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Abstract—2.5D manycore systems running parallel applica-
tions are severely bottlenecked by network-on-chip (NoC) laten-
cies and bandwidth. Traditionally, network-on-chips are com-
posed of electrical links that exhibit constrained bandwidth,
increased energy consumption at high-speed communication, and
long latencies. Photonic Network-on-Chips (PNoCs) have been
shown to provide high bandwidth at low latencies and negligible
data-dependent power. However, the power overheads of lasers,
thermal tuning, and electrical-optical conversion present major
challenges against wide-scale adoption of PNoCs. A primary
factor that impacts PNoC power is the number of activated laser
wavelengths in the system. Applications’ dynamic bandwidth
needs provide the opportunity to selectively deactivate laser
wavelengths when there is a lower bandwidth demand to alleviate
high PNoC power concerns. This paper analyzes dynamic PNoC
activity of applications at runtime so as to select laser wavelengths
depending on an application’s bandwidth requirements. The
paper then proposes PROWAVES, a proactive runtime wavelength
selection policy that forecasts the bandwidth needs and activates
the minimum laser wavelengths for each application phase. We
develop a cross-layer simulation framework to model the system
performance, PNoC power and transient thermal distribution
in a manycore system with PNoCs. We compare PROWAVES
with prior system-level policies and our simulation results on
a 2.5D system demonstrate that PROWAVES provides 18% and
33% power savings with only 1% and 5% loss in performance
respectively, compared to activating all laser wavelengths in the
system.

Index Terms—2.5D manycore systems, Photonic NoCs, Wave-
length selection, ARIMA time-series forecasting, Thermal tuning

I. INTRODUCTION

Emerging compute-heavy and data-intensive applications
in the domains of artificial intelligence, cloud, and high-
performance computing demand higher parallelism and larger
data transfers compared to past applications. Following the
growing need for higher data processing capabilities, there is
a rising interest in building chips with a dense integration
of hundreds or thousands of logic cores. However, such
a dense integration of cores result in larger die sizes and
reduced manufacturing yields, contributing to substantially
higher fabrication costs [1].

2.5D integration of multiple smaller chiplets on a large
interposer is developing into a promising technology. Stow
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et al. [2] demonstrate that 2.5D interposer-based technology
have significant cost reductions and higher manufacturing
yield compared to 2D systems. Their work also shows 2.5D
systems have a higher thermal efficiency over 3D systems.
2.5D integration also allows for a larger reuse of different
IPs, thereby paving the way for heterogeneous integration [3].
Several works explore the performance and energy benefits of
2.5D systems in academia and industry [4], [5], [6].

In 2.5D manycore systems, as the on-chip wirelength gets
longer, performance and energy efficiency are severely ham-
pered by the network-on-chip (NoC) latencies and bandwidth.
With the emergence of CMOS-integrated silicon-photonic
technology, photonic NoCs (PNoCs) have been shown to
provide high bandwidth, low latencies and low energy-per-
bit communications, making PNoCs attractive for 2.5D sys-
tems [7], [8], [9]. A conventional PNoC consists of a laser that
emits optical signals onto an on-chip waveguide. Microring
resonators (MRRs) at the transmitting (Tx) and receiving
(Rx) sites are utilized for modulation and filtering of the
optical signals, respectively. A photodiode at Rx converts
the filtered optical signal to an electrical signal. In addition,
multiple optical signals can be multiplexed onto the same
waveguide, enabling wavelength division multiplexing (WDM)
that provides high internal bandwidth. Numerous works have
demonstrated the feasibility of integrating photodiodes [10],
low-loss waveguides [11], grating couplers [12], and MRR
modulators and filters [13] through the use of slightly adapted
or unmodified CMOS process, thereby paving the way for
efficient realization of PNoCs.

Wide-scale adoption of silicon-photonic technology, how-
ever, is hampered by the high PNoC power consisting of lasers,
electrical-optical (EO) and optical-electrical (OE) conversion,
and the thermal tuning of MRRs [14]. First, MRRs exhibit
high sensitivities towards on-chip thermal variations (TV)
and process variations (PV), resulting in high thermal tuning
power. Second, the overall PNoC power increases to support
high bandwidth needs of data-intensive applications. Though
device-level solutions use closed loop monitoring mechanism
to perform controlled local heat injection for thermal tun-
ing [15], [16], [17], such solutions do not account for runtime
characteristics of applications. There is a strong diversity in
application’s runtime bandwidth needs and resource utilization
that result in highly application-specific power and thermal
profiles. To address these two challenges, we develop system-
level policies to determine the minimum required number of
laser wavelengths based on application-specific bandwidth
needs and further leverage the benefits of a low-level thermal
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Fig. 1. An example silicon-photonic link. An off-chip laser emits 3 optical signals that are modulated by 3 MRRs at the Tx site and filtered
by 3 MRRs at the Rx site.

control loop to perform thermal remapping with an eventual
goal of reducing the overall PNoC power.

In our recent work [18], our wavelength selection policy,
(WAVES, renamed as Static-Oracle WAVES (SO-WAVES) in
this paper), introduces a mechanism to select the minimum
number of laser wavelengths (λmin) that can satisfy the
average bandwidth needs of an application. In this paper,
we demonstrate that the bandwidth needs of applications are
highly dynamic during execution. Prior laser management
policies, including SO-WAVES, are either agnostic to such
dynamic behavior and/or perform offline characterization for
wavelength selection [18], [19], [20], [21], [22], [23], [24],
[25]. Our observation that λmin strongly correlates with the
dynamic bandwidth needs of an application drives us to
monitor these needs to predict PNoC activity and proactively
select λmin for each application phase.

To this end, we first define a dynamic oracle wavelength
selection policy (DO-WAVES). This policy determines the ideal
minimum laser wavelength (λmin) that is power-efficient for
an application phase, given a performance loss threshold. Our
goal is to design a dynamic runtime policy that achieves a
λmin as close as possible to the λmin selected by DO-WAVES.
Our specific contributions are as follows:
• We demonstrate that the bandwidth needs of an application

are highly dynamic. Consequently, the number of wave-
lengths selected by our SO-WAVES policy [18] either over-
or under-estimates the bandwidth needs during an execution
phase. We quantify the average packet latency in the PNoC
during each phase in the application execution, and show
strong correlation between the average packet latency and
the bandwidth needs during that phase.
• We design a dynamic runtime policy for wavelength se-

lection, PROWAVES, which utilizes an AutoRegressive Inte-
grated Moving Average (ARIMA) time-series predictor [26]
to proactively select the minimum required wavelength,
λmin, for the next application phase. The predictor forecasts
the average packet latency of the next application phase
based on recent past trends. Using this forecasted average
packet latency, PROWAVES then proactively activates or
deactivates laser wavelengths to satisfy near-future band-
width needs of that application. While DO-WAVES provides
the ideal λmin at each application phase, our practical
implementation of PROWAVES is able to select λmin that is
within 12% on average of the λmin selected by DO-WAVES.
• We develop a methodology that accounts for the PV and

on-chip TV at each application phase. Our work is the first
to model a low-level thermal control loop at the system-

level to capture the effects of TV-induced shifts and enable
MRR thermal remapping during each application phase.
This dynamic thermal remapping enables PROWAVES to
activate the best combination of λmin that result in the
lowest thermal tuning range.
• We design a simulation framework to evaluate PROWAVES

against prior system-level policies on a 2.5D manycore
system. Compared to a power scaling policy that uses a
ridge regression model (RR-PS) [25], we demonstrate the
benefits of modeling a thermal control loop that enables
thermal remapping in PROWAVES. PROWAVES consumes
26.3W lower thermal tuning power than RR-PS. Fur-
thermore, PROWAVES consumes an additional 10.2% and
16.4% lower PNoC power than our earlier SO-WAVES [18]
for the same performance loss compared to the baseline.
The rest of this paper is organized as follows: Section II

starts with a background on photonic communication. Sec-
tion III provides an overview of related work. Section IV
presents architectural details of the 2.5D manycore system
used in our study. In Sec. V, we explain our experimental
methodology. Section VI introduces our proposed PROWAVES
policy. Section VII presents our evaluation results and Sec-
tion VIII concludes this paper.

