lcyc

fj

} , CE,dk =
CEk

min
{
Tmax,

Lcyc

fj

} , (3.52)

where fj is the frequency of the charge/discharge in program j. Therefore, the daily

amortized cost of the ESD is:

CP,d
k Pcap + CE,d

k Ecap. (3.53)

ESD Operation Constraints: Assume that at time t, the charge and discharge

rates of an ESD are r(t) and d(t), respectively. We denote the total energy stored in

the ESD at time t as e(t), and the overall power rate from the view of the system

11Other ways of calculating the upfront cost exist (e.g., the upfront cost is selected as the maximum
of the costs on power capacity and energy capacity (Wang et al., 2012)). Our method is adaptable
to such calculations, e.g., an ancillary variable can be introduced to convert the selection of the
maximum on power and energy capacities into two linear constraints.

109

level as p(t). Then we have:

e(t) = e(t− 1)− µe(t− 1) + r(t)− d(t), ∀t,

p(t) = r(t)/η − d(t), ∀t,
(3.54)

where µ is the self-discharge rate of the ESD, and η is the energy charging efficiency.

We have η < 1, as there is always amount of loss during the ESD charge process. µ

and η vary with types of ESDs. For example, UCs and FWs in general have higher

efficiency than LA and LI batteries, however, they have much higher self-discharge

rate.

The charge and discharge rates are also constrained by the charge/discharge ca-

pacities of the ESD, as follows:

0 ≤ r(t) ≤ Pcap
γ
, 0 ≤ d(t) ≤ Pcap, ∀t, (3.55)

where Pcap is the power capacity of the ESD defined before, γ is the ratio of discharge

rate to charge rate. For UCs and FWs, γ is close to 1, which means they have

almost same charge and discharge capacities, however for LA and LI batteries, γ > 1,

representing a (much) slower recharge rate.

The amount of energy that is stored in the ESD is constrained by the ESD energy

capacity Ecap. In addition, it is constrained by the Depth of Discharge (DoD), which

helps guarantee the lifetime of the equipment:

(1−DoD)Ecap ≤ e(t) ≤ Ecap, ∀t. (3.56)

Finally, though most ESDs are able to ramp up their discharge rate extremely

fast, some ESDs, e.g., CAES, cannot. Thus, we have the discharge rate ramp up

constraint:

d(t+ 1)− d(t) ≤ Pcap
T ramp

, ∀t, (3.57)

110

where T ramp is the time for ESD to ramp up the discharge rate from 0 to Pcap.

3.9.3 Market Opportunities for ESDs

In this section, we propose detailed models of ESD participation in various electric-

ity market programs, including RSR, contingency reserves, and peak shaving. We

introduce the revenue function, Revenuej that represents the revenue received from

participation in the program j, and the constraints, Constraintj that are required

by the program operator. The net profit of participation equals to Revenuej minus

the daily amortized cost of the ESD in Eq. (3.53). For each type of ESD k and each

program j, we derive the optimal selections of ESD energy and power capacities, as

well as the optimal ESD operational policy (including the amount of reserve provi-

sion, and the solution of how to dynamically charge and discharge over time, etc.)

for maximizing profit. Then we evaluate applying these ESDs with today’s typical

capacities, and conduct sensitivity analysis of the maximal net profit on the price

of reserves. Finally, we compare the benefits of these ESDs participating in each

program.

RSR Provision

We first study the capabilities and profits of different ESDs in RSR provision. Based

on the RSR market introduced in Section 2.2, a provider receives ΠR ·R revenue for

providing R (kW) amount of reserve, where ΠR is the price of the reserve. The revenue

is reduced based on the tracking error of the RSR signal, i.e., ε(t) = |p(t) − Ry(t)|,

where p(t) is the power rate defined in Eq. (3.54). Note that unlike the data center,

ESDs do not consume power themselves, thus they do not bid the average power

consumption P̄ as what the data center does. The overall daily revenue received from

RSR participation (T = 1 day) is:

111

RevenueRSR = ΠRR− c · Πε(
1

T

T∑
t=1

|p(t)−Ry(t)|), (3.58)

where Πε ≈ ΠR, c is the penalty coefficient on the tracking error.

The provider may lose the RSR contract if the constraint on signal tracking per-

formance is violated. We formulate this using a probabilistic constraint:

T∑
t=1

I{| p(t)
Ry(t)

−1|≤ρ1}
≥ ρ2T (3.59)

where ρ1 and ρ2 are parameters set by the ISO. This equation shows that the probabil-

ity of tracking error at each time t, (i.e., |p(t)−Ry(t)|) that is smaller than ρ1R|y(t)|

should be greater than or equal to ρ2. Eq. (3.59) is equivalent to Eq. (2.2) defined in

Section 2.2.

Putting Eq. (3.52) - Eq. (3.59) together, the overall optimization formulation of

ESDs in RSR provision is:

max
Ecap,Pcap,R,r,d,p,e

ΠRR− c ·Πε 1

T

T∑
t=1

|p(t)−Ry(t)| − (CP,dPcap + CE,dEcap),

s.t.

T∑
t=1

I{| p(t)
Ry(t)

−1|≤ρ1}
≥ ρ2T,

e(t) = e(t− 1)− µe(t− 1) + r(t)− d(t), ∀t ∈ [1, T],

p(t) = r(t)/η − d(t), ∀t ∈ [1, T],

0 ≤ r(t) ≤ Pcap
γ

, 0 ≤ d(t) ≤ Pcap, ∀t ∈ [1, T],

(1−DoD)Ecap ≤ e(t) ≤ Ecap, ∀t ∈ [0, T],

d(t+ 1)− d(t) ≤ Pcap
T ramp

, ∀t ∈ [1, T − 1],

Pcap ≥ 0, Ecap ≥ 0, R ≥ 0.

(3.60)

In the formulation we use r, d, p and e to denote the vectors of r(t), d(t), p(t)

and e(t), respectively. The objective function is to maximize the net profit of the

participation, recalling that the net profit equals the revenue for providing reserves

(reduced by the penalty cost on the tracking error) minus the amortized cost of ESD

112

equipment. The constraints are imposed by both the DR program (RSR here) and

the ESD technology. The decision variables of this optimization problem are:

• Power and energy capacities of the ESD, i.e., (Pcap, Ecap);

• The amount of reserve provision, i.e., R;

• r, d, p and e, which represent how the ESD is operated dynamically, i.e., the

operational policy.

Case Study

To evaluate the potential value from RSR provision, we solve the above opti-

mization formulation for the types of ESDs introduced before. We use parameters

defined by prior work (Wang et al., 2012). The RSR signal y(t) that we use is

a real 24-hour signal from PJM (PJM, 2013). Additionally, ρ1 = 0.2, c = 1 and

ΠR = Πε = $0.1/kWh based on today’s markets (Aikema et al., 2012; PJM, 2016).

The probabilistic constraint makes Eq. (3.60) not straightforward to solve. To

simplify the problem, we first study the case of ρ2 = 1, in which the probabilistic

constraint in Eq. (3.59) can be transformed to a deterministic constraint:∣∣∣∣ p(t)Ry(t)
− 1

∣∣∣∣ ≤ ρ1,∀t ∈ [1, T]. (3.61)

Heuristic solutions of ρ2 < 1 will be discussed in Section 3.9.5. Finally, the absolute

value on the tracking error in Eq. (3.60) and Eq. (3.61) leads to piecewise linear

property. We simplify the piecewise linear formulation to a linear one by introducing

ancillary variables z(t)+ and z(t)− satisfying:

|p(t)−Ry(t)| = z(t)+ + z(t)−, ∀t ∈ [1, T],

p(t)−Ry(t) = z(t)+ − z(t)−, ∀t ∈ [1, T],

z(t)+ ≥ 0, z(t)− ≥ 0, ∀t ∈ [1, T].

(3.62)

113

In this way, we convert Eq. (3.60) into a linear programming problem, and the optimal

solution can be solved.

At the current reserve price (ΠR = $0.1/kWh), the optimal solution of Eq. (3.60)

for LA, LI batteries and CAES are all P ∗cap = E∗cap = R∗ = 0, which demonstrates that

there is no net profit of LA, LI batteries or CAES to participate in RSR provision, i.e.,

the ESD cost of them is always larger than the revenue received from the provision,

no matter what the power and energy capacities are used or how they are operated

dynamically. On the other hand, there is no feasible optimal solution of Eq. (3.60)

for UCs and FWs: the net profit keeps increasing as Pcap, Ecap and R increase,

which demonstrates that the maximal net profit is large for UCs and FWs, as long

as sufficiently large power and energy capacities can be offered. This highlights that

the revenue earned by UCs and FWs from RSR is always larger than the amortized

cost of them.

We then study the sensitivity of net profit to energy, power capacities and the

amount of reserve provision. Figure 3·22(a) and Figure 3·22(b) present the optimal net

profit (the negative value represents that the cost of ESD is larger than the revenue,

hence the net profit is less than 0) for varying energy and power capacities (Ecap,

Pcap), and for LI batteries and UCs respectively, in contour plots. LA batteries have

similar results to LI batteries, and FWs are similar to UCs. From the figures, we see

that for LA/LI batteries, the net profit of participating RSR is always negative, and

the larger capacities of them are used, the higher cost there would be. On contrary,

for UCs and FWs, a larger (Ecap, Pcap) creates larger net profit. The optimal net

profit via varying amount of reserve, i.e., R, is shown in Figure 3·22(c). The net

profit of LA, LI batteries and CAES is always negative and monotonously decreases

along the increase of R, while the net profit of UCs and FWs is always larger than

0 and monotonously increases. Note that for all ESDs, providing larger R requires

114

−40000
−40000

−30000

−30000
−30000

−20000

−20000

−20000

−10000

−10000

Energy Capacity (kWh)

P
o

w
e

r
C

a
p

a
c
it
y
 (

k
W

)

0 500 1000
0

1000

2000

3000

4000

5000

(a) Profit of LI batteries ($/day).

0
0

0

0 0 0 0

1
0
0
0
0

1
0
0
0
0

10000 10000 10000

2
0
0
0
0

2
0
0
0
0

20000 20000

3
0
0
0
0

30000 30000

4
0
0
0
0

4
0
0
0
0

40000

5
0
0
0
0

5
0
0
0
0

Energy Capacity (kWh)

P
o
w

e
r

C
a
p
a
c
it
y
 (

k
W

)

0 200 400 600 800 1000
0

1

2

3

4

5
x 10

4

(b) Profit of UC ($/day).

0 500 1000 1500
−15

−10

−5

0

5
x 10

4

Amount of Reserve (kW)

N
e

t
P

ro
fi
t

($
/d

a
y
)

LA
LI
UC
FW
CAES

(c) Impacts of R on net profit.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−1e+06

−10000

−100

0

100

10000

1e+06

1e+08

Price on Reserve ($/kWh)

N
e
t
P

ro
fi
t
($

/d
a
y
)

LA

LI

UC

FW

CAES

(d) Impacts of price on net profit.

Figure 3·22: ESDs in RSR provision. (a) and (b) show the optimal
net profit via varying energy and power capacities for LI batteries and
UCs; (c) and (d) show the optimal net profit via varying amount of
reserve provision, and the varying reserve price ΠR, respectively for
various ESDs. The black dashed line in (d) shows the current ΠR.

larger ESD capacities.

The main factors that lead to such differences among ESDs are the characteristics

of these ESDs. Since the RSR signal changes rapidly (every 4 seconds) and bi-

directionally, in order to track it, RSR providers must have a large power capacity

and large charge/discharge cycles. A large energy capacity, however, is not necessary,

as the RSR signal has an average of zero over long time intervals. UCs and FWs

perfectly match these RSR characteristics: they have extremely high tolerance for

frequent charging/discharging, high efficiency and power density, and relatively low

power capacity cost, whereas under the high charge/discharge frequency in RSR, the

115

Table 3.10: A selection of today’s typical capacities of ESDs, based
on space constraints.

LA LI UC FW CAES

Pcap (kW) 1,000 1,000 20,000 10,000 20

Ecap (kWh) 250 250 250 250 250

lifetime of LA or LI batteries is shortened to less than 10 days due to the limited life

cycle, which results in great cost and thus they fail to gain any net profit from RSR

participation. CAES is even more limited due to the very large ramp up delay in

discharge and the extremely small power density.

Next we focus on the RSR participation of different ESD technologies with today’s

typical capacities. In practice, the power and energy capacities of ESDs usually have

upper bound limitations due to the restrictions of manufacturing techniques, unit

prices and space constraints. Table 3.10 lists a selection of today’s typical capacities

of different types of ESDs referring to recent work (Wang et al., 2012; McCluer

and Christin, 2008; Smith et al., 2008; Ghiassi-Farrokhfal et al., 2015), estimated

mainly based on space constraints12. The power capacity of CAES is small due to its

extremely small power density. The optimal net profit and the corresponding optimal

R∗ of these typical ESDs in RSR are listed in the 3rd row of Table 3.1213. From the

table, today’s typical UCs or FWs can provide around 6MW RSR, and gain more

than $10,000 net profit a day, which are close to the power consumption and the cost

of a data center with 10,000-20,000 servers. The cost of these typical UCs or FWs

is around $4 million, which can be paid back in less than one year by receiving RSR

credits.

12Since we take the cost and unit prices into account in the problem formulation, we do not
consider them as factors here in determining typical capacities of ESDs.

13All results listed in Table 3.12 are the optimization solutions of Eq. (3.60) when Ecap and Pcap
are given as in Table 3.10.

116

Figure 3·22(d) shows the optimal net profit via varying reserve price ΠR, for

different types of ESDs with their capacities fixed and given in Table 3.10. The black

dashed line represents where the current market reserve price is around. From the

figure, LI, LA batteries and CAES start to gain net profit (the value of the net profit

is larger than 0) when the reserve price ΠR is beyond $1/kWh.

Contingency Reserves

In ancillary markets, contingency reserves are used to respond to loss of power sup-

plies during generation or line failures. They are typically called by the market

less than once a day, and some of them are called even less than once a year. A

call typically lasts from several minutes to a few hours. Reserves that are able to

respond immediately are known as spinning reserves, whereas reserves that require

more time to respond are called non-spinning reserves. For example, NYISO provides

10-minute spinning and 10-minute non-spinning reserves. Another types of reserves,

the operating reserves, are also provided by NYISO, as supplements of other reserves.

Operating reserves have longer reaction time but also last longer, e.g., more than 30

minutes (Aikema et al., 2012). 10-minute spinning reserves have the highest price

while the price of 30-minute operating reserves is the lowest. All these prices are

significantly lower than that of RSR. Overall, due to the much lower frequency of

calls as well as the lower price of the reserves, the revenue received from contingency

reserve provision is much lower than revenue from RSR provision.

