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Abstract—In modern high-performance computing (HPC) sys-
tems, network congestion is an important factor that contributes
to performance degradation. However, how network congestion
impacts application performance is not fully understood. As
Aries network, a recent HPC network architecture featuring
a dragonfly topology, is equipped with network counters mea-
suring packet transmission statistics on each router, these net-
work metrics can potentially be utilized to understand network
performance. In this work, by experiments on a large HPC
system, we quantify the impact of network congestion on various
applications’ performance in terms of execution time, and we
correlate application performance with network metrics. Our
results demonstrate diverse impacts of network congestion: while
applications with intensive MPI operations (such as HACC and
MILC) suffer from more than 40% extension in their execution
times under network congestion, applications with less intensive
MPI operations (such as Graph500 and HPCG) are mostly not
affected. We also demonstrate that a stall-to-flit ratio metric
derived from Aries network counters is positively correlated with
performance degradation and, thus, this metric can serve as an
indicator of network congestion in HPC systems.

Index Terms—HPC, network congestion, network counters

I. INTRODUCTION

High-performance computing (HPC) systems play an impor-
tant role in accelerating scientific research in various realms.
However, applications running on HPC systems frequently
suffer from performance degradation [1]. Network congestion
is a major cause of performance degradation in HPC sys-
tems [2]–[4], leading to extention on job execution time 6X
longer than the optimal [5]. Although performance degradation
caused by congestion has been commonly observed, it is not
well understood how that impact differs from application to
application. Which network metrics could indicate network
congestion and performance degradation is also unclear. Un-
derstanding the behavior of network metrics and application
performance under network congestion on large HPC systems
will be helpful in developing strategies to reduce congestion
and improve the performance of HPC systems.

In this paper, we conduct experiments on a large HPC
system called Cori, which is a 12k-node Cray XC40 system.
We run a diverse set of applications while running net-
work congestors simultaneously on nearby nodes. We collect
application performance as well as Aries network counter
metrics. Our results demonstrate substantial difference in the
impact of network congestion on application performance. We

also demonstrate that certain Aries network metrics are good
indicators of network congestion.

The contributions of this work are listed as follow:
• In a dragonfly-network system, we quantify the impact of

network congestion on the performance of various applica-
tions. We find that while applications with intensive MPI
operations suffer from more than 40% extension in their
execution times under network congestion, the applications
with less intensive MPI operations are negligibly affected.

• We find that applications are more impacted by congestor
on nearby nodes with shared routers, and are less impacted
by congestor on nodes without shared routers. This suggests
that a compact job allocation strategy is better than a non-
compact strategy because sharing routers among different
jobs is more common in a non-compact allocation strategy.

• We show that a stall-to-flit ratio metric derived from Aries
network tiles counters is positively correlated with perfor-
mance degradation and indicative of network congestion.

II. ARIES NETWORK COUNTERS AND METRICS

In this section, we first provide background on the Aries net-
work router. Then, we introduce our network metrics derived
from Aries counters. The value of these metrics in revealing
network congestion is evaluated in Section IV.

A. Aries network router

Aries is one of the latest HPC network architectures [6].
Aries network features a dragonfly topology [7], where multi-
ple routers are connected by row/column links to form a virtual
high-radix router (called a “group”), and different groups are
connected by optical links in an all-to-all manner, giving
the network a low-diameter property, where the shortest path
between any two nodes is only a few hops away.

Figure 1 shows the 48 tiles of an Aries router in a Cray
XC40 system. The blue tiles include the optical links con-
necting different groups; the green and grey tiles include the
electrical links connecting routers within a group; and the
yellow tiles include links to the four nodes connected to this
router. In the following, we call the 8 yellow tiles as processor
tiles (ptiles); and we call the other 40 as network tiles (ntiles).

B. Network metrics

In each router, Aries hardware counters collect various types
of network transmission statistics [8], including the number of978-1-7281-6677-3/20/$31.00 ©2020 IEEE



Fig. 1: Aries router architecture in a dragonfly network.

flits/packets travelling on links and the number of stalls that
represent wasted cycles due to network congestion.