II. BACKGROUND IN PHOTONIC COMMUNICATION

Figure 1 illustrates an example of silicon-photonic link. A
laser emits multiple optical signals with n different resonance
wavelengths λ1, λ2, .., λn. In our work, we assume the laser is
located off chip. The optical signals are carried by an optical
fiber and coupled onto the on-chip waveguide using grating
couplers. Several optical signals of different wavelengths can
coexist within a single waveguide, allowing for WDM. At
Tx, a cascade of n MRRs are designed to resonate at the
same wavelength as the n optical signals from the laser. The
output data at Tx is first serialized and then modulated onto
one of the optical signals by an MRR that is resonating at
the same wavelength as that optical signal. Depending on
whether a logic 0 or 1 needs to be modulated onto the
laser wavelength, an analog driver applies a corresponding
voltage to the MRR. We discuss voltage modulation further
in Sec. II-B. The modulated laser wavelength travels through
the on-chip waveguide. At Rx, there is another set of n MRRs
that are designed to resonate at the same wavelength as the
n laser optical signals. The modulated optical signal in the
waveguide is filtered out of the WDM bundle of channels by
an MRR that is resonating at the same wavelength as that
optical signal. The filtered optical signal is captured by a
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photodetector diode [27] that converts the optical signal into
electrical signal. The detected electrical signal is amplified
by a transimpedance amplifier (TIA), and read by a set of
comparators that distinguishes the electrical signal as either
logic 0 or logic 1.
A. Microring resonators (MRRs)

MRRs are integral components of WDM photonic com-
munication. MRRs are utilized for narrow-band modulation
and filtering of optical signals. An MRR utilizes a coupling
mechanism to access the optical signal in a waveguide. MRRs
are characterized by their small footprints, low modulation
energies, wide working ranges and adjustable wavelength
selectivity that allows for WDM [13]. When the coupled
optical waves in an MRR loop builds up a round trip phase
that is an integral multiple of 2π, the MRR is in resonance,
diverting most of the optical power from the waveguide to
the MRR. This phenomenon, called constructive interference,
occurs when the MRR optical length is a whole number
multiple of a particular laser wavelength. Therefore, an MRR
is said to be in resonance with that laser wavelength when
Eq. (2) holds true, where OPL denotes the optical path length,
neff is the effective refractive index and r is the MRR radius:

OPL = neff · (2πr), (1)

λ = OPL
m ,m = 1, 2, 3, .... (2)

If a second waveguide is placed within coupling distance to
the MRR, the waves also undergo constructive interference,
thereby enabling the filtering of a given laser wavelength from
a WDM waveguide.

The spectral parameters of an MRR are characterized by
the free-spectral range (FSR), full-width at half maximum
(FWHM) and the peak transmissions at resonance. FSR is the
wavelength difference between two consecutive resonances,
as depicted in Fig. 2. FWHM denotes the wavelength spec-
trum width at points that are the half the maximum power
amplitude, and characterizes the sharpness of the resonance.
It is related to the Q-factor, defined as the ratio between the
resonant wavelength and the FWHM.
B. Voltage modulation

MRRs are doped to create a junction interfering with the
optical path along the ring. This doping forms a p-n junction
behaving in depletion mode i.e., electrons accumulated at the
junction will be depleted when the junction is reverse biased,
which increases neff and shifts the resonance wavelength to
higher values. This phenomenon is fast, allowing for high-
speed modulation up to 10 − 40Gbps.

On the other hand, the doping can form a p-i-n junction,
with an intrinsic zone along the MRR waveguide. In this case,
the MRR behaves in injection mode i.e., forward biasing of
the p-i-n junction injects carriers in the optical channel, thus
reducing neff and shifting the resonance wavelength to lower
values. This current-based injection is slower, operating around
100Mbps. In addition, the resulting shift for p-i-n junctions is
much larger than p-n junctions, which allows shifting of more
than the FWHM. This property can be utilized to dynamically
activate and deactivate MRRs as filters within a PNoC for
routing of optical signals to different waveguides.
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Fig. 2. MRRs are designed to resonate at wavelength of the laser. TV
and PV induces shifts in the MRR resonant wavelength. The MRRs
are supplied with heating power to tune back to laser wavelength.

C. Thermal and process sensitivity of MRRs

The non-idealities associated with CMOS fabrication pro-
cess introduces variations in the thickness and width of the
MRRs. These process variations have been demonstrated to
induce shifts in the MRR resonant wavelengths. Krishnamoor-
thy et al. [28] show 1nm shift in MRR resonant wavelength
for every 1nm of variation in MRR thickness or radius.
As variations due to lithography, etch process and chemo-
mechanical polishing are expected to be in the order of 10nm,
the PV-induced MRR resonant shifts become prominent. This
implies that the exact MRR resonant wavelength cannot be
fixed at design time, but needs to be accounted for each chip.
These PV have a small random component and are mostly
geometric variations. Hence, two distant MRRs across the die
reticle can have an unknown resonant wavelength difference.
Therefore, while it is possible to design MRRs grouped within
about 1mm distance, it is not possible to predict the resonance
variations between distant Tx and Rx MRRs.

TV introduces changes in the refractive index of an MRR,
causing shifts in the resonant wavelength. The high thermo-
optic coefficient of Si (1.86 × 10−4K−1) makes it extremely
vulnerable to TV-induced resonant wavelength shifts. The
MRR resonant wavelength shift due to TV is given by Eq. (3):

∆λshift = dλ
dT · ∆T . (3)

In large manycore systems, high compute activity in the
cores creates large TV and hot spots, which can reach
high temperatures (>85°C) for compute-intensive applica-
tions. Moreover, these TV are not only temporal, but also
spatial. Therefore, MRRs on the interposer can experience
TV-induced resonance shifts between a completely cold state
and peak activity, and distant MRRs can shift very differently
depending on local activity.

Figure 2 shows an MRR that is designed to resonate at a
laser wavelength. As the MRR is highly sensitive to PV and
on-chip TV, the resonance peak of the MRR increases and the
entire wavelength spectrum of the MRR shifts to the right.