The revenue of contingency reserve provision can be modeled as:

RevenueCR = ΠCRR, (3.63)

where R is the amount of contingency reserve provision and ΠCR is the price of the

117

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−10000

−1000

−100

−10

0

10

100

1000

10000

Price on Reserves ($/kWh)

N
e
t
P

ro
fi
t
($

/d
a
y
)

LA

LI

UC

FW

CAES

Figure 3·23: The optimal net profit via varying contingency reserve
prices ΠCR for ESDs with today’s typical capacities. The black dashed
line shows the current ΠCR.

reserve. Unlike RSR, the contingency reserve provision is single directional with:

r(t) = 0, d(t) = R, ∀t ∈ [TS, TE], (3.64)

where [TS, TE] is a subset of [1, T], representing that only at some t during a day, an

ESD is used to provide contingency reserves. For the rest of the day, the ESD is not

used. When providing contingency reserves, the ESD keeps discharging at the fixed

rate as the reserve value R. In order to provide the maximal amount of reserve, an

ESD is charged to its full energy capacity before response, i.e.,

e(TS) = Ecap. (3.65)

We formulate the optimization problem for ESD in contingency reserves by putting

Eq. (3.52) - (3.57) together with Eq. (3.63) - (3.65). The objective function is to max-

imize the net profit. The decision variables are the same as those of RSR provision.

Case Study

We focus on the 10-minute spinning reserve as an example of contingency reserves,

118

as it is expected to have the highest revenue. ΠCR = $0.025/kW is selected for the 10-

minute spinning reserve based on today’s market information (Aikema et al., 2012).

We assume the 10-minute spinning reserve is called once a day in our case, and

TE − TS = 10min.

The optimal solution for all five ESDs in contingency reserve provision is: P ∗cap =

E∗cap = R∗ = 0, which shows that none of five ESDs gain net profit by only providing

contingency reserves at today’s market reserve price, no matter what the power and

energy capacities are used, and how they are operated. The larger the capacities

(Ecap, Pcap) are used, the more reserves R that the ESDs can provide, however, as

well as the higher the cost of ESDs would be, and the cost is always larger than the

revenue from providing R.

The 4th row in Table 3.12 shows results of maximal net profit of contingency

reserve provision and corresponding amount of reserve provided for today’s typical

ESD capacities, i.e., (Ecap, Pcap) given from Table 3.10. It highlights that none of

today’s typical ESDs earn profit from contingency reserves at today’s reserve prices.

Contingency reserves are demanding in terms of energy capacity (as opposed to power

capacity), though the power capacity cannot be too low either. From the table, LA

and LI batteries perform better than UCs and FWs, because of their lower price on

energy capacity and relatively low self-discharge rate, but are still not sufficient to be

profitable. Figure 3·23 presents the optimal net profit via varying reserve prices ΠCR

for different ESDs. LI and LA batteries start to gain profit when the price is close to

$1/kWh, whereas the critical points of CAES, UCs and FWs are around $5-8/kWh.

Peak Shaving

The electricity bill charged monthly by utilities to large commercial and industrial

power consumers, i.e., the operational expenditure (op-ex), typically consists of two

119

parts: (i) the energy charge and (ii) the charge for the peak power during the month.

The peak power is the maximum in the month of average power over each 15-30 min-

utes duration. The price of the peak power (i.e., the op-ex peak power price) is around

$12/kW/Month currently. The one-time cost of building power infrastructure to pro-

vide capacities to satisfy the peak power requirements, i.e., the capital expenditure

(cap-ex), is around $10-20/W on peak power based on current estimates (Wang et al.,

2012). Thus, cutting peak power is an important way to reduce costs. This approach,

termed peak shaving, is common and ESD provides a key method for implementation.

When participating in peak shaving, an ESD that shaves R amount of power from

the peak power can gain revenue:

RevenuePS = ΠPSR, (3.66)

where ΠPS is the overall price on shaved power, i.e., the summation of the amortized

capital (cap-ex) price and operational (op-ex) peak power price. The peak shaving

constraints in formulation, i.e., ConstraintPS are:

0 ≤ s(t) + p(t) ≤ max
(
s(t)
)
−R, ∀t ∈ [1, T],

e(0) = e(T),
(3.67)

where s(t) is the power curve before peak shaving, and max(s(t)) is the original

peak power. p(t) is the power change rate from the view of system level. s(t) + p(t)

is the new power curve after peak shaving, and max
(
p(t)

)
− R is the new peak

power. e(0) = e(T) represents that energy stored in the ESD is kept the same at the

beginning and in the end of the time frame (in our study T = 1 day). We formulate

the optimization problem for ESD in peak shaving by putting Eq. (3.52) - (3.57)

together with Eq. (3.66) - (3.67). The objective goal is to maximize the net profit

and the decision variables are the same as those in RSR provision.

120

Table 3.11: Optimal solutions for ESDs in peak shaving.

LA LI UC FW CAES

P ∗cap (kW) 1.30 ∗ 103 769.19 148.39 147.85 645.36

E∗cap (kWh) 2.15 ∗ 103 2.40 ∗ 103 29.82 29.93 1.83 ∗ 103

Profit ($/day) 607.40 592.57 326.68 354.08 933.94

R∗(kW) 377.75 399.04 148.39 147.85 388.80

Case Study

We generate s(t) from a real HP workload trace collected from a data center

that consists of 5,000 servers. The peak power of this trace is 1MW, commonly seen

in today’s mid-size data center, and matches with the typical capacities of ESDs.

Figure 3·24(a) is an example of s(t) in a day.

Unlike the optimal solution of RSR or contingency reserve provision that is either

0 or maximal capacity allowed (i.e., no feasible optimal solution), the optimal solution

of peak shaving could be in between. Table 3.11 lists the optimal solutions of different

ESDs for peak shaving of the power trace s(t) shown in Figure 3·24(a). All these

optimal solutions lead to positive net profit. CAES has the maximal optimal net

profit, though the corresponding capacities in the optimal solution are unrealistic due

to its extremely small power and energy densities. LA and LI batteries have larger

optimal net profit than UCs and FWs, though UCs and FWs can gain promising

profit with very small capacities.

Figure 3·24(b) to 3·24(d) show the optimal net profit for varying energy and power

capacities (Ecap, Pcap) in peak shaving, for LI batteries, UC and CAES, respectively.

These contour plots present where the optimal solution for each ESD is located.

Figure 3·24(b) also shows that LI batteries can gain profit from peak shaving in most

cases, except when the power capacity is very small. In Figure 3·24(c), the profit of

121

0 5 10 15 20 25
200

400

600

800

1000

Time (hour)

P
o
w

e
r

(k
W

)

(a) 1-day power trace.

−200

0
0

0

0
0

2
0
0

2
0
0

2
0
0

200 200
200

4
0
0

4
0
0

400 400
400

4
0
0

4
0
0

Energy Capacity (kWh)

P
o

w
e

r
C

a
p

a
c
it
y
 (

k
W

)

0 1000 2000 3000 4000
0

500

1000

1500

2000

(b) Profit of LI batteries
($/day).

−800

−800

−
4
0
0

−400

−400

−400

−400 −400

0
0

0

0
00

Energy Capacity (kWh)

P
o
w

e
r

C
a
p
a
c
it
y
 (

k
W

)

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3
x 10

4

(c) Profit of UC ($/day).

0
0

0

0 0 0 0

2
0
0

2
0
0

2
0
0

200 200 200

4
0
0

4
0
0

400 400 400

6
0
0

6
0
0

600 600 600

8
0
0

800 800 800

800

Energy Capacity (kWh)

P
o

w
e

r
C

a
p

a
c
it
y
 (

k
W

)

0 1000 2000 3000 4000 5000
0

500

1000

1500

(d) Profit of CAES ($/day).

0 50 100 150

−500

0

500

1000

1500

Op−ex Price on Peak Power ($/KW)

N
e

t
P

ro
fi
t

($
/d

a
y
)

LA

LI

UC

FW

CAES

(e) Impact of op-ex price on
profit.

0 10 20 30 40 50
−1000

−500

0

500

1000

1500

2000

2500

Cap−ex Price on Peak Power ($/W)

N
e
t
P

ro
fi
t
($

/d
a
y
)

LA

LI

UC

FW

CAES

(f) Impact of cap-ex price on
profit.

Figure 3·24: ESDs in peak shaving. (a) is an example of the daily
power curve before peak shaving; (b) (c) and (d) are the optimal net
profit via varying energy and power capacities (Ecap, Pcap), for LI bat-
teries, UCs and CAES respectively; (e) and (f) are the optimal net
profit via varying cap-ex and op-ex peak power prices respectively for
multiple ESDs. The black dash lines show where the current market
prices are around.

UCs is larger than 0 only when both power and energy capacities are small, which

shows that the marginal increase of the credit received from peak shaving by enlarging

UC capacities is smaller than the increase in UC capacity cost. In Figure 3·24(d),

CAES is always able to gain profit in peak shaving though large profit is not practical

due to the limitations of power and energy densities.

Next, considering today’s typical ESD capacities in peak shaving, the last row in

Table 3.12 shows the optimal net profit and the corresponding optimal shaved power

R∗ of ESDs with typical capacities in Table 3.10, and under today’s cap-ex and op-ex

122

market prices. From the table, UCs and FWs fail to gain net profit, whereas LA, LI

batteries and CAES earn net profit around $300-400 per day.

Figure 3·24(e) and Figure 3·24(f) presents the optimal net profit of peak shaving

for multiple ESDs, via varying op-ex and cap-ex peak power prices, respectively. The

black dashed lines show where the current market prices are around. Note that in

Figure 3·24(e), the cap-ex price is fixed at $10/W, while in Figure 3·24(f) the op-ex

price is fixed at $12/kW/Month (both of them are current prices). Figure 3·24(e)

illustrates that CAES, LI, and LA batteries gain net profit (larger than 0) under

most cases including the current situation, while UCs and FWs need much higher

op-ex price to gain net profit. Similar results hold for cap-ex price in Figure 3·24(f).

The peak shaving results presented here can be generalized to any scenario as long

as its power trace has a similar pattern to Figure 3·24(a). This pattern is common in

many scenarios (Wang et al., 2012), such as, weekday power consumption of offices,

buildings and industries, power consumption of many types of data centers, e.g.,

data centers handling search workload (e.g., Google), communication workload (e.g.,

MSN), commercial and financial workload (e.g., stock exchange), etc.

3.9.4 Discussion

We provide the optimal net profit of each ESD technology across the programs in

Table 3.12 for today’s typical capacities and market reserve prices. From the table,

LA, LI batteries and CAES gain profit from peak shaving, whereas UCs and FWs

gain profit from RSR provision. None of them gain profit from contingency reserve

provision, due to its low price and low calling frequency. The maximal profit earned

from emerging RSR provision (by today’s typical UCs or FWs) is up to 30 times of

the maximal profit that can be earned from traditional peak shaving program (by LA

or LI batteries), which shows that there is a great opportunity for an ESD to gain

123

Table 3.12: Comparing the optimal net profit of multiple types of
ESDs (with Ecap, Pcap listed in Table 3.10) in participating different
DR programs.

LA LI UC FW CAES

Profit R∗ Profit R∗ Profit R∗ Profit R∗ Profit R∗

RSR -16.4k 0.17 -11.1k 0.29 13.0k 5.95 10.3k 5.94 -0.3k 0.004

CR -0.12k 1.00 -0.10k 1.00 -1.02k 1.50 -0.85k 1.49 -0.006k 0.02

PS 0.41k 0.20 0.44k 0.20 - 0.46k 0.21 -0.31k 0.20 0.31k 0.13

athe unit of profit and R∗ in table are $/day and MW.
bCR: contingency reserve; PS: peak shaving.

significant profit from RSR provision in today’s ancillary market. For providing RSR,

UCs and FWs are the best choices due to their extremely high tolerance for frequent

charging/discharging, high efficiency and power density, and relatively low power

capacity cost, while LA, LI batteries and CAES are better choices for peak shaving,

or contingency reserves (though are not profitable), because of their relatively lower

cost on energy capacity and lower self-discharge rate.

3.9.5 Managing Participation of ESDs in RSR

Given the potential profitability of ESD participation in RSR provision, we now

focus on the design of policies to enable this participation in practice. There are

many challenges involved in such participation. For example, the provider is required

to track an RSR signal that varies rapidly, bi-directionally, and is not known ahead

of time. In addition, the revenue is deducted by tracking error, which creates a

trade-off between reserve maximizing and signal tracking. In this section, we start

by developing offline optimal solutions (assuming the RSR signal is known a priori),

and then design practical online policies, in which the RSR signal is not known in

advance.

124

Offline policies for RSR

In Section 3.9.3, we introduce the offline optimal solution in the case when ρ2 =

1 in Eq. (3.59). ρ2 = 1 simplifies the probabilistic constraint in Eq. (3.59) to a

deterministic constraint in Eq. (3.61). However, normally ρ2 < 1 in practice, i.e.,

some violations of signal tracking are tolerable, which makes the optimization problem

challenging.

Policy overview

In this section, we propose three heuristic offline solutions to handle the proba-

bilistic constraint in Eq. (3.59) when ρ2 < 1. The key idea behind these solutions is to

determine when the signal should be tracked within the tolerance ρ1 (i.e., satisfying

Eq. (3.61)), and when the tolerance can be violated. Three solutions are as follows:

RandSelect: Randomly select ρ2T time intervals in [1, T] to satisfy Eq. (3.61).

MinCapSelect: Select ρ2T time intervals in [1, T] with smallest |y(t)| to satisfy

Eq. (3.61). This design is based on the fact that tracking RSR signal at the time

interval t with larger |y(t)| requires larger power capacity.

FixIntSelect: Equally distribute T−ρ2T time intervals that are allowed to violate

the Eq. (3.61) in [1, T]. This is for the purpose of enabling the policy to adjust amount

of energy stored in ESDs freely (no needs to obey the tracking constraint) once a while.

Case study

Figure 3·25 shows the optimal RSR revenue solved based on Eq. (3.60) with three

proposed offline methods via varying ρ2, for LI batteries and UCs with typical ca-

pacities listed in Table 3.10, respectively. ρ1 is fixed at 0.2, as in Section 3.9.3. Note

that since we use the typical capacities in all cases, the cost of ESD is fixed. Thus, it

is equivalent to make comparisons of these three methods based on either the RSR

revenue, i.e., RevenueRS or the net profit used in the objective function of Eq. (3.60).

In the figure, all the revenues are normalized by the revenue at ρ2 = 1.

125

0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

ρ
2

R
S

R
 R

e
v
e
n

u
e
 (

N
o

rm
a
li
z
e
d

)

MinCap

FixInt

Rand

(a)

0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

ρ
2

R
S

R
 R

e
v
e
n

u
e
 (

N
o

rm
a
li
z
e
d

)

MinCap

FixInt

Rand

(b)

Figure 3·25: The revenue of providing RSR via varying ρ2, for LI
batteries (in (a)) and UCs (in (b)), with three heuristic offline solutions,
respectively. The revenue is normalized to the value of ρ2 = 1.

From Figure 3·25(a), MinCapSelect always achieves largest revenue for LI batteries

when ρ2 varies. The charge/discharge capacity, i.e., the power capacity is the main

bottleneck for LI batteries to offer more reserves, while MinCapSelect can help reduce

the requirement on power capacity by only tracking small |y(t)| and giving up tracking

large |y(t)|, hence enabling LI batteries to provide additional reserves. The results

for UCs, however, are different. The power capacity is no longer the bottleneck, as

today’s typical UCs have much stronger power capacity compared to their energy

capacity. As a consequence, energy capacity turns out to be the bottleneck. In that

case, MinCapSelect does not help, and is even worse than the random algorithm

RandSelect. A solution that is able to utilize the limited energy capacity in a more

efficient way can provide more reserves and earn higher revenue. FixIntSelect becomes

a better solution shown in Figure 3·25(b), because it uniformly distributes time points

when the tracking constraint is allowed to be violated across the whole time frame,

so that the amount of energy stored in ESDs (e.g., UCs) can be adjusted periodically.

