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Abstract—Demand response programs offer an opportunity for
large power consumers to save on electricity costs by modulating
their power consumption in response to demand changes in
the electricity grid. Multiple types of such programs exist; for
example, regulation service programs enable a consumer to bid
for a sustainable amount of power draw over a time period, along
with a reserve amount they are able to provide at request of the
electricity service provider. Data centers offer unique capabilities
to participate in these programs since they have significant
capacity to modify their power consumption through workload
scheduling and CPU power limiting. This paper proposes a novel
power management policy and a bidding policy that enable
data centers to participate in regulation service programs under
real-world constraints. The power management policy schedules
computing jobs and applies server power-capping under both the
constraints of power programs and the constraints of job Quality-
of-Service (QoS). Simulations with workload traces from a real
data center show that the proposed policies enable data centers
to meet both the requirement of regulation service programs and
the QoS requirement of jobs. We demonstrate that, by applying
our policies, data centers can save their electricity costs by 10%
while abiding by all the QoS constraints in a real-world scenario.

Index Terms—HPC, demand response, Quality of Service

I. INTRODUCTION

Data centers1 are significant power consumers. Since a
server typically consumes hundreds of watts, a 2k-node data
center can consume nearly 1 megawatt, which corresponds to
thousands of dollars spent on power consumption every day.
Data center consumption also occupies a considerable portion
of nationwide energy usage. In 2014, all data centers in the
US consumed 70 billion kWh, close to 2% of US electricity
usage [1]. Therefore, reducing the power consumption and
electricity costs of data centers is not only beneficial to data
center owners or users, but also critical for a sustainable society.

With the increasing adoption of renewable energy production
into the electricity grid, balancing the demand and supply
side of the grid becomes challenging due to the volatility of
renewable energy sources. Demand response programs offer a
solution to this challenge by monetarily motivating consumers
to regulate their power consumption following market require-
ments [2]. Regulation service is one of the demand response
programs that are suitable for data centers [3], [4]. Regulation
service programs require participants to regulate their power
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1In this work, we define data centers broadly, including both enterprise and
high-performance computing (HPC) data centers.

consumption following a regulation signal that varies every
few seconds. Data centers are promising candidates for such
programs because data centers are capable of regulating their
power consumption in a wide range at the timescale of seconds.

Recent work has designed policies that enable data centers
to participate in regulation service programs [5]–[7]. However,
HPC systems typically run multi-node jobs with long execution
times (from several hours to days), but those policies in
previous works do not explicitly target jobs with long duration
because they mostly rely on job scheduling to regulate power.
Job scheduling, however, does not always provide sufficient
control points when handling uninterruptible jobs with long
duration. Also, long-duration jobs may go through multiple
contract bidding cycles and previous bidding policies are
not suitable for this scenario either. In addition, most prior
approaches rely on synthetic workload traces for evaluation,
and they seldom experiment with real workload traces which
contain large variations in job arrival times.

We propose the QoS-aware-Capping policy to address these
needs. Our power management policy relies on the power
capping capability of servers to regulate data center power
for demand response participation. The proposed policy applies
power limits while considering the Quality-of-Service (QoS) of
jobs. We also propose an Adaptive Bidding policy that selects
appropriate contract parameters for data centers to participate
in regulation service markets when applying the QoS-aware-
Capping policy. We evaluate our policies by simulation using
parameters and workload traces taken from a real data cen-
ter [8]. Our results show that our proposed policies enable data
centers to participate in regulation service and save 10% on
electricity costs while abiding by all QoS constraints.

The contributions of this work are summarized as follows:

• We propose a power management policy, QoSCap, which
enables data centers to participate in regulation service
programs offering QoS awareness to computing jobs with
long duration. Working with long-duration jobs is a nec-
essary feature as real data center traces demonstrate.

• We propose an Adaptive Bidding policy for data center
participation in regulation service to select appropriate
contract parameters. When working in tandem with the
QoS-aware-Capping policy, this bidding policy reduces
data centers’ electricity costs.

• We evaluate our proposed policy by simulation using sys-
tem parameters and workload traces from a real data cen-
ter, and we show the proposed policies outperform prior
policies (e.g., Tracking-only [5] and EnergyQARE [6]).