D. Thermal tuning of MRRs

In order to compensate for PV- and TV-induced resonant
wavelength shifts, the MRRs can be thermally tuned by
controlled local heat injection as shown in Fig. 2. This is
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conventionally done via the Joule effect using resistive heaters
inside the MRRs, thereby increasing the MRR wavelength.
While Joule heating does not allow decreasing the resonant
wavelength, it is always possible to heat up to a higher order
of resonance. The maximum MRR wavelength shift is one
FSR to align one of the MRR resonant peaks to the laser
wavelength. The feasibility of a large wavelength shift by Joule
heating is strongly dependent on MRR thermal sensitivity and
the heater efficiency in terms of K/W .

Owing to WDM, it is possible to reduce the required amount
of wavelength shift for an MRR. If n laser sources are used
with resonant wavelengths evenly distributed within the FSR
of an MRR, the maximum resonance shift required for any
MRR is FSR/n to tune to the nearest laser wavelength. We
can use n similar MRRs with small perimeter changes whose
resonances are evenly distributed within an FSR. Thus, it is
possible to tune all the MRRs to one laser wavelength each,
forming a WDM group (either the Tx or Rx part of a WDM
link), with no more than FSR/n shift for each MRR.

Thermal tuning with controlled local heat injection requires
a closed-loop feedback system that monitors the MRR res-
onant shift due to TV and PV and the tuning required for
an MRR to lock on to a laser wavelength. This is done by
measuring the optical power on the drop port of the MRR
with a photodiode. At the Rx, the optical power measurement
is needed for signal demodulation, but we also incorporate
power measurement at Tx to allow for monitoring and thermal
tuning. Several techniques exist, either analog or digital, to
close the feedback loop and derive a heating level from the
optical monitoring of the drop port [16], [29], [17]. The heater
maintains a fixed temperature within the MRR, so that the
MRR resonance remains fixed to the laser wavelength.

However, a second level of control is needed, in order
to handle the large temporal TV occurring at runtime. This
control is responsible for wavelength locking to a different
mapping of a WDM group. First, if the chip temperature
increases close to the target MRR temperature, it is necessary
to force a remapping to a higher order of resonance. Second,
when the heater power gets higher, it may be possible to find
a lower order of resonance that would require lower heater
power. These remappings between n wavelengths are only
possible if the heater efficiency is high enough that it can
shift by more than FSR/n with some margin. As remapping
requires larger amounts of thermally-controlled shifts, it is a
relatively slow process of about 100µs, but occurs less than
once per second due to the thermal inertia of chips. Thonnart
et al. [15], [30] provide more details on thermal tuning of
MRRs, with silicon measurements, and wavelength remapping
of a WDM link. Since the thermal control loop performs
wavelength stabilization after MRR remappings, we assume
negligible impact on device-level bit error rate (BER) arising
from our system-level wavelength selection policies.

III. RELATED WORK

2.5D-integrated systems with PNoCs have been extensively
studied both in academia and industry because of their po-
tential performance and thermal advantages. Oracle proposed

the Macrochip [31], which integrates multiple manycore pro-
cessors in a single package with different PNoC designs,
providing low-power, higher inter-die communication band-
width. Galaxy [32] is a multi-chip architecture that integrates
multiple small chiplets through optical fibers and incorporates
local electrical signaling for near-communication and photonic
waveguides for distant intra-chiplet communication. Grani et
al. [33] implemented a crossbar-based PNoC using arrayed
waveguide grating router on a silicon interposer and demon-
strated high bisection bandwidth at low energy-per-bit values.

A primary aspect in designing energy-efficient manycore
systems with PNoCs is to address the tradeoff between achiev-
ing high bandwidth and reducing PNoC power consumption.
Such tradeoffs are explored in various prior studies by en-
abling a higher number of channels for maximum aggregated
bandwidth [20], via optimized wavelength allocation based on
application task graph [21] or using an arbitration-free shared-
channel PNoC [22].

There have been other system-level efforts to reduce
the MRR thermal tuning power. RingAware [34] and Fre-
qAlign [35] employ thread allocation and migration to re-
duce the thermal variations around communicating MRRs.
Aurora [36] encompasses a cross-layer approach at the device,
system and OS-level to control the thermal tuning power.
Our approach is orthogonal to such runtime policies and can
be combined with most prior studies to develop an energy-
efficient PNoC.

Wavelength selection has also been studied in the context
of power scaling in several related works. Winkle et al. [25]
proposed a learning-based technique based on PNoC link uti-
lization to determine the optimal number of laser wavelengths.
Chen et al. [19] performed runtime wavelength selection on
clos and butterfly network topologies based on the latency at
each application phase. R-3PO [23] is a reconfigurable 3D-
PNoC that monitors the bandwidth availability and performs
runtime reconfiguration of PNoC bandwidth.

In contrast to prior system-level studies, the major distin-
guishing feature of PROWAVES comes from the awareness
towards the underlying low-level thermal control loop. The
low-level modeling of the thermal control loop enables us to
evaluate the benefits of MRR thermal remapping, which reacts
to the application’s dynamic thermal profile. We evaluate the
benefits of thermal control loop modeling in Sec. VII-A. Our
work is also the first to consider the dynamic impact of on-chip
TV and PV, leverage underlying device-level solutions, and
design proactive system-level policies to improve the energy
efficiency of 2.5D manycore systems with PNoCs. PROWAVES
comes at a relatively low overhead in terms of latency and
storage, and can be seamlessly integrated in a real system.

IV. SYSTEM ARCHITECTURE AND METHODOLOGY

Our target system is a 2.5D manycore system of homoge-
neous cores, connected with PNoCs. Specifically, we focus on
the Photonic Silicon inTerposer ARchitecture (POPSTAR) that
was introduced in our recent work [18], [30].
A. Architecture overview

POPSTAR is a 2.5D-based manycore system with 96 cores
organized in six compute chiplets and the electrical circuitry
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Fig. 3. The 96-core POPSTAR architecture consists of six compute chiplets and eight TxRx chiplets integrated on a photonic interposer. An
off-interposer laser emits 16 optical signals onto SWMR links on the interposer for communication.

for photonic communication organized in eight TxRx chiplets.
The compute and the TxRx chiplets are stacked on a photonic
interposer. Figure 3 illustrates the POPSTAR organization. An
off-chip laser emits multiple optical signals that are carried
onto the photonic interposer through a fiber attachment. Ver-
tical grating couplers couple these optical signals between the
waveguides on the interposer and the fiber attachment.

1) Compute chiplets: The 96 cores in POPSTAR are or-
ganized in six compute chiplets. The architecture of each
compute chiplet is similar to the TSARLET chiplet [37]. TSAR-
LET is a scalable cache-coherent chiplet architecture with full
virtual memory support targeted for 3D integration onto an
active interposer. Each chiplet is composed of four clusters
with four cores in each cluster as shown in Fig 3b. In our
study, we assume that the core architecture is similar to IA-32
core from the Intel Single-chip Cloud Computer (SCC) [38].
Each core has a private 16KB L1 I-cache and D-cache with
full virtual memory support. We scale the dimensions of the
IA-32 core to 28nm, resulting in a single core area (including
the L1 cache) of 0.93mm2. There is a shared distributed L2-
cache with 256KB per cluster, and a distributed L3-cache,
with 4 L3 tiles (4 × 1MB) per compute chiplet.

