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The important thing is not to stop questioning. Curiosity has its own
reason for existence. One cannot help but be in awe when he contemplates
the mysteries of eternity, of life, of the marvellous structure of reality. It
is enough if one tries merely to comprehend a little of this mystery each
day. Never lose a holy curiosity.

Albert Einstein
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ABSTRACT

Mobile devices have become integral parts of our society. They handle our diverse

computing needs from simple daily tasks (i.e., text messaging, e-mail) to complex

graphics and media processing under a limited battery budget. Mobile system-on-

chip (SoC) designs have become increasingly sophisticated to handle performance

needs of diverse workloads and to improve user experience. Unfortunately, power and

thermal constraints have also emerged as major concerns. Increased power densities

and temperatures substantially impair user experience due to frequent throttling as

well as diminishing device reliability and battery life. Addressing these concerns be-

comes increasingly challenging due to increased complexities at both hardware (e.g.,

heterogeneous CPUs, accelerators) and software (e.g., vast number of applications,

multi-threading). Enabling sustained user experience in face of these challenges re-
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quires (1) practical runtime management solutions that can reason about the perfor-

mance needs of users and applications while optimizing power and temperature; (2)

tools for analyzing real-world mobile application behavior and performance.

This thesis aims at improving sustained user experience under thermal limita-

tions by incorporating insights from real-world mobile applications into runtime man-

agement. This thesis first proposes thermally-efficient and Quality-of-Service (QoS)

aware runtime management techniques to enable sustained performance. Our work

leverages inherent QoS tolerance of users in real-world applications and introduces

QoS-temperature tradeoff as a viable control knob to improve user experience un-

der thermal constraints. We present a runtime control framework, QScale, which

manages CPU power and scheduling decisions to optimize temperature while strictly

adhering to given QoS targets. We also design a framework, Maestro, which provides

autonomous and application-aware management of QoS-temperature tradeoffs. Mae-

stro uses our thermally-efficient QoS control framework, QScale, as its foundation.

This thesis also presents tools to facilitate studies of real-world mobile applica-

tions. We design a practical record and replay system, RandR, to generate repeatable

executions of mobile applications. RandR provides this capability by automatically

reproducing non-deterministic input sources in mobile applications such as user inputs

and network events. Finally, we focus on the non-deterministic executions in Android

malware which seek to evade analysis environments. We propose the Proteus system

to identify the instruction-level inputs that reveal analysis environments.

vii



Contents

1 Introduction 1

1.1 Runtime Management for Sustainable Performance . . . . . . . . . . 3

1.2 Software Frameworks for Studying Real-World Applications . . . . . 5

2 Problem Statement and Motivation 8

2.1 (Un)sustainable Performance in Mobile Platforms . . . . . . . . . . . 8

2.1.1 Impact of Thermal Constraints on Performance . . . . . . . . 9

2.1.2 A Case for Sustained QoS . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Need for Application Awareness in QoS Management . . . . . 13

2.2 Challenges of Characterizing Real-World applications . . . . . . . . . 15

3 Background and Contributions 18

3.1 Runtime Management for System Efficiency . . . . . . . . . . . . . . 18

3.1.1 Dynamic Power and Thermal Management of Homogeneous

CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Heterogeneity-aware Power and Thermal Management . . . . 22

3.1.3 Application and QoS-Aware Runtime Management . . . . . . 23

3.2 Capturing Non-deterministic Inputs for Repeatable

Execution of Mobile Applications . . . . . . . . . . . . . . . . . . . . 24

3.3 Understanding Malicious Non-deterministic Behavior in Mobile Appli-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Distinguishing Aspects of This Thesis . . . . . . . . . . . . . . . . . . 27

viii



4 Runtime Management for Sustainable Performance 30

4.1 Thermally-Efficient DVFS under QoS Guarantees . . . . . . . . . . . 30

4.1.1 Runtime Control Policy . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Enabling Efficient QoS-Temperature Tradeoffs

on Heterogeneous CPUs . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Proposed QScale Framework . . . . . . . . . . . . . . . . . . . 44

4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Autonomous QoS Management for Mobile Applications . . . . . . . . 58

4.3.1 Maestro Framework . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Evaluation of Maestro . . . . . . . . . . . . . . . . . . . . . . 67

5 Software Frameworks for Real-life Studies 81

5.1 Practical Record/Replay with RandR . . . . . . . . . . . . . . . . . 82

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 RandR Overview . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.3 RandR Implementation . . . . . . . . . . . . . . . . . . . . . 88

5.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Detecting Discrepancies in System Emulators . . . . . . . . . . . . . 95

5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.2 Proteus System Architecture . . . . . . . . . . . . . . . . . 99

5.2.3 Proteus Implementation . . . . . . . . . . . . . . . . . . . . . 101

5.2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusion and Open Problems 120

6.1 Future Research Directions and Open Problems . . . . . . . . . . . . 120

6.1.1 Runtime Management in Mobile Systems . . . . . . . . . . . . 121

ix



6.1.2 Record and Replay for Android . . . . . . . . . . . . . . . . . 122

6.2 Summary of Major Contributions . . . . . . . . . . . . . . . . . . . . 123

References 127

Curriculum Vitae 140

x



List of Tables

3.1 Comparison of Android test and replay frameworks. . . . . . . . . . . 29

4.1 Summary of applications and respective QoS metrics. . . . . . . . . . 36

4.2 Temperature thresholds and target frequency limits of the baseline skin

temperature controller. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 A summary of results for the CPU applications. QT(X) represents pro-

posed QoS tuning policy with X% target QoS. Average QoS, power,

energy and QoS/Watt values are normalized to the highest static fre-

quency setting (2.1GHz). QoS degradation corresponds to the percent-

age of QoS loss from the first to the last iteration of the run. . . . . . 39

4.4 Summary of applications and QoS metrics. . . . . . . . . . . . . . . . 52

4.5 Summary of applications. . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Target native instrumentation points in RandR. . . . . . . . . . . . . . 91

5.2 Cross-device evaluation of RandR and Reran(Gomez et al., 2013) . . 93

5.3 Divergence statistics generated by Proteus for 500K test cases con-

taining 2.5M random ARM instructions. Remaining instances of 500K

programs (not shown in the Table 5.3a) are (1) 83,125 (17%) cases due

to Unpredictable instructions, (2) 27,048 (5.4%) non-divergent cases

where programs finish successfully on both platforms and (3) 1216 cases

that differ due to memory values. Note that we do not treat these 3

cases as divergent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



5.4 Several Undefined instruction encodings that are treated as valid in-

structions by QEMU. “:X” notation represents the bit length of a field

while “*” represents that the field can be filled with any value (i.e., 0

or 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xii



List of Figures

2·1 Frequency residencies over time on a MDP8974 smartphone during

continuous use. Performance impact of throttling increases over time

as the CPU is forced to use lower frequencies to meet the thermal

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2·2 QoS degradation over time on Odroid-XU3 platform (Hardkernel, 2017). 11

2·3 An illustration of the effect of trading off the short term performance on

performance sustainability. The experiment corresponds to a repetitive

run of Bodytrack application (Bienia et al., 2008) at 3 static frequency

settings and QoS values are normalized to maximum QoS. . . . . . . 12

2·4 Distinct power and thermal profiles of a bursty application and a

throughput-oriented graphics application. (a) Adobe PDF Reader ap-

plication (b) Rain WebGL animation running in Chrome web browser.

Adobe PDF application consists of bursts of computations such as

zoom-in/out or text search as generated upon user input from GUI.

Such intermittent nature of computations is widely observable in the

power profile as well. On the other hand, continuous frame-based com-

putations after the browser launch (t = 18s) in Rain application causes

a relatively more steady power profile. . . . . . . . . . . . . . . . . . 14

2·5 Execution variations in various mobile applications due to various non-

deterministic input sources. (a) The effect of network content changes.

(b) Replay failure with Reran (Gomez et al., 2013) in 2048 application

due to random numbers. . . . . . . . . . . . . . . . . . . . . . . . . . 16

xiii



4·1 Overview of the implementation framework. Frames per second (FPS),

throughput and heartbeat per second (HB/sec) correspond to the QoS

metrics for our applications. . . . . . . . . . . . . . . . . . . . . . . . 31

4·2 Performance overhead of DVFS. . . . . . . . . . . . . . . . . . . . . . 34

4·3 Normalized duration of time spent above a QoS level by the proposed

QoS tuning policy for different target QoS level. “QTX%” represents

the proposed QoS tuning policy with X% QoS goal. A data point in

the figure corresponds to (Time spent above a QoS with QT)/(Time

spent above a QoS with (DTMcpu+ondemand). . . . . . . . . . . . . 40

4·4 Temperature traces for two DVFS scheduling schemes. Undistributed

scheme switches from lower to higher frequency only once during the

control interval (1 sec). Distributed scheme gains more thermal head-

room by applying fine-grained DVFS and scheduling high states far-

thest possible from each other. The duty-cycle is 33% high. . . . . . . 42

4·5 Cumulative QoS distribution for the two WebGL graphics applications.

Dashed line in the left figure shows the 30FPS limit. The baseline

policy corresponds to ondemand+DTMskin. . . . . . . . . . . . . . . . 43

4·6 An overview of the proposed framework. . . . . . . . . . . . . . . . . 44

4·7 GPU thermal coupling in Exynos 5422. . . . . . . . . . . . . . . . . . 44

4·8 Power breakdown (left), temperature (middle) and QoS (right) for

aquarium and bodytrack under different core assignments ({0,3} and

{2,3}) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4·9 QoS scaling achieved by moving individual application threads from

the little to the big cluster. . . . . . . . . . . . . . . . . . . . . . . . . 48

4·10 Increase in big cluster usage as individual application threads are

moved from the little to the big cluster. . . . . . . . . . . . . . . . . . 49

xiv



4·11 Feedback-based performance state control. . . . . . . . . . . . . . . . 50

4·12 M-States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4·13 Number of threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4·14 Average and standard deviation of QoS when using QScale under dif-

ferent target QoS levels. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4·15 Sustained QoS durations with default management (Interactive Gover-

nor + HMP scheduler), DVFS-only and QScale policies under different

QoS targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4·16 QoS/power scaling for bodytrack. . . . . . . . . . . . . . . . . . . . . 56

4·17 Adapting to dynamic QoS targets with QScale while running the Edge

of Tomorrow gaming application. . . . . . . . . . . . . . . . . . . . . 57

4·18 Overview of Maestro. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4·19 Sliding window based online detection policy. . . . . . . . . . . . . . . 60

4·20 QoS tradeoff and determining QoS targets for QScale. . . . . . . . . . 63

4·21 Policy selection (left) and QoS targets (right) determined by Maestro

for the applications where Maestro detects a continuous throttling-

prone computation. Policy selection and QoS setting are based on the

methods described in Sections 4.3.1 and 4.3.1, respectively. Maestro

assigns lower QoS targets for the applications that exhibit high power

profile and that are likely to suffer from larger QoS loss. Maximum

QoS is 1 HB/s for Bodytrack and 45, 30, 53 and 55 FPS for Aquarium,

RockPlayer, Rain and Edge of Tomorrow, respectively. . . . . . . . . 68

4·22 Sustained durations achieved by Maestro and default Android man-

agement for the QoS targets specified in Figure 4·21. . . . . . . . . . 69

4·23 Thermal profiles under Maestro and default Android management. . . 71

xv



4·24 Adaptive runtime behavior of Maestro. The user session consists of

two throughput-oriented applications with heavy continuous workloads

(i.e., Aquarium and Rain) interleaved by various UI-triggered bursty

computations (application launches and image filtering operation in

Caman.js). Maestro can succesfully distinguish the continuous heavy

computations in Aquarium and Rain that are prone to large throttling-

induced QoS loss, and selectively activate QScale. Lower target QoS

(i.e., 70% of the max) is selected for the Aquarium due to its high power

profile with the goal of enabling a larger duration of sustained QoS.

Bursty computations have distinguishably larger deviation (yellow area

on second plot) within the power sampling window of 10s. . . . . . . 72

4·25 Runtime behavior of Maestro for the RockPlayer video application.

Maestro detects the heavy continuous computation once the video

starts after the initial application launch and the user’s menu traver-

sals for video selection. Due to reduced CPU load on big cores with

criticality-aware assignment of threads, the QoS degradation is sub-

stantially slower after the throttling starts when using Maestro. . . . 73

4·26 QoS, latency and power consumption achieved using criticality-aware

scheduling. Data is normalized to HMP scheduling case. (a) QoS

and average power consumption for various throughput-oriented ap-

plications. (b) Latency and average power consumption for various

computational activities within Caman.js. (c) Latency and average

power consumption for various computational activities within Adobe

PDF Reader. (d) Latency/power for various computational activities

within Google Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xvi



4·27 CPU power profiles for various computational activities of Google Maps

application showing the similar computational latencies at lower power

with criticality-aware thread mapping. . . . . . . . . . . . . . . . . . 76

4·28 Runtime behavior of Adobe PDF reader application while operating un-

der Maestro and Temperature-triggered sustained performance control

policy. Temperature-triggered policy activates QScale when a critical

thermal threshold is hit, and reverts back to default Android manage-

ment when temperature is below 60◦C. . . . . . . . . . . . . . . . . . 77

4·29 A comparison of the maximum attainable QoS for our throughput-

oriented applications to QoS levels obtained when operating under

Android’s sustained performance configuration. Selecting lower power

operating modes for CPU and GPU to improve sustained performance

with Android sustained performance mode configuration, without any

QoS consideration, leads to substantially low QoS for such applications

with high computation demand. . . . . . . . . . . . . . . . . . . . . . 78

4·30 Real system measurements to identify whether Maestro policy intro-

duces an overhead that can cause performance degradation on (a)

latency-sensitive (b) throughput-oriented applications. . . . . . . . . . 79

5·1 Dynamic instrumentation in memory. Green regions represent the original

class and method structures in memory while red regions highlights the

dynamically injected components. . . . . . . . . . . . . . . . . . . . . . 86

5·2 Macro view of our RandR record/replay approach. . . . . . . . . . . 87

5·3 Static instrumentation steps in RandR. . . . . . . . . . . . . . . . . 89

5·4 Comparison of Reran (Gomez et al., 2013) to RandR for 2048 application 94

5·5 Performance variance with and without network replay . . . . . . . . . . 94

xvii



5·6 Encoding diagram for multiplication instructions in ARMv7 ISA

(ARM, 2018b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5·7 Overview of Proteus. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5·8 A sample trace from Cortex-A15 Fast Model for an LDR instruction. . 103

5·9 Illustration of the flow for comparing the Fast Model and QEMU traces.105

5·10 #Instructions before divergence or exception. . . . . . . . . . . . . . 109

5·11 Overhead evaluation of fidelity enhancements. . . . . . . . . . . . . . 118

xviii



List of Abbreviations

AF . . . . . . Android Framework
API . . . . . . Application Programming Interface
App . . . . . . Application
ART . . . . . . Android Runtime
CMOS . . . . . . Complementary metal oxide semiconductor
CPU . . . . . . Central Processing Unit
DPM . . . . . . Dynamic Power Management
DSP . . . . . . Digital Signal Processor
DTM . . . . . . Dynamic Thermal Management
DVFS . . . . . . Dynamic Voltage and Frequency Scaling
FFT . . . . . . Fast Fourier Transform
GHz . . . . . . Gigahertz
GPU . . . . . . Graphics Processing Unit
I/O . . . . . . Input and Output
IP . . . . . . Intellectual Property
ISA . . . . . . Instruction Set Architecture
OS . . . . . . Operating System
QoS . . . . . . Quality of Service
SoC . . . . . . System-on-a-Chip
SSL . . . . . . Secure Sockets Layer
TLS . . . . . . Transport Layer Security
UI . . . . . . User Interface
VM . . . . . . Virtual Machine

xix



1

Chapter 1

Introduction

Mobile devices provide us with the essential computing power to run applications

that improve our quality of life. These applications serve our daily necessities (e.g.,

e-mail, cellular communication) while also providing entertainment (e.g., gaming,

social networking, etc.). A major goal over generations of mobile system design has

been to improve user experience. Traditionally, this objective has been fulfilled by

allowing computationally complex applications to run with higher performance under

limited energy budgets (Halpern et al., 2016). Such mainstream design goals, along

with the competitive mobile market, has lead to aggressive mobile system-on-a-chip

(SoC) designs. State-of-the-art mobile SoCs comprise high-performance multicore

CPUs and various integrated accelerators (e.g., GPU, DSP etc.) to provide the best

performance for users (Lanier, 2017).

Power dissipation of such high performance SoCs, however, can significantly ele-

vate under increased computational demand. Thus, limited battery life and thermal

constraints became two major roadblocks in further extending the user experience 1

(Halpern et al., 2016). Since the elevated temperatures trigger performance throttling

mechanisms to prevent thermal violations, sustaining performance at user-acceptable

levels becomes increasingly challenging. Such thermally-induced performance losses

have already become major sources of performance loss for mobile users (Ho and Fru-

musanu, 2014). Therefore, it is essential to have techniques that can adaptively tune

1In this thesis, we use the term user experience in the context of performance perceived by the
end user.
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the power consumption of major power-hungry components (e.g., CPU) at runtime to

minimize energy and temperature without violating user performance requirements.

Current OS-level runtime management policies greedily increase CPU resources

to improve performance under increased computational demand. These policies often

rely on coarse-grained usage metrics to determine the computational demand. While

such policies are widely deployed across mobile, desktop or server systems, cooling

and battery restrictions deem them largely inefficient for mobile devices. Greedily

improving performance does not always lead to improved mobile user experience as

the performance may exceed the capabilities of human perception (Zhu et al., 2015a).