In this work, we use a stall-to-flit ratio metric derived from
ntile counters. As the number of network stalls represents the
number of wasted cycles in transmitting flits from one router
to the buffer of another router, we expect the stall/flit ratio
to be an indicator of network congestion. For each router, we
define the ntile stall/flit ratio as:

Ntile Stall/Flit Ratio

= Avgr∈0..4,c∈0..7
N STALL r c∑

v∈0..7 N FLIT r c v

Here, N FLIT r c v is the number of incoming flits per
second to the v-th virtual channel of the r-th row, c-th column
network tile. N STALL r c is the number of stalls per second
in all virtual channels on that ntile. As the stalls and flits
collected from a specific ntile cannot be attributed to a certain
node, we take an average over all the 40 ntiles (represented
as “Avg”) and use it as the ntile stall/flit ratio of the router.
Because the 40 ntiles are the first 5 rows and all 8 columns in
Fig. 1, the metric takes the average for r ∈ 0..4, and c ∈ 0..7.

In comparison to ntile counters, we also analyze ptile flits
per second collected by P REQ FLIT n and P RSP FLIT n,
which are request and response flits received by a node,
respectively. In this paper, we always take the sum of these two
metrics when we refer to ptile flit-per-second. Similarly, we
refer to the sum of P REQ STALL n and P RSP STALL n
as the ptile stalls per second. In these metrics, n ∈ 0..3
corresponds to the four nodes connected with this router. Thus,
ptile counters specify the contribution from a certain node. The
full names of the counters we mentioned are listed in Table I.
The original counters record values cumulatively, so we take
a rolling difference to estimate instantaneous values.

In addition, when we calculate stall/flit ratio, we ignore the
samples where stall-per-second is smaller than a threshold.
This is because when both the stall and the flit number in
a second are too small, the stall/flit ratio could occasionally
surge while it does not reflect influential congestion. We set
the threshold as the median stall-per-second value of data
taken over a three-month period from the entire system. For
electrical link ntiles and optical link ntiles, the thresholds are
5410794 and 933, respectively.

TABLE I: Aries network counters used in this work [8].

Abbreviation Full counter name
N STALL r c AR RTR r c INQ PRF ROWBUS STALL CNT
N FLIT r c v AR RTR r c INQ PRF INCOMING FLIT VCv
P REQ STALL n AR NL PRF REQ PTILES TO NIC n STALLED
P REQ FLIT n AR NL PRF REQ PTILES TO NIC n FLITS
P RSP STALL n AR NL PRF RSP PTILES TO NIC n STALLED
P RSP FLIT n AR NL PRF RSP PTILES TO NIC n FLITS

III. EXPERIMENTAL METHODOLOGY

We conduct experiments on Cori, which is a 12k-node
Cray XC40 system located at the Lawrence Berkeley National
Laboratory, USA. On Cori, network counter data are collected
and managed by the Lightweight Distributed Metric Ser-
vice (LDMS) tool [9]. LDMS has been continuously running
on Cori and collecting counter data for years for every node.
The data collection rate is once per second.

To characterize job execution performance, we experiment
with the following real-world and benchmark applications:

• Graph500. We run breadth-first search (BFS) and single-
source shortest path (SSSP) from Graph500, which are
representative graph computation kernels [10].

• HACC. The Hardware Accelerated Cosmology Code frame-
work uses gravitational N-body techniques to simulate the
formation of structure in an expanding universe [11].

• HPCG. The High Performance Conjugate Gradient bench-
mark models the computational and data access patterns
of real-world applications that contain operations such as
sparse matrix-vector multiplication [12].

• LAMMPS. The Large-scale Atomic/Molecular Massively
Parallel Simulator is a classical molecular dynamics simu-
lator for modeling solid-state materials and soft matter [13].

• MILC. The MIMD Lattice Computation performs quan-
tum chromodynamics simulations. Our experiments use the
su3_rmd application from MILC [14].

• miniAMR. This mini-application applies adaptive mesh
refinement on an Eulerian mesh [15].

• miniMD. This molecular dynamics mini-application is de-
veloped for testing new designs on HPC systems [15].

• QMCPACK. This is a many-body ab initio quantum Monte
Carlo code for computing the electronic structure of atoms,
molecules, and solids [16].