2) TxRx chiplets: Each TxRx chiplet is composed of the
electronic circuitry for E-O and O-E conversion, as shown in
Fig. 3c. Each of the six compute chiplet accesses the PNoC
on the interposer through a TxRx chiplet. Two of the TxRx
chiplets are connected to the external peripherals, IOs, and
memory controllers. For each Tx MRR, there is a serializer
and a modulation driver. Additionally, for each Rx MRR, there
is a filter bias, a TIA and comparators. An analog thermal
loop [15], detects the photodiode current, compares it with a
reference bias current and supplies heating power to thermally
tune the MRRs so that the detected photocurrent is equal to
the reference current. This thermal loop locks an MRR to the

nearest activated laser wavelength. Finally, FIFO queues and
multiplexers handle the flow control and communicate with
the compute chiplets using local 2.5D passive connections.

3) PNoC architecture: The PNoC on the interposer handles
the inter-chiplet transfers consisting of the data and coherence
traffic between an L1 and an L2 cache that are on separate
chiplets, and an L2 and an L3 cache that are on separate
chiplets. The interface between the compute and TxRx chiplet
is serialized before injection in the PNoC depending on the
number of activated laser wavelengths. The data rate of each
laser wavelength is 12Gbps, resulting in a peak aggregate
bandwidth of 1.5Tbps on the interposer.

The global PNoC toplogy connecting the TxRx chiplets
is a Single-Writer Multiple Reader (SWMR) topology [30].
The SWMR topology is mapped onto a U-shaped spiral of
waveguides on the photonic interposer. Each TxRx chiplet
owns a communication channel, spanning all activated laser
wavelengths, where it writes its data to transmit. This channel
passes by all TxRx chiplets along the spiral. Data is routed to
the appropriate TxRx chiplet by electrical control lines from
the transmitting TxRx chiplet driving the Rx MRRs of the
receiving TxRx chiplet. The flow control of the packets is
achieved by the FIFO buffers in each TxRx chiplet. As each
channel is written by a single dedicated TxRx chiplet, in-
network contention is prevented.

4) Microring resonators (MRRs): MRRs are responsible
for modulating and filtering the optical signals. We use p-
n junction MRRs for Tx high-speed modulation and p-i-n
junction MRRs for Rx filtering. Each MRR has a radius of
10µm, and designed around a center wavelength of 1310nm
with an FSR of 10.8nm. Thermal tuning of MRRs is achieved
via dedicated local heaters that are fabricated with titanium.

5) Microring resonator group (MRRG): A group of MRRs
consisting of Tx MRRs and Rx MRRs is organized under-
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TABLE I
NOTATIONS USED

Notation Description Value

C Number of TxRx chiplets (and waveguides) 8
λtot # available laser wavelengths 16
λact # activated laser wavelengths 1,2, .. 16
λmin # laser wavelengths required for an application 1,2, .. 16

TABLE II
POWER CONSUMPTION OF DIFFERENT ELEMENTS [14]

Component Active Power Idle Power
Notation Value (mW) Notation Value (mW)

Laser (wall-plug) PL 30 0
Serializer Psrl,a 3 Psrl,i 1
Driver Pdrv 3 0
Rx Comparator Pcmp,a 1 Pcmp,i 0.33
TIA PTIA 2 0
Arbitration and
Flow Control Parb,a 32 Parb,i 10

neath a TxRx chiplet, termed as microring resonator group
(MRRG). Each TxRx chiplet accesses the PNoC through a
single MRRG. For every MRRG, there is one Tx waveguide
and seven Rx waveguides coming from the other MRRGs
forming a spiral of SWMR links as depicted in Fig. 3d. An
MRRG consists of 16 WDM bundle of MRRs, with each
WDM bundle operating at a different laser wavelength. A
WDM bundle consists of a single Tx MRR and seven Rx
MRRs. The Tx MRR in a WDM bundle modulates data on a
laser wavelength. For data filtering, the seven Rx MRRs per
WDM bundle are utilized to receive data from the seven other
TxRx chiplets on that laser wavelength. This results in an
aggregate of 16 Tx MRRs and 112 Rx MRRs in each MRRG.

B. Power consumption of the PNoC

The major components of power consumption along a PNoC
include the electronic circuitry for E-O and O-E conversion,
laser and the thermal tuning of MRRs. Table I lists the
notations used in our work. In this section, we evaluate the
power consumption as a function of λact. Table II displays
the active and idle power consumption of different elements.
These power values are determined from the post-layout
simulations using PrimeTime power analysis [14].

In order to filter out the optical signal from waveguide at
each Rx site, the input laser needs to provide the minimum
power so that the optical power at Rx site of the longest
SWMR link is above the photodetector sensitivity. We account
for all the sources of power loss as the optical signal traverses
through the waveguide, including the effect of PV on each
MRR, and determine the worst-case power loss along the
longest SWMR link in the waveguide. The laser source power
of a single wavelength (PL) should be higher than the sum
of this worst-case power loss and the photodiode sensitivity.
We calculate this value as 30mW . The overall laser power,
Plaser, for λact laser wavelengths can then be expressed as:

Plaser = PL · C · λact . (4)

The next contributor to the PNoC power is electronic
circuitry for E-O and O-E conversion. We break down the
overall EOE power consumption into the power consumed by

the Tx circuitry, Rx circuitry and the logic for arbitration and
flow control. In the TxRx chiplet, the serializer, comparators
and arbiters are clocked for precise timing control. The number
of elements that are active in the Tx, Rx and arbitration
circuitry is a strong function of λact. We calculate the overall
EOE power across all TxRx chiplets as follows:

PTx = Pdrv · λact + Psrl,a · λact + Psrl,i · (λtot − λact) , (5)
PRx = PTIA · λact + Pcmp,a · λact + Pcmp,i · (λtot · C − λact) ,

(6)

Parb = Parb,a · λactλtot
+ Parb,i · λtot−λactλtot

, (7)

PEOE = C · (PTx + PRx + Parb) . (8)

The heating power required to thermally tune the MRR
back to resonance is another major power contributor of the
overall PNoC power. As described in Sec. II-D, the analog
thermal control detects the photodetector current, compares
with the reference and supplies the appropriate heating power.
The power of this feedback logic circuitry for tuning power is
0.15mW and is neglected in comparison to the heating power.
In our system, we use the MRR thermal sensitivity of 78pm/K
and a heater efficiency of 120pm/mW . Given the small area
footprint of an MRRG, we assume the transient temperatures
within an MRRG to be same. Thus, all the MRRs within
an MRRG undergo the same TV-induced resonance shift.
However, due to variable chip activity across different compute
chiplets, the thermal gradient across different MRRGs might
be very high. Equation (9) calculates the overall wavelength
shift (∆λshift) for an MRR, where ∆T is the difference
between the MRRG temperature and the ambient temperature
and ∆λshift,PV is the PV-induced wavelength shift:

∆λshift = dλ
dT · ∆T + ∆λshift,PV . (9)

In a single MRRG, one Tx MRR and seven Rx MRR
are heated for every activated laser wavelength. We calculate
the total heating power, Pheat, in Eq. (11) by aggregating
the heating power of the MRRs over all the MRRGs, where
∆λheat is the required wavelength shift to the nearest laser
wavelength for an MRR:

∆λheat = FSR
λtot

− (∆λshift mod
FSR
λtot

) , (10)

Pheat =
∑C
i=1

∑C·λact
r=1

∆λheatir
dλ
dH

. (11)

Since most of the heat flux from the heater flows through the
substrate, thermal coupling is less than 0.02K/mW between
adjacent MRRs [30].