Figure 3·25 also shows that the optimal revenue increases when ρ2 decreases. Relaxing

the signal tracking constraint by decreasing ρ2 in general offers more flexibility for

ESDs in RSR provision, and therefore, enables them to gain larger profit.

126

Online policies for RSR

Prior offline solutions are based on the fact that RSR signal is known a priori, which

is, however, not for the real case in practice. RSR signal is broadcast to demand

side every few seconds in real time. In this section, we propose heuristic online ESD

operational policies for RSR participation, where no information on the RSR signal is

required in advance. In a practical scenario, the online policies handle the following

problems: given the types and capacities of the ESD (i.e., assuming the ESD has been

setup), how much reserve should be provided and how the ESD should be operated

so that higher revenue from RSR participation can be gained and the feasibility of

the participation can be guaranteed.

Policy overview

As discussed before, MinCapSelect provides the highest revenue for ESDs such as

LI and LA batteries in the offline solution. Hence we design the online operational

policy for LI and LA batteries based on the MinCapSelect solution, as follows:

Initialization: we calculate two thresholds θ0 and θ1, based on the requirement

input (ρ1, ρ2) from the market operator introduced before, and the historical data of

RSR signal yH(t), such that:

Prob{|yH(t)| ≤ θ0} = ρ2,

θ1 = (1− ρ1)θ0.

Real-time Operation: at each time t, assuming the RSR signal value is yr(t),

we determine the power rate p(t) by:

1. If |yr(t)| < θ1: we set p(t) = yr(t), i.e., accurately track the signal;

2. If θ0 ≥ |yr(t)| ≥ θ1: we set p(t) = θ1sign(yr(t)), i.e., cap the power rate p(t) at

θ1;

127

3. If |yr(t)| > θ0: we no longer track the signal, instead, we set p(t) to adjust the

current amount of energy stored, i.e., e(t) back to a middle level eM = DoD·Ecap

2(1−µ)

for future use (recall that µ is the self discharge rate);

4. Check and cap p(t) and e(t) based on power and energy capacity (Pcap, Ecap)

constraints of the ESD.

An advanced algorithm could be updating θ0 and θ1 adaptively and dynamically

in real time based on tracking performance feedback.

For ESDs such as UCs and FWs, the FixIntSelect solution offers the highest rev-

enue from the previous study of the offline solution. Therefore, we propose the online

operational policy for UCs and FWs based on the FixIntSelect solution, as follows:

Initialization: we calculate the intervals that adjust the stored energy in the

ESD based on the input ρ2: Tint = d 1
1−ρ2 e, i.e., we adjust the stored energy every Tint

time interval. In addition, we set θ1 = 1− ρ1;

Real-time Operation: at each time t, assuming the RSR signal value is yr(t),

we determine the power rate p(t) by:

1. Every t = Tint, we set p(t) to adjust the current amount of energy stored, i.e.,

e(t) back to middle level eM = DoD·Ecap

2(1−µ)
;

2. For t 6= Tint, if |yr(t)| < θ1: we set p(t) = yr(t), i.e., accurately track the signal;

3. For t 6= Tint, if |yr(t)| ≥ θ1: we set p(t) = θ1sign(yr(t)), i.e., cap the power rate

p(t) at θ1;

4. Check and cap p(t) and e(t) based on power and energy capacity (Pcap, Ecap)

constraints of the ESD.

Another essential issue in an online policy is the determination of the amount of

reserve to provide, i.e. Ronl. Unlike the offline solution, in which the RSR signal is

128

known ahead, thus an optimal R can be calculated directly from the optimization

formulation, the Ronl for the online policies is required to be carefully estimated. We

propose an approach to learn Ronl from historical offline solutions, as Ronl = αRmin,

where Rmin is the minimum of the offline optimal R in the past 12 hours (the signal has

been known in those hours, so offline optimal R can be calculated), α is a discount

value. We use Rmin and select α to avoid aggressive estimation of Ronl, and to

guarantee feasibility of our policies. We select α = 90% for LI batteries and α = 75%

for UCs, because LI batteries have more stable results, much smaller provision and

are less sensitive to variations of ρ2 than UCs shown in Section 3.9.5.

Case study

An aggressive claim of Ronl may lead to failure in reserve provisioning (i.e., con-

straints are violated) during the real-time operation, due to the limitations of ESD

capacities. Hence, we first evaluate the feasibility of our online policies. We test the

feasibility of our policies in the last 12 hours of a 1-day RSR signal. Each hour is

a test case. In each test, we first calculate Ronl based on the offline optimal R in

previous 12 hours as proposed, and then simulate the online policies to check whether

all constraints are satisfied during the test hour. We also evaluate the policies with

different ρ2. Our results show that these safely estimated Ronl together with our

policies satisfy all constraints and thus are feasible solutions in all test cases, for both

LI batteries and UCs.

Then we compare the RSR revenue of our online policies to the offline solutions

in Figure 3·26, via varying ρ2. For offline solutions, MinCapSelect is selected for LI

batteries, and FixIntSelect is selected for UCs, as they perform the best for LI batteries

and UCs respectively shown in Figure 3·25, and our online policies are designed based

on them. All results in Figure 3·26 are normalized to the offline solution of ρ2 = 1.

From the figure, the proposed online solutions still receive promising revenues, though

129

0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

ρ
2

R
S

R
 R

e
v
e
n

u
e
 (

N
o

rm
a
li
z
e
d

)

Offline

Online

(a)

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

ρ
2

R
S

R
 R

e
v
e
n

u
e
 (

N
o

rm
a
li
z
e
d

)

Offline

Online

(b)

Figure 3·26: The revenue of providing RSR via varying ρ2, for LI
batteries (in (a)) and UCs (in (b)), respectively, with offline and online
solutions. The revenue is normalized to the value of ρ2 = 1 in the offline
solution.

there are (as expected) noticeable gaps compared to offline solutions, due to the lack

of RSR signal information, and the safe estimation of the reserve value Ronl. More

importantly, however, the feasibility of such online policies is guaranteed with high

confidence. There is the following tradeoff: an aggressive online policy may bring the

revenue close to the optimal offline solution, while the real-time feasibility of such

solution decreases at the same time.

3.9.6 Comparison of Data Centers with ESDs in RSR Provision

So far we have evaluated both data centers and ESDs in RSR provision. In this

section, we make comparison between them. In Table 3.13, we fix the data center

size and utilization at 10,000 and 50%, and study the capacities and costs that are

required for different types of ESDs in order to provide the same amount of reserve as

the data center could. Based on prior sections, a data center with 10,000 servers at a

50% utilization is able to provide around 550 kW RSRs to power market. Table 3.13

lists the power, energy capacities, the overall one-time upfront costs and the lifetime of

different types of ESDs for the 550 kW RSR provision. From the table, the purchasing

130

Table 3.13: Capacities and costs of ESDs in provision of 550 kW RSR.

LA LI UC FW

Pcap (kW) 2.64 · 103 1.50 · 103 400.58 396.00

Ecap (kWh) 30.94 30.56 31.85 24.24

Cost ($) 0.34 M 0.28 M 0.36 M 0.22 M

Lifetime (days) 10 26 5208 1042

cost of such ESDs is close to million dollars no matter what type of the ESD is selected.

Moreover, the lifetime of common LA and LI batteries is shorter than a month in such

RSR provision; in other words, these batteries are required to be replaced more than

once a month, leading to tremendous costs. Overall, the comparison demonstrates

that data centers can efficiently act as large-scale storage equipment in RSR provision

and contribute to the power grid stabilization. Using them instead of expensive ESDs,

significant amounts of monetary cost can be saved.

3.10 Summary

In this chapter, we have studied the capabilities and profits of data center participa-

tion in smart grid DR programs, especially the RSR provision. We have first modeled

the data center participation in DR and RSR by introducing the detailed models of

servers, clusters, workloads and their SLAs, and the overall computational units, etc.

We have then proposed and evaluated three different types of runtime policies for

RSR provision, i.e., the best tracking policy, the stochastic DP policy, and the En-

ergyQARE policy, to modulate the data center power consumption in response to

the ISO request in different scenarios, by leveraging advanced power capping and

budgeting techniques, various available server power states and server provisioning,

and the workload arrangement. Along with runtime policies, we have also formulated

131

optimization problems to determine the optimal energy and reserve bidding strate-

gies in RSR provision that minimize the data center energy monetary cost, while

satisfying the constraints from ISO requirements and workload SLAs. We have then

evaluated the performance and the energy cost savings of RSR provision in different

data center scenarios, and also made heuristic comparisons of its savings to other

energy cost saving strategies. Results have demonstrated that a data center in typi-

cal scenario can achieve up to 44% monetary savings by providing RSRs, surpassing

most of traditional energy saving strategies. We have then studied the real design

and implementation of our proposed runtime policies and bidding strategies for data

center RSR provision on a real system - a real multi-core server, which offers guidance

for the future deployment of the proposed techniques onto real-life large scale data

centers.

In addition to data centers, ESDs are widely studied candidates in participating

DR programs. In order to compare data centers to large scale ESDs in DR, and under-

stand how ESDs are able to assist data centers in further improving the capabilities

and benefits of DR participation, we have introduced detailed models, evaluated and

optimized the profit of various ESD technologies in not only legacy, but also emerging

DR programs, and proposed detailed reserve value and capacity planning, as well as

online ESD operational policies. Highlighted results have shown that UCs and FWs

are most beneficial ESDs for RSR provision. A typical 10,000-server data center can

act as million dollar level ESDs in RSR provision.

132

Chapter 4

Open Problems in Data Center DR

In this chapter, we introduce the open problems of data center participating in DR

programs, especially the RSR provision. We propose three main directions: (1) op-

timize the proposed algorithms and policies of data center RSR provision with both

numerical and analytical methods; (2) enable data center DR participation together

with ESDs; (3) implement the DR participation on real-life data center clusters. In

the following subsections, we discuss each of these directions in detail.

4.1 Optimization with Numerical and Analytical Methods

We have proposed three runtime policies for data center RSR provision. Among

them, the best tracking and the EnergyQARE runtime policies handle general and

practical scenarios in data centers by considering different server power states, the

time delay and energy loss during the transition, power budgeting and workload

arrangement, etc. All these factors coming together make it complex and challenging

to seek optimal solutions. Both the best tracking and the EnergyQARE policies

are heuristic solutions, though they are sufficiently effective. Furthermore, these two

policies simply take the current instantaneous value of the RSR signal as the goal

for tracking, and do not consider the statistical information of the signal in decision

making. Understanding and leveraging the statistical information of the signal could

help further improve the performance of the policies.

The stochastic DP policy, on the other hand, is an optimal stochastic policy and

133

considers the statistical characteristics of the RSR signal. However, it assumes a

simplified model of the data center that does not consider different server power

states, the transitions among them, or workload heterogeneity.

Designing a generalized stochastic optimal policy by considering all the accessi-

ble information and possible control actions in data centers is an interesting open

problem. For example, the current optimal stochastic DP policy can be extended by

accounting for multiple server operating modes, and pursuing the characterization of

optimal switching control policies, i.e., binary level control, in addition to the cur-

rently deployed continuous power consumption rate control. Workload prediction can

be also integrated into the solution to further improve the performance of the policies.

In addition, we have solved the energy and reserve bidding problem optimally, i.e.,

(P̄ , R) mainly through simulation and exhaustive search. A future research direction

could be investigating more efficient solutions in determining (P̄ , R). For example,

the sensitivities of the statistics of the QoS degradation and the signal tracking error

can be estimated with respect to (P̄ , R). Then these sensitivities can be applied to

construct a more structured search for the optimal bid.

Some other control methods can be applied to search for efficient policies, e.g.,

model predictive control (MPC) (Camacho and Alba, 2013). Differing from the

stochastic DP methods that mainly use infinite horizons, MPC uses finite (and usu-

ally short) horizons, and adaptively updates the actions based on state observations

in the finite horizon. Compared with stochastic DP, MPC is more suitable for online

solutions as it requires less computation and is much faster due to the usage of the

short horizon. It is also shown that in some cases, the performance of MPC can be

close to the performance of stochastic DP though only finite horizon is utilized.

One can use the RSR signal y(t) as the reference signal in MPC, which can be

predicted in short-term based on its statistics. The models, states and controls can

134

be derived similarly as the way in stochastic DP. The constraints of the MPC are

composed of the workload SLAs and the signal tracking requirements.

Another interesting direction is to search for analytical solutions for the problem.

Currently we mainly use numerical methods1, as it is highly challenging to find out

analytical solutions for such a complex problem. Specifically, first, the controls are

a mixture of a continuous knob (server dynamic power management) and several

discrete knobs (different server power states, workload allocation, etc.). Both the

service rate of each server and the number of active servers are tunable. As a result,

none of widely studied queuing models (e.g., M/D/c. M/M/c, M/G/k, etc.) are

directly applicable to our problem. Second, the states not only include signal y(t)

and its direction d(t), but also include the workload QoS, which has obscure relation

to the controls that cannot be simply characterized from analytical methods. Third,

both the SLAs and the signal tracking constraints are formulated in the probabilistic

forms, which makes it even more difficult to find an analytical solution.

Some analytical solutions are achievable if the problem is simplified with a few

of assumptions. For example, if we assume that the number of servers is fixed, i.e.,

the only control is the service rate of each server, and we assume queue length based

SLAs rather than the system time based ones, then well-studied queuing models can

be applied, and analytical solutions can be possibly deduced. Analytical methods

are much faster than numerical methods in general, which can be used to provide

guidance in searching for slower but more effective numerical solutions.

4.2 DR Participation by Data Centers with ESDs

Today, data center infrastructures are designed associated with ESDs as the UPS,

mainly for the purpose of bridging the time gap upon a utility failure. However,

1In fact, we have applied several analytical methods in our numerical solutions, e.g., we apply
Little’s Law in estimating the number of servers required dynamically in EnergyQARE.

135

these ESDs are rarely used for this purpose, and usually become active for only a few

seconds when in use (Govindan et al., 2011). We believe that these mostly free ESDs

can be utilized to further improve the capabilities and profits of data center in RSR

provision. A future direction is to design operational policies by leveraging both data

centers and ESDs together in RSR provision.

ESDs are able to assist data center in solving many issues in RSR provision. For

example, from our current results of data-center-only-based RSR provision, we notice

that in a number of time slots, the data center real power is much lower than the RSR

signal power cap due to the lack of sufficient jobs in the system, in which scenario

many servers can only be in either idle or sleep state with low and not tunable power

rate. This issue can be solved by charging the additional power to ESDs. Another

frequently appeared issue is when the RSR signal is low and the power budget is

insufficient, either signal tracking performance or workload QoS is reduced. For this

case, the stored power in ESDs can be discharged to support the workload servicing,

which eliminates the performance degradation. Overall, ESDs provide additional

flexibility for data center DR participation.

4.3 Real-life Implementation of DR on Data Centers

Being able to demonstrate the capabilities and benefits of DR, i.e., RSR provision

on the real-life data center clusters can have significant impacts on industrial society.

This dissertation has introduced the initial study on the RSR provision with a single

multi-core virtualized server by CPU resource limits. The next step is to extend

the technology onto a data center with multiple servers. Here we propose a simple

example of the implementation.