To create network congestion on HPC systems in a con-
trolled way, we use the Global Performance and Congestion
Network Tests (GPCNeT) [17], which is a new tool to inject
network congestion and benchmark communication perfor-
mance. When launched on a group of nodes, GPCNeT runs
congestor kernels on 80% of nodes, and the other 20% runs
a canary test in a random-ring or allreduce communication
pattern [17] to evaluate the impact of the congestor kernel.
Our experiments run the RMA Broadcast congestor kernel. By
comparing running the canary test in isolation with running
the canary test together with congestor kernels, GPCNeT
reports the intensity of congestion by the following impact
factor metrics: bandwidth ratio, latency ratio, and allreduce
bandwidth ratio. For example, bandwidth ratio represents the



Fig. 2: The four experimental settings. Each square is a node.
Blue squares run a parallel application. Grey squares run the
GPCNeT congestor. White ones are idle.

canary test’s effective bandwidth when running with congestor,
divided by the bandwidth when running in isolation.

We quantify the impact of network congestion on appli-
cations by comparing the execution time of the applications
when running them with or without congestors. We also differ-
entiate between endpoint congestion and intermediate conges-
tion. Endpoint congestion refers to the congestion generated
by traffic from other nodes that share the same routers as our
application. Intermediate congestion refers to the congestion
caused by traffic not from nodes sharing the same routers but
from intermediate links. We design experiments as follows.

Assume we are going to run an application on N nodes (we
use N = 7 in Fig. 2 as an example, and we actually experiment
with N = 64), then we reserve 3N nodes from the system.
Most of these 3N nodes are groups of consecutive nodes as the
Slurm scheduler on Cori is configured to prioritize reserving
consecutive nodes. We have four experimental settings shown
in Fig. 2 and described below:
• In Setting I (“Continuous”), we run the application on N

nodes continuously selected from the list (shown in blue),
and the other 2N nodes are left idle.

• In Setting II (“Spaced”), we run the application on N nodes
selected by choosing every other node from the list.

• In Setting III (“Continuous+Congestor”), besides the ap-
plication in a “continuous” way, we simultaneously run
GPCNeT on another N nodes selected in a “spaced” manner
(shown in grey). In this case, the application is mostly
affected by intermediate congestion because the majority of
blue nodes do not share routers with grey nodes.

• In Setting IV (“Spaced+Congestor”), the nodes for the
application and the nodes for the congestor are interleaved.
In this case, the application is also affected by endpoint
congestion because sharing router among application nodes
and congestor nodes is common. As an example, assume
the dashed line shows the four nodes connected to the same
router, then, the two grey nodes create endpoint congestion
on the other two blue nodes. Although every four nodes are
not always connected to the same router, because Cori’s
scheduler prioritizes allocating contiguous nodes for us,
nodes sharing the same router are common.

Fig. 3: To mitigate variations from background traffic, we re-
peat experiments with the placement of application/congestor
rotationally shifted (first three shifts for Setting III are drawn).

In our experiments, we always run an application on 64
nodes, and the congestor also occupies 64 nodes. We did not
experiment with larger workloads to avoid too much impact
on other users in a production system. All experiments run on
Haswell nodes and use all 32 cores of each node. The same
inputs are used during different runs of an application.

Since the experiments are done in a production system, net-
work traffic generated by jobs from other users may go through
the routers we use. To reduce the impact of this background
traffic, we repeat each setting 10 times by rotationally shifting
the application’s and congestor’s placement, as illustrated in
Fig 3. Each shift rotates 1/10 of the node list length.

In addition to the experiments discussed above, we also
experiment with GPCNeT alone without our applications, and
the details are discussed in Section IV-C.

IV. RESULTS AND DISCUSSION

In this section, we first analyze the impact of network
congestion on applications in Section IV-A. Next, we show the
correlation between network metrics and application execution
time in Section IV-B. Then, we show that ntile stall/flit ratio is
correlated with network congestion intensity in Section IV-C.

A. Impact of network congestion on applications

Figure 4 summarizes the impact of network congestion on
applications. The execution times are normalized separately
for each application with regard to the median value in Setting
I. Because LAMMPS’s values exceed the range of Fig. 4(a),
we also draw them separately in Fig. 4(b).