V. SIMULATION FRAMEWORK

To evaluate the performance and power consumption of
POPSTAR with different wavelength selection policies, we set
up a simulation framework that is composed of a performance
simulator, logic core power calculator, PNoC power model
and a thermal simulator. Figure 4 depicts our toolflow. For
simulating the performance of the multithreaded applications,
we use Sniper [39] by modeling the architectural details of
POPSTAR. We use McPAT [40] to estimate the logic power.
We feed the logic and the PNoC power traces to HotSpot [41],
[42] for transient thermal simulations.
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Fig. 4. Simulation framework for modeling performance, power and
temperature of POPSTAR and performing wavelength selection.

A. Performance simulation

For our experiments, we use a diverse set of applications
from PARSEC [43] (swaptions, blackscholes), UHPC [44]
(shock), HPCCG [45] (hpccg) and NAS Parallel Bench-
mark [46] (ep, is, mg, ft, bt, lu, sp). We vary the inter-
chiplet bandwidth to model the link bandwidth corresponding
to λact in the system. In our experiments, we fast-forward the
sequential instruction phase of all the applications. We execute
each application for 10 billion instructions in the region of
interest (ROI) or the full ROI if the application finishes earlier
than 10 billion instructions. We collect performance traces,
including the PNoC metrics (number of packets transferred
in the PNoC and total queue delay) in Sniper at every 100
million instruction from the beginning of ROI. The size of
a single interval, unless otherwise mentioned, is 100 million
instructions. To study the benefits of wavelength selection
with different system utilization, we run each application with
varying number of thread counts (24, 48, 72 and 96 threads).

B. Power simulation

We feed the performance statistics from Sniper as input to
McPAT at each interval. To perform the calibration of McPAT
power numbers, we estimate the average power in McPAT
obtained from all our experiments. We calculate the calibration
factor by scaling the McPAT average power to the published
average power of the IA32 core (0.83W at VDD = 0.85V ,
f = 533MHz) [38], and use this factor to scale the McPAT
power numbers. We assume that the idle cores are put to sleep
and consume negligible power.

We calculate the laser and EOE power using at each interval
using our analytical PNoC power model, as described in
Eq. (4)-(8). The aggregate heating power required to thermally
tune all the MRRs is calculated using Eq. (10)-(11). Sec. V-C
explains the thermal simulation to determine MRR tempera-
tures. We model the local MRRG PV as a gaussian distribution
with a standard deviation of 100pm [30].

Since the leakage power component is strongly dependent
on temperature, we implement a temperature-dependent leak-
age power model in our thermal simulator. We extract the
linear leakage power model from the published data for Intel
22nm Ivy Bridge processors [47], [35]. Since our operating
range covers a limited range of temperature, we assume the
leakage current dependence on temperature to be linear [48].
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TxRx
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Fig. 5. Layout and cross-sectional view of POPSTAR
TABLE III

MATERIAL PROPERTIES AND DIMENSIONS

Layer Thickness
(µm)

Thermal
conductivity
(W/m.K)

Specific
heat

(J/kg.K)

Density
(kg/m3)

Heat sink 6900 400 396 8960
Heat spreader 1000 400 396 8960

TIM 10 6.8 900 1300
Chiplets 750 150 700 2330
BEOL 10 145 612 4237

Microbump Pitch=40,
diameter=20 0.86 846 2689

Interposer 750 150 700 2330

C. Thermal simulation
We use the 3D extension of HotSpot [41], [42] to determine

the transient thermal profile of each MRRG. In order to obtain
an accurate thermal map, we calibrate the HotSpot tempera-
tures to temperatures obtained from Project Sahara [49], which
is a sign-off thermal tool from Mentor, a Siemens Business, for
simulating detailed 3D circuits within its package and board.
We obtain HotSpot temperatures to be within 2% error margin
of Project Sahara on average. Figure 5 shows the floorplan and
cross-sectional view of POPSTAR that we model in HotSpot.
We use a grid size of 64 × 64 for our thermal simulations in
HotSpot. Table III shows the material properties of all layers
in POPSTAR that are used in our thermal simulations.

We use an ambient temperature of 310K, and assume that
the MRRs are designed to resonate at laser wavelengths at this
temperature. Transient thermal simulations are initialized with
temperatures from a steady state simulation. As we incorporate
the temperature-dependent leakage model that in turn changes
the power traces, we run each transient thermal simulation for
a second round to ensure convergence of temperature.

VI. WAVELENGTH SELECTION IN PNOCS

A. Need for wavelength selection
1) Impact of λact on PNoC power: The peak aggregate

bandwidth of a PNoC is the product of λact and the modulation
bit rate of a single laser wavelength. For applications with high
inter-chiplet communication, it is intuitive that a higher λact
provides increased communication bandwidth, and therefore,
is desirable for higher performance. However, as evident from
the Equations 4-10, the power consumption along a PNoC
increases with λact. Therefore, it is essential to address this
bandwidth-power tradeoff and activate the minimum number
of laser wavelengths, λmin, that sufficiently caters to the
required bandwidth needs of an application.
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Fig. 6. Inter-chiplet packets transferred during application execution. Each interval consists of 100million instructions. Applications have
phases where a higher number of packets are transferred compared to other phases and these phases exhibit periodic behavior.

2) Bandwidth characteristics of applications: Figure 6 il-
lustrates the number of network packets transferred in the
PNoC at various intervals during an application’s execution.
Therefore, an application’s bandwidth needs during its exe-
cution is highly dynamic and periodic. Since an application’s
bandwidth needs is highly dynamic, executing the entire appli-
cation with a single λmin may not yield the maximum PNoC
power savings. In order to unearth the maximum benefits of
wavelength selection, we argue for the need of a dynamic
wavelength selection that monitors the bandwidth needs at
different intervals and activates the λmin for each interval.

B. Static Oracle WAVES (SO-WAVES)

SO-WAVES [18] is a static wavelength selection policy
that determines the λmin for an application based on offline
analysis using a set performance loss threshold (Lthr). The
performance loss is calculated from the case where all the laser
wavelengths in the system are activated, i.e. λact = λtot. We
set an Lthr that is deemed acceptable for a system. In Sec. VII,
we experiment with different Lthr values i.e., 1% and 5%.
SO-WAVES selects the minimum λact = λmin that provides
a system performance within Lthr of the system performance
obtained from λact = λtot.

Once we determine the λmin for an application, we account
for the TV and PV and activate the best λmin that result in
the lowest overall thermal tuning range. Our recent work [18]
presents the TV and PV-aware selection of the best λmin.

C. Dynamic Oracle WAVES (DO-WAVES)

A major limitation of SO-WAVES stems from the fact
that it does not account for the varying trends in bandwidth
requirements during the runtime execution of an application.
As explained in Sec. VI-A2 and illustrated in Fig. 6, the band-
width needs is highly dynamic over an application execution.
Therefore, selecting a single λmin for the entire application
execution leaves much of the power benefits from wavelength
selection under-utilized. We exploit this observation to dynam-
ically select the λmin for each interval of an application.