Based on the structure proposed in Figure 3·2, we introduce master (i.e., the

central controller) and slave nodes (servers in clusters). The communication proto-

136

Figure 4·1: The communication between the master and slave nodes.

cols between the master node and slave nodes are designed in Figure 4·1. We use

the RabbitMQ (RabbitMQ, nd), a lightweight message passing tool to send and re-

ceive information between the master and slave nodes. In implementation, all the

optimization and decision making are conducted by the master node. The DR re-

quirements and the workload arrival information are sent to the master node as well.

Slave nodes are only job runners that serve jobs at the power arranged by the master

node. They leverage server level power controls, such as DVFS (David et al., 2010),

threads packing (Reda et al., 2012), etc., to meet with the assigned power cap. At

each time interval t, the communication between the master and slave nodes consists

the following two steps:

• Step 1: slaves to master. Slave nodes first update their state information

to the master node. The information includes: (a) the server state: “active”

137

or “idle”. Especially, if the server just finishes a job, then the finishing time is

recorded, and (b) the real server power value measured by the monitoring tool.

Note that slave servers that are in sleep, turned off or in transition states do

not send out information. The master node directly monitors servers in these

states on its side;

• Step 2: master to slaves. Once the master node receives the state informa-

tion from slave nodes, the optimization and runtime policy engine in the master

node determines the control actions, and sends the action information to slave

nodes. The information includes: (a) the job ID for an idle server to run (if the

server is not idle, by default it keeps running the current job). The starting time

is also recorded for the newly arranged job, and (b) the power rate at which

each active server should run its job.

138

Chapter 5

Software and System Discovery in Data

Center Cloud

5.1 Overview

Cloud computing promises the delivery of on-demand computing resources as a utility

that can be used as needed. This promise has led to a revolution in IT technologies

causing a rapid transfer of services to the cloud (Wei et al., 2014). Regardless of

whether a cloud operator uses bare metal computers, virtual machines (VMs), or

containers to create computing facilities, basic questions remain the same: are these

facilities free of any vulnerabilities, configured correctly, and can they avoid drifting

from acceptable configuration states? New service automation and DevOps work-

flows have attempted to address the system drift problems by proposing the use of

immutable architectures and tightly structuring software lifecycle into development,

build, deployment and operations phases. However, current agile iteration princi-

ples that promote continuous development and improvement, and the fast pace of

changes in underlying systems and software, counteract some of these benefits. Vari-

ability across systems in cloud environments remains a persistent problem. Therefore,

discovering potential misconfiguration and vulnerability issues in a timely manner is

elusive.

An effective solution to figure out system vulnerabilities and drifts is to monitor,

check and analyze each change made to a system since it is booted. To understand

139

what the system changes are about, one can dig out information from historical user or

system logs. However, log data is usually too massive to be mined fast and accurately.

It is also very inefficient to always keep a huge chunk of logs in storage. On the other

hand, to determine if a system change includes software with known vulnerabilities,

one can consult the package repository in the system and cross-check that information

against, for example, National Vulnerability Database (NIST, nd). However, a vendor

could issue a fix pack that fixes a known vulnerability without changing the package

version. Sometimes vendors could back-port fixes into packages that have reached

end of their life cycle. In both cases, a single package name links to several different

versions of packages: some of them are vulnerable while others are not. Furthermore,

users could install software from sources without using package managers. Simply

using logs, package managers and repositories fails to discover vulnerabilities in all

these scenarios.

Manually written rules that check for the existence of certain indicative features

such as the existence of certain files, configuration parameters are used in addition to

consulting package repositories in the system (IBM, 2012; OpenLogic, nd; OpenIOC,

nd). While these rules are sufficient to detect the presence of software for license

purposes, they are not capable of discriminating between a vulnerable package, and

one that includes a fix for it. Furthermore, approaches based on such rules are fragile

and require constant maintenance, indicating a substantial amount of manual effort.

A great amount of todays software gets released multiple times a week, and most of

systems change everyday. Rule-based approaches have difficulties in keeping up with

the pace of software and system changes.

Alternative methodologies that build inverted indexes of file tree structures to

enable keyword-based searching for software discovery are mostly useful in scenarios

where users have a deep understanding of the underlying file/process structures as-

140

sociated with the software they are searching for and can produce specific keywords

to query (Dikaiakos et al., 2012). However, as file names can be repetitive, uninfor-

mative, and misleading, the results of such systems are useful in narrowing down the

search space but are not conclusive or comprehensive.

In this chapter, we introduce an automated cloud analytics solution, i.e., “dis-

covery by example”, which generates fingerprints of changes in system state, and

utilizes these fingerprints in a machine learning platform to perform system change

discovery and management. We first propose multiple novel feature extraction meth-

ods to generate condensed fingerprints from the comprehensive metadata associated

with the system change events. Our fingerprinting methodologies mostly focus on

the file system features, and tend to represent changes in system state in a compact

form. They can learn the hidden context behind filenames, and represent them with

vectors utilizing the file tree structure and/or file co-location information to capture

the semantic relationships of files. Using these fingerprints, we build an adaptive

knowledge base that enables fast comparison of system state changes with previously

labeled changes. More specifically, we learn the discovery model from the knowledge

base with learning algorithms and then predict the new-coming system changes by

the model. We then conduct experiments mainly based on system changes caused by

software installation. Typical system changes include: software installations, updates,

system reconfigurations and process executions. Among them, software installation is

one of the most significant factors causing system changes (Bohner, 1996). Note that,

our approach, however, is applicable for discovery of system changes caused by any

of the above listed factors, as the procedure of the discovery remains essentially the

same and is independent of the reasons of the changes. We evaluate several machine

learning algorithms as part of the proposed discovery and identification framework

on our knowledge base. We show that our mechanism can be utilized for fast (in a

141

few milliseconds or seconds) and accurate (up to 98.75%) software and system change

discovery.

The chapter is organized as follows: Section 5.2 surveys the related work. Sec-

tion 5.3 introduces the overall framework of the change set creation, training and

discovery phases. Then we introduce the change set creation phase in detail in Sec-

tion 5.4, in which we define what a change set is and how it is created. After that, we

study the training phase in Section 5.5. We propose multiple fingerprinting method-

ologies to capture the extensive information stored in change sets in a compact form,

followed by presenting various learning algorithms that we utilize for training the

model. Section 5.6 first briefly introduces the system change discovery phase and

the experimental methodology, then analyzes and discusses on the performance of

our discovery framework. Section 5.7 summarizes this chapter and proposes the open

problems.

5.2 Related Work

Standard system management and system change discovery mechanisms employed

industrially today are mainly rule-based solutions that utilize large sets of manually

written rules to check the existence of certain indicative properties, such as the ex-

istence of certain files. OpenIOC (OpenIOC, nd) is one such open framework that

uses rules to examine registry, file content and metadata information to determine

security vulnerabilities. BigFix (IBM, 2012) is a commercial offering that uses rules

to scan systems and applies fixes automatically based on scan results. Rule-based

approaches, however, are labor intensive as each new system or software requires

a new set of rules, requires frequent edits and updates due to updates on systems

and/or software packages, and requires domain expertise over a variety of systems

and applications to prepare the rules, which is hard to come by.

142

As a complementary solution to manually written rules, a few studies investigate

automated learning methods in system performance diagnosis (Bodik et al., 2010;

Cohen et al., 2005; Xiong et al., 2013). These studies mainly rely on system perfor-

mance metrics to detect the performance drift on either hardware or firmware layer,

and mostly do not handle problems in software and system layer. EnCore (Zhang

et al., 2014b) is a tool developed that learns configuration rules from a given set of

sample configurations, and automatically detects software misconfigurations. Though

it effectively solves types of misconfiguration problems, it does not target to general

software and system changes. Registry entries and system event logs have been used

in troubleshooting methods that identify problems on a given system (Yuan et al.,

2006). Recently, some work studies the opportunities and challenges to interactively

search across VM images at a high semantic level, and sketches the outline of an im-

plementation by a discard-based search (Satyanarayanan et al., 2010; Huston et al.,

2004). Alternative system change and software discovery methodologies based on

indexing methodologies and information retrieval techniques are proposed. Miner-

soft (Dikaiakos et al., 2012) indexes file system information to build a keyword-based

query processing system that enables searching for software existence on indexed sys-

tems. Similarly, Mirage (Ammons et al., 2011) is an image library that stores cloud

images such that their file system structure is indexed in a way that enables scanning,

searching and comparison of VM instances. However, indexing-based approaches re-

quire maintenance of large indexes per target VM that get constantly updated as the

VM evolves. Besides, indexed file names and processes can have repetitive string rep-

resentations, which can be uninformative and misleading thus results in inconclusive

or incomprehensive result sets.

In this work, we propose a novel approach, the “discovery by example” method

for software and system discovery in data center management. Unlike the rule-based

143

approaches that are broadly studied, our approach (1) is fully automated requiring

little to no human intervention; (2) can adapt to changes and updates by learning

from the new examples and updating models; (3) significantly reduces the amount of

maintenance required due to changes on instances by creating compact representa-

tions of changes occurring in system states, and (4) can provide highly accurate and

comprehensive results to system change discovery queries. We also design multiple

novel “fingerprints” to represent the software and systems in efficient and scalable

ways, and apply a variety of machine learning algorithms for discovery.

5.3 The Framework of Discovery

Our system change discovery framework is composed of three phases: (I) change set

creation, (II) training, and (III) discovery. A change set, which contains all changes

that happen to the system during a system event (e.g., a software installation), is

crawled and recorded in the change set creation phase. Figure 5·1 shows the change

set creation flowchart. The training phase is composed of two stages: the fingerprint

extraction and the model-learning. A fingerprint, a compact representation of each

change set, is created in fingerprint extraction phase. In the model-learning phase,

a knowledge base is first built up by change sets with known labels, and their corre-

sponding fingerprints. The “label” here represents the name of the event that leads to

the system changes. It can be a software package installation, e.g., “Apache Tomcat

installation”, update, e.g., “Tomcat update”, or system configuration, e.g., “Tomcat

configuration”, etc. All fingerprints along with their labels in the knowledge base

are then supplied to the learning algorithms to generate a machine learning model.

Finally in the discovery phase, the learned model is utilized in the task of label predic-

tion for new unidentified changes. Newly labeled change sets and their corresponding

fingerprints are then stored into the knowledge base for future learning, which makes

144

Figure 5·1: Flowchart of change set creation. Snapshots of the system
are captured before and after the system change event. Then, a diff
operation is calculated on these two snapshots, and the change set is
generated.

the knowledge base iteratively updated. In this way, the whole discovery system is

automated and requires little to no human intervention in the long-term. Manually

labeled training samples are only required at the beginning of the initialization of

the knowledge base. After the initialization, human operators only need to verify or

clarify samples that are labeled with low confidence, which only constitute a small

set of whole samples. Figure 5·2 provides an overview of the training and discovery

phases.

5.4 Change Set Creation

A change set is the record of all changes that happen to the system during a sys-

tem event, such as a software installation. It contains all features that are created,

modified or deleted during the event, e.g., files, packages, processes and configura-

tions. The change set creation process and an example of the change set are shown in

Figure 5·1 and Figure 5·3 respectively. We create the change set by utilizing IBM’s

Origami service (Isci and Bala, 2014; Reimer et al., 2008). As an example to change

set creation, consider the installation of a software package such as Apache Tomcat,

an open source Java Servlet software. A “snapshot” S1 of the system is taken at T1,

followed by the installation of the subject software, in this scenario Tomcat, followed

145

Figure 5·2: Training and discovery phases of the system change dis-
covery framework. Labels and extracted fingerprints from change sets
are input to learning algorithms to train the model in the training
phase. The learned model is then used to discover and label the new-
coming unidentified changes during discovery.

by a second “snapshot” S2 of the system at T2. The difference of two snapshots,

i.e., D = S2 − S1, is a change set and we label it as “Tomcat Installation” to mark

that this change set represents the system state changes observed due to an Apache

Tomcat installation. More specifically:

• If a feature is in S2 but not in S1, then it is a created feature;

• If a feature is in both S1 and S2, but its attributes differ, then it is a modified

feature;

• If a feature is not in S2 but is in S1, then it is a deleted feature.

Technically, a “snapshot” is taken as a text file consisted of metadata of the

system, and the difference D is the output of a “text diff” applied on two snapshots.

The change set includes features from different sources. Take the Tomcat instal-

lation as an example, the file features in the change set include: (1) Tomcat server

related files; (2) system and configuration files modified during installation (e.g.,

146

CREATED: {
 OS: {

type:	 ‘RHEL	 linux’,	 distro:	 ‘Red	 Hat’,	 version:	 ‘4.2’,	 ipaddr:	 ‘9.25.34.1’,	 hostname:	
‘vm23.rescloud.ibm.com’,	 mount-‐points:{‘/dev/vda1’	 :	 ‘ext3’,	 ‘/dev/vda2’:	 ‘ext4’},	 ...	

 },
 FILE: {
	 	 ‘/etc/hosts’:{permission:	 ‘-‐rw-‐r-‐-‐r—’,	 size:	 236,	 user:	 ‘root’,	 group:	 ‘wheel’},	 	

	 	
...	 <	 one	 entry	 per	 file	 in	 the	 file	 system	 >	 ...	

},
 PACKAGE: {
	 	 tomcat6	 :{version:	 ‘6.0.2’,	 vendor:	 ‘Apache’,	 arch:	 ‘x86_64’},	 	
	 	 ...	 <	 one	 entry	 per	 installed	 package	 >	 ...	

},
 PROCESS: {

‘httpd’	 :{pid:	 23,	 exec:	 ‘/opt/apache/httpd’,	 ports:	 [8080],	 open-‐files:	
[‘/var/log/httpd/httpd.log’,	 ...]	 },	
...	 <	 one	 entry	 per	 running	 process	 >	 ...	

},
 CONFIG: {
 ‘/var/tomcat/web.xml’:{<contents	 of	 config	 file	 can	 also	 JSON-‐encoded.	 e.g.>	

Connector:{sslEnabled:	 true,	 maxPostSize:	 2MB,	 port:	 8080,	 URIEncoding:	 ISO-‐8859-‐1}},	
	 	 …	 <	 one	 entry	 per	 config	 file	 (client-‐specified	 list)	 >	 …	
},

},
MODIFIED: {
	 	 ...	 <	 similar	 entries	 to	 "Created"	 >	 ...	
},
DELETED: {
	 	 ...	 <	 similar	 entries	 to	 "Created"	 >	 ...	
}

Figure 5·3: A sample change set. It contains all features that are
created, modified or deleted during the system change event, e.g., OS,
files, packages, processes and configurations.

/etc/passwd by adding Tomcat users); (3) temporary files created during installation;

(4) files belonging to other software installed to satisfy dependency requirements; (5)

package repository file updates, and (6) files created and modified by other activities

not related to Tomcat installation, etc. Therefore, for a given Tomcat version on a

specific system environment, the file features contributed by the Tomcat server instal-

lation remain the same. However, the overall file features in the change set vary from

installation to installation depending on what other dependent software is installed

and what other parallel activities are running during the installation process.

From a deeper investigation on the change set, we observe that a significant num-

ber of features in the modified catalog are from system self-updates and some backend

147

system process activities, which are “noises” to the event that we aim to discover. In

addition, when a software package is installed, the number of deleted features is tiny,

while most of features are created features. Since in this work we focus on discovery

of software package installations, the created features are the most important data

to be used as indicators of the targeted event. We only use created features in the

change set to develop the rest of technologies.