These results demonstrate that network congestion has
diverse impact on applications. Some applications such as
Graph500 and HPCG are negligibly affected by congestion,
where the median execution time difference between with
and without congestor is less than 10%. On the other hand,
applications including HACC, LAMMPS, MILC, miniAMR,
and miniMD are significantly affected by congestion, where
the median performance with endpoint congestion (Setting
IV) is 0.4X to 7X higher than the performance without
congestion (Setting II). QMCPACK shows a medium-level
impact from congestion, where endpoint congestion extends
the median execution time by 11%. The slightly shorter
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Applications in different experiment settings
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Fig. 4: Normalized application execution time under four experimental settings. Normalization is done separately for each
application. Each bar summarizes the 10 runs for an application. Errorbars are min/max; edges of box are the first and third
quartiles; middle line is the median. Setting IV of LAMMPS exceeds the range and it is separately drawn in (b).

execution time in Setting II of HACC and Setting IV of HPCG
should be due to variations caused by background traffic.

To understand why applications are impacted differently,
we use CrayPat [18] to profile the MPI characteristics of
the applications (in separate runs without congestor). Table II
shows the percentage of time spent on certain MPI operations,
and Table III shows the aggregate bytes transferred per second,
average message size, and MPI call counts.

From Table II, we see that the applications impacted
more by congestion, including HACC, LAMMPS, MILC,
miniAMR, and miniMD, share a common feature of more
time spent on MPI operations. On the contrary, HPCG and
QMCPACK have only 3.7% and 6.0% time on MPI op-
erations, respectively. In addition, more MPI collective op-
erations (such as MPI Allreduce, MPI Bcast) implies more
intensive communication, making the application sensitive to
congestion. Therefore, as LAMMPS spends 25.4% time on
MPI Allreduce, larger than any other applications, its execu-
tion time is extended by more than 7X in Setting IV. Similarly,
QMCPACK has 5.4% time on MPI Allreduce, higher than
the 0.2% from HPCG, which explains why QMCPACK is
impacted more by congestion than HPCG. On the other hand,
Graph500 has only 2.3% time on MPI Allreduce, and less
than 8% time on all other MPI calls except for MPI Test,
which explains why it is only slightly affected by congestion.

These findings suggest several key criteria for predicting
congestion’s impact on an application. The first is the amount
of time an application spends performing MPI operations.
Intuitively, an application not spending much time on com-
munication will not be sensitive to congestion. Secondly, the
type of communication matters. In our experiments, when col-
lectives such as MPI Allreduce, MPI Bcast, and MPI Barrier
occupy more than 5% of time, we regard the application as
having intensive MPI operation and expect it to be sensitive to
congestion. Lastly, MPI Wait(all) is important as they often
indicate synchronization points where the slowest communi-
cation dominates performance (as is the case with MILC).
Conversely, though Graph500 performs reasonable amounts

of communication, the communications are uncoupled from
each other as MPI Test(any) calls indicate communication
events that are completely independent of many other com-
munications. Applying this understanding to Table II, we
consider HACC, LAMMPS, MILC, miniAMR, miniMD, and
QMCPACK as having intensive MPI operations.

From Table III, we see the relationship between average
message size and sensitivity to congestion is not clear. HACC,
LAMMPS and MILC use very different message sizes but
each seems sensitive to congestion. Other studies have found
that small-size, latency-sensitive communications are more
sensitive to congestion than bandwidth benchmarks typically
with large message size [17]. However, this relationship is not
as clear cut for real applications.

Based on our results, aggregate data transfer rate is not
indicative of congestion sensitivity either. For example, al-
though Graph500 transfers data at 50 MB/s, it is less impacted
by congestion than LAMMPS and QMCPACK which transfer
data at merely 5 MB/s and 600 KB/s, respectively.

From Fig. 4, we also notice that the applications are
more impacted by endpoint congestion than by intermediate
congestion. Comparing Setting II with IV, we see HACC,
LAMMPS, MILC, miniAMR, miniMD, and QMCPACK are
all significantly impacted by endpoint congestion. Comparing
Setting I with III, we see only MILC and miniMD are signifi-
cantly impacted by intermediate congestion. This observation
suggests that a compact job allocation strategy is better than a
non-compact one because a non-compact allocation increases
a job’s probability to share routers with other jobs and are
more likely to suffer from endpoint congestion.