In Dynamic Oracle WAVES (DO-WAVES), we use the same
Lthr from SO-WAVES policy to determine the λact = λmin
at each interval. It is imperative to note that this policy is
not realistic as it assumes accurate knowledge of the future
execution trends to select the optimal λmin at each interval of
an application. Our goal is to design a proactive policy that
can closely match the λmin of DO-WAVES. We implement
DO-WAVES for the sake of comparing our proactive policy
against the best hypothetical case of operation.
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Fig. 7. Flow of PROWAVES. Every interval, the ARIMA model
forecasts the Latavg . The linear regression model selects the λmin

from the forecasted Latavg . A K-S test is applied to update the
ARIMA model in case of divergence.

D. Proactive Dynamic WAVES (PROWAVES)

The need for dynamic wavelength selection motivates de-
signing a policy that can proactively select λmin for each inter-
val during an application execution, based on the bandwidth
needs. A higher traffic of chiplet-to-chiplet network packets
during an application interval will necessitate a higher inter-
chiplet bandwidth to ensure minimal queue latency in the FIFO
output buffers. The average packet latency (Latavg), therefore,
is a strong indicator of the minimum bandwidth required in
order to keep the PNoC out of saturation. Figure 10a shows
the plot of log10(Latavg) vs λmin selected by DO-WAVES,
illustrating linear increase in λmin with log-linear increase in
Latavg. For an application interval i, we define Latavgi as
follows, where Tqueuei is the aggregate queue latency of all
packets, and Npi is the total number of inter-chiplet packets
transferred during that interval i,

Latavgi =
Tqueuei
Npi

. (12)

In order to select λmin in an efficient way, we develop a
forecasting methodology to predict Latavg at each interval.
We propose a policy, PROWAVES, that can proactively select
λmin at each interval based on the forecasted Latavg. Figure 7
illustrates the flow of our proposed PROWAVES policy.

1) ARIMA-based time series forecasting: We utilize an
autoregressive integrated moving average (ARIMA) [26] pre-
dictor to forecast Latavg for each application interval by
utilizing the past trends in Latavg . ARIMA models are
autocorrelation models in a time series that are extensively
utilized in many fields for time series forecasting. ARIMA
models typically require the time series to be stationary i.e.,
the time series should be devoid of trends and/or seasonality.
In a time series, trend denotes the increasing or decreasing
behavior and seasonality represents a cyclic variation. Figure 8
depicts the trends and seasonality in the Latavg time series for
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Fig. 8. Trends and seasonality in the Latavg time series for applications running 96 threads.

applications. It is evident that the Latavg time series exhibits
minimal variations in trends, but strong seasonality, therefore
it is non-stationary. A common strategy to convert such a non-
stationary time series to stationary is to compute the difference
between consecutive observations, also known as differencing.
In ARIMA, an autoregression model (AR) consists of forecast-
ing the variable using a linear combination of past values of
the variable. Futhermore, a moving average model (MA) in
ARIMA uses past forecast errors in a regression-like model.
An ARIMA(p, d, q) model is represented as follows, where
p is the order of autoregressive part, d is the degree of first
differencing involved and q is the order of moving average:

Lat′avgi =c+ φ1 · Lat′avgi−1
+ · · · + φp · Lat′avgi−p

+ θ1 · εi−1 + · · · + θq · εi−q + εi.
(13)

Here, Lat′avgi is the differenced time series of Latavg , εk is
the forecast error of interval k, and θ and φ are the coefficients
of moving average and autoregressive parts respectively.

2) Building an ARIMA model: We obtain the best-
fitting ARIMA model using the Akaike information criterion
(AIC) [50]. The AIC provides an estimate of the relative
quality of the statistical models for a given dataset, thereby
enabling a comparison of the goodness of fit of the model on
the dataset. AIC estimates the relative information lost by the
ARIMA model, i.e., the less information the model loses, the
higher the quality of that model. The AIC criterion function
of ARIMA(p, d, q) model is defined as:

AIC = n ln (σg)
2 + 2(p+ q + 1). (14)

We use the starting 30 intervals of an application execution
to build the initial ARIMA model. We select the number of
intervals empirically based on our application set to build a
good-fit ARIMA model and this number can be altered for
different applications. We perform a grid search over a range of
p, d and q values, starting with an ARIMA(1, 0, 0) model. We
increase the order and use the ARIMA(p, d, q) that receives
the lowest AIC value. Figure 9 shows the real and forecasted
values of Latavg for certain applications.

3) Remodeling ARIMA with K-S test: A time-series may
exhibit a behavior that is very different than the initial training
phase, and this gives rise to inaccurate forecasting. This ne-
cessitates the need for remodeling the initial ARIMA(p, d, q)
model. We incorporate a goodness-of-fit test to detect the
divergence of the real data from the ARIMA predicted data.
The Kolmogorov-Smirnov (K-S) [51] test is integrated in the

ARIMA model to detect the similarity between the predicted
data by the ARIMA model and the real dataset. If the K-S test
fails, i.e., marked by 1 in Fig. 7, we conclude that the current
ARIMA model is not suitable for time-series forecasting. We
then rebuild the ARIMA model, by grid-searching again over
the range of p,d and q values, and updating the order of the
ARIMA model that results in the lowest AIC value.

4) Selecting λmin from Latavg: We devise a methodology
to correlate the predicted Latavg from ARIMA model to the
λmin selected by DO-WAVES. We collect the λmin selected by
DO-WAVES for different intervals from a training application
set, as mentioned in Sec. VI-C. For these same intervals, we
collect the Latavg . We then build a linear regression model
by plotting the log10(Latavg) against λmin selected by DO-
WAVES. Figure 10 shows the scatterplot of log10(Latavg) vs
λmin selected by DO-WAVES. We fit a line through these
points, such that 90% of the points are above this line to ensure
that the bandwidth needs at an interval is always satisfied. We
use this linear regression model in PROWAVES to select the
λmin using the forecasted Latavg from ARIMA model.

E. Thermal remapping of MRRs with wavelength selection

During application execution, when λact laser wavelengths
are activated, there are λact Tx MRRs and 7 × λact Rx
MRRs in an MRRG that are locked on to the λact laser
wavelengths. The thermal control loop supplies the heating
power to maintain these MRRs at resonance. However, there
are two factors that shifts the MRR resonance, which then
requires a remapping of the MRRs to the laser wavelengths:
(1) A large temperature drift introduces a resonance shift
greater than FSR/λtot, (2) λact is changed during application
execution by PROWAVES.

Figure 11 shows the thermal remaping of MRRs. When the
MRR shift increases over the tuning range of the heaters, the
computation is temporarily halted. An on-chip LUT is polled
to determine the set of λact laser wavelengths that result in the
lowest thermal tuning power [18]. The thermal control loop
then supplies the heating power to lock the MRRs to these new
λact laser wavelengths. This is shown in Fig. 11, where the
MRRs resonate at different laser wavelengths after remapping.
Similarly, when PROWAVES increases or decreases the λact
during application execution, the on-chip LUT is polled to
identify the new set of MRRs that needs to be mapped to the
selected λact.
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Fig. 9. Real and forecasted Latavg for applications running 96 threads using ARIMA model.
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Fig. 10. Scatterplots of Latavg vs λmin selected by DO-WAVES for
Lthr = 5%. (a) shows the line with least mean square error, (b)
shows the line such that 90% of the points are above the line.