In fact, user experience may deteriorate due to thermal throttling caused by increased

power consumption and excessive heat generation (Ho and Frumusanu, 2014), which

cannot be easily dissipated due to inherent cooling limitations of mobile platforms.

Mobile applications also widely differ from traditional CPU benchmarks or server-

class workloads in terms of their user interface (UI) -driven asynchronous execution

model and workload behavior (e.g., thread-level parallelism (Gao et al., 2014), phase

behavior (Zhu et al., 2015a)). Current policies in system software, however, are

traditionally optimized using CPU/GPU benchmarks or workloads that do not com-

pletely represent the characteristics of real-world mobile applications (Huang et al.,

2014; Pandiyan et al., 2013). As a result, such policies often perform inefficiently on

typical mobile applications in the wild. Our key observation behind these drawbacks,

which motivates this thesis, is that the current runtime management policies are de-

signed with limited insight from the actual real-world mobile applications and work

with limited feedback from users, application, or the underlying platform.

This thesis claims that the current runtime policies that greedily exhaust ther-

mal headroom for performance cause significant QoS loss over extended durations

and sustained QoS can be substantially improved with a runtime framework which
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1) enforces QoS tradeoffs proactively in an application-specific and thermally-aware

manner; 2) systematically incorporates insights from real-world mobile applications.

To this end, this thesis proposes runtime management policies that leverage insights

from the behavior of real-world mobile applications. We also provide software frame-

works to facilitate studying the characteristics of mobile applications for improving

mobile system efficiency and security.

1.1 Runtime Management for Sustainable Performance

The challenge in providing energy- and thermally-efficient operation in mobile devices

rises due to various factors. First, due to indisputable significance of performance on

user experience, any decision by runtime power/thermal management policies should

take into account the strict quality-of-service (QoS)2 requirements needed by the user.

As the diversity in computation requirements of mobile applications grows, single-ISA

heterogeneous multi-core architectures also gained popularity. Heterogeneous CPUs

provide more energy-efficient operation (Kumar et al., 2004; Kumar et al., 2003) due

to their wide dynamic power and performance ranges. Due to such asymmetries in

hardware and respective changes in power/performance/temperature tradeoffs, the

complexity of runtime management decisions increases substantially. In addition,

tight integration of high power accelerators such as GPUs along with CPUs can

widely alter chip temperatures at runtime. Hence, analyzing and optimizing the

temperature of individual processors (i.e., CPU or GPU) in isolation becomes both

challenging and inefficient (Prakash et al., 2016; Sahin and Coskun, 2016b).

In this thesis, we aim at providing the users with sustainable performance levels

over extended durations under thermal constraints (i.e., in contrast to always maxi-

mizing performance). We argue that runtime power/thermal management strategies

2In this thesis, QoS refers to a metric used to quantify the performance experienced by the user
(e.g., frames-per-second (FPS) or response latency).
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should take into account the QoS requirements of users and make conservative use

of thermal headroom. Such a strategy is necessary to provide users with consistent

performance when they interact with their phones over extended durations (as in

gaming and streaming). This is in contrast to the existing runtime strategies which

greedily exhaust the available thermal headroom to boost QoS when computational

demand increases. This work demonstrates, for the first time, that such an approach

can significantly hurt QoS over extended durations due to more aggressive throttling

that needs to be applied to control maximum temperatures (Chapter 2). We propose

to achieve sustained performance via 1) novel runtime management techniques that

can optimize power and temperatures under strict QoS requirements; 2) application-

aware QoS management techniques that can autonomously and proactively manage

QoS. The specific contributions are as follows:

• We demonstrate up to 50% QoS loss with existing runtime policies due to al-

ways maximizing short-term performance (Sahin and Coskun, 2015). Thus,

we propose a runtime dynamic voltage and frequency scaling (DVFS) scheme

for thermally-efficient QoS tradeoffs (Sahin et al., 2015) (Section 4.1). Our

technique dynamically monitors application-specific QoS to adjust DVFS lev-

els using a closed-loop control system. To improve the thermal efficiency of

our closed-loop QoS control, we also propose a DVFS state scheduling scheme.

Our DVFS state scheduler temporally distributes the high power discrete DVFS

states to minimize the peak temperature without violating performance targets.

• We propose a runtime framework, QScale (Sahin and Coskun, 2016b), that

lowers temperatures under performance guarantees on state-of-the-art hetero-

geneous multicore mobile CPUs (Section 4.2). In addition to closed-loop DVFS

control, QScale efficiently guides mapping of application threads onto “big”

and “little” cores. During mapping, QScale considers the on-chip CPU-GPU
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thermal couplings as well as taking into account the QoS-criticality of individ-

ual application threads. QScale improves sustained QoS durations by up to 8x

as compared to existing DVFS and scheduling approaches that rely on coarse-

grained utilization metrics to guide power management decisions and disregard

CPU-GPU thermal interactions.

• We design a framework, Maestro (Sahin et al., 2018), to autonomously guide

QoS-temperature tradeoffs (Section 4.3). Maestro considers the bursty and

throughput-oriented computation characteristics of mobile applications to guide

QoS-temperature tradeoffs. Upon projecting throttling-induced QoS degrada-

tions, Maestro proactively lowers QoS to improve sustained performance.

1.2 Software Frameworks for Studying Real-World Applica-

tions

Mobile applications widely differ from traditional CPU benchmarks (e.g., SPEC CPU

(Henning, 2006), PARSEC (Bienia et al., 2008)) in terms of their workload charac-

teristics as well as their interactive nature (Gao et al., 2015; Gutierrez et al., 2011).

Studying and understanding the behavior of real-world mobile applications are cru-

cial to optimize current system software and improve the efficiency of future mobile

devices. A fundamental requirement while studying the characteristics of real-world

mobile applications is the ability to reproduce their executions. For instance, from

the perspective of OS-level policy optimization, the same execution of an application

is often repeated under different scheduling or power management policies to explore

energy and performance tradeoffs. Reproducing the executions of real-world mobile

applications, however, has proven difficult under real-life scenarios due to various

non-deterministic factors such as user inputs, network or sensory input.

Due to the inability to easily reproduce real-life behavior of mobile applications,



6

many characterization studies analyze mobile workloads under limited usage scenar-

ios (e.g., only application launch) (Huang et al., 2014). Such studies provide only

limited insight into mobile workload characteristics while designing runtime policies.

Other studies rely on hand-crafted test scripts for specific devices and applications

(Li et al., 2017). However, such application- or device-specific test cases cannot be

easily reproduced across different systems, diminishing the reproducibility of scientific

outcomes. We argue that systematic understanding of mobile workloads and com-

parison of experimental observations require the availability of software frameworks

to reproduce realistic executions in a cross-platform manner.

Benign input-dependent (e.g., UI, network) execution variations are not the only

source of non-deterministic behavior in mobile applications. Unfortunately, recently

surging evasive Android malware behave non-deterministically (i.e., alter their behav-

ior) based on the environment they are executed in. By ceasing malicious activities

in testing environments, such malware seeks to evade detection by malware analyzers

(Xu, 2017; Davis, 2017; Branco et al., 2012). A crucial step for defending against

such malware is to systematically extract the discrepancies between the testing envi-

ronments (e.g., an emulator) and real systems. Once discovered, such discrepancies

can be proactively eliminated (Liu et al., 2017) or can be used to inspect applications

for presence of evasion tactics (Branco et al., 2012).

This thesis presents software frameworks to facilitate the studies involving real-

world mobile applications. Our specific contributions are as follows.

• We design a record and replay framework for Android, RandR (Sahin et al.,

2019). RandR enables repeatable executions of mobile applications by cap-

turing and replaying UI and network inputs in a practical and cross-platform

manner (Section 5.1). RandR can be deployed on commodity mobile platforms.

RandR achieves such practical merits through a novel dynamic instrumenta-
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tion based approach which eliminates the need for any static OS/application

instrumentation, privileged mode or any specialized hardware support.

• We propose the Proteus system (Sahin et al., 2018) to automatically extract

instruction-level discrepancies of emulated analysis environments. Such discrep-

ancies can be leveraged by malware to distinguish the underlying environment

and evade analysis by ceasing malicious behavior (Section 5.2). Proteus col-

lects and automatically analyzes a large number of instruction-level traces from

real-life ARM CPUs as well as from an instrumented emulator to pin-point

instruction-level discrepancies.
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Chapter 2

Problem Statement and Motivation

Real-world interactive mobile applications widely differ from traditional CPU bench-

marks in terms of their workload behavior and performance requirements. Current

mobile systems that execute our daily real-world applications are also heavily con-

strained in terms of power and cooling. To bridge the gap between real-world appli-

cations and runtime management, this thesis makes the case for leveraging insights

from real-world application behavior to improve mobile system efficiency and security.

We first demonstrate the drawbacks of existing greedy thermal management policies

in mobile systems to motivate our approach of incorporating QoS requirements into

runtime management (Section 2.1). Next, we discuss the challenges involved in char-

acterization of real-world applications (Section 2.2).

2.1 (Un)sustainable Performance in Mobile Platforms

Traditionally, thermal management research has focused on maximizing performance

under thermal restrictions (Bartolini et al., 2011; Chantem et al., 2009; Singla et al.,

2015), assuming that such an approach will always maximize the user experience. The

unique observation that motivates our work in this thesis contradicts this assumption:

greedily exhausting the thermal headroom improves short-term user-experience, but at

the expense of significantly less QoS over extended durations. Section 2.1.1 illustrates

this observation through experiments with various mobile applications running on

real-life mobile platforms. We demonstrate a case of QoS-temperature tradeoff where
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user experience can be improved by trading off short-term QoS to gain extra thermal

headroom that could be used to extend the durations of sustained performance. Sec-

tion 2.1.2 illustrates this intuition using real-life examples. Finally, in order to guide

such QoS-temperature tradeoffs autonomously, we demonstrate the need for consid-

ering the unique characteristics of real-world mobile applications (Section 2.1.3).

2.1.1 Impact of Thermal Constraints on Performance

Modern mobile devices incorporate thermal throttling strategies that react to elevated

chip and skin level temperatures by slowing down the CPU (e.g., via DVFS or power

gating of individual cores). These policies reduce the power dissipation and keep tem-

peratures below safe thresholds. Greedily exhausting thermal headroom to maximize

QoS can improve user experience if throttling does not happen frequently. However,

our research has revealed that rapidly elevated on-chip and external component (i.e.,

battery, display etc.) temperatures can lead to increasingly aggressive thermal throt-

tling over time and cause as much as 50% QoS loss (Sahin and Coskun, 2015; Sahin

et al., 2015). Such a large throttling-induced QoS loss over long durations of use (as in

gaming and streaming) becomes a crucial problem in mobile devices, which are inher-

ently limited by cooling capabilities. Mobile users expect consistent and acceptable

QoS while running applications for minutes or longer. Users have, in fact, already

reported significant performance loss and dissatisfaction during extended durations

of device use (Cunningham, 2013; Ho and Frumusanu, 2014).

We illustrate this problem of unsustainable performance through experiments on

two state-of-the-art mobile platforms. Consider the case in Figure 2·1 which shows

the percentage of time spent in different frequency levels over time on a Snapdragon

MDP8974 smartphone platform (Snapdragon MSM8974 MDP., 2014) while running

a common FFT kernel (Pozo and Miller, 2000) repeatedly. The default Linux CPU
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Figure 2·1: Frequency residencies over time on a MDP8974 smart-
phone during continuous use. Performance impact of throttling in-
creases over time as the CPU is forced to use lower frequencies to meet
the thermal constraints.

power manager 3 scales the frequency to the highest level to boost performance and,

initially, the application is able to operate below the thermal limit by throttling down

to lower two frequencies only (1.9-1.7GHz). It should be noted that, in this example,

frequencies lower than 2.1GHz level are enforced due to thermal throttling rather than

the power management scheme. In the later iterations, there is a clear shift towards

utilizing lower frequencies, which significantly reduces performance over time. This is

due to more aggressive throttling applied by the baseline thermal management policy

3. For instance, in the last iteration #16, more than 80% of the running time is spent

at 1.4GHz and 1.2GHz, while the application was well able to run without scaling

down to those two frequencies initially.

Figure 2·2 shows the QoS degradation over time for various real-life applica-

tions (involving gaming, media streaming) running on a Odroid-XU3 (Hardkernel,

2017) mobile platform. Odroid-XU3 platform integrates an emerging heterogeneous

multi-core CPU architecture (i.e., big.LITTLE (ARM, 2013)). Over an 8-minute

continuous use, throttling incurs significant QoS loss over time for all applications,

reaching up to 50% degradations for the Aquarium application. While heterogeneous

3In the given experiment, the default ondemand governor in Linux is used. The baseline thermal
throttling policy is a PID controller with a 80 ◦C thermal set-point that operates hierarchically with
the ondemand governor.
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Figure 2·2: QoS degrada-
tion over time on Odroid-XU3
platform (Hardkernel, 2017).

CPU designs can significantly improve energy-

efficiency (Pathania et al., 2015; Seo et al., 2015; Zhu

and Reddi, 2013), clearly, thermal challenges continue

to limit user-experience over long durations of device

use. Overall, these examples illustrate that greedily

utilizing the thermal headroom to boost short term per-

formance can lead to significant performance loss over

extended durations.

2.1.2 A Case for Sustained QoS

Providing users with longer durations of sustainable QoS requires thermal manage-

ment policies to deviate from existing greedy approach and adopt thermally-efficient

strategies that can make more conservative usage of thermal headroom. In this sec-

tion, we provide an experimental scenario to point to the potential trade-off between

the instant short-term performance and sustainable performance. Our goal is to

motivate thermally-efficient runtime management as well as the viability of QoS-

temperature tradeoff to improve sustained performance.

Figure 2·3 presents an experiment that corresponds to a repetitive run of the

Bodytrack application (Bienia et al., 2008) at three different static frequency levels.

Note that the system can still throttle the frequency below the assigned static level

to avoid thermal violation. Figure 2·3a shows the average QoS for each iteration

of the application over time where the QoS is measured as heartbeats-per-second

(Hoffmann et al., 2010). The maximum static frequency setting, 2.1GHz, gives the

highest QoS initially. The QoS level, however, sharply reduces after the CPU reaches

its thermal limits at around 220 seconds, as shown in Figure 2·3c. The QoS level

continues to downgrade as a result of more aggressive thermal throttling and, at the

end of the execution, QoS degrades to 25% of the initial maximum. The QoS drops
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Figure 2·3: An illustration of the effect of trading off the short
term performance on performance sustainability. The experiment cor-
responds to a repetitive run of Bodytrack application (Bienia et al.,
2008) at 3 static frequency settings and QoS values are normalized to
maximum QoS.

below 90%4 at around 300 seconds when using the aggressive 2.1GHz setting. Setting

the frequency at 1.9GHz frequency, however, allows to sustain the QoS level above

90% for 450 seconds. Figure 2·3b shows the QoS distribution for this experiment.

The highest power setting results in wider distribution of the QoS while the 1.9GHz

setting is able to rein the QoS distribution towards the 90% range (indicating longer

duration of execution time spent around the 90% QoS). These results indicate that

lowering the short term performance requirements to “barely” meet the target QoS

level, can enable longer sustainability of desired QoS goals. This motivation forms

the basis of our novel QoS-centric thermal management approach that we present in

this thesis. The main objective of our techniques is to mitigate throttling-induced

QoS degradations by slowing down the heating while delivering ‘just enough’ (as

opposed to the best) QoS for meeting given user performance requirements (Sahin

et al., 2015).

4We choose 90% as an example acceptable QoS level to explain our motivation.
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2.1.3 Need for Application Awareness in QoS Management

While QoS-temperature tradeoff can be a viable option for extending the sustained

QoS durations, it is non-trivial to decide when applying such a tradeoff would bring

benefits. This is because of several reasons. First, a computation initiated for an ac-

tivity may exhaust thermal headroom but may be short-lived and cause only a brief

duration of throttling (e.g., a few seconds). For such short and bursty computations,

minimizing latency would be more desirable from the user’s perspective than main-

taining a sustainable throughput (Zhu et al., 2015a). Naively switching to a lower

performance setting (e.g., upon thermal violation) for sustainable QoS will lead to

unnecessary QoS loss and increase user-perceived latency for bursty tasks. Second,

even for the applications that do perform long-running computations (e.g., several

minutes or larger), throttling mechanisms may have little or no impact on QoS for

relatively low-power applications. Thus, conservatively applying a QoS tradeoff will

cause an unnecessary performance loss.

Consider the Adobe PDF reader and Rain graphics animation applications that

present disparate computation patterns. Figure 2·4 shows the power and thermal

profiles for these two applications as they run under default Android management.

We leave the thermal control policy enabled to prevent thermal runaway. PDF reader

application (Figure 2·4a) generates short bursts of intense computations upon user

input (e.g., opening a PDF, text search). Initiation and ending of computations can

be inferred from the power profile. Due to short-lived nature of computations and

idleness between the user inputs, temperature can quickly decrease from the critical

level. For such applications, one can tolerate exhausting the thermal headroom and

achieve maximum QoS. Rain application, on the other hand, performs continuous

computations for frame processing after being launched in the browser at t = 15s.