B. Correlating network metrics with application performance

From the same experiments in Section IV-A, we correlate
execution time with ntile stall/flit ratio in Fig. 5. Each cross
represents the average value of the ten runs in each setting, and
errorbars show their standard error. The ntile stall/flit ratio is
calculated using the formula in Section II-B, and averaged only



TABLE II: Application MPI profiles collected by CrayPat. “MPI Operation” shows the percentage of execution time spent on
MPI operations, and the MPI call breakdown is shown in other columns. “MPI (other)” is the sum of other MPI calls not
specified here. Applications with more time spent on MPI operations, especially MPI collective operations (MPI Allreduce,
MPI Bcast, MPI Barrier, etc.), are impacted more by network congestion than applications with less intensive MPI operations.

Application MPI Operation MPI Allreduce MPI Sendrecv
(or Send, Isend) MPI Bcast MPI Test

(or Testany)
MPI Wait

(or Waitall) MPI Barrier MPI (other)

Graph500 31.4% 2.3% 2.6% 0.2% 21.3% <0.1% 4.4% 0.6%
HACC 67.1% <0.1% 0.2% 0 0 66.2% 0 0.7%
HPCG 3.7% 0.2% 2.1% 0 0 1.2% 0 0.2%

LAMMPS 47.3% 25.4% 8.6% <0.1% 0 12.2% <0.1% 1.1%
MILC 61.9% 1.9% 0.6% <0.1% 0 58.5% <0.1% 0.9%

miniAMR 26.8% 9.2% 0.5% <0.1% 0 14.2% 0 2.9%
miniMD 83.4% 0.5% 82.5% 0 0 0 0.2% 0.2%

QMCPACK 6.0% 5.4% <0.1% <0.1% <0.1% <0.1% 0.5% 0.1%

TABLE III: Execution time, aggregate data transfer rate, average message size, and MPI call counts collected by CrayPat.
Columns starting with “MPI ” are breakdown of “MPI Call”. Non-dominant MPI call types are not listed. “Exec Time” is the
median of the 10 runs in Setting I. “Agg Data Trans Rate” shows the aggregate bytes of data transferred per second.

Application Exec Time Agg Data Trans Rate Avg Msg Sz. MPI Call MPI Allreduce MPI Sendrecv
(or Send, Isend)

MPI Test
(or Testany)

MPI Wait
(or Waitall)

Graph500 122 s 50 MB/s 9 KB 45,724,042 7,251 607,409 43,852,063 2
HACC 69 s 100 MB/s 6 MB 7,252 41 1,504 0 2,748
HPCG 68 s 3 MB/s 4 KB 128,940 555 40,353 0 40,353

LAMMPS 15 s 5 MB/s 70 B 3,012,409 125,170 893,845 0 812,673
MILC 87 s 90 MB/s 16 KB 10,842,875 13,224 528,076 0 1,056,152

miniAMR 23 s 40 MB/s 22 KB 789,958 10,326 18,366 0 35,540
miniMD 65 s 90 MB/s 3 KB 2,736,074 4,810 2,064,036 0 0

QMCPACK 67 s 600 KB/s 13 KB 8,160 2,004 390 2,697 195

(a) HACC (b) LAMMPS (c) MILC (d) miniAMR
Fig. 5: There are positive correlations between ntile stall/flit ratio and application execution time. A cross represents the average
of 10 runs for each setting. Errorbars are standard errors. The dashed line is a linear fit. These positive correlations suggest
that ntile stall/flit ratio metric is indicative of performance degradation caused by network congestion.

over routers that contain nodes running our application. The
metric is also averaged over the duration of the application.

In each case, we notice a positive correlation between job
execution time and ntile stall/flit ratio, which demonstrates that
this metric is indicative of application performance. Because
the ntile counters collect not only local communications di-
rectly related to the host router but also communications that
travel through the host router as an intermedium, our metric is
only statistically correlated with job performance and suffers
from variations caused by background traffic.

