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Abstract—Photonic network-on-chips, despite their low-latency
and high-bandwidth-density advantages in large manycore sys-
tems, suffer from high power overhead. This overhead is further
exacerbated by the high bandwidth demands of data-centric
applications. Prior works utilize bandwidth allocation policies at
system-level to minimize photonic power and provide required
bandwidth for applications. We present an approach to minimize
the bandwidth requirements by instrumenting an application
at the software level. This instrumented information is used
to assist bandwidth allocation at system-level, thereby reducing
the photonic power. We instrument PageRank application and
demonstrate 35% lower power using instrumentation-assisted
bandwidth allocation on PageRank running real-world graphs
compared to bandwidth allocation on uninstrumented PageRank.

I. INTRODUCTION

Emerging data-centric applications such as graph algorithms
have large memory footprints and exhibit high parallelism
resulting in high on-chip communication traffic. Silicon-
photonics has paved the way for low-latency and high-
bandwidth-density communication links in large manycore
chips [1], [2]. However, the photonic power resulting from
laser and thermal tuning grows with the provided on-chip
bandwidth and more than offsets the latency and bandwidth
advantages [3].

Several approaches at system-level utilize bandwidth allo-
cation policies to address the bandwidth-power tradeoff in
photonic networks (e.g. [4]–[6]). Bandwidth allocation is typ-
ically performed by assigning optical wavelengths depending
on the bandwidth requirements. These bandwidth allocation
policies in photonic networks include offline characterization
to determine balanced bandwidth [4], analysis of application
task graphs [5], or hardware reconfiguration to support the
required bandwidth [6]. The on-chip communication traffic,
however, highly depends on the software implementation of
the application algorithm. This dependence provides an op-
portunity to develop a generalized software-level approach for
bandwidth allocation in photonic networks. None of the prior
works have explored the use of application instrumentation to
perform bandwidth allocation.

We propose to instrument an application at the software-
level to guide bandwidth allocation at the system-level. We
instrument data structures or privileged instructions in the
application source code to provide information regarding the
communication traffic and bandwidth density required for an
application. This information can then be utilized at the system
level to perform bandwidth allocation.
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Fig. 1. Number of unconverged vertices with iterations for PageRank
on (a) Google webgraph, (b) Kronecker graph with 218 vertices.

In this work, as an example, we consider PageRank, an
iterative graph algorithm that has extremely high parallelism.
We demonstrate that using appropriate instrumentation of
PageRank source code, we pass additional information regard-
ing active vertices that can be used to reduce the network
bandwidth density. We leverage this information to perform
bandwidth allocation as proposed by Narayan et al. [4]
(WAVES) and demonstrate 35% higher power savings com-
pared to bandwidth allocation on uninstrumented PageRank.

II. MOTIVATIONAL EXAMPLE: PAGERANK

PageRank is used on web graphs to determine the quality
of a vertex. It assigns a rank to the vertex based on the
number of connected vertices and their associated ranks. It is
an iterative algorithm to converge the rank values of vertices.
The algorithm begins with equal ranks assigned to each vertex
in the input graph. Depending on the number of vertices
connected to a vertex v, (g.out degree(v)), the rank of v is
updated. At the end of every iteration, the rank of each vertex
is compared with an error threshold. The algorithm iterates
until all vertices converge.

A key characteristic of PageRank is the varying number
of iterations required to converge the vertices, which result
in asymmetric convergence [7]. We demonstrate this charac-
teristic by running PageRank on a Google webgraph from
SNAP [8] and a Kronecker graph with 218 vertices. Figure 1
shows the fraction of vertices that have not yet converged at
the end of each iteration. On a Google webgraph, 21.77%
of vertices converge in a single iteration, another 75.8% of
vertices converge in the next 40 iterations, and less than 3% of
vertices converge in the last 60 iterations. It can be noted that a
significantly high fraction of vertices converge in the first few
iterations, leaving a very low fraction of unconverged vertices
in later iterations. This observation implies reduced memory
accesses in later iterations. Thus, there is an opportunity to
reduce the network bandwidth between memory and LLCs by
deactivating certain photonic links in later iterations and save
photonic network power.
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for iter in 0 to max_iterations do
diff = 0
for v in g.vertices() do

for iter in 0 to max_iterations do
diff = 0
for v in g.active_vertex_set() do

if diff[v] < error

then g.active_vertex_set().delete()

if diff < error

then break

Fig. 2. Application instrumentation-assisted bandwidth allocation.
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(b) Kronecker graph (218 vertices)
Fig. 3. Number of packets transferred in the photonic network during
application execution.

III. APPLICATION INSTRUMENTATION

Figure 2 shows the framework of our proposed application
instrumentation-assisted bandwidth allocation. As PageRank
is characterized by asymmetric convergence of vertices, we
maintain a data structure called active vertex set [7]. The active
vertex set maintains a list of all unconverged vertices. During
each iteration, PageRank algorithm operates only on vertices
in the active vertex set. At the end of each iteration, we update
this active vertex set by deleting vertices that converge during
the current iteration. Figure 1 shows that the size of the active
vertex set decreases with increasing iteration count.

We study the network characteristics when an instrumented
PageRank is executed on a 2.5D system with photonic net-
works [9]. Figure 3 illustrates the network packets transferred
in the photonic network during application execution. In
uninstrumented PageRank, the algorithm operates on all the
vertices during every iteration, causing the network packets
transferred in the photonic link to remain roughly constant.
In contrast, since we remove the converged vertices from
the active vertex set in instrumented PageRank, the algorithm
operates on a lower fraction of vertices every iteration. This
results in an overall decrease in the LLC and main memory
communication, resulting in lower number of packets in the
photonic network as the application progresses. At the system-
level, we monitor the number of active vertices in PageRank as
application progresses. The bandwidth allocation policy uses
this instrumented information in addition to other network
parameters to allocate the required bandwidth.

IV. EVALUATION

We evaluate a prior bandwidth allocation policy,
WAVES [4], on instrumented and uninstrumented PageRank
algorithm. We model a 2.5D manycore system with photonic
networks [9] in Sniper [10]. We evaluate the performance
of PageRank algorithm from GAP-BS benchmark [11] on
Kronecker graphs and real-world graphs [8]. We modify the
source code in PageRank to maintain the active vertex set
that is updated every iteration with unconverged vertices.
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Fig. 4. Photonic power savings using application instrumentation-
assisted bandwidth allocation

We model different network bandwidths in Sniper for
instrumented and uninstrumented PageRank and determine
the network bandwidth that satisfies the performance loss
threshold as modeled in WAVES [4]. We calculate the
photonic network power using an analytical model [4].
Figure 4 shows the photonic power savings compared to a
system with no bandwidth allocation.

For instrumented PageRank, WAVES allocates a higher
bandwidth for initial iterations as more vertices converge, and
the bandwidth is reduced for later iterations. As a result, the
photonic power, which is proportional to the provided band-
width, is reduced. Using our instrumentation-assisted band-
width allocation across four datasets, on average, we reduce
35.13% of photonic network power compared to bandwidth
allocation on an uninstrumented PageRank algorithm.

V. CONCLUSION

While system-level bandwidth allocation policies have ad-
dressed power-bandwidth tradeoff in photonic networks, we
demonstrate that software-level instrumentations can further
assist these policies to reduce photonic network power. As an
example, we demonstrate the benefits of instrumented-assisted
bandwidth allocation on PageRank. Our approach is scalable
and can be generalized to other high-bandwidth applications
running on manycore systems with photonic networks.
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