This continuous load causes a relatively stable power consumption (∼3W ) and con-
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Figure 2·4: Distinct power and thermal profiles of a bursty applica-
tion and a throughput-oriented graphics application. (a) Adobe PDF
Reader application (b) Rain WebGL animation running in Chrome web
browser. Adobe PDF application consists of bursts of computations
such as zoom-in/out or text search as generated upon user input from
GUI. Such intermittent nature of computations is widely observable in
the power profile as well. On the other hand, continuous frame-based
computations after the browser launch (t = 18s) in Rain application
causes a relatively more steady power profile.
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sistent increase in temperature. As shown in Figure 2·2, throttling incurs significant

QoS loss due to continuous thermal violations and more aggressive throttling. Thus,

we argue that, to be able to effectively apply QoS management for sustainable user

experience only when it would be desirable by a user, policies should be cognizant of

both application behavior and system thermal constraints.

2.2 Challenges of Characterizing Real-World applications

Current mobile systems research still primarily relies on workloads (e.g., benchmarks)

that do not capture the real-world characteristics of mobile applications. Existing

mobile benchmark suites (Gutierrez et al., 2011; Huang et al., 2014) provide only

simplified use cases that do not fully represent real-world user behavior or capture

only a few select domain of applications. Studying real-world behavior of mobile

applications, however, can offer unique insights to optimize runtime management to-

wards providing more sustainable performance under power and thermal limitations

of contemporary mobile platforms (Park et al., 2016; Pandiyan et al., 2013). Unfor-

tunately, real-world mobile applications present major challenges for real-life studies

due to their non-deterministic nature. Unlike traditional benchmarks used for com-

puter system evaluation and optimization (e.g., SPEC CPU2006 (Henning, 2006),

PARSEC (Bienia et al., 2008)) that run to completion with minimal I/O, mobile

applications are heavily input driven.

A common source of input that determine the application behavior is the UI in-

puts from the users in the form of touchscreen events. If not reproduced accurately

across different runs of the same application, UI inputs can drastically alter the exe-

cution of an application. Such differences in executions would deem comparisons and

observations across different executions inaccurate or not meaningful. In addition to

UI inputs, other non-deterministic inputs such as network events or random numbers
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(a) (b)

Figure 2·5: Execution variations in various mobile applications due
to various non-deterministic input sources. (a) The effect of network
content changes. (b) Replay failure with Reran (Gomez et al., 2013) in
2048 application due to random numbers.

can also lead to different behavior in a given mobile application. For instance, Figure

2·5a shows the result of browsing the fakenewsgenerator.com website twice. The

figure indicates different results in the visible state of the application due to changes in

the network data. Prior studies have shown that different network content can widely

alter power and performance tradeoffs due to variations in the compute requirements

(Zhu and Reddi, 2013). Random numbers can also cause variant application behavior

due to their inherent non-deterministic nature. As a result, existing tools that focus

purely on reproducing UI inputs (Gomez et al., 2013; Halpern et al., 2015; Qin et al.,

2016) may not be sufficient to enable repeatable executions. Figure 2·5b illustrates

the experiment where we have recorded (left) and replayed (right) a set of UI interac-

tions with an existing record and replay framework (i.e., Reran (Gomez et al., 2013))

for the popular 2048 gaming application. Due to random location of number that

appear on the screen, Reran cannot reproduce the execution that have resulted in the

“Game Over” text being rendered on the screen during record.
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This thesis argues the need for a system with the following desirable characteris-

tics to allow for reproducible studies with mobile applications. First, such a system

should be should be easily extensible to handle multiple sources of inputs (e.g., UI,

network) in contemporary mobile applications . Second, the executions should be eas-

ily reproduced across different platforms (i.e., cross-platform replayability). Finally,

from a practical standpoint and ease of use, such a system should be compatible with

existing hardware and software stack without requiring instrusive modifications.

Evasive Malware: The input sources such as UI or random numbers can intu-

itively result in different application behavior. However, an emerging class of evasive

Android malware can present different behavior depending on a different information

input: whether the application is executed on an emulator or real system. Use of emu-

lators is currently the most dominant approach adopted by malware analysis tools in

both academia (Yan and Yin, 2012; Tam et al., 2015) and industry (Oberheide and

Miller, 2012). By detecting whether the application is executed in an emulated anal-

ysis environment or a real device, a malware can cease any malicious behavior under

analysis and evade detection. Unfortunately, for Android, several recent families of

evasive malware (e.g., Xavier (Xu, 2017), Grabos (Davis, 2017)) have already been

identified in the Play Store. The focus of this thesis in this aspect is to systematically

identify the information inputs that a malware can use to detect emulation. Such

systematic identification is a crucial step towards understanding the behavior of mo-

bile applications under real-world inputs and restoring the effectiveness of dynamic

malware analysis systems.
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Chapter 3

Background and Contributions

This thesis proposes runtime management techniques that leverage insights from the

behavior of real-world mobile applications as well as providing frameworks to facilitate

studying mobile applications. In the first section, we present a detailed overview

of the state-of-the-art in runtime power and thermal management techniques. In

Sections 3.2, we review prior techniques for enabling repeatable executions of real-

world mobile applications. Section 3.3 provides an overview of the existing approaches

for characterizing and preventing execution variations of evasive Android malware.

Section 3.4 highlights the novel aspects of this thesis.

3.1 Runtime Management for System Efficiency

Reducing power and temperature has been long-standing objectives in design and

management of computer systems. Power is the critical factor in determining the

battery life and user experience for mobile devices in particular (Lee, 2014; Vince,

2014). Elevated temperatures degrade device reliability (EIA/JEDEC, 2016) and

lead to performance loss due to throttling in mobile systems where active cooling is

not viable (Singla et al., 2015). Thus, there has been a considerable amount of prior

work in power and thermal management. This section provides an overview of the

state-of-the-art in dynamic power and thermal management approaches proposed for

traditional homogeneous CPUs (Section 3.1.1) as well as the techniques particularly

focusing on heterogeneous multicore CPU designs (Section 3.1.2). Section 3.1.3 re-
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views the runtime policies that consider application-level feedback. We describe the

techniques specifically targeting mobile platforms and applications as well as those

that are broadly applicable to other computer systems (e.g., server and desktop PC).

3.1.1 Dynamic Power and Thermal Management of Homogeneous CPUs

Power Management with DVFS: Modern CPUs support multiple voltage/fre-

quency states. Since the power consumption of CPUs with CMOS logic varies

quadratically with voltage and linearly with frequency (Mudge, 2001), dynamic volt-

age and frequency scaling (DVFS) techniques have been proposed for power reduction.

Such approaches reduce power by lowering voltage/frequency levels during frequency

insensitive (e.g., memory or IO bound) phases of an application (Isci et al., 2006).

Since many user-centric applications require QoS guarantees (e.g., FPS in mobile

games (Pathania et al., 2014; Kadjo et al., 2015), web page loading time in browsing

(Zhu and Reddi, 2013)), various approaches consider power management under per-

formance guarantees. Ayoub et al. (Ayoub et al., 2011) propose a closed-loop DVFS

controller for meeting throughput requirements in a server system. Lo et al. (Lo

et al., 2014) present PEGASUS, which utilizes the Intel’s Running Average Power

Limiter for enabling fine-grained CPU power tuning in web servers to match query

latency requirements. Kadjo et al. (Kadjo et al., 2014) reduce the QoS requirements

in memory bound applications and achieve platform level power savings in a mobile

system. Pathania et al. (Pathania et al., 2014) propose a CPU-GPU power budgeting

algorithm to meet a frames-per-second constraint in mobile games. While the above

techniques do not consider the sustainability of performance targets and thermal

impacts, a recent study points to a similar observation to ours (Section 2.1.1), em-

phasizing the impact of duration on measured performance on thermally-constrained

systems (Emurian et al., 2014). Their work, however, focuses only on the perfor-

mance measurement flaws that occur due to power level differences between only the
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boosting mode and the throttling mode in Intel’s TurboBoost enabled processors.

Runtime QoS Tradeoffs: The idea of trading off accuracy or QoS with power

appears in several prior energy management methods (Hoffmann, 2015). PowerDial

(Hoffmann et al., 2011) elastically performs accuracy tradeoffs by dynamically tuning

the application parameters under power caps to meet the performance goals. Zhu et

al. (Zhu et al., 2015b) propose a runtime framework that trades off response time

within a user tolerable range in latency-sensitive mobile web applications for energy

savings. Trading off the QoS to proctively reduce temperature, on the other hand, is

a novel insight brought by our work to address the QoS unsustainability problem in

mobile devices over extended durations of use.

Thermal Management of Multi-core CPUs and Smartphones: Dynamic

thermal management techniques are widely deployed and studied to improve energy

efficiency and performance while ensuring safe chip (Skadron et al., 2003) and skin

level temperatures (Sahin and Coskun, 2016a; Egilmez et al., 2015). Architecture-

level approaches such as instruction fetch toggling (Skadron et al., 2003) or low-

power pipelines (Lim et al., 2002) can provide fine-grained optimization of thermal

hot spots while OS-level runtime management techniques can allow for design of

more sophisticated control algorithms. Control-theoretic DVFS techniques provide

effective temperature control while maximizing performance (Bartolini et al., 2011;

Skadron et al., 2002). Predictive techniques have been applied to project thermal

emergencies for minimizing temperature violations (Yeo et al., 2008). Such dynamic

thermal management approaches are complementary to our techniques as they can

be employed to minimize the QoS loss once the thermal headroom is fully exhausted.

There exists a body of work towards thermal modeling and management of mobile

devices in particular. Xie et al. propose a resistance network based thermal simula-

tion framework for obtaining component level steady-state temperatures (Xie et al.,
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2014) and derive an RC model of the thermal coupling between the battery and the

application processor (Xie et al., 2013). Their runtime policy minimizes the number

of deadline misses for various synthetic real-time tasks by considering the thermal

coupling between the battery and CPU. ARM’s new Intelligent Power Allocation

(IPA) (Muller, 2014) scheme aims to maximize performance under thermally limited

scenarios by shifting the power between the heterogeneous CPU cores and GPU based

on the expected performance return. Unlike the previous work, we do not attempt to

improve performance under temperature constraints. Instead, we consider the target

QoS levels as performance-wise sufficient and aim to sustain that QoS level for a max-

imum duration by optimizing transient state temperatures. Similar to IPA, Prakash

et al. (Prakash et al., 2016) propose coordinated CPU-GPU DVFS to maximize FPS

under a thermal constraint but consider CPU and GPU thermal couplings as well.

Our work recognizes CPU-GPU thermal couplings to make thermally-efficient core

allocation decisions.

For multi/many core systems, various work present thermally-efficient spatial allo-

cation of threads (Khdr et al., 2015; Shafique et al., 2015; Khdr et al., 2017). In fact,

the intuition behind thermal-coupling aware mapping in our QScale policy (Sahin

and Coskun, 2016b) is similar to prior work. However, QScale demonstrates, for the

first time, the opportunities for thermally-efficient core allocation on a mobile SoC

by considering the application-specific CPU-GPU thermal couplings.

Several studies address the scheduling of discrete DVFS states with thermal con-

siderations in real-time systems domain. Applying faster switching between the dis-

crete DVFS levels have been formally shown to maximize the workload under a ther-

mal threshold (Chantem et al., 2009) and minimize the peak temperature (Chaturvedi

et al., 2010) in hard real-time systems. Inspired by those techniques in real-time sys-

tems domain, we utilize DVFS scheduling to enable fine-grained CPU power tuning
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and meet the target QoS constraints with minimal use of the thermal headroom for

improved performance sustainability.

3.1.2 Heterogeneity-aware Power and Thermal Management

Single-ISA heterogeneous architectures (e.g., ARM’s big.LITTLE (ARM, 2013)) com-

bine high-performance power hungry cores with simpler low-power cores to provide

more energy-efficient operating points (Kumar et al., 2003; Kumar et al., 2004). Due

to widely varying compute requirements across different mobile applications, such

CPU architectures have been widely adopted in current mobile SoCs for improving en-

ergy efficiency. In this section, we provide an overview of runtime power and thermal

management techniques proposed for such heterogeneous multicore CPUs and high-

light the differentiating aspects of our thermal optimization solution for big.LITTLE

(Sahin and Coskun, 2016b).

Scheduling and Energy Management on Heterogeneous CPUs: Some prior

scheduling techniques maximize overall throughput on heterogeneous multi-cores run-

ning multi-program workloads. Koufaty et al. (Koufaty et al., 2010) dynamically

monitor several hardware events to guide load balancing decisions in the Linux sched-

uler. Other work (Kumar et al., 2004) relies on application profiling on all core types

to guide scheduling. On a big.LITTLE mobile platform, Hsiu et al. (Hsiu et al., 2016)

achieve energy savings by providing more CPU resources to foreground applications

while leveraging the little core cluster for background applications. Our work focuses

on single foreground application scenario but identifies the heterogeneity within the

application threads, which we use to perform thermally-efficient scheduling.

Pricopi et al. (Muthukaruppan et al., 2013) propose a real-life power budgeting

framework on a big.LITTLE system where target QoS of multiple single-threaded

self-adaptive applications (Hoffmann et al., 2010) are adjusted reactively. Various

application-specific energy management policies have been proposed for heteroge-
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neous mobile CPUs. Zhu et al. (Zhu and Reddi, 2013) analyze web-page features to

determine DVFS settings while meeting latency constraints. Pathania et al. (Patha-

nia et al., 2015) derive offline performance estimation heuristics to guide big/LITTLE

core allocation for multi-threaded mobile games and achieve energy savings without

impacting the peak user experience.

Thermal Management on Heterogeneous CPUs: There has been relatively

limited prior work that study the single-ISA heterogeneous CPUs from a tempera-

ture perspective. Sharifi et al. (Sharifi et al., 2010) propose a job allocation strategy

for temperature balancing on a heterogeneous SoC to mitigate negative effects of

thermal variations. Their technique relies on prior knowledge of power and perfor-

mance characteristics of all applications and optimizes steady-state temperatures only.

Kim et al. (Kim et al., 2015) propose mDTM, which alternates between the peak

performance and little core operation to allow for longer time spent at the highest

performance state. Their technique shortens the overall execution time for CPU-

bound applications with high frequency scalability. Singla et al. (Singla et al., 2015)

provide a thermal modeling methodology using a real-life big.LITTLE platform and

present a proactive DTM policy to prevent thermal violations. Our techniques, on

the other hand, maximize the duration before a thermal violation occurs by providing

thermally-efficient QoS management.

3.1.3 Application and QoS-Aware Runtime Management

Similar to our work in this thesis, several prior studies also consider the bursty and

throughput-oriented characteristics of applications to tailor energy optimization poli-

cies. Hashemi et al. (Hashemi et al., 2015) investigate the bursty compute behavior

in web applications for dynamic power management (DPM) and derive a heuristic

that sets the number of active cores based on per-thread instruction counts. For

throughput-oriented applications such as gaming and video conversion, Rao et al.
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(Rao et al., 2017) profile each mobile application offline to determine the perfor-

mance sensitivity of an application to CPU and memory DVFS. They leverage this

information at runtime to perform an application-specific control for minimizing en-

ergy under a performance target. Zhu et al. (Zhu et al., 2015a) propose a framework

to distinguish bursty and throughput-oriented events in a web browser and allows to

manage QoS and energy tradeoffs accordingly.

Various prior work has studied managing QoS tradeoffs with power and energy

considerations. PowerDial (Hoffmann et al., 2011) automatically extracts application

parameters to perform dynamic accuracy tradeoffs under a power cap. JouleGuard

(Hoffmann, 2015) provides a learning based solution to tune accuracy for meeting en-

ergy budgets. Such techniques rely on source-level instrumentation and approximate

nature of specific applications (e.g., video encoding), which makes them harder to

generalize to off-the-shelf mobile applications.

3.2 Capturing Non-deterministic Inputs for Repeatable

Execution of Mobile Applications

Various existing tools aim at providing repeatable execution of mobile applications

on the Android platform that is also our focus in this thesis due to its widespread

adoption. We briefly review existing techniques to highlight the distinguishing aspects

of our novel record and replay framework for Android, RandR.

Robotium (RobotiumTech, 2019) and Espresso (Espresso, 2019) allow developers

to instrument their source code with test scripts that interact with the UI widgets of

an application. These tools do not require modifications to the underlying Android

framework and can provide cross-platform testing capabilities. However, they require

significant manual effort to analyze the GUI layouts and write tests scripts to perform

interactions with the app. As opposed to approaches that require manual efforts to
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derive test scripts, our goal is to provide a record and replay framework to capture

natural user interactions with an application automatically.

Majority of the existing record and replay systems for Android (e.g., RERAN

(Gomez et al., 2013), Valera (Hu et al., 2015), MobiPlay (Qin et al., 2016)) rely

on raw screen coordinates of touch events or require privileged modes of operation

(i.e., root). Such elevated privileges are challenging to achieve on off-the-shelf mobile

devices (Qin et al., 2016). Since the specific coordinates of an interactive UI widget

may also shift across different platforms due to varying screen size and resolutions,

these tools are not suitable to achieve cross-platform replay. Besides, RERAN (Gomez

et al., 2013) and MobiPlay (Qin et al., 2016) cannot reproduce execution variations

due to non-deterministic inputs other than UI interactions (e.g., network events).

3.3 Understanding Malicious Non-deterministic Behavior in

Mobile Applications

While different UI interactions or network inputs may intuitively alter the execution

behavior of an application, an emerging class of evasive Android malware can also alter

its behavior depending on the system the application is executed on (e.g., emulator

or a real device). This section reviews prior work on discovering emulation detection

methods and compares against our Proteus (Sahin et al., 2018) system. We also

discuss existing defense approaches against evasive malware.