II. BACKGROUND ON DEMAND RESPONSE AND
REGULATION SERVICE

There has been much progress in recent years in developing
strategies for data centers to participate in power markets such
as peak shaving [9], dynamic energy pricing [10], emergency
load reduction [11], [12], etc. Among all power markets, reg-
ulation service programs are specially suitable for data centers
because these programs require participants to regulate their
power consumption at the time scale of seconds, and they offer
significant electricity cost reduction in return. Data centers have
large capacity to modulate their power consumption through
various power management settings on servers.

When consumers participate in a regulation service pro-
gram [3], they first bid for two key parameters, P̄ and R, before
starting each contract. P̄ constrains the average power usage
of the consumer. R represents the range above and below P̄
in which the consumer is willing to modulate power usage
throughout the contract. These two parameters can be changed
every hour by updating the contract.

When P̄ and R are determined, the consumer receives a
signal y(t) broadcast by an Independent System Operator (ISO)
every 4 seconds. Then, the target power for this consumer is
determined by

Ptgt(t) = P̄ + y(t)R. (1)

The value of y(t) is not known in advance, but it is limited in
range [−1, 1] and having a long-term average of 0.

Consumers are required to regulate their actual power con-
sumption to match the target power closely. The consumer
needs to follow a tracking error constraint enforcing that the
relative tracking error defined as ε(t) = |P (t) − Ptgt(t)|/R
cannot be larger than 0.3 for more than 10% of time. Here, P (t)
represents the actual power usage at time t. In other words, the
tracking error constraint is Prob[ε(t) > 0.3] < 10%.

When a 1-hour contract ends, the electricity cost for the
consumer is calculated based the bidding parameters P̄ , R and
the average tracking error ε̄ = E[ε(t)]. This electricity cost can
be estimated by

Cost =
(
ΠP P̄ −ΠRR+ ΠεRε̄

)
× 1h, (2)

where ΠP , ΠR, and Πε are fixed coefficients determined by
the market. In this paper, we assume ΠP = ΠR = Πε =
$0.1/kWh.

III. POLICIES FOR DATA CENTER PARTICIPATION IN
DEMAND RESPONSE

In this section, we first introduce our models for data
centers, servers, and workloads. Then, we discuss three power
management policies including the new QoS-aware-Capping
policy, as well as three bidding policies including the new
Adaptive Bidding policy.

A. Data center and workload model

A typical data center consists of servers, a cooling system,
a storage system, and other affiliated components. This work
focuses on the power consumption of servers because server

Fig. 1: Power management policies regulate data center power
through job scheduling and power-capping to match the actual
power consumption with the target power.

power can be easily and quickly regulated through power man-
agement techniques or tools such as dynamic voltage frequency
scaling (DVFS) [13], Model-Specific Register (MSR) [14], and
Running Average Power Limit (RAPL) [15].

We assume computing jobs submitted to a data center can
be classified into different types. We assume there are separate
queues for each job type so that it is possible for the job
scheduler to prioritize a specific job type when needed. For
a job type j, we assume we know the number of nodes mj

required to run the job,2 the minimum execution time Tminj ,
and the maximum power consumption per node pmaxj . We also
assume we know the minimum power consumption per node
pminj for running the job with maximal power-capping, and
the maximum execution time Tmaxj corresponding to execution
under the minimum power consumption.

While there are reported manufacturing variations in pro-
cessors [16], [17], we assume such variations are negligible
in this work as variability information is not available in the
data center traces we use, so running a job on any server has
the same min/max power consumption and max/min execution
time. Servers running jobs are called active servers, and servers
not running jobs are called idle servers. We assume the power of
all idle servers is identical, denoted as pidle. Our policy would
be able to take variation information into account through a pre-
liminary set of runs that would characterize power/performance
relationship on target servers.

To quantify the QoS of a job, we use a metric called QoS
degradation defined as the extra time of processing a job
divided by its minimum execution time. For a job of type
j, its QoS degradation can be expressed as Qj = (T soj −
Tminj )/Tminj . Here, T soj is the sojourn time of the job in
the system, including the waiting time Twaitj and the actual
processing time T procj , i.e., T soj = Twaitj + T procj . We assume
there are constraints on the average QoS degradation of each
type of jobs: Avg[Qj ] < Qthresj . Here, Qthresj is the QoS
threshold for job type j. We assume we cannot stop a running
job before it finishes.