5.5 Fingerprint Creation and Learning

Training has two stages, namely fingerprint creation and learning stages. In training,

fingerprints are extracted from raw change set data, stored in a knowledge base, and

a discovery model is then learned from data in knowledge base. Training process and

its relationship with the discovery process is shown in the upper part of Figure 5·2.

5.5.1 Fingerprint Creation

Directly utilizing the change set for discovery is not efficient, due to the fact that

a change set is a complete record of raw system changes. Thus, it contains a large

amount of information that is irrelevant to discovery purposes. Moreover, as the

size of the change set is usually large, using the change set for discovery leads to

low discovery speed and high storage costs. In addition, the change set may contain

sensitive personal information from users, which can be easily exposed if directly

using them for discovery.

Therefore, condensed key information is required to be extracted, either explicitly

or implicitly, from change sets before they can be used to train the prediction models.

The process of key information extraction is called “fingerprinting”, and the extracted

key information is defined as the “fingerprint”, for each change set. In this section,

we introduce multiple fingerprinting methodologies.

148

All fingerprinting techniques introduced here use file features in the change set,

such as filenames and file paths. An example of file features can be seen in Figure 5·3.

File features constitute the most significant part of change sets, and in most cases

using only file features is sufficient in discovery and identifying system changes caused

by software installation. It is also sufficient for other causes of system changes such

as software updates and system configurations in general.

Filename Fingerprint

The most intuitive, straightforward, but storage-wise inefficient fingerprint is the

filename fingerprint. A filename fingerprint is a list of filenames1 of all created files2

in a change set. Filename fingerprints are distinguishable because the combination of

filenames of all changed files is mostly unique.

For a filename fingerprint fn, we define its length Lfn , as the number of filenames

in the fingerprint. Then for any two filename fingerprints, fn1 and fn2 , the similarity

score (α1, α2) between them is defined as the ratio of the number of common filenames

in fn1 and fn2 , i.e., Ncomm, to the length of fn1 and fn2 , i.e., Lfn1 and Lfn2 , respectively,

i.e., α1 = Ncomm/Lfn1 and α2 = Ncomm/Lfn2 . Based on the value of (α1, α2), there are

four different relationship between fn1 and fn2 :

• If α1 ≈ α2 ≈ 1, then fn1 is similar to fn2 ;

• α1 ≈ 1 and α1 >> α2, then fn1 is contained by fn2 ;

• α2 ≈ 1 and α2 >> α1, then fn2 is contained by fn1 ;

• Neither α1 nor α2 is close to 1, then fn1 and fn2 are not similar.

1Here filenames represent the base names of files without path information.
2The reason of only using created files refers to Section 5.4.

149

Histogram Fingerprint

A filename fingerprint can be quite redundant and inefficient especially when a change

set contains thousands of file features. Besides, typical learning algorithms can better

handle with numerical features than text features. Therefore, we propose a condensed

numerical representation of these filenames, i.e., the histogram fingerprint. The pro-

cess of creating a histogram fingerprint from a filename fingerprint is as follows:

1. Convert each filename in the filename fingerprint into a numerical value using

some hash function, e.g., calculating the ASCII sum of all characters that the

filename contains;

2. Calculate histogram by grouping all the numerical values into a few bins, i.e.,

Nbins, and count the number of values in each bin as Ci, i = 1, 2, 3...Nbins;

3. Normalize histogram by: Cnorm
i = Ci /

Nbins∑
i=1

Ci, i = 1, 2, ...Nbins, such that

Nbins∑
i=1

Cnorm
i = 1. The histogram fingerprint is normalized so as to be independent

of the total number of filenames in the change set. The length of histogram

fingerprint is fixed at Nbins.

Figure 5·4 is the detailed process of the histogram fingerprint creation.

Word2vec Fingerprints

Both filename and histogram fingerprints utilize the file features as is, without trying

to understand the “meaning” of the names of these files. However, it is now possible

to capture the syntactic and semantic similarities and relationships between words

in natural languages with no human supervision by providing significant amount of

textual content to neural networks (Mikolov et al., 2013a; Mikolov et al., 2013b).

Word2vec (w2v) is one such open source machine learning (neural network) toolkit

150

Filename fingerprint:
[tomcat, tomcat.service, logs, tomcat-users.xml, catalina.out , conf…]

Quantified list of the fingerprint:
[648, 1447, 437, 1638, 1219, 422…]

Histogram fingerprint (without normalization):
[0, 0, 2, 1, 0, 0, 1, 1, 1, 0, 0]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

422
437
…

648
…

1219
…

1447
…

1638
…

Extract
base-names

File features

Hash:
ASCII sum

Histogram

Normalization

Histogram fingerprint (normalized):
[0, 0, 0.33, 0.17, 0, 0, 0.17, 0.17, 0.17, 0, 0]

Figure 5·4: The flowchart of the histogram fingerprint generation.

developed at Google for this specific purpose (Mikolov et al., 2013a). It has been

shown to successfully capture the similarities among concepts in natural languages.

We propose that w2v can also be used for gleaning the meaning behind filenames.

Just as concepts that tend to appear in the same sentence in a specific order have a

special relationship, we argue that filenames that appear in the same file tree branch

or in the same folder (hence neighbors in locality) have a special relationship, and

we propose two fingerprinting methodologies that utilize these two separate sources

of information. We feed the file features and their “neighbors” - the set of files that

reside in the same folder - as sentences to w2v and create a vector representation for

each filename that we call “neighbor vector” of a filename. For each change set, we

sum the “neighbor vectors” of the changed files in the change set by performing a

simple vector addition. Then we normalize the summation vector to a unit vector to

obtain a neighbor fingerprint.

Similarly, by feeding the filename of a changed file in the change set together with

the folder names that are in the same file tree branch as a sentence to w2v, we create

151

0 1 2 3 4 5 6 7 8 9 10
x

0

1

2

3

4

5

y

emacs
lisp

cedet

md5

spamassassin

dkim-milter

fft

prettyprint

Qt

ascii-font

monotype
dvipdfmx

adobe

matrixlib

smtpserver

jfontmaps

typescripts

sha

sybase
oracle

mssql
QtOpenGL

PyQt4

pop3.py
mail.py

ciscobrocade

qquota
qrstat qhost imap4.py

libGLU.so
libquadmath.a

gzip bzip2

libQtOpenGL.so.4

i18n

spamd

texlive
fonts

dvips

broadcomappletalk
tex

txfonts

unicode
Unidecode

smtpclientspinbox.h

postgresql QtGui

Figure 5·5: Two-dimensional (2D) vectors created by w2v for a set
of filenames when file tree information is supplied to it. Created vec-
tors retain the semantic relationship among the software objects they
represent. Vector dimensions are indicated by x and y.

another vector representation for each filename, called as the “file-tree vector” of a

filename. For each change set, by adding the file-tree vector representations of the

changed files and then normalizing the summation vector to a unit vector, we obtain

a file-tree fingerprint.

When provided with sufficient amount of folder and file tree information, we ob-

serve that w2v can easily identify the semantic relationship between files. In Figure 5·5

we display two-dimensional vectors created by w2v for a set of filenames when file

tree information is supplied to it. As shown via dashed circles in the figure, even

when the vector dimensions are as low as two, w2v manages to retain a sense of

the semantic relationship among the software objects represented by filenames and

152

it is even possible to roughly group the filename vectors based on these semantic

relationships. As an example, it is possible to observe from the figure that the 2D

vectors for Emacs - the popular Linux editor - and Lisp - the programming language

used for implementing most of the editing functionality built into Emacs - are very

close. Please recall that these vectors are not fingerprints themselves but they are

informative inputs to the fingerprinting algorithm. Using w2v supplied vectors of

changed filenames for fingerprinting enables the fingerprinting algorithm to retain a

semantic sense of the installed software. When vector dimensions are increased to 200

or more, w2v starts to display much more accurate results. We should also note that

w2v supplied vectors also retain a sense of relative relationship between files. As an

example, when using neighbor vectors, we observe in our data that the relationship

between “apache-commons-dbutils.jar” and “apache-commons-dbutils.xml” is akin to

the relationship between “ivy.jar” and “ivy.xml”.

5.5.2 Learning with Fingerprints

With the condensed fingerprints, we now describe how we use these fingerprints in

various learning frameworks to train models that can perform system change discov-

ery. The set of machine learning algorithms we consider for system change discovery

include nearest neighbor, logistic regression, support vector machines (SVM), deci-

sion tree and random forest. Below we briefly introduce these widely used machine

learning algorithms.

Nearest neighbor (Clarke et al., 2009; Cover and Hart, 1967) is a classification

technique that labels a given sample using the closest (or most similar) samples

within a given previously labeled dataset. Closeness is defined by a similarity or

distance function, e.g., Euclidean distance, Manhattan distance, cosine similarity,

etc. A generalization of this is the k-nearest-neighbor algorithm, which utilizes the

153

“k” closest samples. In this work, we consider the one-nearest-neighbor algorithm

with the Euclidean distance. For a pair of fingerprints (fi, fj) introduced before,

the Euclidean distance is calculated as ||fi − fj||, i.e., the L2-norm. The smaller the

distance is, the more similar two fingerprints are.

Unlike other learning algorithms that have to go over a training phase to provide a

learning model of coefficients, support vectors, or decision rules, the nearest neighbor

algorithm requires no training. It simply keeps the set of all samples, and operates

on these samples during the discovery phase to find the nearest neighbor (or k near-

est neighbors) of the new-coming samples based on the given distance or similarity

function, and reports the corresponding label(s) and their distances as the discovery

result.

Logistic regression (Hosmer Jr and Lemeshow, 2004) is a classification algorithm

that trains a coefficient vector of the feature from a training dataset by minimizing a

defined cost function using programming methods. It is a generalization from linear

regression by applying a logistic function. Logistic regression method can be further

generalized to predict the probabilities of more than two possible outputs, i.e., the

multi-class logistic regression, with applying the one-vs-all algorithm. In this work,

we apply multi-class logistic regression with the L2-regularization in our problem to

avoid over-fitting. The weights on the cost of regression error and the regularization

are trained through cross-validation on the training dataset.

Support Vector Machine (SVM) (Cortes and Vapnik, 1995) attempts to find an

optimal set of hyper-planes in high-dimensional space that divides the samples into

classes with largest margins. An SVM model is learned from training samples, which

maps the samples as points in space, and divides classes by clear gaps (hyper-planes).

Samples are then predicted to classes based on the side of the gap that they fall on.

Samples on the margins are called support vectors. We apply one-vs-one algorithm to

154

extend a binary SVM to a multi-class SVM, i.e., N(N−1)/2 classifiers are constructed

if we have N classes.

SVM applies kernel functions to map the original space to a higher-dimensional

space. The most widely used kernel functions are the linear kernel and the radial basis

function (RBF) kernel (Hsu et al., 2003), which are both tested in our experiment.

In SVM, a soft margin is typically applied, which chooses a hyper-plane that splits

examples as cleanly as possible, though makes a more complex decision hype-plane.

The trade-off parameter and other parameters related to different kernels are learned

by cross-validation on the training dataset in our experiment.

Decision tree (Clarke et al., 2009) is a tree-like graph in which each (non-leaf)

node and each branch represent a test on an attribute and the outcome of the test,

respectively. Leaf nodes represent classes, into which samples are finally classified

after passing through tests on all attributes. A decision tree is most commonly

learned in a top-down induction method, i.e., repeatedly splitting training sets into

subsets in a recursive manner based on tests of attributes until splitting no longer

improves the prediction performance. Comparing with other learning algorithms, an

additional benefit of a decision tree is that the decision rules that are learned from a

training dataset can be usually visualized in a human-readable manner.

Random forest (Breiman, 2001) is an ensemble learning method based on decision

tree. It constructs multiple decision trees in training and uses the mean or mode of

the prediction of individual trees as the final output. Random forest is mainly used

to solve the over-fitting issue of the decision tree.

5.6 Discovery by Examples

In the discovery phase, the models trained on the knowledge base that contains change

set labels and corresponding fingerprints are utilized for performing prediction over

155

new fingerprints extracted from unobserved change sets. More specifically, the fin-

gerprint of a new coming unobserved change set is generated, input into the model,

and the identification (i.e., the label) of the change set is returned. Discovery process

and its relationship with training are displayed in the lower part of Figure 5·2.

5.6.1 Experimental Methodology

The datasets used in experimentation are generated as follows: We randomly select

160 software packages from the Linux yum repository and install these packages

on two different operating systems in two different cloud environments, namely the

Fedora-19 on Amazon Web Service (AWS) EC2 micro instances, and the Fedora-21 on

Massachusetts Open Cloud (MOC) (Bestavros and Krieger, 2014) medium instances.

Note that the approach also applies to other software systems, such as APT-like

repositories, manual installation from binaries, etc. We have briefly tested them and

observed similar results. In addition, the approach is independent to the location of

installation, as we either only use the relative path or not use the path information at

all in fingerprint design. In that way, we make sure that the same software installed

in different folders can still be discovered. We record the system change set for each

installation. We select software package installations as the system change trigger

events because software installations are one of the most significant events that can

lead to notable system changes. However, the proposed discovery technique is not

limited to software installations and can be applied to a variety of system change

events, such as security patches, system configurations and process execution, etc.

A change set not only includes records of changes caused by the software instal-

lation, but also contains other “background noise”, such as temporary files created

automatically by the system and changes made by other user operations or irrelevant

running activities in parallel, etc. Therefore, change sets consist of variations and

156

vary from installation to installation. Even installing the same software on the same

instance multiple times leads to different change sets. Moreover, dependency packages

are resolved and installed during software installation. Some popular dependencies

are shared by multiple software packages, and as a result, during the batch installa-

tion of 160 packages, dependencies of some later installed software packages may have

already been installed during installations of prior software. Hence different orders

of installations in the batch installation among these 160 software packages lead to

differences in change sets. Thus, in order to capture variations in change sets, we

batch install 160 software packages multiple times in random order. We install each

software package 3 times on different AWS instances and 4 times on different MOC

instances to create a training knowledge base. Overall, the training dataset consists

of 160 software installation classes with each class containing 7 change set samples.

This dataset is also used to generate the w2v dictionaries for neighbor and file-tree

fingerprints.

Our testing dataset is generated as follows: we randomly select 80 software pack-

ages out of the 160 classes, and install each of them once on a separate AWS instance

with Fedora-19. Then we randomly select another 80 software packages and install

each of them once on a separate MOC instance with Fedora-21. The change set sam-

ples obtained from these installations are used as our discovery test cases. Therefore,

our test dataset contains 160 tests in total, with 80 from AWS Fedora-19 installations

and 80 from MOC Fedora-21 installations. The test dataset is generated in this way

so as to capture the experimental varieties of different OSs and platforms. The accu-

racy of discovery is defined as the number of cases that are correctly identified among

these 160 test cases, divided by 160. We test discovery accuracy of all combinations

of different fingerprints methodologies and learning algorithms discussed previously.