Finding Discrepancies of Emulation Environments: Jing et al. (Jing et al.,

2014) identify a large number of detection heuristics based on the differences in

file system entries and return values of Android API calls. For instance, presence

of “/proc/sys/net/ipv4/tcp syncookies” file or a False return value from the

“isTetheringSupported()” API implies emulation. Such discrepancies can be easily

concealed by editing Android’s system images and API implementations to fake real
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device view (Liu et al., 2017; Bordoni et al., 2017). Petsas et al. detect QEMU-based

emulation by observing the side effects of caching and scheduling on QEMU (Petsas

et al., 2014). Other work leverages performance side channel due to low graphics per-

formance on emulators to fingerprint emulation (Vidas and Christin, 2014). These

techniques, however, have practical limitations as they require many repeated trials

and observations which makes the malware easier to flag. Our work systematically

uncovers observable differences in instruction semantics via large-scale analysis of

detailed instruction-level program traces.

Similar to our approach, other works also aim at discovering discrepancies of

emulators at instruction granularity. Various techniques (Martignoni et al., 2009;

Paleari et al., 2009) execute randomized instructions on emulator and real hardware

to identify the discrepancies of x86 emulators. To ensure coverage of a wide set of

instructions, other work (Shi et al., 2014) carefully constructs tests cases with unique

instructions based on manual analysis of the x86 ISA manual while our technique is

fully automated. In addition, the analysis and findings of these studies are limited

to x86 instruction set only while the vast majority of mobile devices are powered by

ARM CPUs. In addition, these studies classify divergences based on instructions (e.g.,

using mnemonic, opcodes) which oversees the fact that even different instructions

(e.g., LDM and STM) can diverge due to the same root cause (e.g., missing alignment

check). Our study points to the unique root causes in the implementation of CPU

emulators. Thus, our findings are readily useful for improving the fidelity of QEMU.

Finally, as reliance on physical CPUs practically limits the number of test cases

(e.g., instructions, register/memory operands, system register settings), we propose

a novel scalable system which uses accurate functional models of ARM CPUs (i.e.,

Fast Models).

Martingoni et al. (Martignoni et al., 2012) used symbolic execution traces from a



27

high-fidelity emulator to construct test cases that would achieve high coverage while

testing a low-fidelity emulator. Lack of such high-fidelity emulator for ARM CPUs

which power the vast majority of mobile devices, however, limits the applicability of

this technique for our use.

Defense Against Evasive Malware: Several work proposes to detect divergent

behavior in malware as a defense mechanism. Balzorotti et al. (Balzarotti et al.,

2010) detect divergent behavior due to instruction semantics by replaying applica-

tions on emulators with the system call sequences gathered from real devices and

comparing the runtime behavior. Lindorfer et al. (Lindorfer et al., 2011) propose

a more generic methodology for detecing evasive malware based on the similarity of

execution behaviors collected from a set of virtual machines. These approaches do

not systematically expose potential causes of divergences that a future malware can

use. Our work addresses the problem of proactively finding these instruction-level

discrepancies and opens the possibility of pre-emptively fixing them.

Specifically for Android, other works (Liu et al., 2017; Bordoni et al., 2017) sys-

tematically remove observable differences from API calls, file system and properites

of emulators and demonstrate resistance against evasion. Such approaches, however,

require enumeration of root causes of discrepancies. Our Proteus system aids these

approaches by enumerating the divergent cases between emulator and real CPUs.

3.4 Distinguishing Aspects of This Thesis

Power and thermal management are widely studied subjects for various computing

systems from mobile to servers and data centers. Thus, we summarize the unique

aspects of our thermally-efficient QoS management approach for sustainable perfor-

mance as follows:

• Our work is first to show the performance drawbacks of existing thermal man-
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agement approaches over extended durations (i.e., minutes or longer) due to

the pursuit of favoring short term performance. Traditional thermal manage-

ment has focused on maximizing performance under thermal limits (Bartolini

et al., 2011; Singla et al., 2015; Prakash et al., 2016). Conversely, we make a

case for sustainable QoS where our aim is to maintain a “just enough” level

of performance for maximum durations. Our approach is inspired by inherent

QoS tolerance of users (Zhu et al., 2015b), users’ consistent QoS expectations

over extended durations (e.g., as in gaming) (AOSP, 2019) as well as cooling

restrictions in commodity mobile devices.

• We demonstrate, through real-life experiments, the viability of trading off short-

term QoS for temperature reduction to extend the durations of sustained QoS.

• Our thermally-efficient QoS management solution, QScale (Sahin and Coskun,

2016b), brings the following novel contributions. First, we demonstrate the

dependence of thermally-efficient core allocation decisions on dynamic CPU-

GPU thermal couplings. Second, inspired by the studies demonstrating low TLP

in mobile applications (Gao et al., 2014; Gao et al., 2015), we show that QoS

is dominated by a few QoS-critical threads. QScale leverages this observation

for thermally-efficient scheduling.

• Our application-aware QoS management framework, Maestro (Sahin et al.,

2018), provides autonomous QoS-temperature tradeoffs for mobile applications.

Maestro automatically reasons about the susceptibility of an application to ther-

mal throttling. By detecting bursty and throughput-oriented compute behavior

of real-world mobile applications at runtime, Maestro proactively manages QoS

to increase durations of sustained performance.

• We implement and evaluate all of our techniques on real-life mobile platforms.
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Table 3.1: Comparison of Android test and replay frameworks.
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Automated record & replay 7 7 7 7 3 3 7 7 3

No root privilege 3 3 3 3 7 7 3 3 3

No custom OS 3 3 3 3 3 7 3 3 3

Support closed-source application 7 7 7 7 3 3 7 3 3

Replay randomized data 7 7 7 7 7 3 7 7 3

Replay network data 7 7 7 7 7 3 7 7 3

Cross-platform replay 3 3 3 3 7 7 3 7 3

• In order to facilitate real-life studies with mobile applications, we propose a

record and replay framework, RandR. RandR offers several unique advantages

over prior work. First, RandR does not require any intrusive modifications to

underlying OS/VM or root permissions to run. RandR achieves these practical

capabilities through dynamic runtime instrumentation. Second, RandR asso-

ciates UI events with their respective target UI widgets to provide coordinate-

independent and cross-device replay. RandR can also record and replay non-

deterministic input sources such as network events or random numbers beyond

user inputs. Table 3.1 provides a comparison of RandR to existing work.

• Finally, we propose a system, Proteus, to identify the heuristics that could

be leveraged by evasive Android malware at the instruction level. Proteus

automatically identifies the instructions and conditions that cause divergence

between emulated and real mobile devices. We identify several root causes

behind a large number of discrepancies. We show that some of these root

causes can be eliminated without any observable performance overhead.



Chapter 4

Runtime Management for Sustainable

Performance

This chapter introduces our runtime management policies that incorporate insights

from inherent QoS tolerance of users as well as from unique workload characteris-

tics of mobile applications. Our policies aim at improving sustained performance

under thermal constraints. In Section 4.1, we present a thermally-efficient runtime

DVFS framework for reducing temperature under a given QoS constraint. Section

4.2 introduces our QScale framework for enabling efficient QoS-temperature trade-

offs on heterogeneous multicore mobile CPUs. Finally, in Section 4.3, we introduce

a framework that leverages distinct computation patterns of mobile applications to

autonomously guide QoS-temperature tradeoffs.

4.1 Thermally-Efficient DVFS under QoS Guarantees

DVFS is a widely employed technique for managing power/performance/temperature

tradeoffs. While lower DVFS states can lower power and temperatures, reduced

performance can hurt user experience. In this section, we present a thermally-efficient

runtime DVFS technique for managing QoS levels. Our technique minimizes CPU

temperatures while ensuring QoS guarantees required by the user and applications

via formal closed-loop control. Section 4.1.1 and Section 4.1.2 presents our technique

and evaluations on a real-life smartphone, respectively. Such a technique will allow

users or system-level management policies to perform thermally-efficient QoS tradeoffs

30
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Figure 4·1: Overview of the implementation framework. Frames per
second (FPS), throughput and heartbeat per second (HB/sec) corre-
spond to the QoS metrics for our applications.

(e.g., based on battery level or thermal status).

4.1.1 Runtime Control Policy

This section introduces our runtime DVFS framework and policies for efficiently tun-

ing the QoS to “barely” match the target levels in the pursuit of achieving longer

durations of sustainable performance. Figure 4·1 presents an overview of our de-

sign which comprises of three main components. The closed-loop controller takes

the runtime tunable QoS level as a performance target and determines the operating

frequency of the processor. The DVFS scheduler unit converts the continuous target

frequency provided by the controller into a time-scheduled sequence of available dis-

crete DVFS levels to efficiently match the continuous target frequency with minimal

thermal impact. The QoS monitoring unit periodically feeds the frames-per-second

(FPS), throughput, or heartbeats/second (HB/sec) and into the controller.

Closed-loop QoS Controller

We design a feedback controller for dynamically adjusting the CPU speed to converge

QoS towards desired levels. The controller tracks the progress of the application

towards the target QoS by interacting with the QoS Monitoring Unit at every control
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interval. We use the following performance model, which represents the QoS level for

the next time interval (Q[k+1]) as a fraction of the maximum achievable QoS (Qmax)

at the highest frequency setting:

Q[k + 1] = Qmaxu[k] (4.1)

e[k] = Qtarget −Q[k] (4.2)

The control signal u[k] ranges between 0 to 1 and corresponds to the frequency

scaling factor which determines the QoS level at time k + 1. Since the goal of the

controller is to minimize the difference between the target and current QoS levels,

the error term e[k] simply corresponds to this difference. The transfer function of the

Equation 4.1 in the z-domain is given by:

F1(z) =
Q(z)

U(z)
=
Qmax

z
(4.3)

We find the transfer function F2(z) that defines the correspondence between the

control signal and the error term by setting the following global transfer function of

the closed-loop control system to 1/z:

G(z) =
F1(z)F2(z)

1 + F1(z)F2(z)
(4.4)

We obtain the discrete-time representation of the controller equation by substi-

tuting the F2(z) and taking the inverse z-transform as follows:

F2(z) =
U(z)

E(z)
=

z

Qmax(z − 1)
(4.5)

u[k + 1] = u[k] + e[k]/Qmax (4.6)

We examine the stability and convergence of this control system by analyzing

the global closed-loop transfer function G(z) in z-domain. The closed-loop transfer

function of 1/z has only one pole located at zero, which lies within the unit circle,
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ensuring the stabilization around the target QoS. Convergence to the target QoS level

can be examined by evaluating the G(z) at z = 1 and verifying a unit gain. Since

G(z) = 1/z evaluates to 1 at z = 1, the system has unit gain at the steady state and

converges to the target QoS. The settling time of the controller is a function of the

largest pole (a) of the closed-loop transfer function (Hellerstein et al., 2004), approx-

imated by −4/log(a). Since the G(z) has its single pole located at 0, the controller

can converge instantly, limited by the controller invocation period in practice.

Fine-grained DVFS State Scheduling

The controller provides a continuous output signal while the CPU can only support

discrete DVFS levels. We propose a DVFS state scheduler which divides the controller

period into bins and switches between two neighbor frequency levels to produce an

average frequency that matches the controller output. We also demonstrate the poten-

tial to minimize the thermal impact by making thermally-aware scheduling decisions

to further extend the durations of sustainable performance.

Minimizing the Thermal Impact with DVFS Scheduling: We use the fol-

lowing discretized version of a lumped RC thermal model similar to prior research

(Skadron et al., 2002) to demonstrate the intuition behind our scheduling approach

for minimizing the peak temperature of the CPU:

T [n+ 1] = T [n] + S(RthPk[n]− T [n])/RthCth (4.7)

T [n+ 1] = c1T [n] + c2T̂k (4.8)

where S is the sampling period, Rth and Cth are the thermal resistance and ca-

pacitance, T [n] is the temperature at sampling interval n, Pk[n] is the power level

corresponding to DVFS state k, and T̂k = RthPk[n] is the steady-state temperature

for the power level Pk.
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Consider the case where the scheduler estimates M bins to be scheduled with

the higher frequency state in the following control interval, and those high frequency

states are applied at distances of L. Next, we show that scheduler can reduce the

peak temperature by increasing the distance L. Using Equation 4.8, we write the

peak temperature at the end of the M th high frequency state as follows:

Tp = cML
1 T [0] + c2

M−1∑
i=0

ciL1 T̂h + c2

(M−1)∑
i=0

(iL+L+1)∑
j=iL+1

cj1T̂l (4.9)

Since c1 and c2 are less than zero, when the distance between the high frequency

states (L) is increased, the last term dominates and temperature approaches lower

steady state temperature T̂l. Thus, distributing the high frequency states furthest

from each other reduces the increase in temperature. Based on this intuitive observa-

tion, our scheduler implements maximum spatial distribution of the high frequency

state bins within the control interval.

Impact of DVFS Granularity on Temperature and Performance: As

a result of thermal time constants, temperature exhibits a “gradual” in-

crease or decrease than a step thermal response. Thus, in addition

to efficient DVFS scheduling, applying the DVFS state decisions faster,

Figure 4·2: Performance
overhead of DVFS.

or increasing the number of switches within the in-

terval, can also reduce maximum temperature. This

is due to the thermal buffer provided by the thermal

time constants (Chantem et al., 2009). One critical

issue that limits the thermal-optimization via quick

DVFS on a real hardware is the performance over-

head of switching. This case is pointed out in Figure

4·2 which shows the measured performance overhead

over different switching granularities. Reducing the
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switching frequency beyond 5ms can incur as much as 25% performance overhead.5

Based on this analysis, we set our fine-grained DVFS period to be 20ms.

4.1.2 Evaluation

This section describes the details of our experimental evaluation methodology as well

as presentation and discussion of our results.

Implementation and Experimental Setup

Hardware Platform: Our target experimental platform is a state-of-the-art Qual-

comm Snapdragon MSM8974 smartphone (Snapdragon MSM8974 MDP., 2014) that

hosts a Snapdragon 800 SoC (used in many modern smartphones, e.g., Nexus 5 and

Galaxy S4). The Snadragon 800 SoC consists of a Quad Core Krait 400 CPU along

with an Adreno 330 GPU, 2GB LPDDR3 RAM and is powered by a 1,600mAh

Li-ion battery. The phone runs Android KitKat version 4.4.2 and Linux 3.4.0 ker-

nel. The Krait 400 CPU supports 12 operating frequencies ranging from 300MHz

to 2.1GHz. Temperature measurements can be done on a per-core basis via on-chip

thermal sensors. Sensor readings for the CPU cores, battery and skin temperature

are performed using the thermal virtual file system provided by the Linux kernel (i.e.,

/sys/class/thermal) with ±1◦C accuracy. We use the logcat system debugging tool

available as part of the Android framework for monitoring the frames per second and

use perf event kernel API for accessing hardware performance counters. Our phone

allows for measuring only the overall power consumption using the voltage and cur-

rent sensors. For the CPU applications that do not require graphical interface, we

turn-off the LCD display throughout the measurements. We leave the LCD display

on for the GPU applications.

5This experiment is performed on state-of-the-art Qualcomm MDP8974 smartphone.
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Application Category QoS Metric

Sjeng Artificial Intelligence Throughput

H.264 Media Processing Throughput

LU Math Throughput

Pearl Boy Graphics/WebGL Frames per second

Aquarium Graphics/WebGL Frames per second

Bodytrack Computer Vision Heartbeats/sec

Table 4.1: Summary of applications and respective QoS metrics.

Application Set: Mobile systems run a broad range of applications and a single per-

formance metric cannot gauge performance of all applications. Thus, we construct a

benchmark set for our experiments by combining applications from various domains

and evaluate them using different QoS metrics as summarized in Table 4.1. The LU

application, a common kernel in many image/video processing and mobile health-

care applications, is selected from Scimark 2.0 (Pozo and Miller, 2000), which is a

benchmark suite for testing Java based platforms. A video encoding (H.264) and an

artificial intelligence application (Sjeng) are chosen from the SPEC CPU2006 (Hen-

ning, 2006). We use two online graphics applications created with WebGL, Aquarium

(Aquarium, 2018) and Pearl Boy (Goo, 2018). The Aquarium shows an animation

of fishes in a tank, while the Pearl Boy is an interactive application that requires

directing a boat in the sea. To ensure consistency between the runs, we automate

the user interaction by applying the same sequence of input swipe commands for each

experiment through a lightweight background shell program. We also use Heartbeats

(Hoffmann et al., 2010) instrumented version of the bodytrack computer vision ap-

plication from the PARSEC suite (Bienia et al., 2008). Heartbeat framework allows

to monitor application-specific QoS using a standardized interface and, for the body-
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track application, this framework emits a heartbeat whenever the processing of one

scene is completed. Since the Heartbeats framework can be applied to a wider domain

of applications for QoS monitoring and tuning purposes, we find value in showing the

applicability of our techniques on a Heartbeat-instrumented application.

Baseline Policies: The default CPU frequency scaling policy in our phone (and in

most state-of-the-art Android devices) is the ondemand governor (Brodowski, 2012),

which adjusts the CPU frequency based on the CPU load. Thus, we use the ondemand

governor as our baseline power management scheme in our experiments.

Thermal throttling policies operate hierarchically with the CPU frequency gover-

nors and assign maximum frequency limits for ensuring operation below a thermal

set-point. The CPU governors cannot use the frequencies that are above the assigned

limit. Since the control-theoretic thermal management solutions are among the most

commonly used techniques for maintaining the maximum temperature at a given

threshold, we use a DVFS-based PID controller as the baseline CPU throttling mech-

anism. Modern smartphones also incorporate skin temperature management policies

to keep the outer device temperature within the human comfort levels. Thus, per-

formance degradations can occur due to increased skin temperatures as well. Since

our MSM8974 device does not provide a skin temperature management policy by

default, we implement the skin thermal management scheme available in the Nexus 5

smartphones. This policy assigns a maximum CPU frequency limit whenever a skin

temperature trip point is reached, as described in Table 4.2. Both throttling mecha-

nisms poll the thermal sensors and assign frequency limits every 100ms. We choose

100ms as it provides non-intrusive (less than %1 execution overhead) thermal man-

agement while maintaining sufficient time granularity to avoid thermal emergencies.