B. Power management policies

Power management policies match the actual data center
power with the data center’s target power through job schedul-
ing and server power capping. A common strategy for these
power management policies is to start running more jobs and to

2In this paper, we interchangeably use the word node and server. A multi-
node job means a job with mj > 1.



increase CPU power caps when the actual power is lower than
the target power. These policies typically hold waiting jobs and
decrease the CPU power caps when the actual power is higher
than the target power, as shown in Fig. 1. In the following
paragraphs, we first discuss the Tracking-only policy and the
EnergyQARE policy proposed in previous works [5], [6]. Then,
we introduce our new policy called QoS-aware-Capping.

The Tracking-only policy [5] regulates data center power
following the basic strategy in Fig. 1 to track the target
power without including job QoS in its control decisions. As
a consequence, the policy views the target power as a hard
upper bound and will never start a job if that leads to power
consumption that exceeds the target power.

The EnergyQARE policy [6] also aims to track the ISO’s
target power signal in the same way as the Tracking-only policy,
but it also considers QoS degradation of computing jobs. This
policy balances the regulation service tracking error and the
QoS degradation of finished jobs. As either metric degrades,
more weight is put toward repairing the degradation. To be
specific, excessive tracking error is addressed by following the
target power as an upper bound. On the other hand, if the
average QoS degradation is too high, then the policy activates
more servers to run more jobs regardless of the target power.

The QoS-aware-Capping (QoSCap) policy not only applies
the strategy in Fig. 1 but also intelligently adjusts power caps on
servers considering the estimated QoS of jobs at run time. Every
second, the policy calculates an estimated QoS degradation of
each job by

Qest = (Twait + Telapse + Tremain)/Tmin. (3)

Here, Twait is the waiting-in-queue time of the job. If the job is
currently running, then Telapse is non-zero and represents the
time from job beginning to the current time. Tremain represents
the remaining time to finish the job, estimated as the remaining
percentage of the work to be done multiplied by the minimum
execution time. In real world workloads, the percentage of work
to be done for a job can be estimated based on the number of
finished phases or loops of the job. Calculating the estimated
QoS degradation metric enables the system to know which job’s
QoS degradation will exceed the threshold in advance.

Based on the estimated QoS degradation, the QoSCap policy
always starts jobs whose QoS is close to violation. For the other
jobs, the policy prioritizes job types with larger average QoS
degradation. When target power is low, the policy decreases
power caps only for job types meeting their QoS constraints. As
a consequence, jobs waiting too long in the queue or running
with too low power caps will have a higher estimated QoS
degradation later, and they will be prioritized by the policy.

C. Bidding policies

Bidding policies select the bidding parameters, P̄ and R, at
the beginning of every hour. P̄ and R determine the average
and the variation of the target power, as shown in Fig. 2.

According to the electricity cost in Eq. (2), a data center
pursues a smaller P̄ and a larger R to reduce its cost. However,
a P̄ too small or R too large degrades QoS. Therefore, an
appropriate bidding policy is needed. In the following, we

Fig. 2: Bidding policies select the appropriate P̄ ,R parameters
that determine the average and the variation of the target power.

discuss the Fixed Heuristics Bidding policy and the Fixed
Exhaustive Search Bidding policy used in previous works [5],
[6]. Then, we introduce our new Adaptive Bidding policy.

The Fixed Heuristics (FH) Bidding policy selects P̄ and
R based on the long-term average power and power control
range estimation. As long as the estimated job arrival rates do
not change, that power estimation does not change over time,
so the FH policy selects the same P̄ and R at all times.

Assuming we know the arrival rate λj for each job type
j, we can estimate the average number of active servers in
the data center as Nactive =

∑
j λjmjT

min
j . Here, mj is the

size (i.e., required number of nodes) for each job of type j.
Then, the total power of all idle servers can be estimated as
Pidle = (Ntotal−Nactive)×pidle on average. The active servers
can change their power consumption through power capping,
so the total power of all active servers can vary from Pminactive =
Nactive × pmin to Pmaxactive = Nactive × pmax. Here, pmin or
pmax is the min/max power of an active server, which can be
estimated as the average min/max power of all job types, i.e.,
pmin = (

∑
j p

min
j )/J , pmax = (

∑
j p

max
j )/J . Here, J is the

number of job types.
Based on the discussion above, we can derive the average

minimum and maximum power of the data center as Pminall =
Pminactive + Pidle and Pmaxall = Pmaxactive + Pidle. Therefore, the
FH policy selects P̄ = (Pmaxall + Pminall )/2 and R = (Pmaxall −
Pminall )/2 as they are the estimated long-term average power
and control range.