F. Hardware cost of PROWAVES

Implementation of our proposed PROWAVES policy on a
2.5D system comes at a minimal hardware cost. The hard-
ware performance counters are polled every interval to read
out PNoC activity statistics, i.e., the number of inter-chiplet
packets transferred and overall queue time. An initial ARIMA
model is created using these statistics from the training interval
and the model parameters (p, d, q) are stored. On average, this
ARIMA model is created in 72ms for an application. This
ARIMA model is utilized to determine the λmin for the next
interval in parallel with the execution of the current interval.
We observe that ARIMA forecasting takes less than 0.1% of
the execution time of an interval and, therefore, is always
hidden in the execution time of the current interval.

Once λmin for the next interval is determined, we need
to activate the best combination of λmin among a total of(
λtot
λmin

)
combinations. For each combination, we store the

heating power of all MRRGs for an operating temperature
range in a lookup table (LUT). This LUT holds floating point
values of heating power for 8 MRRGs, λtot wavelengths and
temperature range of 300−380K (0.5K precision). Since the
memory footprint of this LUT is estimated as 400kB, it can be
stored on-chip. At runtime, depending on the thermal profile
at the end of an interval, we poll this LUT and exhaustively
search across all the laser combinations to determine the best
combination of λmin. As the worst-case LUT access time is
≤
(
λtot
λtot/2

)
· C lookups and additions, this latency is hidden

within the thermal remapping latency (100µs).

G. Switching overheads of wavelength selection

The performance overhead of PROWAVES come from the
latency associated with increasing and decreasing the laser
wavelengths during application execution. The ARIMA model
predicts λmin for the next interval in parallel with the ex-
ecution of the current interval. MRR remapping, if required

Fig. 11. Thermal remapping of MRRs to λact. As chip activity
varies during execution, the thermal profile of MRRGs varies, causing
MRRs within an MRRG to map to different laser wavelengths.
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Fig. 12. Latency overhead of PROWAVES. Increasing λmin in-
volves laser activation (2ns), thermal remapping (100µs). Decreasing
λmin involves laser deactivation (2ns) and flushing pending packets
(100ns− 1µs), which are hidden in the computation time.

for the next interval, is performed at the end of the current
interval. When λmin is increased, the latency comprises of
the laser power-on latency and the thermal remapping of the
new WDM group of MRRs to the activated laser wavelengths.
Simon et al. [52] demonstrate that laser switching takes
2ns with relatively low drift. Once the laser wavelengths
are activated, the thermal control loop remaps the MRRs
to the activated laser wavelengths in 100µs [15]. Therefore,
activating additional laser wavelengths during an application
execution introduces a latency overhead of 100µs.

When λmin is decreased, the next application interval
requires deactivation of certain laser sources (2ns [52]). We
observe that there is no additional WDM group of MRRs
that needs to be tuned to the new set of laser wavelengths,
therefore, the MRR thermal remapping during laser deactiva-
tion is not necessary. We simply release the heating power on
the MRRs that were communicating via the deactivated laser
wavelengths, and maintain the heating power on the remaining
MRRs 1. However, decreasing λmin at runtime requires flush-
ing the pending packets on deactivated laser wavelengths. We
measure the worst-case completion of pending packets in the

1Note that when deactivating laser wavelengths, we do not perform LUT
lookup to select λmin, as the LUT lookup requires MRR thermal mapping to
a new set of λmin with a remapping cost of 100µs. So the activated λmin

may not be the best combination that result in lowest thermal tuning power.
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PNoC to be 100ns−1µs, and this latency is hidden in the next
application interval. Hence, the overall latency of decreasing
λmin is negligible.

VII. EVALUATION RESULTS

We evaluate the power benefits of PROWAVES against a
power scaling technique based on a ridge regression model
(RR-PS) [25]. With a feature set consisting of network met-
rics and L1/L2 cache misses, RR-PS predicts the number of
packets transferred in the PNoC. Using the predicted number
of packets, RR-PS calculates the minimum number of laser
wavelengths that can support the network packets. A major
limitation of RR-PS comes from the lack of TV and PV
modeling, and the resulting thermal tuning power. We evaluate
the two major benefits of PROWAVES: (1) the modeling of
the low-level thermal control loop that enables MRR thermal
remapping, and (2) the selection of best λmin for every
interval.

We also evaluate the power benefits and performance over-
head of wavelength selection against a baseline case that acti-
vates all λtot laser wavelengths (λact = λtot). We demonstrate
the benefits of PROWAVES policy in comparison to a static
wavelength selection policy, SO-WAVES [18]. We conduct
experiments with varying system utilization by running the
application with different thread counts. In all experiments,
we use Lthr values of 1% and 5% to demonstrate the user
flexibility of setting the performance loss threshold and ex-
ploring the PNoC bandwidth-power tradeoffs.

A. Thermal tuning power savings with PROWAVES

Figure 13a shows the thermal tuning power in POPSTAR
with PROWAVES and a TV and PV unaware policy, RR-
PS [25]. The impact of TV and PV-induced resonance shift is
more prominently observed in RR-PS. Due to the lack of a con-
trol loop for thermal tuning in RR-PS, all the MRRs need to be
tuned to the designed laser wavelengths. Therefore, the average
case tuning range for a random PV distribution across MRRG
in RR-PS is FSR/2. In contrast, the presence of a control loop
for thermal tuning in PROWAVES enables thermal remapping
to the nearest activated laser wavelength, resulting in a worst-
case tuning range of FSR/λact. Since we model the low-
level thermal control loop at the system-level, we are able to
capture the benefits of thermal remapping and significantly
reduce the overall thermal tuning power. Compared to RR-
PS, PROWAVES consumes 24.6W and 26.3W lower thermal
tuning power with an Lthr of 1% and 5% respectively. Thus,
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Fig. 13. Thermal tuning power comparison between RR-PS and
PROWAVES. In (a), RR-PS does not model thermal control loop that
enables thermal remapping, as initially proposed in [25]. In (b), RR-
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modeling of the thermal control loop is essential to evaluate
system-level power benefits.

Since thermal control loop is essential for thermal remap-
ping and significantly reduces the thermal tuning power, we
incorporate its modeling in RR-PS in Figure 13b. This mod-
eling enables us to isolate the specific benefits of wavelength
selection. PROWAVES accounts for the impact of PV-induced
resonant shift which varies across MRRs in an MRRG, and
across different MRRGs. PROWAVES activates the best combi-
nation of laser wavelengths to reduce the impact of PV-induced
resonant shifts as opposed to RR-PS with TCL, which always
selects a fixed set of laser wavelengths for an interval. This
finer level of wavelength selection in PROWAVES reduces the
thermal tuning power by 7.1% and 22.01% for Lthr of 1%
and 5% respectively, as compared to RR-PS.

B. PNoC power and performance comparison

Fig 14a provides a breakdown of the overall PNoC power,
consisting of laser, EOE circuitry, and thermal tuning power.
Fig 14b compares the system performance of RR-PS and
PROWAVES. The thermal control loop modeling is included
with RR-PS to evaluate the overall PNoC power. With a tight
Lthr of 1%, we observe that PROWAVES consumes similar
PNoC power as compared to RR-PS. However, due to the set
Lthr, the performance of PROWAVES is always within the
1% threshold and consistently better than RR-PS, which has a
performance loss close to or above 5% than baseline. If Lthr
in PROWAVES is relaxed to 5%, we observe average power
savings of 29.25% over RR-PS. The increased power savings
with PROWAVES come from the selection of best combination
of λmin accounting for PV. The improved system performance
in PROWAVES shows that ARIMA time-series forecasting
predicts the PNoC activity better than ridge regression model.
Thus, the flexibility of setting Lthr enables the user to trade
off performance for higher power savings in PROWAVES.