Runtime Implementation: We implement the closed-loop controller as a user-level

program that regularly monitors the QoS level and passes the target frequency to the
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Trip Point Frequency Limit

40◦C 1.9GHz

42◦C 1.5GHz

44◦C 1.2GHz

Table 4.2: Temperature thresholds and target frequency limits of the
baseline skin temperature controller.

kernel-level DVFS scheduler. The controller is invoked every 200ms for the CPU

applications and every 1 second for the GPU applications. We have observed noise

in the FPS values when sampling at a finer granularity. We implement our DVFS

scheduler in the kernel level as a new CPU governor with a sysfs interface to allow

for assigning target frequency levels from the user space. The governor based imple-

mentation allows users to easily enable/disable our QoS tuning policy. The DVFS

scheduler applies the frequency decisions at the granularity of 20 miliseconds via the

cpufreq (Brodowski, 2012) interface. We have measured the frequency transition la-

tency in our system to be 186.4 microseconds by wrapping the cpufreq driver target

call in our kernel module with timing utilities. We have found 20 miliseconds to be the

finest DVFS granularity that could be applied without introducing noticeable over-

head (<1%) in our system. The maximum performance overhead of our framework

is less than 1.3% across all the applications in our benchmark set.

Results and Discussion

In this section, we present a thorough evaluation of the thermally-efficient QoS tun-

ing policy that we have described and demonstrate its benefits for achieving longer

durations of sustained performance. We evaluate the CPU applications with the

CPU temperature triggered dynamic thermal management policy (DTMcpu), which

is a PID controller based throttling scheme described previously in the section. For

the graphics applications, we have observed that CPU temperatures did not reach to
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critical limits while the skin temperatures kept increasing over time. Thus, we also

provide an evaluation of our QoS tuning policy with the skin temperature controller

(DTMskin) running as the throttling mechanism on our platform. We aim to show the

benefits of our QoS tuning approach from the performance sustainability perspective

under both processor and device-level skin temperature constraints.

H264 Bodytrack Sjeng LU

ondemand

& DTM
QT90 QT80

ondemand

& DTM
QT90 QT80

ondemand

& DTM
QT90 QT80

ondemand

& DTM
QT90 QT80 QT70

Before

Throttling

Average QoS 0.99 0.89 0.80 0.96 0.902 0.804 1.01 0.896 0.805 0.995 0.903 0.806 0.707

Standard

Deviation of QoS
0.035 0.042 0.037 0.02 0.028 0.043 0.086 0.059 0.065 0.107 0.109 0.075 0.074

Overall

Execution

Average QoS 0.85 0.85 0.79 0.871 0.872 0.803 0.85 0.84 0.79 0.723 0.756 0.732 0.695

QoS Degradation 27.2% 16.6% 0.3% 18.3% 11.3% 0.1% 28% 18% 4% 35% 30% 22% 7.4%

Time Spent in

Throttling
85.4% 55.5% 6.8% 59.4% 48.3% 0% 86.9% 61.7% 26.1% 87.7% 86.6% 73.9% 45.4%

Average Power 0.99 0.97 0.88 0.92 0.97 0.86 0.99 0.96 0.89 0.97 1.02 0.97 0.91

Energy

Consumption
1.01 0.98 0.94 0.91 0.97 0.93 1.01 0.98 0.96 1.02 1.01 0.99 0.97

QoS/Watt 0.99 1.02 1.05 1.09 1.04 1.08 0.99 1.013 1.03 0.997 0.994 1.006 1.03

Table 4.3: A summary of results for the CPU applications. QT(X)
represents proposed QoS tuning policy with X% target QoS. Average
QoS, power, energy and QoS/Watt values are normalized to the highest
static frequency setting (2.1GHz). QoS degradation corresponds to the
percentage of QoS loss from the first to the last iteration of the run.

Performance Sustainability Under CPU Temperature Constraints: For the

CPU applications, we explore three target QoS levels which are set to 90%, 80% and

70% of the average QoS achieved when the application is run at the highest static

frequency setting on an initially cold system. For clarity, we do not present results for

the 70% cases if the application QoS does not degrade to this level using the highest

static frequency setting. We emulate extended application durations by repetitively

running the applications for a fixed number of iterations. We determine the number

of iterations based on a maximum battery temperature limit of 50 ◦C.

Table 4.3 gives a detailed overview of our experimental results where QT(X) cor-

responds to the proposed QoS tuning technique at the target QoS level of X%. All the

values except for the QoS degradation and the time spent in throttling are normalized
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Figure 4·3: Normalized duration of time spent above a QoS level by
the proposed QoS tuning policy for different target QoS level. “QTX%”
represents the proposed QoS tuning policy with X% QoS goal. A
data point in the figure corresponds to (Time spent above a QoS with
QT)/(Time spent above a QoS with (DTMcpu+ondemand).

to the highest static frequency setting. We evaluate the phases of the execution with-

out throttling (indicated by “before throttling” in Table 4.3) separately to examine

the controller’s ability to meet QoS goals without the interference of the throttling

policy. Overall, our controller is able to effectively meet the given QoS targets with

less than 0.06 average deviation. In most cases, average QoS of the overall execution

is lower than the “before throttling” phase due to the performance impact of the

throttling. However, bodytrack and h264 applications are able to sustain the perfor-

mance close to 80% QoS level throughout the whole execution as little or no thermal

throttling is incurred at that level for these two applications. The highest QoS degra-

dation is observed for the LU application, which spends 45% of time in throttling even

in the lowest QoS target of 70%. This degradation is due to the power hungry nature

of this CPU intensive computing kernel that quickly reaches the CPU thermal limits.

For all benchmarks, the baseline ondemand policy continuously seeks to convert the

thermal headroom into performance by scaling the frequency to high levels. This

incurs the highest QoS degradation due to the increased percentage of time spent in

throttling. The QoS tuning policy with 90% target level achieves 38.6% reduction in

throttling duration on average and consistently provides lower QoS degradation for
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all benchmarks. The QoS tuning also provides up to 14% and 7% reductions in power

and energy, respectively.

Figure 4·3 presents the improvements in performance sustainability for our CPU

applications. The figure shows the duration of time spent above a QoS level with

the proposed QoS tuning (QT) policy as normalized to the baseline. The proposed

technique provides substantially longer execution time around the given QoS target.

This could be observed in Figure 4·3a,4·3b and 4·3c where the the curves start to rise

significantly above the dashed line (normalized baseline) when approaching the the

given QoS goals. For the h264, bodytrack and sjeng applcations, an average of 37%

and 26.7% longer sustainability is achieved for the 90% and 80% QoS levels, respec-

tively. Improvement by the QoS tuning on the bodytrack application for the 80% QoS

level is lower (11%) as the QoS drops to 80% range for only a short duration of time

with the baseline policy. The LU application, as shown in Figure 4·3d, provides the

peak improvements in sustainability with 74% longer duration the 70% QoS target is

sustained. This application has the highest power consumption among our applica-

tions and quickly reaches to thermal limits with the baseline setting. Therefore, using

higher frequency settings results in higher QoS degradation for this application. In

fact, the proposed policy is unable to sustain the QoS around the target range for the

higher 90% and 80% target levels and QoS distribution shifts towards a lower range.

Fine-grained QoS Control with DVFS scheduler: In addition to providing fine-

grained QoS control, the DVFS state scheduler also aims to achieve the maximum

spatial distribution of the higher frequency states to minimize thermal impact. Figure

4·4 shows the effect of such distributed scheme on the temperature trace of the h264

application. Undistributed scheme simply switches from low frequency state to high

frequency state only once during the control period. The distributed policy applies

finer granularity switching with maximum possible low frequency periods between
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Figure 4·4: Temperature traces for two DVFS scheduling schemes.
Undistributed scheme switches from lower to higher frequency only once
during the control interval (1 sec). Distributed scheme gains more
thermal headroom by applying fine-grained DVFS and scheduling high
states farthest possible from each other. The duty-cycle is 33% high.

the high frequency states. Both policies provide the same average frequency. As

annotated by the two arrows in Figure 4·4, the distributed policy allows for longer

execution without reaching to the thermal limit.

Performance Sustainability Under Skin Temperature Constraints: We fur-

ther investigate the applicability of our motivation and QoS tuning technique under

skin temperature constraints for extending the durations of target FPS levels. Figure

4·5 shows the cumulative distribution of the QoS for both applications during a 15

minutes of continuous execution. 100% QoS corresponds to 40 FPS for the Aquarium

application and 60 FPS for the Pearl Boy application. A data point corresponds to

the fraction of the overall execution time spent above the corresponding QoS level.

For the Pearl Boy application, QoS tuning with 75% target level improves the sus-

tainability by 9%, from 36% to 40% of the execution time spent above the target. We

do not show the 90% case as the baseline policy provides a QoS range below 88%.

Figure 4·5a shows the cumulative QoS distribution for the Aquarium application and

the dashed line corresponds to the 30 FPS limit which is pointed by prior research

to be the lowest frame rate in the user tolerable range (Pathania et al., 2014)(Zhu

et al., 2015b). The QoS tuning policy with 75% target (30 FPS) increases the sus-
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Figure 4·5: Cumulative QoS distribution for the two WebGL graphics
applications. Dashed line in the left figure shows the 30FPS limit. The
baseline policy corresponds to ondemand+DTMskin.

tainability of this QoS level from 40% of the execution time to 62%, providing 55%

longer duration that the user can be provided with an acceptable FPS level.

4.2 Enabling Efficient QoS-Temperature Tradeoffs

on Heterogeneous CPUs

Single-ISA heterogeneous multi-core processors (Kumar et al., 2004) (e.g., ARM

big.LITTLE (ARM, 2013)) have been commonly adopted in recent mobile SoCs.

Such designs offer large dynamic power and performance ranges, and achieve sig-

nificant energy savings in mobile applications with widely varying performance de-

mands (Pathania et al., 2015; Seo et al., 2015; Zhu and Reddi, 2013). While running

computationally demanding applications, current power management and scheduling

techniques for big.LITTLE greedily maximize quality-of-service (QoS) within ther-

mal constraints using power-hungry cores, leading to severe QoS loss over time. To

provide mobile users with sustainable QoS over extended durations, we present QS-

cale, a framework to minimize heat generation while precisely delivering desired QoS

levels. Section 4.2.1 describes the details of QScale design and Section 4.2.2 provides

an evaluation of our results obtained through a real-life implementation of QScale.
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Figure 4·6: An overview of the proposed framework.

4.2.1 Proposed QScale Framework

This section describes QScale, a novel thermally-efficient QoS management frame-

work for heterogeneous mobile platforms. Figure 4·6 presents a high level flow of our

framework. During the offline phase, we use a set of CPU/GPU microbenchmarks

to identify the thermal coupling between the big cores and the GPU, and derive

lightweight heuristics for runtime thermally-efficient core allocation. We also identify

the threads of an application that are critical to user-experience during the offline

phase. QScale’s runtime component monitors the application’s CPU and GPU usage

and leverages the offline-generated heuristics to identify the most thermally-efficient

big cores for executing the QoS-critical threads of an application. The runtime policy

also performs closed-loop DVFS control to precisely meet the desired QoS.

Thermal Coupling Characterization and Awareness

GPU-CPU Thermal Coupling: First, we demonstrate the thermal coupling effect
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Figure 4·7: GPU thermal
coupling in Exynos 5422.

between the GPU and the big cores by running our GPU

microbenchmark to stress GPU with as much isolation

from the CPU as possible. In this experiment, the GPU

operates at peak utilization and at the highest frequency

for 1 minute. Figure 4·7 shows the resulting temper-

ature increase (from an initially cold system) and the

maximum temperatures of the GPU and CPU cores. As
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the GPU temperature increases from 46◦C to 71◦C by 25◦C, we measure significant

heating on all idle big cores. Core0 suffers the most from thermal coupling and its

temperature increases by 23◦C. Cores heat up at different rates due to their different

locations on chip and varying proximities to the GPU.

Need for Coupling-aware Core Allocation: Next, we demonstrate that the

impact of GPU-CPU thermal coupling is application-dependent. Figure 4·8 shows the

temperature profiles of two real-life applications with distinct CPU and GPU usage

when the two highest utilization threads are pinned to two different set of big cores6

({0, 3} and {2, 3}). We do not show the other allocation cases for clarity. Throttling

is disabled to avoid interference with measurements. {0, 3} allocation results in the

quickest increase in temperature among all possible allocation scenarios for aquarium,

while the same allocation achieves the lowest temperature for bodytrack. {2, 3} results

in the highest temperature for bodytrack, while achieving a lower temperature than

{0, 3} for aquarium. We observe that Core0 provides thermally-efficient operation

when the GPU is ‘cool’, but its temperature can quickly elevate otherwise. Note

that both allocations achieve the same QoS. We propose an offline characterization

step to capture this interplay between the thermal-efficiency of CPU cores and the

GPU-CPU thermal coupling.

Criticality-Driven Scheduling for big.LITTLE

We propose to guide scheduling decisions on big.LITTLE by identifying the threads

that are critical to user-experience, as opposed to leveraging the coarse-grained uti-

lization metrics used in current schedulers (Chung, 2012). Our novel observation

behind this approach is that the overall QoS of mobile applications is dominated by

a relatively few number of QoS-critical threads (compared to number of available

6Core0 to Core3 correspond to cpu4 to cpu7 under the /sys/devices/system/cpu/ file path within
the Linux file system on the Odroid-XU3 platform.
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Figure 4·8: Power breakdown (left), temperature (middle) and QoS
(right) for aquarium and bodytrack under different core assignments
({0,3} and {2,3})

cores). This observation is in line with the recent work (Gao et al., 2015; Seo et al.,

2015), which has identified that majority of mobile applications do not benefit from

increased number of cores. We identify the QoS-critical threads of an application via a

simple offline characterization process. Our approach is to prevent the big cores from

quickly exhausting the thermal headroom by reserving them only for QoS-critical

threads, which require higher performance. We use the low-power little cores at the

highest frequency (1.4GHz) for other non-critical threads.

Offline Characterization: The aim of this offline characterization step is to identify

the QoS-critical threads of an application that provide the highest QoS gains when

allocated on a big core. We perform this characterization on each of our 6 applications.

First, we allocate all the application threads to little cluster. We increment the

number of application threads allocated to the big cluster by one thread at a time,
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and for each case, we record the average QoS and big cluster utilization. We run every

scheduling configuration for 30 seconds. Figure 4·9 shows the QoS scaling and Figure

4·10 shows the increase in big cluster utilization recorded during this characterization

step. This offline characterization reveals that QoS is dictated by a small number of

critical threads for most applications. For instance, moving a single critical thread to

the big cluster achieves close to peak QoS for the Edge of Tomorrow, Real Racing, Rock

Player and Rain applications. A more balanced criticality is observed for bodytrack

from the PARSEC suite (Bienia et al., 2008), for which aggressively moving threads

to big cluster for performance leads to QoS degradation. For bodytrack, despite its

low CPU utilization, assigning the initial helper thread (first thread) to big cluster

along with 4 worker threads significantly improves performance. To explore whether

thread criticality changes upon different application inputs or at different frequencies,

we perform the same characterization at high (1.8GHz) and low (1.2GHz) frequencies,

run the gaming applications with different set of recorded GUI interactions and play

Rock Player with different inputs (HD video files). Our results have shown that QoS

is still dictated by the same critical threads. Overall, the number of critical threads

per app are identified as 5 for bodytrack, 2 for aquarium and rain and, 1 for the others.

The output of the offline characterization process, which is communicated to the

runtime management, is a set of <Application, Thread Name, ThreadId Offset,

Average CPU Utilization> tuples. ThreadId Offset corresponds to the offset from

the ID of the first thread launched by the parent process, and is used when thread

names conflict. Similarly, in case the offsets change during application launch, we

record the per-thread CPU usage as another proxy for uniquely identifying the QoS-

critical threads.

While our approach requires offline thread profiling for every application, we ar-

gue that such approach is profitable specifically for mobile applications for various
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Figure 4·9: QoS scaling achieved by moving individual application
threads from the little to the big cluster.

reasons: (1) Users will likely run the same application many times in the device life-

cycle; (2) such offline profiling of applications can be automatically performed on a

device without user interference (i.e., while device is left in charging) using Android

record/replay tools (Gomez et al., 2013; Hu et al., 2015) as we have done in this work

using RERAN (Gomez et al., 2013).

Online QoS Control Policy

Overview: The goal of QScale’s runtime policy is to deliver desired QoS levels while

minimizing temperature by coordinating thermally-efficient scheduling with DVFS.

It monitors the GPU power dissipation to select the most thermally-efficient set of

big cores for executing the QoS-critical threads of an application. The policy also

performs control-theoretic DVFS to precisely meet QoS targets. Target QoS can be
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Figure 4·10: Increase in big cluster usage as individual application
threads are moved from the little to the big cluster.

dynamically adjusted upon user request, autonomously set by the system-level policies

(e.g., based on battery level or thermal status), or statically set to minimum levels

based on the limitations of user perception (Endo et al., 1996; Zhu et al., 2015b).

The top-level runtime control algorithm of QScale initially assigns the threads to

the little cluster and, at every second, invokes our mapping policy to partition the

application threads among the big and little clusters in a thermally-efficient manner.