The Fixed Exhaustive Search (FES) Bidding policy selects
the optimal parameters that minimize the electricity cost. It
finds the optimal point through exhaustive search by running
simulation over a wide range of P̄ , R with synthetic workloads
(generated according to the arrival rates λj), and selects the
parameters that minimize the electricity cost while meeting
tracking-error and QoS constraints. This policy does exhaustive
search once and applies the fixed values of P̄ , R to all hours.

The Adaptive Bidding policy determines the bidding pa-
rameters based on the current active and waiting jobs rather
than based on the long-term average utilization of a data center.
The motivation is, when long-duration and large multi-node
jobs are common in a data center, the average power and the
power control range in a certain hour could significantly deviate
from their long-term average.

At the bidding time, the Adaptive Bidding policy calculates
the possible max/min total power, Pmaxall and Pminall , by sum-
ming the max/min power of each active or waiting job. For



an active or waiting job that suffers from a QoS violation
(Qj > Qthresj ), its power is set as the maximum, pmaxj per
node. For an active or waiting job not violating QoS constraints,
its achievable min/max power is pminj and pmaxj per node. Idle
nodes always consume power pidle. After calculating Pmaxall

and Pminall , the policy selects P̄ = (Pmaxall + Pminall )/2 and
R = (Pmaxall − Pminall )/2.

IV. EXPERIMENTAL METHODOLOGY

To evaluate our policies in a real-world scenario, we conduct
simulations using real system parameters and real workload
traces taken from the emmy and meggie clusters at the Regional
Computing Center in Erlangen (RRZE) [8]. The following
subsections describe how we obtained data about these clusters
and their workloads, and how our simulator utilizes that data.

A. Workload traces

Simulating a cluster requires the descriptions of the cluster’s
nodes, the workloads being executed, and the job submission
times of the workloads in its job queue. We extract all of these
properties from real traces provided by Patel et al. along with
their analysis of the emmy and meggie clusters [8].

1) Node Properties: The emmy cluster has 560 nodes, and
the meggie cluster has 728 nodes. The logs and traces we have
available do not report the idle power of these nodes, but a
workload efficiency model on this cluster by Klawonn et al.
suggests that idle power is in the vicinity of 31 watts [18]. So,
we assume pidle = 31 W.

2) Workload Extraction: The emmy and meggie clusters do
not use the same job scheduler and resource manager, and
their trace outputs follow a different format with different
types of events. We use a common subset of the events and
properties that are available from both clusters. The selected
job description fields are:

• Average DRAM and CPU power from start to end
• First enqueued time (when a job was enqueued and

requeued multiple times, we only take the first time)
• Job start time and end time
• Anonymized job name
• Count of nodes assigned to the job
As the power reported in the logs only includes CPU and

DRAM power, our simulation and analysis only considers the
CPU and DRAM power, and cooling power is ignored. The
data also reports job deletion events. We ignore any jobs that
were deleted before they could start executing. An example of
the power and execution time of jobs extracted from the log
and used in our simulation are displayed in Fig. 3. Jobs with
the same name and node count are shown as marks with the
same color, size, and shape.

B. Simulator setup

We design a simulator based on the parameters of the
clusters and workloads. The simulator is fed idle power and
the host count for each cluster, as well as a list of jobs
and their properties. The workload properties used by the
simulator are nodes per job, maximum allowed performance
degradation, minimum and maximum observed power, and the

Fig. 3: The logged power and execution time of jobs running
on the meggie cluster in February 1-8, 2019.

elapsed run time of the job when running under those power
levels. When we apply the FES bidding policy, to generate a
synthetic queue for bidding parameter searches, our simulator
also takes the mean job incoming rates as inputs. For our final
evaluations of the selected bidding parameters, we replay the
queue submission times from the cluster logs instead of using
the synthetic queues.

Given the cluster and workload parameters mentioned above,
our simulator creates a cluster in simulation, updates the state
of each server (idle, or running a job under a certain power-
cap) once per second, and tracks the progress of job execution
on each server. To simulate the effect of a continuous range of
power capping on the execution time of a job, the simulator
assumes there is a linear relation between the power and
execution time for each job type. To be specific, when we apply
a power cap on every node of a job type j, if we reduce the
power cap from pmaxj to pminj , we assume the execution time
linearly increases from Tminj to Tmaxj . For a multi-node job,
we always apply the same power-cap to all the nodes running
this job. It deserves mentioning that the working mechanism
of our proposed policy does not depend on a specific relation
between power-cap and job execution time, so our policy can
be applied for non-linear power-performance relationships, as
long as those relationships can be characterized in preliminary
application runs. In this work, we adopt the linear assumption
as this is a common trend for many real-world jobs and we
do not have access to exact power-performance relationship of
jobs in the datasets we use.