C. Power savings with different WAVES policies

Figure 15 shows the PNoC power consumption with dif-
ferent wavelength selection policies under varying system
utilization. SO-WAVES [18] consumes 8.6% and 21% lower
PNoC power on average than the baseline case for an Lthr
of 1% and 5% respectively. DO-WAVES is able to uncover
additional PNoC power savings in the system by activating
lower λmin during phases of low bandwidth needs. This is
in contrast to SO-WAVES that activates a single λmin during
the entire application execution. As a result, for Lthr of 1%
and 5%, DO-WAVES provides 34.4% and 40.7% reduction in
PNoC power than the baseline. In comparison, for Lthr of 1%
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Fig. 15. PNoC power consumption of POPSTAR with different
WAVES policies under varying system utilization and Lthr .
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Fig. 16. Normalized execution time and wavelength switching over-
head with different WAVES policies for varying system utilization
and Lthr . The dotted line indicates Lthr .

and 5%, the system with PROWAVES consumes 18% and 33%
lower PNoC power than the baseline and 10.2% and 16.4%
lower PNoC power than SO-WAVES respectively. The power
savings with PROWAVES is within 12% on average than the
theoretical minimum that is achievable with DO-WAVES. We
analyze this deviation in power savings of PROWAVES from
DO-WAVES due to ARIMA forecasting and linear regression
model inaccuracies in Sec. VII-E and VII-F.

We also evaluate the power benefits of wavelength selection
policies with different system utilization. The power savings
obtained from PROWAVES lowers with increasing system
utilization. With a higher number of threads per chiplet,
there is an increased inter-chiplet network traffic, resulting in
higher bandwidth requirements. Consequently, a higher λmin
is selected to satisfy the high bandwidth needs.

D. Performance overhead of WAVES

Figure 16 shows the execution time of applications with
the baseline case (λact = λtot) and under different policies,
normalized to the baseline case. For each application, we
calculate the wavelength switching overhead of PROWAVES
by determining the count of thermal remappings arising due
to laser activation or a large thermal drift during the execution.

TABLE IV
SUMMARY OF MODELING PARAMETERS AND RESULTS

RR-PS [25] SO-WAVES [18] PROWAVES
Static/dynamic

policy Dynamic Static Dynamic

Model Ridge
regression Offline ARIMA

Thermal control
loop modeling No Yes Yes

Process variation
modeling No Yes Yes

Power savings
over baseline 13%

8.6%a

21%b
18%a

33%b

Latency overhead a1% Lthr , b5% Lthr

On average, this switching overhead is computed to be only
0.73% of the overall execution time for PROWAVES. Since
we calculate the λmin for PROWAVES by comparing only
the computation time with the performance loss threshold,
the overall execution time including the wavelength selection
overhead occasionally violates the set Lthr.

Compared to the execution time of SO-WAVES, the dynamic
selection in PROWAVES is able to provide better performance
at lower PNoC power, leading to much lower PNoC en-
ergy compared to SO-WAVES. In PROWAVES, higher λmin
is selected during periods of high bandwidth needs and a
lower λmin is selected during periods of lower bandwidth
needs. In contrast, since SO-WAVES only selects a single λmin
throughout the application execution, this λmin is roughly
averaged. Therefore, during periods of high bandwidth needs,
SO-WAVES falls short of selecting the optimal λmin. Similarly,
during periods of low bandwidth needs, SO-WAVES overesti-
mates and selects a higher λmin than required. Table IV sum-
marizes the results and modeling parameters of PROWAVES
compared to RR-PS [25] and SO-WAVES [18].

E. ARIMA forecasting accuracy

Figure 17 illustrates the deviation of λmin selected by our
proposed PROWAVES policy from DO-WAVES. This deviation
in the selected λmin and the resultant lower power savings
in PROWAVES can be attributed primarily to two major
reasons. First, the Latavg predicted by the ARIMA model
does not have a 100% forecasting accuracy. Second, the linear
regression model used to correlate the predicted Latavg to the
DO-WAVES λmin has inaccuracies that further contribute to a
slightly different λmin.

Figure 9 illustrates the real simulated values of Latavg
on Sniper and the predicted Latavg values by ARIMA. We
calculate the mean squared error of predicted Latavg as
0.019ns2. Thus, our ARIMA predictor with K-S test has an
automated process of forming the model with 96.3% accuracy.
In addition, as depicted in Fig. 17, the ARIMA model captures
the seasonality in the Latavg time series.

F. Linear regression model accuracy

We analyze the selected λmin against the training data
in the linear regression model. We obtain a high R-squared
value of 0.916, justifying a good fit of data. Moreover, we
observe a low p-value, indicating a strong evidence against
the null hypothesis. Specifically, the low p-value demonstrates
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Fig. 17. Comparison of λmin selected by DO-WAVES and PROWAVES for Lthr = 5%. During periods of high bandwidth needs, a higher
λmin is activated, and during periods of lower bandwidth needs, a lower λmin is activated.

that changes in the predictor’s value (Latavg) are related to
changes in the response (λmin) variable. This shows that
Latavg is statistically significant in predicting λmin.

We observe from Fig. 17 that PROWAVES selects a λmin
that is at least equal or higher than the λmin selected by DO-
WAVES. The λmin selected by PROWAVES is always higher
than the λmin selected by DO-WAVES by 0.84 on average with
a standard deviation of 1.36. Therefore, at the cost of slightly
lower power savings, the performance with PROWAVES is
always better than DO-WAVES.

VIII. CONCLUSION

PNoCs are promising alternatives as a high-bandwidth, low-
latency and improved energy-efficient on-chip communication
technology. However, the practical implementation of PNoCs
in large manycore systems is limited due to the high PNoC
power consumption with increasing number of activated laser
wavelengths. Device-level solutions such as low-level control
loop to address thermal sensitivity of MRRs seem promis-
ing; however, the growing diversity in application behavior
demand the need of system-level policies running on top
of such device-level solutions. In this paper, we propose
a runtime wavelength optimization strategy to address the
PNoC power-bandwidth tradeoff in large manycore systems.
Our proposed wavelength selection technique, PROWAVES,
proactively selects and activates the minimum number of laser
wavelengths for an application interval based on the bandwidth
needs during that interval. We demonstrate the benefits of
PROWAVES on a 2.5D-integrated PNoC manycore system with
a detailed account of TV- and PV-induced wavelength shifts
and MRR remapping due to wavelength selection. PROWAVES
reduces PNoC power by 18% and 33% on average with only
1% and 5% loss in performance, respectively, compared to
activating all the laser wavelengths in the system. Furthermore,
compared to a state-of-the-art power scaling policy based on
ridge regression, a system with PROWAVES consumes 26.3W
lower thermal tuning power due to the modeling of the thermal
control loop, which enables thermal remapping.
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