DVFS level for the next control interval is calculated by the closed-loop controller

(Figure 4·11). The policy avoids thermal violations by clipping the controller output

(e.g., next DVFS state) to a range below the maximum level, which is determined by

the thermal throttling policy.

In case of thread-to-core mappings, if the number of critical threads is less than 4,

there exists opportunity to lower temperature by making thermally-aware mapping.



50

P(z)

System
+

-

C(z)

Controller

e[k] u[k]
QoS

q[k]
QoStarget

Figure 4·11: Feedback-based performance state control.

In this case, we sequentially bind the critical thread with the highest CPU usage to the

next most thermally-efficient core. Otherwise, the policy allocates the critical threads

to the big cluster and uses default Linux load balancer for task mappings within the

cluster. The order of core allocations is determined based on the GPU power.

Performance States in QScale: QScale’s feedback controller uses DVFS

on big cores as a control knob. In addition to DVFS, to bridge the
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performance gap between little and big cores, we imple-

ment 4 migration-based (M) states (Figure 4·12). We col-

lectively refer to DVFS and M-states as performance states.

Migration states perform frequent (every 100ms) switching

between the Little1.4GHz and Big1.2GHz operation at 20%,

40%, 60%, 80% duty-cycles within the control interval. The

number of switchings is maximized to provide the minimum

possible duration of continuous little core operation. This

minimizes user perceived latency. We do not migrate more frequently than every

100ms to avoid migration overhead (Kim et al., 2015; Muthukaruppan et al., 2013).

On the little cluster, only the highest DVFS operation (1.4GHz) is considered as it

provides thermally-safe operation and no lower states are needed to improve QoS

sustainability.

Closed-loop controller design: The closed-loop controller estimates the perfor-

mance state for the next interval that will meet the target QoS. The error term

(e[k]) (Figure 4·11) simply corresponds to the current offset from the target QoS.
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The transfer function of the system is represented as P (z) = QoSmax/z which im-

plies that, depending on the controller output, the QoS for the next control interval

is some fraction of the maximum QoS. The global transfer function of the control

system is G(z) = C(z)P (z)
1+C(z)P (z)

which, we enforce to be 1−p
z−p . We substitute the controller

function C(z) as z(1−p)
Qmax(z−1) . Applying inverse z-transform on C(z), we compute the

discrete-time controller function, which quantifies the correspondence between the

error term and the controller output (i.e., the next performance state). The result

is the proportional integral (PI) controller representation shown in Equation 4.10.

The pole (p) of global transfer function should be in range [0, 1) to ensure stability

and avoid oscillatory behaviour (Hellerstein et al., 2004). The value of p also allows

to tradeoff robustness for responsiveness (Hellerstein et al., 2004) and smaller values

increase the controller’s response to workload variations. We manually tune the value

of p to be 0.4 on our system. The controller ensures convergence to target QoS as

the steady state gain equals 1 (G(z = 1) = 1).

u[k] = u[k − 1] +
e[k](1− p)
Qmax

(4.10)

4.2.2 Evaluation

This section presents our experimental testbed, data monitoring/collection method-

ology and application set along with the implementation details of QScale. We also

provide a comprehensive evaluation of QScale through experiments on a state-of-the-

art big.LITTLE development platform.

Implementation and Hardware Setup

Experimental Platform: All of our measurements and evaluations are based on

real-life experiments on a contemporary mobile system. We use an Odroid-XU3

mobile development board that comprises of the Samsung Exynos 5422 SoC (which is
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Table 4.4: Summary of applications and QoS metrics.

Application Category QoS Metric

Bodytrack Computer Vision Heartbeats/sec

Real Racing Gaming FPS

Edge of Tomorrow Gaming FPS

Aquarium Graphics/WebGL FPS

Rain Graphics/WebGL FPS

Rock Player Video Playback FPS

included in the Samsung Galaxy S5 smartphone). The board runs Android 4.4 KitKat

as the OS. The Exynos 5422 SoC implements a big.LITTLE heterogeneous CPU

architecture (ARM, 2013) with quad-core big (A15) and little (A7) CPU clusters.

The A15 is a high performance/power multi-issue out-of-order processor while A7 is a

low performance/power core with simple 8-stage in-order pipeline (ARM, 2013). The

A15 core supports 9 frequency levels from 1.2 GHz to 2 GHz. The A7 core operates

on 5 frequency levels between 1 GHz and 1.4 GHz. The frequency scaling decisions

occur at a cluster-level as the cores within a cluster share the same voltage/frequency

domain. The Exynos 5422 SoC also integrates Mali-T628 GPU, which supports 6

frequency levels ranging from 177 MHz to 543 MHz. A default mechanism scales the

GPU frequency based on utilization.

Measurement Methodology: The board is equipped with a Texas Instruments

INA231 power monitoring unit and allows measuring power consumptions of the A15

and A7 clusters, the GPU, and the memory individually. The platform provides

temperature sensors for each of the 4 big cores as well as for the GPU. We measure

FPS by querying the logs generated by the SurfaceFlinger Android system service.

Applications: Table 4.4 provides a list of applications that we use in

our experiments. We run the bodytrack computer vision application from

the PARSEC suite (Bienia et al., 2008) where the frame-rate (or heartbeat-

s/sec) is dynamically monitored by instrumenting the application with the
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Figure 4·13: Number of
threads.

Heartbeats framework (Hoffmann et al., 2010). Two gam-

ing applications, Edge of Tomorrow and Real Racing, are

chosen as representatives of modern gaming applications.

We use Rock Player video player application to display

a 1 minute HD video and loop the video to experiment

with longer durations. We use a timing-based record/re-

play tool, RERAN (Gomez et al., 2013), to automate the

execution by injecting a pre-recorded set of GUI events.

Rain (Sheepeuh, 2018) and Aquarium (Aquarium, 2018) are web-based online ani-

mations that we execute within the Chrome web browser. All of our applications are

multi-threaded. Figure 4·13 shows the large number of software threads in mobile

applications. Number of threads in bodytrack is configured to 8, which equals to the

total number of CPU cores.

In addition, we write two custom microbenchmark applications for use during the

offline thermal coupling characterization process. As a GPU microbenchmark, we

write an OpenCL program that repeatedly offloads a matrix multiplication kernel to

GPU. CPU portion of this microbenchmark is lightweight (<1.5% CPU utilization)

and is always pinned to a low-power little core. CPU microbenchmark continuously

performs floating-point multiplications.

Runtime Management: Our platform uses an external fan for cooling. As fans are

not available in commercial devices, we disable the fan control and implement a base-

line reactive DVFS throttling policy. This policy reactively increments/decrements

the maximum DVFS state of big cores every second if the maximum temperature is

lower/higher than 80◦C. By modifying the maximum DVFS level, the throttling pol-

icy forces the CPU DVFS governors to use lower frequencies without disabling their

operation. If a thermal emergency still exists at the lowest big core frequency, the
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workload is migrated to little cores using the sched setaffinity interface in the Linux

scheduler. Baseline CPU DVFS policy is the Interactive governor (Brodowski, 2012),

which is default in most Android devices. This governor scales the CPU frequency to

the maximum if the utilization is higher than a threshold. Once scaled to the highest,

CPU frequency is not scaled down for at least 20ms to maximize responsiveness. The

baseline HMP scheduler (Chung, 2012) determines thread-to-core mappings. HMP

migrates an active task to a big core if its weighted average CPU load exceeds an

up threshold. Migration to little cores occurs similarly when the load is less than a

down threshold. QScale operates every second and uses cpufreq and sched setaffinity

interfaces to control the frequency and the thread mappings for an application.

Results and Discussions

This section evaluates QScale’s effectiveness for maximizing durations of target QoS

levels. In addition to the default Interactive governor (Brodowski, 2012) and HMP

scheduler (Chung, 2012) pair, we also compare QScale to a DVFS-only policy. DVFS-

only policy performs closed-loop DVFS to meet target QoS and uses the default HMP

scheduling framework as opposed to the our thermally-efficient thread mapping.

Evaluation methodology: We evaluate policies under 3 target QoS levels for each

application, corresponding to high, medium and low performance, determined based

on how much QoS degradation is observed at the default management setting. For

instance, we omit the 70% target QoS case if throttling does not incur degradation

below 70% of the maximum QoS when using the default management. We run each

application up to 13 minutes. This duration provides long enough execution to cause

thermal throttling in all QoS levels and allows us to determine the exact sustainable

duration before the thermal headroom is fully exhausted. For QScale and DVFS-only

policies, sustained QoS duration is the same as the overall duration before reaching

thermal threshold where policies are able to maintain target QoS levels. For the
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Figure 4·14: Average and standard deviation of QoS when using QS-
cale under different target QoS levels.

default management, we report the time QoS was above each target level throughout

the execution. We measured the maximum temperature as 59◦C when idle. To

achieve consistent temperature measurements, before each experiment, we cool the

system below to 59◦C using the fan and leave the platform idle for 15 minutes in

order for temperature to stabilize.

Meeting QoS targets: Figure 4·14 demonstrates QScale’s ability to meet the target

QoS levels for each application. The figure plots average QoS and standard deviation

for different QoS targets. While QScale meets the target QoS levels with only 3.8%

deviation on average, we observe higher variation in specific applications. Gaming

workloads (Edge of Tomorrow, Real Racing) and video player (Rock Player) incur

higher deviation (6.6% in the worst case) as such applications have high dynamism

due to scene changes and respective sudden variation in the processing requirements.

Extending sustainable QoS with QScale: Figure 4·15 demonstrates the sus-

tained QoS durations. Sustained QoS durations increase as we lower the QoS require-

ments (left to right). This is intuitive as DVFS-only and QScale policies can lower

the frequency and operate for longer durations without causing thermal throttling.

The default policy also provides longer durations above the target QoS levels as it
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Figure 4·15: Sustained QoS durations with default management (In-
teractive Governor + HMP scheduler), DVFS-only and QScale policies
under different QoS targets.

takes longer time for QoS to degrade to lower levels. QScale consistently provides the

highest durations compared to both default management and DVFS-only policy.

For aquarium, we observe the shortest sustained durations. For instance, even

using QScale at 60% target QoS, we are able to sustain this level only for 200

seconds. This application has the highest power consumption (1.18W CPU and

1.2W GPU average power at 60% QoS) and quickly exhausts the thermal head-

room, leading to aggressive thermal throttling and QoS loss. bodytrack provides

higher gains in sustained durations for the higher two QoS targets. For in-

stance, while the default management and the DVFS-only policies cannot sustain

100% and 90% QoS levels for more than 15 and 130 seconds respectively, QScale
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Figure 4·16: QoS/power
scaling for bodytrack.

delivers these QoS targets for 125 and 330 seconds

(more than 8x and 2.5x longer). To illustrate the

insight behind this result, in Figure 4·16, we show

QoS and power at different big cluster DVFS levels

when HMP scheduler or criticality-aware mapping is

enabled. By moving the threads that bring the most

QoS gains onto big cluster, QScale delivers the max-

imum QoS levels achieved using the HMP scheduler
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at much lower big core frequencies. For the two gaming applications, Edge of To-

morrow and Real Racing, QoS is dominated by a single thread with a relatively high

CPU usage as shown in Figure 4·9 and Figure 4·10. QScale and HMP scheduler only

schedules this thread to the big cluster, which is indicated by the similar usage of big

cluster (22%-25% for both games). Therefore, the benefits of QScale are primarily

due to thermally-efficient selection of core for execution. QScale achieves distinctively

higher improvements across all QoS configurations for Rain and Rock Player. In these

cases, QScale leverages the thread criticality information generated via offline thread

characterization and reserves the big cores only for the QoS-critical threads, thus pre-

venting the power-hungry big cores from quickly exhausting the thermal headroom.
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Figure 4·17: Adapting to dynamic QoS targets with QScale while
running the Edge of Tomorrow gaming application.

Adapting to dynamic QoS targets: QoS requirements may be altered during the

application execution due to various reasons such as changes in user preferences, low

battery, or low thermal headroom. We demonstrate QScale’s ability to dynamically

respond to changes in QoS requirements by modulating the target QoS level during

the execution of the Edge of Tomorrow game. Figure 4·17 presents the QoS trace

from this experiment and shows that QScale closely tracks target QoS levels.
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4.3 Autonomous QoS Management for Mobile Applications

While the runtime techniques presented in Sections 4.1 and 4.2 can provide thermally-

efficient QoS management, they cannot autonomously manage the QoS decisions. In

this section, we address the problem of autonomously guiding QoS decisions to im-

prove sustained performance under thermal constraints. We face fundamental chal-

lenges when deploying such a scheme for managing QoS-temperature tradeoffs in

mobile platforms: how should one determine when to apply such a tradeoff and the

appropriate amount of QoS scaling? While completely neglecting QoS tradeoffs can

result in large throttling-induced QoS degradation over a long term, prematurely en-

forcing a tradeoff can result in undesirable performance losses on applications where

throttling would have little/no effect or where the maximum QoS is demanded by the

users. Ideally, the policies should tradeoff QoS only on cases where large QoS degra-

dations are expected over the extended use. In addition, the scaling of QoS should

still occur within a user tolerable range in order not to deem the application unus-

able. Currently, there exists no mechanism to address these objectives all together.

Existing methods incur practical limitations as they rely solely on users to manage

QoS (Sahin and Coskun, 2016b; Sahin et al., 2015) or seek to achieve sustained per-

formance with low-power modes in a QoS- and application-agnostic manner, which

can result in unacceptably low QoS (e.g., Android’s Sustained Performance API).

This section describes our proposed Maestro framework for achieving autonomous

and application-aware QoS tradeofss. Maestro proactively trades off QoS for the

applications that are prone to large thermally-induced QoS loss and leverages our

QScale policy to enforce the target QoS decisions. In the following two sections, we

describe the details of our Maestro framework and present a real-life evaluation.
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Figure 4·18: Overview of Maestro.

4.3.1 Maestro Framework

Our Insight: Maestro builds upon a novel insight on the relation between the com-

putation characteristics of mobile applications (i.e., bursty vs. throughput-oriented)

and the QoS impact of thermal throttling. While throughput-oriented mobile appli-

cations (e.g., gaming, video processing) may suffer from long-term throttling due to

continuous computations and require QoS tradeoffs to sustain an acceptable through-

put (e.g., frames-per-second, FPS), some applications only generate short bursts of

computations in response to user interactions. Web browsing and many interactive

Android applications (e.g., news reading, social networking, messaging, document

reading) are examples of such bursty applications, where latency of the computations

is the main factor that impacts the user perceived QoS (Endo et al., 1996). Despite

high power densities and increased temperatures, such applications can tolerate in-

creased temperatures due to relatively short duration of activities and idle periods

between user interactions. Maestro distinguishes throttling-susceptible continuous

computations from latency-sensitive bursty tasks, and manages QoS accordingly.
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Overview: Figure 4·18 gives an overview of our proposed technique that is

comprised of 3 main components. The online detection policy tracks the statistical

features of an application’s power profile at runtime to infer when large thermally-

induced QoS degradations on continuous computations are likely to occur. Upon

detecting such a computation phase, Meastro switches to using QScale for sustain-

able performance instead of the default Android management. Depending on how

much the application is likely to suffer from throttling, Meastro scales the target

QoS accordingly and provides as an input to QScale. QScale (Section 4.2) uses the

offline generated criticality information on various applications and monitors CPU-

GPU thermal coupling dynamics to determine how to map threads on a heterogeneous

CPU with the aim of minimizing temperature. Closed-loop DVFS control within QS-

cale ensures dynamic adaptation to changes in workload as well as QoS requirements.

Proactive Detection of Throttling-Induced QoS Loss

The goal of our online detection policy is to identify long and continuous computations

that are likely to cause severe QoS degradations due to throttling. Such detection

allows us to take proactive actions before the system heats up aggressively over time.

We devise a simple yet effective online policy (Figure 4·19) that infers the ther-

mal behavior of a mobile application based on inherently distinct patterns in the

power profiles of bursty and throughput-oriented computation phases. We use power

due to its direct relevance to temperature. Due to continuous computations in the

sliding window
N

QScale
Default

Management

Power Trace

Mean (μ)
StdDev (σ)

μ - α*σ < Thr2

μ - α*σ > Thr1 

Figure 4·19: Sliding window based online detection policy.
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throughput-oriented periods, their power will have a relatively more stable profile

as compared to bursty compute phases that exhibit intermittent power profile due

to idle periods in between the computations (see example in Figure 2·4). We track

mean (µ) and standard deviation (σ) using a sliding window of recent power samples

(big+LITTLE+GPU power) to capture characteristics of the power profile. As we

seek to identify the phases with stably high power that are likely to suffer from QoS

loss, we combine mean and deviation into an activation function (fact) as µ−α∗σ (α

is a constant scaling factor) to quantifiably identify such phases. Our policy checks

whether the value of fact is greater than a certain threshold and, if true, actives QS-

cale for sustained performance. Disabling QScale and resorting to default Android

policy for high QoS occurs similarly by comparing the value of fact to a lower thresh-

old. Higher deviation in the power profile of bursty phases reduces the value of fact

and allows to prevent false positives (i.e., activating QScale during bursty periods).

By giving a different weight to mean and deviation via the scaling factor (α), we

are able to tune our policy to distinguish bursty computations while accounting for

potential variations that can occur during continuous computations (e.g., differences

in the subsequent frames being processed).