157

88
.1

%

73
.1

%

90
.6

%

91
.9

%

76
.9

%

88
.1

%

94
.4

%

93
.8

%

94
.4

%

95
.6

%

88
.1

%

93
.1

%

97
.5

%

96
.9

%

97
.5

%

95
.6

%

93
.8

% 96
.2

%

96
.9

%

98
.1

%

97
.5

%

96
.9

%

90
%

95
%96

.9
%

96
.9

%

97
.5

%

96
.9

%

88
.1

%

97
.5

%

96
.9

%

98
.1

%

97
.5

%

97
.5

%

90
%

96
.2

%

96
.9

%

98
.1

%

98
.8

%

97
.5

%

92
.5

%

97
.5

%

Fingerprinting Methodologies and Learning Algorithms70%

80%

90%

100%

D
is

co
ve

ry
 a

cc
ur

ac
y

Histogram (Nbin=20)
Histogram (Nbin = 200)
Neighbor
FileTree
Histogram + Neighbor
Histogram + FileTree
Histogram + FileTree + Neighbor

Nearest Neighbor Logistic Regression SVM-Linear SVM-RBF Decision Tree Random Forest

Figure 5·6: Discovery accuracy for multiple fingerprinting method-
ologies and learning algorithms. Results are grouped by learning algo-
rithms.

5.6.2 Results

Figure 5·6 shows the discovery accuracy of various combinations of the fingerprinting

methodologies and the learning algorithms. We test the performance of the one near-

est neighbor, logistic regression with regularization, SVM with linear and RBF kernels

(SVM-linear and SVM-RBF), decision tree, and random forest machine learning al-

gorithms. In logistic regression, SVM-linear and SVM-RBF, parameters are tuned

with cross-validation on the training dataset. Either one-vs-one or one-vs-all method

is used in each learning algorithm for multi-class discovery, as discussed previously.

Since there exist some variations in model generation in decision tree and random

forest, the discovery results vary corresponding to different models. We calculate

average performance of decision tree and random forest across 20 test runs.

The fingerprints in our experiment include: the histogram fingerprint with differ-

ent number of bins (Nbins = 20 and Nbins = 200), the neighbor fingerprint, and the

158

file-tree fingerprint. The lengths of both the neighbor and the file-tree fingerprints are

200. We also test the accuracy of utilizing combinations of histogram (Nbins = 200),

neighbor and file-tree fingerprints as feature sets. As an example, the histogram plus

neighbor fingerprint has 400 dimensions, with first 200 dimensions coming from the

histogram fingerprint and the last 200 dimensions coming from the neighbor finger-

print. Similarly, the length of the histogram plus file-tree fingerprint is 400, and the

length of the histogram plus file-tree and plus neighbor fingerprint is 600.

As shown in Figure 5·6, the highest discovery accuracy is as high as 98.75%, and is

achieved by using SVM-linear on the combination of histogram, neighbor and file-tree

fingerprints. Histogram fingerprint with 200 bins has consistently better performance

than with 20 bins for all algorithms. In our experimental tests we also observe that

further increasing the number of bins of the histogram to 1000 or larger counts does

not increase the discovery accuracy.

We observe from Figure 5·6 that utilizing the file neighbor and file-tree infor-

mation in fingerprint creation process causes notable improvements in performance.

Most algorithms achieve the best performance when combinations of fingerprints are

used. In some algorithms (i.e., nearest neighbor and decision tree), simply using the

neighbor information leads to the highest accuracy. Involving other information such

as histogram or file-tree may blur the model and predication boundary. Considering

that the file-tree fingerprint depends on the paths of installation that are sometimes

modified by users, neighbor information can be more reliable in broader use cases.

In addition to the discovery accuracy, the time for model training and testing is

another significant aspect that should be taken into account, especially in some real-

time monitoring scenarios, in which discovery results must be returned as soon as

possible. From our results, all the combinations of learning algorithms and fingerprint

methodologies can finish all 160 tests in less than 0.1s. We should note that this

159

number is almost independent with the size of knowledge base in all studied algorithms

except for the nearest neighbor. The test time of nearest neighbor could increase with

increasing number of labeled samples in the knowledge base.

For training on a knowledge base containing 160 classes with 7 samples each, all

the combinations of different fingerprinting and learning algorithms finish training in

less than 20 seconds. Notice that there is no training time issue in nearest neighbor

algorithm, as there is no model to be trained. In practice, a discovery system can be

designed as a combination of an online training phase and an offline training phase.

Algorithms that are able to train and update the model fast, though with slightly

lower accuracy can be applied in the online training phase to update the prediction

model frequently, while algorithms with longer training time but higher accuracy can

be applied as an offline training method, to update the model less frequently with

some fixed periods, e.g., once a week.

5.7 Summary and Open Problems

As cloud computing technologies continue to mature and keep gaining attractions in

many industries, the demand for intelligent analytics solutions that ease the man-

agement of cloud environments increases. In this chapter we have introduced an

automated cloud analytics solution, the “discovery by example” that caters to one

of such demand, namely system change discovery and management. Our solution

achieves efficient discovery by recording system changes in change sets, generating

compact fingerprints of system state changes and utilizing these fingerprints in a ma-

chine learning platform. We have shown that with understanding the hidden context

and the semantic relationships among filenames in change sets, automated, fast (in a

few milliseconds or seconds) and accurate (up to 98.75%) system change discovery is

achievable by our technique. The future research directions include:

160

Advanced Solutions in Feature Selection

Currently, we generate fingerprints only based on filenames and paths in file features.

A future research direction is to study advanced feature selections. For example, our

initial studies show that the size information of the files also has strong capabilities

in distinguishing different software and system changes. Other features than files in

the change set, such as process features, etc., may also contribute for the discovery.

A more systematic method of feature selection from the raw change sets should be

able to further improve the discovery accuracy and efficiency.

In addition, we apply equivalent weights on all filenames in the file features in the

current work. We envision better performance if we weigh them more smartly. Some

filenames, e.g., “readme”, “yum”, etc., are commonly appearing in many different

change sets, which may be identified to noise with high chances. These filenames

should be weighed lower than those key words in the changes, such as “tomcat”,

“rabbitmq”, etc. Term frequency - inverse document frequency (tf-idf) is a potential

efficient solution for this problem (Rajaraman and Ullman, 2012): each entity (i.e., a

file) is weighed by a tf-idf value that increases proportionally to the number of times

the word (i.e., the filename) appears in the change set, but is offset by the frequency

of the word in the whole database with all the change sets. Tf-idf helps adjust for the

fact that some entities appear more frequently in general, and offers key information

with higher weights.

The Multi-event System Change Discovery

The proposed software and system discovery technique in this dissertation only han-

dles the scenario that each change set perfectly captures one and only one system

event (e.g., a software package installation). However, in a more realistic scenario, a

change set may contain data from either partial or multiple system events, as system

161

events can happen in parallel (e.g., several software installed together at the same

time). Moreover, cloud monitoring systems usually take snapshots and change sets

within a fixed period, and are not aware of whether the in-capturing system event is

finished or not. In these scenarios, rather than only and perfectly having one single

label for each change set, a change set should be labeled as a combination of par-

tial or multiple labels. Therefore, a multi-event system change discovery is required.

Such a problem can be solved by using the multi-label classification algorithms, e.g.,

applying the binary relevance method (Cherman et al., 2011) onto our existing single

label learning algorithms.

Another solution is to design a two-stage multi-event discovery. In Stage 1, we

identify the number of individual events included in a change set. The number of

events can be estimated by various approaches. One approach is observing the his-

togram of file created, modified and deleted along time. Take software installation

as an example. When a software package is installed, an increase in the number of

files created can be observed as a “spike”. We count the number of such “spikes”

in the time period during which the change set is taken, and use this number as an

estimation of the number of software packages installed in the change set. Note that

this is only a rough estimation because on one hand, multiple events can happen

simultaneously and are still overlapped in the same spike, while on the other hand,

stalls are not uncommon in even a single event, which can lead to a single event with

multiple spikes. Having the estimation on number of events (i.e., k) in Stage 1, then

in Stage 2, on top of the binary relevance method, we further design a “confidence

value based ranking” approach for discovery. Instead of directly reporting the outputs

of binary classifiers, we sort the “confidence values” of all the classifiers and select the

top k highest scoring labels as the final labels for the change set. Our initial results

demonstrate the efficiency of this approach (Turk et al., 2016a).

162

Discovery as a Service

To demonstrate a real-life implementation of the work, another research direction is

to architect a system that provides change discovery functionality as a service. In a

typical deployment, the service would be installed on a client device and configured to

perform observations of the file system on a fixed interval. Every time an observation

is performed, the client would prepare a change set representing any changes made

between the last observation and the current one. Afterwards, it would prepare a

fingerprint using the newly generated change set and dictionaries provided by a sepa-

rate server device. The prepared fingerprint is then sent off to the server for analysis,

which in turn sends its prediction(s) back to the client after analysis is complete. The

client finally stores the results in its log and, depending on the results received, could

take appropriate actions ranging from emailing an alert to automatically quarantin-

ing the system from the network or shutting it down. Since fingerprints are highly

condensed, the information transmission between client and server devices would be

efficient. Moreover, as only fingerprints are transmitted to the server, which are in

general not able to be reverse engineered, the sensitive personal information of cloud

users is not going to be exposed on the server device and the user privacy is preserved.

163

Chapter 6

Conclusions

The number and size of data centers have been increasing rapidly in recent years,

led by the explosive growth of the demand on world-wide Internet services and cloud

computing. As a result, the data center energy and resource efficiency has started

to receive significant attention due to its economical, environmental and performance

impacts. In tandem, power markets operators are facing to great challenges in balanc-

ing energy supply with demand, due to the growing needs of intermittent renewable

energy integration. Demand response (DR) is then introduced by the markets as an

incentive to enable demand side consumers to regulate their energy consumption, to

help stabilize the grids.

By investigating both the capabilities and benefits of data centers participating

emerging DR programs, especially the novel regulation service reserve (RSR) pro-

vision, this dissertation has claimed that data centers provide unique opportunity

to emerge as major enablers of substantial electricity integration from renewables.

The participation of data centers into emerging DR, i.e., RSR provision, enables the

growth of the data center in a sustainable, environmentally neutral, or even beneficial

way, while also significantly reducing data center electricity costs.

In the dissertation, we have first modeled the data center participation in DR

and RSR by introducing the detailed models of servers, clusters, workloads and their

service level agreements (SLAs), and the overall computational units, etc. We have

then specifically focused on the runtime policy design of data center in RSR provision.

164

While legacy DR programs such as dynamic energy pricing and peak shaving have

been broadly studied recently, the RSR provision is novel to data centers. The high

credits of RSRs indicate potentials in considerable savings for data centers, which

however, have never been carefully investigated in literature. We have proposed and

evaluated three different types of runtime policies, i.e., the best tracking policy, the

stochastic dynamic program (DP) policy, and the EnergyQARE, i.e., energy and

quality-of-service (QoS) aware RSR enabler, to modulate the data center power con-

sumption in response to the ISO request in different scenarios in RSR provision, by

leveraging advanced power capping and budgeting techniques, various available server

power states and server commitments, as well as the workload arrangement. Along

with runtime policies, we have also solved an optimization problem in data center

RSR provision, to determine the optimal energy and reserve bidding strategy that

minimizes the energy cost, while satisfying the constraints from ISO requirements

and workload SLAs.

We have then evaluated the RSR provision performance as well as the energy

monetary savings in different scenarios. To better understand the capabilities and

profits of the RSR provision, we have also made heuristic comparisons of the energy

cost savings from RSR to other energy saving strategies. Results have demonstrated

that a typical data center can achieve up to 44% monetary savings with RSR provi-

sion, surpassing most of traditional energy saving strategies. Being an RSR provider,

the data center not only receives a significant portion of monetary savings itself, but

also renders massive renewable generation adoption affordable.

Moving from simulation to the practical implementation, we have also conducted

initial studies on the real design and implementation of our runtime policies and

bidding strategies of data center RSR provision on a real server as a data center pro-

totype, which provides guidance for the future deployment of the proposed techniques

165

onto real-life data centers for practical uses.

Energy storage devices (ESDs) are another promising candidates in DR participa-

tion. Data centers today are also designed associated with some ESDs. To understand

how data centers can compare with large scale ESDs in RSR provision, and how the

ESDs are able to be leveraged to assist data centers in further improving the capa-

bilities and benefits of DR participation, we have modeled, optimized and evaluated

the performance of different types of ESDs in participating various DR programs.

Results have shown that the ultra/super - capacitors (UCs) and the flywheels (FWs)

are most beneficial ESDs for RSR provision. A 10,000-server data center presents the

similar capability to million-dollar level ESDs in RSR provision.

In addition to its contributions on improving data center energy efficiency, this

dissertation has also proposed a novel intelligent system analytics method to address

data center management efficiency and reduce the operational costs. Specifically, we

have proposed a “discovery by example” approach, which leverages fingerprinting and

machine learning methods to automatically discover software and system changes. We

have also proposed and investigated a variety of fingerprinting designs and machine

learning algorithms in discovery. Compared with the traditional rule-based discovery

approach that is fragile, costly, requires specific knowledge of systems and constant

maintenance by experts, our “discovery by example” approach is able to make dis-

covery automatically, with fast speed and high accuracy, which is more suitable and

efficient for today’s large-scale rapidly growing data center clouds that contain great

varieties of complex system changes and vulnerabilities.

References

Aalto, S., Ayesta, U., Borst, S., Misra, V., and Núñez Queija, R. (2007). Beyond
processor sharing. ACM SIGMETRICS Performance Evaluation Review, 34(4):36–
43.

Aikema, D., Simmonds, R., and Zareipour, H. (2012). Data centres in the ancillary
services market. In International Green Computing Conference (IGCC), pages
1–10. IEEE.

Aksanli, B., Pettis, E., and Rosing, T. (2013). Architecting efficient peak power
shaving using batteries in data centers. In Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems (MASCOTS), pages 242–253. IEEE.

Aksanli, B. and Rosing, T. (2014). Providing regulation services and managing data
center peak power budgets. In Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1–4.

Amazon (2013). Amazon EC2 service level agreement. https://aws.amazon.com/

ec2/sla.

Amazon (2015). Amazon EC2 pricing. http://aws.amazon.com/ec2/pricing.

Ammons, G., Bala, V., Mummert, T., Reimer, D., and Zhang, X. (2011). Virtual
machine images as structured data: The mirage image library. In Conference on
Hot Topics in Cloud Computing, pages 22–22.

AWEA (2015). 2015 U.S. wind industry market reports. American Wind Energy
Association. http://www.awea.org/Advocacy.

Benini, L., Bogliolo, A., and De Micheli, G. (2000). A survey of design techniques
for system-level dynamic power management. Transactions on Very Large Scale
Integration (VLSI) Systems, 8(3):299–316.

Bestavros, A. and Krieger, O. (2014). Toward an open cloud marketplace: Vision
and first steps. IEEE Internet Computing, 18(1):72–77.

Bodik, P., Goldszmidt, M., Fox, A., Woodard, D. B., and Andersen, H. (2010).
Fingerprinting the datacenter: automated classification of performance crises. In
European Conference on Computer systems, pages 111–124. ACM.

166

167

Bohner, S. A. (1996). Impact analysis in the software change process: A year 2000
perspective. In International Conference on Software Maintenance, pages 42–51.
IEEE.

Bohringer, C., Loschel, A., Moslener, U., and Rutherford, T. F. (2009). EU cli-
mate policy up to 2020: An economic impact assessment. Energy Economics, 31,
Supplement 2:S295 – S305.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Burd, T. D. and Brodersen, R. W. (1995). Energy efficient CMOS microprocessor
design. In International Conference on System Sciences, volume 1, pages 288–297.
IEEE.