V. RESULTS

We simulate the meggie or emmy cluster with job arrivals
taken from multiple periods of the workload trace. Figure 4
presents a typical 24-hour result which simulates the meggie
cluster with workload trace on Feb. 5th, 2019. To get this result,
we actually simulate the workload trace from Feb. 1st − 5th

instead of starting directly from Feb. 5th, so we can avoid the
unrealistic underutilization of the cluster at the first few days.
These simulations assume the threshold for the average QoS
degradation of all job types (Qthresj ) is 2.

Figure 4(a) shows the results of applying the EnergyQARE
with FES Bidding policy, and the average QoS degradation
of each job type when applying these policies is shown in
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(b) QoS Degradation.

(c) QoSCap + Adaptive Bidding policy results.
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(d) QoS Degradation.

(e) EnergyQARE + Adaptive Bidding policy results.
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(f) QoS Degradation.

Fig. 4: Simulating a data center participating in regulation reserve programs when applying our policies. The simulations use
real server parameters and run workload traces taken from a real 728-node cluster called meggie. In (c) and (d), the QoS-aware-
Capping with Adaptive Bidding policy enables the data center to match its actual power (blue) with the target power (red) and
meet the QoS constraints of jobs. In (a), green bars show the number of jobs submitted to the cluster in each time interval.

Fig. 4(b). Figures 4(c)(d) shows the results of the QoSCap
and Adaptive Bidding policy. Figures 4(e)(f) are for the En-
ergyQARE with Adaptive Bidding policy. In Figs. 4(a)(c)(e),
the red curve shows the target power and the blue curve shows
the simulated actual power of the cluster. The green bars in
Fig. 4(a) show the number of jobs submitted to the cluster in
different time intervals, and these job arrivals are the same for
Figs. 4(c)(e) because they simulate the same workload trace.
In Figs. 4(c)(e), we also draw the time span of executing each
job as the gray lines, where the vertical placement of the gray
lines represents the server index number. We also calculate
the electricity cost according to Eq. (2), and it shows that
the proposed QoSCap with Adaptive Bidding policy enables
the data center to get an 10% reduction of its electricity cost
compared to the cost without regulation service participation.

From Fig. 4, we see the first two policy combinations
meet the QoS constraints of jobs, QoSCap with Adaptive
Bidding also meets tracking constraints as we see the actual
power curve follows the target power closely. On the other

hand, EnergyQARE with FES Bidding cannot meet tracking
constraints as the actual power sometimes cannot follow the
lower part of the target (during hours 4 to 10) and sometimes
cannot follow the higher part of the target (during hours 11 to
16). The P̄ and R for this case are already optimally selected
using the FES Bidding policy, so other P̄ , R selections either
violate the tracking constraints or violate the QoS constraints.

The reasons for EnergyQARE with FES Bidding not per-
forming well include the abundance of long-duration multi-
node jobs and the large variation of job arrivals. The work
that proposed the EnergyQARE and FES Bidding policies [6]
targets minute-long and single-node jobs which provide higher
granularity to regulate power through job scheduling. In the real
workload trace we simulate here, jobs mostly have an execution
time of multiple hours (up to 24 hours) and many multi-node
jobs require multiple nodes to run (up to 64 nodes).

Since jobs use many nodes at a time and span long durations,
variations in job arrivals cannot be handled well by a fixed
bidding parameter selection. On the other hand, Fig. 4(c) shows



Workload Power
Management

Bidding
Policy

Tracking
Error

QoS
Degrad.