Tuning Policy Parameters: Since the behavior of the proposed policy would

depend on its parameters (i.e, N, Thr1, Thr2, α), we describe our intuition behind

selection of these parameters to make effective use of our technique. The length of

the sliding windows needs to be sufficiently long to capture the idleness following

the compute bursts. This is necessary to distinguish continuous computations from

intermittent activity bursts. Thus, we use 10 seconds window size as vast majority

of bursty activities finish within 10 seconds (Zhang et al., 2013; Zhu et al., 2015a).

While the window size can be conservatively increased, that will add unnecessary

delay into the detection. We experiment at different DVFS levels to determine power
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levels that cannot be sustained over extended durations (i.e., violates 80◦C thermal

limit), and use this level to set Thr1 (i.e., 2 W). Higher mean power values signal

potential future throttling and QoS loss. Once Thr1 and N is set, we use our bursty

workloads to tune the value of α (i.e., 0.8) by giving higher weight to deviation in

fact until the false positive cases are eliminated. We set Thr2 to 1.2 W, which is

sufficiently lower than Thr1 to avoid oscillatory behavior.

Determining QoS Targets

Once Maestro detects a continuous intensive computation, it activates QScale and

supplies a target QoS level to be maintained. Many heuristics can be applied for

making this QoS tradeoff but no golden rule exists as the suitability of a particular

QoS level is subject to preferences of a particular user in terms of the performance

needs (Yan et al., 2016) as well as the duration of application use. In our implemen-

tation, once the QScale is activated to increase sustained durations, we tradeoff QoS

by scaling down from its maximum level in accordance with application’s mean power

level over the sliding window described in the previous section. This mechanism is

illustrated in Figure 4·20. Our intuitive rationale is that, as the power increases,

choosing high QoS settings will quickly exhaust the thermal headroom and bring

limited or no benefit in terms of extended sustained QoS. Thus, a larger QoS trade-

off within a tolerable range is needed for applications with higher power profile. To

determine the ratio in which QoS is scaled down from the 100% when mean power

exceeds the 2 W activation threshold of QScale, we consider the QoS level needed

(i.e., 70%) for ensuring at least 2 minutes of duration without throttling for a typical

possible high power application (i.e., >3.3W by Bodytrack in our example application

set). We simply proportionally scale QoS within the 2W-3.3W range by choosing a

10% lower target QoS rate for every 600 mW as illustrated in Figure 4·20. Aiming

for longer/shorter than 2 minutes minimum target sustained duration translates into
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larger/smaller steps in the tradeoff, approaching/distancing from the undesirable QoS

region illustrated in Figure 4·20. We considered 30 FPS and 24 FPS as the minimum

desirable QoS for 3D graphics and video playing scenarios, respectively.
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Figure 4·20: QoS tradeoff and determining QoS targets for QScale.

While we consider the problem of autonomously managing QoS without requir-

ing user intervention, user feedback can still be integrated with Maestro to provide

user-specific hints. Specifically, if the user requires a higher QoS than provided, the

minimum desirable QoS can be raised. This will shift the target QoS upwards. If the

user provides a hint that current QoS is too high, the maximum QoS parameter can

be lowered which will cause Maestro to choose a lower QoS.

4.3.2 Experimental Setup

This section presents the hardware testbed and applications we use in our experimen-

tal evaluation and describes our data monitoring/collection methodology.

Experimental Platform: All of our measurements and evaluations are based on

real-life experiments on a contemporary mobile hardware. We use an Odroid-XU3

mobile development platform that comprises of the Samsung Exynos 5422 SoC (which

powers Samsung Galaxy S5 smartphone), implementing a big.LITTLE heterogeneous

CPU architecture (ARM, 2013) with quad-core big (A15) and little (A7) CPU clus-

ters. The A15 is a high performance/power multi-issue out-of-order processor and

A7 is a low performance/power core with simple 8-stage in-order pipeline (ARM,

2013). The A15 core supports 9 frequency levels from 1.2 GHz to 2 GHz while the
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Table 4.5: Summary of applications.

Application Description QoS Metric

PDF Viewer Open a PDF, read, zoom in/out figures Latency

Google Maps Search location, move across the map Latency

Caman.js (CamanJS, 2018) Apply different filters on an image Latency

Bodytrack Process image files Heartbeats/sec

Edge of Tomorrow Loading, menu selection and gaming FPS

Aquarium (Aquarium, 2018) Watch online animation FPS

Rain (Sheepeuh, 2018) Watch online animation FPS

Rock Player Open and play a video file FPS

A7 core operates on 5 frequency levels between 1 GHz and 1.4 GHz. All the cores

within a cluster share the same voltage/frequency domain. The Exynos 5422 SoC

also integrates Mali-T628 GPU, which supports 6 frequency levels ranging from 177

MHz to 543 MHz. A built-in mechanism scales the GPU frequency based on utiliza-

tion. The board runs Android 4.4 KitKat as the OS. While we cannot use recent

Android versions due to unavailability of system images for our system, we incorpo-

rate the Sustained Performance API feature of Android 7 for evaluation due to its

direct relevance to our work.

Measurement Methodology: The Odroid-XU3 platform is equipped with on-

board sense resistors and a Texas Instruments INA231 power monitoring unit that

allows for measuring power consumptions of the A15 and A7 clusters, the GPU, and

the memory individually over the I2C bus. Temperatures of each of the 4 big cores

and the GPU can be sampled at a 1◦C resolution through the sysfs entries provided

for on-chip thermal sensors. We collect power and temperature data in 5 ms intervals.

Frames-per-second (FPS) is measured by querying the logs generated by the Surface-

Flinger Android system service. We measure the latency of bursty computations by

the length of time between the rising and falling edge of the burst observable in a

given power profile.
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Applications: We braodly classify mobile applications into two classes as latency-

sensitive bursty (e.g., browsing, interactive applications) and throughput-oriented

workloads (e.g., games, streaming) according to their computation characteristics

(Seo et al., 2015; Zhu et al., 2015a). Our experimental setup covers applications

with both throughput-oriented and latency-sensitive bursty computations. We use

applications that are commonly used in prior work (Tseng et al., 2014; Zhu et al.,

2015b; Pathania et al., 2015). Table 4.5 summarizes these applications along with

brief descriptions of the tasks performed within each application.

Adobe PDF Viewer and Google Maps represent two important classes of mobile

applications, document reading and navigation. Caman.js (CamanJS, 2018) is an

online image editing application that we execute within Chrome web browser. These

latency-sensitive applications generate bursts of CPU loads upon user inputs from

the GUI. For such applications, the latency of a processing event is the main factor

impacting user experience (Endo et al., 1996; Yan et al., 2016) and is chosen as

the QoS metric. While there is not always a strict deadline for processing such

computations, the longer latencies increase user dissatisfaction.

The rest of the applications are dominated by continuous computations. We run

Aquarium (Aquarium, 2018) and Rain (Sheepeuh, 2018) applications within Chrome

browser to play online WebGL animations. Edge of Tomorrow gaming application

is also representative of throughput-oriented mobile workloads. We also use Rock

Player video player application to continuously play a 1-minute HD video and loop

the video to experiment with longer durations. In such applications that generate

a stream of computations, user experience is manifested in event throughput and

commonly measured using FPS (Prakash et al., 2016; Zhu et al., 2015a) as in our

work. The FPS metric captures the number of frames that meet the the frame

processing deadline (i.e., 18 ms at 60 FPS). Finally, we run the bodytrack computer
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vision application from the PARSEC suite (Bienia et al., 2008) where we monitor the

frame-rate (or heartbeats/sec) by instrumenting the application with the Heartbeats

framework (Hoffmann et al., 2010). We configure bodytrack to run with the same

number of threads with the number of CPU cores in our system (i.e., 8 cores). In

order to automate the execution of interactive applications, we use a GUI-based and

timing-sensitive record and replay tool (Gomez et al., 2013).

We also write custom CPU and GPU microbenchmarks for the offline thermal

coupling characterization. Our GPU microbenchmark is an OpenCL program that

repeatedly offloads a matrix multiplication kernel to GPU. Our CPU microbenchmark

continuously performs floating-point multiplications.

During evaluation, we run each throughput-oriented application for a sufficiently

long duration (i.e., 12 min) to eventually cause throttling and quantify the exact

duration of sustained QoS. Bursty applications are run for 60-70 seconds, which is a

typical duration for interactive sessions (Falaki et al., 2010).

Power Management and Throttling: Our platform uses an external fan for

temperature control, which is not a viable solution for commercial devices. Thus,

we implement a thermal throttling policy that reactively increments/decrements the

maximum allowed DVFS state7 of big cores every second if the maximum temperature

is lower/higher than 80◦C. 80◦C is a typical thermal setpoint used in commercial plat-

forms (Prakash et al., 2016; Muller, 2014). By changing the maximum DVFS levels,

this throttling mechanism forces the DVFS policies to use lower frequencies without

disabling their operation. In case a thermal emergency still exists at the lowest big

core frequency, the workload is migrated to little cores using the sched setaffinity

interface in the Linux scheduler.

The default DVFS policy in our platform is the Interactive governor (Brodowski,

7Maximum allowed DVFS state can be altered by modifying the scaling max freq sysfs entry
provided by the cpufreq interface (Brodowski, 2012).
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2012), which is also used in most Android devices. This governor scales the CPU

frequency to the maximum allowed level if the utilization is higher than a thresh-

old. Once scaled to the highest, CPU frequency is not scaled down for at least

20 ms to maximize responsiveness. The baseline heterogeneous multi-processing

(HMP) scheduler (Chung, 2012) migrates an active task to a big core if its weighted

average CPU load exceeds an up threshold. Migration to little cores occurs similarly

when the load is less than a down threshold. We collectively refer to Interactive gov-

ernor and HMP scheduler pair as “default” Android management throughout this

text. Maestro uses cpufreq and sched setaffinity interfaces to control the frequency

and the thread mappings for an application. We bind the policy to a dedicated little

core using the taskset utility.

4.3.3 Evaluation of Maestro

This section provides a detailed real-system evaluation of the proposed Maestro pol-

icy. Our main objective is to assess Maestro’s ability to provide extended durations of

sustained QoS by proactively identifying the throttling-susceptible continuous compu-

tations and autonomously making QoS tradeoffs. We also craft specific experiments

to evaluate the adaptive runtime behavior of Maestro and carefully study any over-

head that could lead to performance degradations to assess Maestro’s suitability as

a runtime management solution. We refer to the built-in Interactive governor and

HMP scheduler pair simply as default Android management throughout this sec-

tion and provide comparisons against Maestro that employs closed-loop DVFS and

criticality-driven scheduling. The runtime policy within Maestro, which performs the

QoS control via DVFS and criticality-driven scheduling, is codenamed and referred

to as QScale.

Evaluation Methodology: This section states the methodology adopted while

conducting the experiments and evaluating the outcomes. We exercise the bursty-
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Application QScale Enabled?

Aquarium 3

Rain 3

Rock Player 3

Edge of Tomorrow 3

Bodytrack 3

Maps 7

Adobe PDF 7

Caman 7

Figure 4·21: Policy selection (left) and QoS targets (right) determined
by Maestro for the applications where Maestro detects a continuous
throttling-prone computation. Policy selection and QoS setting are
based on the methods described in Sections 4.3.1 and 4.3.1, respectively.
Maestro assigns lower QoS targets for the applications that exhibit
high power profile and that are likely to suffer from larger QoS loss.
Maximum QoS is 1 HB/s for Bodytrack and 45, 30, 53 and 55 FPS for
Aquarium, RockPlayer, Rain and Edge of Tomorrow, respectively.

dominated Adobe PDF, Caman and Google Maps applications for 60-70 seconds,

which is the typical length of a user session for many interactive mobile applications

(Falaki et al., 2010). We run each throughput-oriented Aquarium, Rain, Edge of

Tomorrow, Rock Player and Bodytrack applications for 10 minutes. This duration is

sufficiently large for each application to trigger throttling and allows us to quantify

the exact sustained duration before the thermal headroom is fully exhausted. The

sustained duration for Maestro is the duration before thermal throttling starts to

force lower DVFS settings, beyond which QScale can no longer deliver target QoS.

For the default Android management, we simply report the execution time that QoS

was above the target level as the sustained QoS duration. To ensure fidelity during

temperature measurements, we cool the SoC to the initial idle temperature level (i.e.,

59◦C) using an integrated fan mounted on top of the chip package and leave the

platform idle for 12 minutes before each experiment.

Extending Sustained QoS with Maestro: This section evaluates Maestro’s se-

lective QoS tradeoff mechanism as well as quantifying potential improvements in sus-

tained QoS durations achieved on CPU intensive throughput-oriented applications.



69

The table given in Figure 4·21 shows the policy selection of Maestro across differ-

ent applications. Maestro successfully detects the continuous and throttling-prone

computations in Aquarium, Rain, Edge of Tomorrow, Rock Player and Bodytrack ap-

plications and activates QScale in all cases with the target QoS levels shown also in

Figure 4·21. Once activated, QScale maintains the QoS at these target levels during

the sustained duration. Aquarium and Bodytrack are two applications with distinctly

high power consumption (>3.5W) during the throughput-oriented phase and, thus,

are assigned a lower target QoS (i.e., 70% of the maximum). Maestro recognizes the

latency-sensitive bursty computation patterns in Pdf, Caman and Maps applications

and does not interfere with the default Android management, providing high QoS

without sacrificing latency. Such adaptive policy selection capability allows Maestro

to make QoS tradeoffs and sustained performance optimization only when necessary.

Figure 4·22 provides an evaluation of the sustained QoS durations achieved by

using Maestro and default Android management for the QoS targets described in

Figure 4·21. Bodytrack and Aquarium are the cases with the lowest duration where

target QoS levels are met, using both Maestro and baseline. Despite the selection of

a low QoS target by Maestro (i.e., 70% of the maximum) for these two applications,

temperatures still quickly elevate to critical 80◦C level due to high CPU activity and
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Figure 4·22: Sustained durations achieved by Maestro and default
Android management for the QoS targets specified in Figure 4·21.
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power. Target QoS is violated as throttling forces CPU to operate at lower DVFS

levels, shrinking the duration of sustained QoS in these two cases.

Maestro provides 41%, 53% and 54% longer durations where QoS targets are

met for Edge of Tomorrow, Rain and Aquarium applications, respectively. Such an

improvement is achieved by both thermal coupling aware assignment of threads as

well as by proactively identifying the throttling-induced large QoS degradations to

make the necessary QoS-temperature tradeoffs. We achieve distinctly longer exten-

sions in sustained QoS for Rock Player and Bodytrack applications (i.e., 96% and

6.7x, respectively). In these two cases, our criticality-driven scheduling technique

reduces the power on power-hungry big cores by exploiting the heterogeneity across

the threads in terms of their criticality to overall QoS and reserving the big cores only

for the threads that bring the most QoS gains. We detail our discussion on criticality

awareness separately later in this section.

Figure 4·23 illustrates the thermal profiles of applications with Maestro and de-

fault Android management. Maestro achieves lower temperature during the sustained

duration. This extra thermal headroom (as high as 15oC) allows Maestro to sustain

the target QoS before thermal throttling starts to degrade performance. Such extra

thermal headroom is achieved via proactive QoS tradeoff mechanism of Maestro as

well as through the thermally-efficient QoS control provided by QScale.

Adaptive Runtime Behavior of Maestro: Maestro monitors the executing appli-

cations to detect throttling-prone continuous computations and can seamlessly adapt

to changing workload patterns during runtime. Such changes can occur during typical

daily usage scenarios. We evaluate Maestro’s ability to adapt to both inter- and intra-

application changes in the computation patterns. For inter-application adaptation,

we design an experiment where a user session consists of both throughput-oriented

CPU intensive computations as well as durations dominated by bursty computations.
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Figure 4·23: Thermal profiles under Maestro and default Android
management.
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Figure 4·24: Adaptive runtime behavior of Maestro. The user ses-
sion consists of two throughput-oriented applications with heavy con-
tinuous workloads (i.e., Aquarium and Rain) interleaved by various
UI-triggered bursty computations (application launches and image fil-
tering operation in Caman.js). Maestro can succesfully distinguish the
continuous heavy computations in Aquarium and Rain that are prone
to large throttling-induced QoS loss, and selectively activate QScale.
Lower target QoS (i.e., 70% of the max) is selected for the Aquarium
due to its high power profile with the goal of enabling a larger duration
of sustained QoS. Bursty computations have distinguishably larger de-
viation (yellow area on second plot) within the power sampling window
of 10s.

Figure 4·24 illustrates the runtime behavior of Maestro during a session where the

user first launches Aquarium animation on the web browser, followed by bursty image

filtering operations (Caman) and concluded by opening the Rain animation. Aquar-

ium and Rain correspond to applications with throughput-oriented and throttling-

susceptible phases where we expect Maestro to activate QScale for enabling sustained

performance. Based on the statistical properties estimated over the recent history of

power profile, Maestro correctly identifies the continuous CPU-intensive computation

phase in Aquarium and activates QScale with the normalized target QoS level of 0.7
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Figure 4·25: Runtime behavior of Maestro for the RockPlayer video
application. Maestro detects the heavy continuous computation once
the video starts after the initial application launch and the user’s menu
traversals for video selection. Due to reduced CPU load on big cores
with criticality-aware assignment of threads, the QoS degradation is
substantially slower after the throttling starts when using Maestro.

after 30 seconds. After 70 seconds, as the user closes the Aquarium and launches

Caman to perform various image editings online, Maestro switches off QScale and

hands the control over to default Android management. The bursty nature of the

computation with idle periods in between the events is manifested as the large devia-

tion (yellow bars in second plot in Figure 4·24) in the recent history of power samples.

Finally, as the user launches another throttling-susceptible CPU intensive workload

(i.e., Rain), Maestro once again activates QScale but with the 0.8 target QoS level.