Camacho, E. F. and Alba, C. B. (2013). Model predictive control. Springer Science
& Business Media.

Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., and Doyle, R. P. (2001).
Managing energy and server resources in hosting centers. ACM SIGOPS Operating
Systems Review, 35(5):103–116.

Chen, H., Caramanis, M. C., and Coskun, A. K. (2014a). The data center as a grid
load stabilizer. In 19th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 105–112.

Chen, H., Caramanis, M. C., and Coskun, A. K. (2014b). Reducing the data center
electricity costs through participation in smart grid programs. In International
Green Computing Conference (IGCC), pages 1–10. IEEE.

Chen, H., Caramanis, M. C., and Coskun, A. K. (2016a). EnergyQARE: QoS-aware
data center participation in smart grid regulation service reserve provision. submit-
ted to ACM Transactions on Modeling and Performance Evaluation of Computing
Systems (ToMPECS).

Chen, H., Coskun, A. K., and Caramanis, M. C. (2013a). Real-time power control of
data centers for providing regulation service. In 52nd Conference on Decision and
Control (CDC), pages 4314–4321. IEEE.

Chen, H., Duri, S. S., Bala, V., Bila, N. T., Isci, C., and Coskun, A. K. (2014c).
Detecting and identifying system changes in the cloud via discovery by example.
In International Conference on Big Data (Big Data), pages 90–99. IEEE.

Chen, H., Hankendi, C., Caramanis, M. C., and Coskun, A. K. (2013b). Dynamic
server power capping for enabling data center participation in power markets. In
Proceedings of the International Conference on Computer-Aided Design (ICCAD),
pages 122–129. ACM/IEEE.

168

Chen, H., Liu, Z., Coskun, A. K., and Wierman, A. (2015a). Optimizing energy stor-
age participation in emerging power markets. In 6th International Green Comput-
ing Conference and Sustainable Computing Conference (IGSC), pages 1–6. IEEE.

Chen, H., Liu, Z., Coskun, A. K., and Wierman, A. (2015b). Optimizing energy
storage participation in emerging power markets. arXiv preprint arXiv:1510.00083.

Chen, H., Turk, A., Duri, S. S., Isci, C., and Coskun, A. K. (2016b). Automated
system change discovery and management in the cloud. IBM Journal of Research
and Development, 60(2-3):2:1–2:10.

Chen, H., Zhang, B., Caramanis, M. C., and Coskun, A. K. (2015c). Data center
optimal regulation service reserve provision with explicit modeling of quality of
service dynamics. In 54th Conference on Decision and Control (CDC), pages
7207–7213. IEEE.

Cherman, E. A., Monard, M. C., and Metz, J. (2011). Multi-label problem transfor-
mation methods: a case study. CLEI Electronic Journal, 14(1):1–10.

Chiu, D., Stewart, C., and McManus, B. (2012). Electric grid balancing through low-
cost workload migration. ACM SIGMETRICS Performance Evaluation Review,
40(3):48–52.

Cho, Y., Shim, J. W., Kim, S.-J., Min, S. W., and Hur, K. (2013). Enhanced
frequency regulation service using hybrid energy storage system against increas-
ing power-load variability. In Power Energy Society General Meeting, pages 1–5.
IEEE.

Christian, B. (2011). Benchmarking modern multiprocessors. Ph.D.Thesis. Prince-
ton University.

Cioara, T., Anghel, I., Bertoncini, M., Salomie, I., Arnone, D., Mammina, M., Veli-
vassaki, T.-H., and Antal, M. (2016). Optimized flexibility management enacting
data centres participation in smart demand response programs. Future Generation
Computer Systems.

Clarke, B., Fokoue, E., and Zhang, H. H. (2009). Principles and theory for data
mining and machine learning. Springer Science & Business Media.

Cochran, R., Hankendi, C., Coskun, A. K., and Reda, S. (2011). Pack & Cap:
adaptive DVFS and thread packing under power caps. In Proceedings of the 44th
International Symposium on Microarchitecture, pages 175–185. ACM.

Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., and Fox, A. (2005).
Capturing, indexing, clustering, and retrieving system history. ACM SIGOPS
Operating Systems Review, 39(5):105–118.

169

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27.

David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., and Le, C. (2010). RAPL:
memory power estimation and capping. In International Symposium on Low Power
Electronics and Design (ISLPED), pages 189–194. ACM/IEEE.

Dayarathna, M., Wen, Y., and Fan, R. (2016). Data center energy consumption
modeling: A survey. IEEE Communications Surveys Tutorials, 18(1):732–794.

Dhiman, G., Marchetti, G., and Rosing, T. (2009). vGreen: a system for energy
efficient computing in virtualized environments. In International Symposium on
Low Power Electronics and Design (ISLPED), pages 243–248. ACM/IEEE.

Dikaiakos, M. D., Katsifodimos, A., and Pallis, G. (2012). Minersoft: Software re-
trieval in grid and cloud computing infrastructures. ACM Transactions on Internet
Technology (TOIT), 12(1):2:1–2:34.

EIA (2014). Annual energy outlook 2014. U.S. Energy Information Administration.
http://www.eia.gov/forecasts/aeo.

Fan, X., Weber, W.-D., and Barroso, L. A. (2007). Power provisioning for a
warehouse-sized computer. ACM SIGARCH Computer Architecture News, 35(2):13–
23.

Fooladivanda, D., Rosenberg, C., and Garg, S. (2014). An analysis of energy stor-
age and regulation. In International Conference on Smart Grid Communications
(SmartGridComm), pages 91–96. IEEE.

FortCollins (n.d.). Coincident peak pricing. www.fcgov.com/utilities/business/

rates/electric/coincident-peak.

Gandhi, A., Harchol-Balter, M., Das, R., and Lefurgy, C. (2009). Optimal power al-
location in server farms. In Proceedings of the 11th International Joint Conference
on Measurement and Modeling of Computer Systems, pages 157–168. ACM.

Gandhi, A., Harchol-Balter, M., and Kozuch, M. A. (2012). Are sleep states effective
in data centers? In International Green Computing Conference (IGCC), pages
1–10. IEEE.

Ghamkhari, M. and Mohsenian-Rad, H. (2012). Data centers to offer ancillary ser-
vices. In International Conference on Smart Grid Communications (SmartGrid-
Comm), pages 436–441. IEEE.

170

Ghasemi-Gol, M., Wang, Y., and Pedram, M. (2014). An optimization framework
for data centers to minimize electric bill under day-ahead dynamic energy prices
while providing regulation services. In International Green Computing Conference
(IGCC), pages 1–9. IEEE.

Ghatikar, G. (2014). Demand response opportunities and enabling technologies for
data centers: Findings from field studies. Lawrence Berkeley National Laboratory.
LBNL Paper LBNL-5763E. http://escholarship.org/uc/item/7bh6n6kt.

Ghiassi-Farrokhfal, Y., Keshav, S., and Rosenberg, C. (2015). Toward a realistic
performance analysis of storage systems in smart grids. IEEE Transactions on
Smart Grid, 6(1):402–410.

Gong, Z., Gu, X., and Wilkes, J. (2010). Press: Predictive elastic resource scaling for
cloud systems. In International Conference on Network and Service Management,
pages 9–16. IEEE.

Govindan, S., Sivasubramaniam, A., and Urgaonkar, B. (2011). Benefits and limita-
tions of tapping into stored energy for datacenters. In 38th Annual International
Symposium on Computer Architecture (ISCA), pages 341–351. ACM/IEEE.

Hankendi, C., Reda, S., and Coskun, A. K. (2013). vCap: Adaptive power capping
for virtualized servers. In International Symposium on Low Power Electronics and
Design (ISLPED), pages 415–420. ACM/IEEE.

Hansen, J., Knudsen, J., and Annaswamy, A. M. (2014). Demand response in smart
grids: Participants, challenges, and a taxonomy. In 53rd Conference on Decision
and Control (CDC), pages 4045–4052. IEEE.

Hosmer Jr, D. W. and Lemeshow, S. (2004). Applied Logistic Regression. John
Wiley & Sons.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. (2003). A practical guide to support vec-
tor classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.

pdf.

Hu, H., Wen, Y., Yin, L., and Qiu, L. (2016). Towards cost-efficient workload
scheduling for a tango between geo-distributed data center and power grid. In
International Conference on Communications (ICC), pages 1–7. IEEE.

Huston, L., Sukthankar, R., Wickremesinghe, R., Satyanarayanan, M., Ganger, G. R.,
Riedel, E., and Ailamaki, A. (2004). Diamond: A storage architecture for early
discard in interactive search. In Conference on File and Storage Technologies
(FAST), pages 73–86. USENIX.

171

Hwang, I., Kam, T., and Pedram, M. (2012). A study of the effectiveness of CPU
consolidation in a virtualized multi-core server system. In International Symposium
on Low Power Electronics and Design (ISLPED), pages 339–344. ACM/IEEE.

IBM (2012). Endpoint manager relevance language guide. https://www.ibm.com/

developerworks/community/forums/atom/download/Relevance_Guide_PDF.pdf.

Isci, C. and Bala, V. (2014). ASPLOS 2014 tutorial - origami: Systems as data.
https://sites.google.com/site/origamisystemsasdata/asplos2014.

Isci, C., McIntosh, S., Kephart, J., et al. (2013). Agile, efficient virtualization
power management with low-latency server power states. In Proceedings of the
40th Annual International Symposium on Computer Architecture (ISCA), pages
96–107. ACM/IEEE.

Islam, M. A., Ren, X., Ren, S., Wierman, A., and Wang, X. (2016). A market
approach for handling power emergencies in multi-tenant data center. In Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages
432–443. IEEE.

Katz, R. H. (2009). Tech titans building boom. IEEE Spectrum, 46(2):40–54.

Kim, Y., Raghunathan, A., and Raghunathan, V. (2014). Design and management
of hybrid electrical energy storage systems for regulation services. In International
Green Computing Conference (IGCC), pages 1–9. IEEE.

Kirpes, B. and Klingert, S. (2016). Evaluation process of demand response compen-
sation models for data centers. In Proceedings of the 5th International Workshop
on Energy Efficient Data Centres, pages 4:1–4:6. ACM.

Koomey, J. G. (2008). Worldwide electricity used in data centers. Environmental
Research Letters, 3(3):034008.

Koomey, J. G. (2011). Growth in data center electricity use 2005 to 2010. Analytical
Press. http://www.analyticspress.com/datacenters.html.

Kranz, B., Pike, R., and Hirst, E. (2003). Integrated electricity markets in new york.
Electricity Journal, 16(2):54 – 65.

Kumaraswamy, K. and Cotrone, J. (2013). Evaluating the regulation market matu-
rity for energy storage devices. Electricity Journal, 26(10):75–83.

Le, T. N., Liu, Z., Chen, Y., and Bash, C. (2016). Joint capacity planning and
operational management for sustainable data centers and demand response. In
Proceedings of the 7th International Conference on Future Energy Systems, pages
16:1–16:12. ACM.

172

Leon-Garcial, A. (2008). Probability, Statistics, and Random Processes for Electrical
Engineering. Prentice Hall.

Li, J. and Martinez, J. F. (2006). Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In the 12th International Symposium on
High-Performance Computer Architecture (HPCA), pages 77–87. IEEE.

Li, S., Brocanelli, M., Zhang, W., and Wang, X. (2014). Integrated power man-
agement of data centers and electric vehicles for energy and regulation market
participation. IEEE Transactions on Smart Grid, 5(5):2283–2294.

Lin, M., Liu, Z., Wierman, A., and Andrew, L. L. (2012). Online algorithms for geo-
graphical load balancing. In International Green Computing Conference (IGCC),
pages 1–10. IEEE.

Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M.,
and Hyser, C. (2012). Renewable and cooling aware workload management for
sustainable data centers. ACM SIGMETRICS Performance Evaluation Review,
40(1):175–186.

Liu, Z., Lin, M., Wierman, A., Low, S. H., and Andrew, L. L. (2011). Greening geo-
graphical load balancing. In Proceedings of the SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems, pages 233–244.
ACM.

Liu, Z., Liu, I., Low, S., and Wierman, A. (2014). Pricing data center demand
response. ACM SIGMETRICS Performance Evaluation Review, 42(1):111–123.

Makarov, Y. V., Loutan, C., Ma, J., and de Mello, P. (2009). Operational impacts
of wind generation on california power systems. IEEE Transactions on Power
Systems, 24(2):1039–1050.

Maly, T. and Petzold, L. R. (1996). Numerical methods and software for sensi-
tivity analysis of differential-algebraic systems. Applied Numerical Mathematics,
20(1):57–79.

McCluer, S. and Christin, J.-F. (2008). Comparing data center batteries, flywheels,
and ultracapacitors. White paper, 65.

Meisner, D., Gold, B. T., and Wenisch, T. F. (2009). PowerNap: Eliminating server
idle power. ACM SIGPLAN Notices, 44(3):205–216.

Meisner, D., Sadler, C. M., Barroso, L. A., Weber, W.-D., and Wenisch, T. F. (2011).
Power management of online data-intensive services. In International Symposium
on Computer Architecture (ISCA), pages 319–330. ACM/IEEE.

173

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Dis-
tributed representations of words and phrases and their compositionality. In Ad-
vances in Neural Information Processing Systems, pages 3111–3119.

Miller, R. (2011). How many data centers? Emerson says 500,000. Data Cen-
ter Knowledge. http://www.datacenterknowledge.com/archives/2011/12/14/
how-many-data-centers-emerson-says-500000.

Mu’alem, A. W. and Feitelson, D. G. (2001). Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE
Transactions on Parallel and Distributed Systems, 12(6):529–543.

Nathuji, R., Isci, C., Gorbatov, E., and Schwan, K. (2008). Providing platform
heterogeneity-awareness for data center power management. Cluster Computing,
11(3):259–271.

Nathuji, R., Schwan, K., Somani, A., and Joshi, Y. (2009). Vpm tokens: virtual
machine-aware power budgeting in datacenters. Cluster computing, 12(2):189–203.

NIST (n.d.). National vulnerability database. http://nvd.nist.gov.

NYISO (2016). Manual 2: Ancillary services manual, v4.6. http://www.nyiso.

com/public/webdocs/markets_operations/documents/Manuals_and_Guides/

Manuals/Operations/ancserv.pdf.

Ogras, U. Y., Marculescu, R., Choudhary, P., and Marculescu, D. (2007). Voltage-
frequency island partitioning for gals-based networks-on-chip. In Design Automa-
tion Conference (DAC), pages 110–115. IEEE.

OpenIOC (n.d.). An openIOC framework. http://www.openioc.org.

OpenLogic (n.d.). Oss discovery: Take inventory of your open source software.
http://ossdiscovery.sourceforge.net.

Ott, A. L. (2003). Experience with PJM market operation, system design, and
implementation. IEEE Transactions on Power Systems, 18(2):528–534.

Oudalov, A., Chartouni, D., and Ohler, C. (2007). Optimizing a battery energy stor-
age system for primary frequency control. IEEE Transactions on Power Systems,
22(3):1259–1266.

Parekh, A. K. and Gallager, R. G. (1993). A generalized processor sharing approach
to flow control in integrated services networks: the single-node case. IEEE/ACM
Transactions on Networking, 1(3):344–357.