Energy
Cost

Meggie
Feb. 5
2019

EnergyQARE

FH 7.7% 4.0 -

FES 18.1% 1.8 -

Adaptive 2.0% 5.8 -

QoSCap

FH 9.3% 1.5 $124

FES 20.3% 1.4 -

Adaptive 1.0% 1.9 $122

Meggie
Jan. 16
2019

EnergyQARE

FH 2.2% 3.0 -

FES 0.2% 4.8 -

Adaptive 1.9% 2.6 -

QoSCap

FH 18.0% 2.0 -

FES 4.1% 1.9 $151

Adaptive 0.2% 2.0 $166

Emmy
Nov. 15

2018

EnergyQARE

FH 73.9% 2.2 -

FES 0.8% 1.0 $115

Adaptive 0.1% 2.1 -

QoSCap

FH 70.4% 1.9 -

FES 2.8% 2.1 -

Adaptive 0.7% 2.0 $119

TABLE I: Simulation results of applying different policies for
data center participation in regulation service. The proposed
policy combination QoSCap+Adaptive is in bold. The “Track-
ing Error” column shows the percentage of large tracking error,
and a value larger than 10% violates the tracking constraint.
“QoS Degrad.” column shows the largest average QoS degra-
dation among all job types, and a value larger than 2.0 violates
the QoS constraints. Values violating constraints are shown in
red, otherwise in green. The electricity cost for policies that
meet all constraints are displayed.

that the Adaptive Bidding policy can improve the tracking by
selecting a higher P̄ during hours 4 to 10 and a lower P̄
later. However, EnergyQARE with Adaptive Bidding does not
perform well as shown in Fig. 4(e)(f) because QoS constraints
are not met. This is because the EnergyQARE policy shifts its
priority between tracking and QoS based on the average QoS of
all jobs. So, QoS violations of a small count of job types is not
handled by the policy, which leads to the large QoS violation
of some job types shown in Fig. 4(f).

Results for other combinations of power management and
bidding policies are presented in Table I. The table shows
whether a policy combination meets tracking or QoS con-
straints. It also includes the simulation of the meggie clus-
ter with workload trace on Jan. 16th, 2019, as well as the
simulation of the emmy cluster with workload trace on Nov.
15th, 2018. Among all policy combinations, only the QoSCap
with Adaptive Bidding policy meets all constraints in all the
three workload traces. The Tracking-only policy is not listed
since it is ignorant of QoS and never meets all constraints.
We have also simulated several other periods of the workload
traces (not shown) and we observe the same result that QoSCap
with Adaptive Bidding meets both constraints.

VI. CONCLUSION

To enable data centers to participate in demand response,
we propose the QoSCap power management policy and the
Adaptive Bidding policy. From simulations using real workload
traces, we demonstrate that the proposed policies meet both the
tracking constraints and the QoS constraints, while the other
policies cannot meet all constraints due to the existence of long-
duration and multi-node jobs as well as large variations in job
arrival times in real workload traces. We show that our proposed
policies enable data centers to reduce their electricity cost by
10% while abiding by all QoS constraints when participating
in smart-grid power programs.

REFERENCES

[1] A. Shehabi, S. Smith, N. Horner et al., “United states data center
energy usage report,” Lawrence Berkeley National Laboratory, Berkeley,
California. LBNL-1005775 Page, vol. 4, 2016.

[2] J. Hansen, J. Knudsen, and A. M. Annaswamy, “Demand response in
smart grids: Participants, challenges, and a taxonomy,” in 53rd IEEE
Conference on Decision and Control, 2014, pp. 4045–4052.

[3] New York Independent System Operator (NYISO), “Ancillary services
manual, v6.0,” NYISO, Manual, May 2020. [Online]. Available:
https://www.nyiso.com/manuals-tech-bulletins-user-guides

[4] A. L. Ott, “Experience with pjm market operation, system design, and
implementation,” IEEE Transactions on Power Systems, vol. 18, no. 2,
pp. 528–534, 2003.

[5] H. Chen, M. C. Caramanis, and A. K. Coskun, “The data center as a
grid load stabilizer,” Proceedings of the Asia and South Pacific Design
Automation Conference, ASP-DAC, no. i, pp. 105–112, 2014.

[6] H. Chen, Y. Zhang, M. C. Caramanis, and A. K. Coskun, “Energyqare:
Qos-aware data center participation in smart grid regulation service
reserve provision,” ACM Trans. Model. Perform. Eval. Comput. Syst.,
vol. 4, no. 1, pp. 2:1–2:31, Jan. 2019.

[7] Y. Zhang, I. C. Paschalidis, and A. K. Coskun, “Data center participation
in demand response programs with quality-of-service guarantees,” in
ACM Intl Conf on Future Energy Systems (eEnergy), 2019, p. 285–302.
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