We also show the stall per second values on either ntiles
or ptiles in Fig. 6. The stall count is averaged over routers
and durations. While ntile stall per second shows a similar
trend as ntile stall/flit ratio, the ptile stall per second shows
a negative correlation with execution time. Although this
negative correlation seems counter-intuitive at first thought,
it in fact implies that ntile links, instead of the ptile-to-node

links, are the communication bottleneck in these experiments.
When ntiles are the bottleneck, performance degradation

causes an application to run slower and receive less messages
per second. As a result, there are less flits per second in the
ptile-to-node links. Less flits per second leads to less stalls
per second on ptiles since these ptile-to-node links are not the
bottleneck. Another way to explain the phenomenon is that
the convergence of traffic occurs before the final hop within a
switch. Once traffic makes it past the bottleneck, the rest of the
path is relatively clear. This explains the negative correlation
we see in Fig. 6(c,d). Therefore, we conclude that ntile metrics
are better indicators for congestion than ptile metrics since
ntiles links, rather than ptiles, are mostly the bottleneck.

C. Correlating network metrics with network congestors

We also conduct experiments that run GPCNeT on either 16,
32, 64, 86, 106, or 128 nodes without our applications. We use



(a) miniMD - Ntile Stall (b) QMCPACK - Ntile Stall (c) miniMD - Ptile Stall (d) QMCPACK - Ptile Stall
Fig. 6: There are positive (negative) correlations between ntile (ptile) stalls per second and application execution time,
respectively. The negative correlations in (c) and (d) imply that ptile-to-node links are not the bottleneck of the network.
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Fig. 7: Correlating ntile stall/flit ratio with GPCNeT congestor
impact factor. Different colors represent experiments where we
run GPCNeT on different number of nodes.

the impact factor metrics reported by GPCNeT to quantify the
intensity of congestion created by GPCNeT. Figure 7 shows
the correlation between impact factor (bandwidth ratio) and
ntile stall/flit ratio. Each point represents an experiment run.
The ntile stall/flit ratio is averaged similarly as before. We
see a rough correlation between GPCNeT congestion intensity
(quantified by impact factor) and ntile stall/flit ratio, which
demonstrates that ntile stall/flit ratio is indicative of network
congestion created by GPCNeT.

V. RELATED WORK

Network contention/congestion is an important topic in HPC
research. It has been reported that, on HPC systems, inter-job
network contention causes performance variability as high as
2X [2], 2.2X [3], 3X [4], or 7X [5]. Analysis has shown that
network contention, rather than other factors such as OS noise,
is the dominant reason for performance variability [2]–[4].

Some prior works have analyzed the statistics of flit or
stall counts on HPC systems. Jha et al. analyzed packet and
stall count on a 3d-torus network and provided a visualization
method to identify network hot spots [19]. Brandt et al.
measured network stall/flit ratio and showed its variation
across links and over time [20]. These works have not analyzed
the relation between network counters and job performance.

A few works have explored the relation between network
metrics and job performance using machine learning. Jain

et al. trained tree-based classifiers to predict job execution
time on a 5d-torus system [21], [22]. They found that buffers
and injection FIFOs are important metrics and that the hop-
count metric is not helpful in predicting performance. On
Cori, Groves et al. demonstrated strong correlations between
communication latency and Aries network counters [23]. They
built machine learning models to forecast sub-optimal perfor-
mance and identified network counters related to performance
variability [4]. Machine learning methods in this domain often
focus on predicting performance or other outcomes; in con-
trast, our work’s focus is on providing an analysis on selected
network counters’ role in understanding job performance.

On dragonfly systems, prior works have also studied var-
ious system setup or management factors that affect job
performance. These factors include job allocation [24]–[27],
task mapping [28], [29], routing algorithm [30]–[33], link
bandwidth [34], global link arrangement [35], [36], etc.

VI. CONCLUSION

In this work, we show that applications demonstrate sub-
stantial difference under network congestion. Applications
with intensive MPI operations suffer from 0.4X to 7X ex-
tension in execution times under network congestion, while
applications with less intensive MPI operations are negligibly
affected. By analyzing Aries network counters, we observe
a positive correlation between network-tile stall/flit ratio and
application execution time, which demonstrates that this metric
is indicative of network congestion and job performance. We
also show that processor-tile metrics are not good indicators
because processor-tile-to-node links are mostly not the bottle-
neck in our experiments. This work enhances our understand-
ing of application performance under congestion and forms the
necessary basis for rational design of congestion-aware HPC
system scheduling based on network metrics.
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