174

Patel, C. D., Bash, C. E., Sharma, R., Beitelmal, M., and Friedrich, R. (2003). Smart
cooling of data centers. In International Electronic Packaging Technical Conference
and Exhibition, pages 129–137. American Society of Mechanical Engineers.

Pedram, M., Chang, N., Kim, Y., and Wang, Y. (2010). Hybrid electrical energy stor-
age systems. In International Symposium on Low Power Electronics and Design
(ISLPED), pages 363–368. ACM/IEEE.

PJM (2005). Integrating demand and response into the PJM ancillary service mar-
kets. White paper, PJM.

PJM (2013). Market-based regulation. http://pjm.com/markets-and-operations/

ancillary-services.

PJM (2016). PJM manual 12: Balancing operations. http://www.pjm.com/~/

media/documents/manuals/m12.ashx.

RabbitMQ (n.d.). www.rabbitmq.com.

Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., and Rawson, F. (2006). Application-
aware power management. In International Symposium on Workload Characteri-
zation, pages 39–48. IEEE.

Rajaraman, A. and Ullman, J. D. (2012). Mining of Massive Datasets, volume 1.
Cambridge University Press, Cambridge.

Rangan, K. K., Wei, G.-Y., and Brooks, D. (2009). Thread motion: fine-grained
power management for multi-core systems. ACM SIGARCH Computer Architec-
ture News, 37(3):302–313.

Rao, L., Liu, X., Ilic, M. D., and Liu, J. (2012). Distributed coordination of internet
data centers under multiregional electricity markets. Proceedings of the IEEE,
100(1):269–282.

Reda, S., Cochran, R., and Coskun, A. K. (2012). Adaptive power capping for servers
with multithreaded workloads. IEEE Micro, 32(5):64–75.

Reimer, D., Thomas, A., Ammons, G., Mummert, T., Alpern, B., and Bala, V. (2008).
Opening black boxes: using semantic information to combat virtual machine image
sprawl. In Proceedings of the 4th SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pages 111–120. ACM.

Rivoire, S., Shah, M. A., Ranganathan, P., Kozyrakis, C., and Meza, J. (2007). Mod-
els and metrics to enable energy-efficiency optimizations. Computer, 40(12):39–48.

175

Satyanarayanan, M., Richter, W., Ammons, G., Harkes, J., and Goode, A. (2010).
The case for content search of VM clouds. In Proceedings of the 34th Annual
Computer Software and Applications Conference Workshops, pages 382–387. IEEE.

Smith, S. C., Sen, P. K., and Kroposki, B. (2008). Advancement of energy storage
devices and applications in electrical power system. In Power and Energy Society
General Meeting, pages 1–8. IEEE.

Sverdlik, Y. (2014). IDC: Amount of worlds data centers to start declining in 2017.
Data Center Knowledge. http://www.datacenterknowledge.com/archives/2014
/11/11/idc-amount-of-worlds-data-centers-to-start-declining-in-2017.

Teodorescu, R. and Torrellas, J. (2008). Variation-aware application scheduling and
power management for chip multiprocessors. ACM SIGARCH Computer Archi-
tecture News, 36(3):363–374.

Tran, N. H., Pham, C., Ren, S., Han, Z., and Hong, C. S. (2016). Coordinated power
reduction in multi-tenant colocation datacenter: An emergency demand response
study. In International Conference on Communications (ICC), pages 1–6. IEEE.

Turk, A., Chen, H., Byrne, A., Knollmeyer, J., Duri, S. S., Isci, C., and Coskun,
A. K. (2016a). DeltaSherlock: Identifying changes in the cloud. In submission to
International Conference on Big Data (Big Data). IEEE.

Turk, A., Chen, H., Tuncer, O., Li, H., Li, Q., Krieger, O., and Coskun, A. K. (2016b).
Seeing into a public cloud: Monitoring the massachusetts open cloud. In USENIX
Workshop on Cool Topics on Sustainable Data Centers (CoolDC). USENIX.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes, J.
(2015). Large-scale cluster management at Google with Borg. In Proceedings of
the 10th European Conference on Computer Systems, pages 18:1–18:17. ACM.

Villars, R., Perry, R., and Scaramella, J. (2012). Converging the datacenter infras-
tructure: Why, how, so, what. White paper. https://www.emc.com/collateral/
analyst-report/idc-converging-datacenter-whitepaper.pdf.

Vu, K., Masiello, R., and Fioravanti, R. (2009). Benefits of fast-response storage
devices for system regulation in ISO markets. In Power and Energy Society General
Meeting, pages 1–8. IEEE.

Walawalkar, R., Apt, J., and Mancini, R. (2007). Economics of electric energy storage
for energy arbitrage and regulation in New York. Energy Policy, 35(4):2558–2568.

Wang, D., Ren, C., Sivasubramaniam, A., Urgaonkar, B., and Fathy, H. (2012).
Energy storage in datacenters: what, where, and how much? ACM SIGMETRICS
Performance Evaluation Review, 40(1):187–198.

176

Wang, H., Huang, J., Lin, X., and Mohsenian-Rad, H. (2014). Exploring smart grid
and data center interactions for electric power load balancing. ACM SIGMETRICS
Performance Evaluation Review, 41(3):89–94.

Wang, R., Kandasamy, N., Nwankpa, C., and Kaeli, D. R. (2013a). Data centers as
controllable load resources in the electricity market. In International Conference
on Distributed Computing Systems (ICDCS), pages 176–185. IEEE.

Wang, Y., Lin, X., Pedram, M., Park, S., and Chang, N. (2013b). Optimal control
of a grid-connected hybrid electrical energy storage system for homes. In Design,
Automation and Test in Europe (DATE), pages 881–886.

Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., and Vasilakos, A. V. (2014).
Security and privacy for storage and computation in cloud computing. Information
Sciences, 258:371–386.

Wierman, A., Liu, Z., Liu, I., and Mohsenian-Rad, H. (2014). Opportunities and
challenges for data center demand response. In International Green Computing
Conference (IGCC), pages 1–10. IEEE.

Xiong, P., Pu, C., Zhu, X., and Griffith, R. (2013). vPerfGuard: an automated
model-driven framework for application performance diagnosis in consolidated cloud
environments. In Proceedings of the 4th International Conference on Performance
Engineering, pages 271–282. ACM.

Yang, C., Wierman, A., Shakkottai, S., and Harchol-Balter, M. (2012). Many flows
asymptotics for smart scheduling policies. IEEE Transactions on Automatic Con-
trol, 57(2):376–391.

Yuan, C., Lao, N., Wen, J.-R., Li, J., Zhang, Z., Wang, Y.-M., and Ma, W.-Y. (2006).
Automated known problem diagnosis with event traces. ACM SIGOPS Operating
Systems Review, 40(4):375–388.

Zhan, X. and Reda, S. (2013). Techniques for energy-efficient power budgeting in
data centers. In Proceedings of the 50th Annual Design Automation Conference
(DAC), pages 1–7. ACM/IEEE.

Zhang, B., Caramanis, M. C., and Baillieul, J. (2014a). Optimal price-controlled
demand response with explicit modeling of consumer preference dynamics. In 53rd
Conference on Decision and Control (CDC), pages 2481–2486. IEEE.

Zhang, J., Renganarayana, L., Zhang, X., Ge, N., Bala, V., Xu, T., and Zhou, Y.
(2014b). EnCore: Exploiting system environment and correlation information for
misconfiguration detection. ACM SIGPLAN Notices, 49(4):687–700.

177

Zhang, L., Ren, S., Wu, C., and Li, Z. (2015). A truthful incentive mechanism
for emergency demand response in colocation data centers. In Conference on
Computer Communications (INFOCOM), pages 2632–2640. IEEE.

Zhao, C., Topcu, U., and Low, S. H. (2012). Frequency-based load control in power
systems. In American Control Conference (ACC), pages 4423–4430. IEEE.

Zhu, D., Wang, Y., Yue, S., Xie, Q., Pedram, M., and Chang, N. (2013). Maximizing
return on investment of a grid-connected hybrid electrical energy storage system.
In 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
638–643. IEEE.

CURRICULUM VITAE

HAO CHEN

Boston University, Electrical and Computer Engineering Department
8 Saint Mary’s Street, Boston, MA 02215 USA
Phone: 1-857-205-9966, Email: haoc@bu.edu

Web: http://people.bu.edu/haoc

Education

Ph.D., Boston University, Boston, MA, 09/2016
Electrical and Computer Engineering Department
Advisors: Ayse K. Coskun and Michael C. Caramanis
Dissertation: Improving Data Center Efficiency Through Smart Grid Integration and
Intelligent Analytics
GPA: 3.84/4.00

B.S., Zhejiang University, Hangzhou, China, 07/2010
Information and Communication Engineering Department
GPA: 3.91/4.00, Honors Degree

Research Interests

Data center energy and resource management, green computing, smart grid demand
response, operations research;
Intelligent analytics in cloud management, cloud efficiency and reliability, big data,
data mining and machine learning, software.

Professional Experience

IBM T.J. Watson Research, Yorktown Heights, NY, 05/2015 - 09/2015
Cloud Research Intern, Supervisors : Dr. Canturk Isci, Dr. Sastry S. Duri
Investigated software, system and vulnerability discovery in cloud with fingerprinting
and machine learning techniques. Improved IBM Vulnerability Advisor.

IBM T.J. Watson Research, Yorktown Heights, NY, 06/2013 - 09/2013
Software Research Intern, Supervisors: Dr. Vasanth Bala, Dr. Sastry S. Duri
Investigated a novel “discovery by example” technique for software, system and vul-
nerability discovery in cloud with image processing techniques.

179

Orbeus Inc. (acquired by Amazon), Excelerate Labs, Chicago, IL, 06/2012
- 08/2012
Software Engineer and Research Scientist Intern
Developed the backend infrastructure and the multi-threaded client-server parallel
computing system of an online API platform and several mobile applications. De-
signed the HDFS and a large-scale database (Hbase + Mysql + Cassandra) for data
management. Researched on face recognition and scene understanding algorithms.

Boston University Chinese Students and Scholars Association (BUCSSA),
Boston, MA, 05/2011 - 05/2012
Vice President
Co-led a team to serve and facilitate communication among the large Chinese com-
munity not only on Boston University campus but also in Great Boston area.

Boston University College of Engineering, Boston, MA, 09/2010 - 05/2012
Graduate Teaching Fellow
Classes Taught: Computer Network, Applied Algorithms for Engineers, Senior Project
Design I and II.

China Unicom, Hangzhou, China, 03/2010 - 07/2010
Software and Network Engineer Intern
Studied problem diagnosis and maintenance of both fixed and mobile communication
networks.

Research Experience

Performance and Energy-Aware Computing (PEAC) Lab, Boston Univer-
sity, Boston, MA, 09/2012 - 07/2016
Research Assistant, Supervisors: Prof. Ayse K. Coskun, Prof. Michael Caramanis

Project 1: Data Center Smart Grid Integration

• Studied capabilities and benefits of data centers in participating smart grid
demand response and green computing programs, leveraging server power man-
agement, workload allocation and control, and energy storage devices;

• Derived mathematical models, and solved the problems with stochastic and
numerical methods including queuing theory, optimizations, stochastic dynamic
programming and the Monte Carlo method;

• Implemented the smart grid demand response participation on the real life
cluster - the Massachusetts Open Cloud (MOC).

180

Project 2: Cloud Management Through Intelligent Analytics

• Studied a “discovery by example” approach for software, system and vulner-
ability discovery in the cloud, with multiple data mining, fingerprinting and
machine learning methods;

• Developed the techniques as a cloud service, collected data and tested on mul-
tiple platforms including AWS, GCE, IBM Cloud and MOC, with both virtual
machines and Docker containers.

Information and Data Science Group, Boston University, Boston, MA,
06/2011 - 12/2011
Research Assistant, Supervisors: Prof. Janusz Konrad, Prof. Prakash Ishwar
Designed video surveillance sensor network to detect abnormal shakes, using image
and video processing. Derived the earthquake spread and prediction models with
Kalman Filters and data fusion techniques. Developed software to automatically vi-
sualize the earthquake information on Google Earth.

Publications and Patents

Journals:

• H. Chen, A. Turk, S. S. Duri, C. Isci, and A. K. Coskun. Automated Sys-
tem Change Discovery and Management in the Cloud, IBM Journal of
Research and Development, 2015.

• H. Chen, M. C. Caramanis, and A. K. Coskun. EnergyQARE: QoS-Aware
Data Center Participation in Smart Grid Regulation Service Re-
serve Provision, submitted to ACM Transactions on Modeling and Perfor-
mance Evaluation of Computing Systems (TOMPECS), 2016.

Conferences:

• A. Turk, H. Chen, A. Byrne, J. Knollmeyer, S. S. Duri, C. Isci, and A. K.
Coskun. DeltaSherlock: Identifying Changes in the Cloud, submitted to
IEEE International Conference on Big Data, 2016.

• A. Turk, H. Chen, O. Tuncer, H. Li, Q. Li, O. Krieger and A. K. Coskun. See-
ing into a Public Cloud: Monitoring the Massachusetts Open Cloud,
USENIX Workshop on Cool Topics on Sustainable Data Centers (CoolDC),
2016.

• H. Chen, B. Zhang, M. C. Caramanis and A. K. Coskun. Data Center Op-
timal Regulation Service Reserve Provision with Explicit Modeling
of Quality of Service Dynamics, IEEE Conference on Decision and Control
(CDC), 2015. (Speaker)

181

• H. Chen, Z. Liu, A. K. Coskun and A. Wierman. Optimizing Energy Stor-
age Participation in Emerging Power Markets, IEEE International Green
and Sustainable Computing Conference (IGSC), 2015.

• H. Chen, S. S. Duri, V. Bala, N. T. Bila, C. Isci and A. K. Coskun. Detect-
ing and Identifying System Changes in the Cloud via Discovery by
Example, IEEE International Conference on Big Data, 2014. (Speaker)

• H. Chen, M. C. Caramanis and A. K. Coskun. Reducing the Data Cen-
ter Electricity Costs Through Participation in Smart Grid Programs,
IEEE International Green Computing Conference (IGCC), 2014.

• H. Chen, M. C. Caramanis and A. K. Coskun. The Data Center as a Grid
Load Stabilizer, IEEE Asia and South Pacific Design Automation Conference
(ASPDAC), 2014.

• H. Chen, C. Hankendi, M. C. Caramanis and A. K. Coskun. Dynamic Server
Power Capping for Enabling Data Center Participation in Power Mar-
kets, IEEE/ACM International Conference on Computer-aided Design (IC-
CAD), 2013. (Speaker)

• H. Chen, A. K. Coskun and M. C. Caramanis. Real-Time Power Control
of Data Centers for Providing Regulation Service, IEEE Conference on
Decision and Control (CDC), 2013. (Speaker)

Patents:

• V. Bala, H. Chen and S. S. Duri. Creating Knowledge Base of Similar
Systems from Plurality of Systems, US20160088120, Mar. 2016.

• Y. Li, T. Liu and H. Chen. System, Method and Apparatus for Facial
Recognition, US9275269, Mar. 2016.

• Y. Li, T. Liu and H. Chen. System, Method and Apparatus for Scene
Recognition, US9129148, Sept. 2015.

• Y. Li, T. Liu and H. Chen. System and Method for Automatically Gen-
erating Albums, filed, Nov. 2013.