Figure 4·25 provides a detailed look into the RockPlayer video player applica-

tion’s runtime profile under Maestro and default Android management. After the

application launch and several UI interactions across the application’s menu options,

the video starts to play and creates a continuously high computation pattern. Mae-

stro detects such pattern and activates QScale after 20 seconds to stabilize the QoS

around a 80% target QoS level. Temperature reduces abruptly and throttling does

not occur until around 320 seconds, providing almost double the sustained duration
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Figure 4·26: QoS, latency and power consumption achieved using
criticality-aware scheduling. Data is normalized to HMP scheduling
case. (a) QoS and average power consumption for various throughput-
oriented applications. (b) Latency and average power consumption for
various computational activities within Caman.js. (c) Latency and av-
erage power consumption for various computational activities within
Adobe PDF Reader. (d) Latency/power for various computational ac-
tivities within Google Maps.

for 80% QoS compared to default Android management. As we explain in detail

in the next part, criticality-aware utilization of power-hungry cores brings substan-

tial power reduction on the big cluster for this application, further enabling longer

sustained durations.

Criticality-aware Scheduling vs. HMP: In this section, we verify that the few

critical threads identified per application (Section 4.2) determine the overall QoS

and evaluate the power savings achievable via the criticality-aware thread assignment

strategy within QScale where the power-hungry cores are restricted for critical threads
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of an application. Figure 4·26a shows the power and average QoS for the throughput

oriented applications when running with the baseline HMP scheduler and criticality-

aware assignment of threads across big/LITTLE clusters. The DVFS policy in both

settings is the Interactive governor. To avoid interference from thermal throttling, we

set the fan to operate at the highest speed for these set of experiments. Criticality-

aware assignment reduces the overall power by 20% for the Rock Player application

by restricting the non-critical threads from operating on power-hungry big cores. For

the case of bodytrack application, criticality-aware assignment of threads achieves 10%

higher QoS than HMP. Thus, QScale is able to achieve the same QoS with HMP at

a lower power by reducing the frequency. For bodytrack, HMP scheduler utilizes the

big cluster for the worker threads that show high CPU load while leaving the initial

main thread on the low-performance LITTLE core, limiting the performance gain.

Maestro achieves higher QoS at a marginal power cost by, along with 4 other worker

threads, moving this critical thread onto big cluster as well. We observe that baseline

HMP and criticality-aware scheduling achieve similar power and QoS for the other

throughput-oriented applications. Both policies perform the same actions as QoS is

dictated by a few threads that also exhibit distinctly high CPU utilization.

Similar to Figure 4·26a, Figures 4·26b,4·26c,4·26d show the power and latency for

different computational activities within Caman, Pdf and Maps applications (e.g.,

swipe, zoom, search etc.), respectively. Criticality-aware scheduling achieves similar

latency with the HMP scheduler for all applications while also achieving the similar

power consumption for Caman and Pdf cases. For the Google Maps application, 30%

lower power consumption is achieved using the criticality-aware assignment of threads

as averaged across all computations. Figure 4·27 plots the power profiles of big and

LITTLE CPU clusters for the Google Maps application and demonstrates the reduced

power on the power-hungry big cores without incurring increased latencies. Start and
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Figure 4·27: CPU power profiles for various computational activities
of Google Maps application showing the similar computational latencies
at lower power with criticality-aware thread mapping.

ending of the computational activities are captured by detecting the transitions from

idle power level as annotated in the figure.

Drawbacks of Temperature-triggered QScale Activation: One naive ap-

proach to dynamically controlling application QoS for sustained performance would

be to switch to a lower QoS level when the critical temperature threshold is reached.

This section evaluates the limitations and drawbacks of relying on such an approach

for detecting the throttling-susceptible QoS degradations (i.e., 1st block in Figure

4·18). We consider a policy that activates QScale when the maximum SoC tempera-

ture limit (80◦C) is reached and switches back to default Android management when

the temperature falls below 60◦C. Such a history-unaware and reactive temperature-

triggered policy would suffer from various limitations. First, as the actions will be

delayed until temperature limit is reached, system will heat up prematurely, which

could have been avoided by tracking the high continuous computation patterns as we

perform with Maestro. Second, volatile thermal violations can occur during bursty

computations for short durations. Such volatile thermal peaks do not lead to large
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Figure 4·28: Runtime behavior of Adobe PDF reader application
while operating under Maestro and Temperature-triggered sustained
performance control policy. Temperature-triggered policy activates QS-
cale when a critical thermal threshold is hit, and reverts back to default
Android management when temperature is below 60◦C.

QoS loss as in continuous computation cases. A purely reactive temperature-triggered

policy would incur frequent false alarms and cause premature switching to sustainable

performance settings (i.e., activating QScale). We illustrate such a case for the Adobe

PDF Reader application in Figure 4·28. While Maestro can detect the bursty com-

pute behavior and allows to maximize QoS with the default Android management,

temperature-triggered (i.e., T-triggered) policy switches QScale on (bottom plot) at

various points during runtime where temperature exceeds the maximum threshold

(top plot). As annotated by arrows on the power profile (middle plot), falsely trig-

gered switches to lower QoS settings leads to undesirable delays in the computation,

impairing QoS by means of increased latency.

Android’s Sustained Performance Mode: As an example sustained perfor-

mance management scheme in real world, we study Android’s sustained performance

mode and demonstrate practical limitations due to its lack of application and QoS
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Figure 4·29: A comparison of the maximum attainable QoS for our
throughput-oriented applications to QoS levels obtained when oper-
ating under Android’s sustained performance configuration. Selecting
lower power operating modes for CPU and GPU to improve sustained
performance with Android sustained performance mode configuration,
without any QoS consideration, leads to substantially low QoS for such
applications with high computation demand.

consideration. Our examination on Android’s sustained performance API on a ref-

erence device (i.e., Nexus 6) indicates that the applications that request this mode

of operation are forced to execute on thermally-safe LITTLE cores with the maxi-

mum GPU frequency reduced to a medium level. While sustained durations can be

extended with the reduced CPU and GPU power, such application and QoS oblivi-

ous scheme can provide drastically low QoS on applications where LITTLE cores are

unable to provide the necessary computational capability. We illustrate this case in

Figure 4·29. We measure the maximum QoS attainable by QScale and by the ref-

erence implementation of Android’s sustained performance configuration. The QoS

levels in Android’s sustained performance mode are at least 50% lower than the maxi-

mum QoS achievable for an application. For the frame-based applications, frame-rate

(FPS) is consistently lower than 30 FPS, reaching as low as 10 FPS, which would

likely deem application unusable from a user experience perspective. Thus, we argue

the necessity of QoS consideration for sustained performance management policies.
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Figure 4·30: Real system measurements to identify whether Maestro
policy introduces an overhead that can cause performance degradation
on (a) latency-sensitive (b) throughput-oriented applications.

Overhead Evaluation: In this part, we evaluate any performance overhead that

could have been caused by Maestro’s continuous operation in the background. We

select applications from diverse sources to experiment using applications with varying

CPU demand and parallelism requirements. We incorporate a set of CPU-intensive

and throughput-oriented applications as well as selected websites with diverse com-

putational needs from the BBench (Gutierrez et al., 2011) browsing benchmark suite.

We use the BBench suite as it provides precise timing of the webpage loading latency,

which is the main performance metric. As illustrated in Figure 4·30, the performance

of the applications are not effected by the presence of Maestro. Overall CPU utiliza-

tion of a single LITTLE core, which runs Maestro, is only 2.92% (0.82% in usr, 2.10%

in sys mode). Our circular buffer implementation for sliding window also provides

good locality of reference to minimize the energy and performance cost of memory

accesses. Two core routines of Maestro which update the sliding window and esti-

mate the value of the activation function based on mean/deviation (Section IV.A)

take 1.86 and 476.7 µsecs (<0.05% of the 1 sec invocation period), respectively. We

measure execution time and CPU utilization at the lowest 1.0 Ghz frequency of a

low-performance LITTLE core to illustrate that even the worst case execution over-
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head of Maestro is minimal. The overall storage overhead of 2000 power samples in

our 10 sec sliding window would be 2000*4 bytes (float C type) which occupies only

0.3% of the cache space (2MB) in our platform.



Chapter 5

Software Frameworks for Real-life Studies

Characterizing real-world mobile applications can offer unique insights to optimize

current system software. However, studying mobile applications presents major chal-

lenges due to their interactive nature that relies heavily on external inputs such as

UI events. Unfortunately, due to the challenge of reproducing complex real-life ex-

ecution of applications, many approaches and prior mobile benchmark suites study

mobile applications under limited and unrealistic usage scenarios (e.g., only applica-

tion launch) (Huang et al., 2014; Pandiyan et al., 2013). In fact, in much of the prior

work studying on mobile applications and systems, it often unspecified how such ap-

plications are exercised which hinders the reproducibility and comparison of scientific

outcomes. Therefore, we argue that the availability of practical approaches that can

enable repeatable executions of mobile applications is crucial for systematic analysis

and understanding of contemporary mobile workloads. While the UI and network

events are common sources of input that dictate the execution of an application,

an increasing number of malicious applications alter their execution also depending

on the environment they are executed on (e.g., emulated analysis sandbox). Such

malware hides their malicious behavior from malware analysis systems for evasion.

This thesis proposes software frameworks to facilitate analysis of real-world mo-

bile applications for efficiency and security. Our first contribution is a record and

replay framework, RandR (Section 5.1), to capture and reproduce common sources

of non-deterministic inputs such as UI, network events and random numbers. RandR

81
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provides record replay capabilities in a practical manner by alleviating the need for

any source-level application/OS instrumentation or any privileged modes of oper-

ation. Our second contribution tackles the malicious non-determinism in Android

applications. We propose a scalable analysis system (Section 5.2) that can automat-

ically identify the heuristics that a malware can leverage to fingerprint underlying

malware analysis sandboxes.

5.1 Practical Record/Replay with RandR

While there exist various record/replay tools for desktop and server platforms based

on low-level events (e.g., system calls (O’Callahan et al., 2017) or CPU instructions

(Patil et al., 2010; Xu et al., 2003)), they are not readily useful for mobile applications.

Beyond the need for capturing and replaying multiple non-deterministic factors such

UI and network events, accurate record/replay of Android applications also require

minimal overhead to preserve timing of events. For instance, the timing between

the UI events is crucial to determine the type of the user interaction performed

(e.g., (long) click, swipe etc.). While other approaches are specifically geared towards

record and replay of mobile applications, several limitations impair their accuracy and

practicality. First, most of the previous works (Gomez et al., 2013; Halpern et al.,

2015; Hu et al., 2015; Qin et al., 2016) rely on coordinates-based replay which restricts

replay capabilities only to one specific device. Moreover, to keep the overhead low,

some approaches focus purely on UI events (Gomez et al., 2013; Halpern et al., 2015;

Fazzini et al., 2017). Such approaches cannot handle execution variations that arise

due to other common factors such as network or random number inputs. Second, much

of the prior approaches incur practical drawbacks as they require access to proprietary

source code (Espresso, 2019; Fazzini et al., 2017) or require intrusive modifications

to underlying OS or virtual machine (Hu et al., 2015). Most real world Android
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applications are closed-source. Modifying the OS, on the other hand, requires open-

source OS and is generally difficult to implement and maintain due to continuously

evolving Android software. In addition, due to manufacturer imposed restrictions,

it is often impossible to gain the root privileges needed to install a new OS on real

world commercial devices.

This thesis proposes the RandR framework which allows for timing sensitive record

and replay of multiple sources of inputs while relieving the restrictions that undermine

practicality. RandR records the inputs that drive the application execution by run-

time hooking (as opposed to static OS or VM instrumentation) of a set of target Java

and native (C/C++) methods in the Android framework. The runtime hijacking of

method calls is a well known technique among security researchers and practitioners

(Wong and Lie, 2018; RK700, 2018). However, the key novelty of our work is real-

izing a system that can record and replay non-deterministic input sources (e.g., GUI

and network inputs) in Android applications based on runtime instrumentation in a

lightweight and practical manner. RandR hooks into a set of target Java methods

to capture user inputs as well as the random numbers that cause variant application

behaviour if not kept deterministic across record and replay. In addition, RandR

intercepts the network traffic by hooking into standard C libraries.

This section starts with a brief overview of the Android concepts relevant to

understanding RandR (Section 5.1.1). In Sections 5.1.2 and 5.1.3, we present an

overview and implementation of our RandR framework, respectively. Finally, Section

5.1.4 presents an evaluation of RandR with real-world Android applications.

5.1.1 Background

This section briefly reviews the Android concepts that are necessary to understand

our record and replay system. Specifically, we discuss how applications are distributed

and executed on the Android platform. Next, we describe Android’s input handling
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mechanism. Finally, we describe the principles of hooking into Java APIs in ART.

Android System: Android applications are mainly written in Java on top of the

APIs provided by the Android framework, compiled into Dalvik bytecode and exe-

cuted by the Android Runtime (ART). These applications are distributed in the form

of APK files that contain an application’s bytecode (.dex), resources, assets as well

as a manifest file. The manifest file declares a set of permissions that grants the

application with access to additional functionality (e.g., network, storage). The An-

droid platform is built upon a modified version of the Linux kernel and inherits the

same user-based permissions and process models to provide each application with an

isolated execution environment. Each application runs in its own process and with

its own instance of the ART.

Android applications can also implement a part of their functionality in native

code (e.g., in C/C++). Android framework also consists of a set of native libraries that

provide low-level system functionalities (e.g., libssl for SSL support, libgles for

2D and 3D graphics rendering).

Android UI System and Input Handling: User interactions over the touch-

screen is an important source of inputs for Android applications. In Android, UI

events are described via MotionEvent and KeyEvent classes, collectively described as

InputEvent. MotionEvents specify the UI input in terms of an action code (e.g.,

ACTION UP, ACTION DOWN) and screen coordinates. Complex gestures (e.g., fling,

pinch) are described as a sequence of MotionEvents. KeyEvents contain informa-

tion about a key that has been pressed. To facilitate design of user interfaces, the

Android framework provides a rich variety of essential UI elements (widgets) such

as Buttons, TextViews, ImageView or ScrollView. Moreover, a developer is able to

integrate custom widgets by overriding View or ViewGroup classes. Views are user

interface elements that represent interactive objects on the screen, while ViewGroup
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is responsible for organizing Views and other ViewGroups into a layout tree. An

application can chose to define its layout tree statically, dynamically, or both.

Android framework also describes window and root view for organizing various

interactive screen of an app. A window in Android is rectangular area on the screen

where an Activity can draw its UI interface. All UI components in a window form

one view hierarchy with the root view defined in ViewRootImpl class. This class

describes the behavior of the window and has two primary functions relevant to our

goals. First, each instance of ViewRootImpl class registers an InputEventReceiver, a

low level mechanism that is used to deliver all InputEvents to an application window.

Second, this class traverses the view hierarchy to determine which View will receive

user input.

Dynamically Instrumenting Java APIs in ART: Each Java class is internally

represented by a Class object in memory in ART. A virtual method table (i.e.,

vtable) within a Class is used to resolve virtual methods and implement polymor-

phism. In ART, the ArtMethod structure corresponds to internal C++ representation

of both static and virtual Java methods. Thus, vtable of a Class basically points to

ArtMethod objects in memory. Each ArtMethod object contains a set of entry points

which are essentially pointers to code that performs necessary set-up/clean-up and

executes the target method’s code. ART uses different entry points depending on the

method type (e.g., Java or native). Hooking8 in ART can be accomplished either by

modifying an entry in the vtable to point to a different ArtMethod object (Costam-

agna and Zheng, 2016) or by modifying entry point within an ArtMethod to point to

a different location (Wong and Lie, 2018). The former approach allows to hook into

virtual methods. RandR adopts the entry point hooking approach which works with

both static and virtual methods.

8We use the term hooking and dynamic instrumentation interchangeably.
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Figure 5·1: Dynamic instrumentation in memory. Green regions repre-
sent the original class and method structures in memory while red regions
highlights the dynamically injected components.

The reflection API support in JNI can be used to obtain a handle to ArtMethod

object for a target method of interest. Once the address of the target ArtMethod

struct is known, the entry point can be accessed by a fixed offset and modified to

point to a different address. This allows to execute a different code upon invocation of

the target method. We refer to this newly injected code as the detour method. Once

the control is diverted to the detour function from the target method, the method

arguments can be recorded or modified. The original entry point of the target method

can also be invoked from the detour function to implement the original method call

behavior. Once the original target method is executed, the return values can also be

recorded or modified as necessary. Figure 5·1 summarizes this process by illustrating

the state of the virtual memory layout of an application before and after the dynamic

instrumentation.
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5.1.2 RandR Overview

The goal of RandR is to provide practical cross-device record and replay capabilities

for Android applications. In case of RandR, practicality is achieved by alleviating

the limitations that hinder deployability such as root permissions or modifications

to OS/application source. RandR realizes these capabilities through a combination

of static application instrumentation and dynamic framework instrumentation that

allows us to capture and reproduce the inputs to a set of target method calls (i.e.,

both Java and C APIs) in the Android framework. This section provides an overview

of these static and dynamic instrumentation components. It also describes working

principles of RandR (Figure 5·2) and our approach to cross-device replay.

The purpose of our static application instrumentation stage is to enable dynamic

framework instrumentation from within the app. RandR decodes the application

resources and dex files, rewrites application’s bytecode so as to load and execute our

dynamic instrumentation component at runtime, and generates a new APK file. Per-

forming the framework instrumentation at runtime and from within the application

provides RandR with unique advantages. First, the target method structures can be

identified and patched in memory at runtime without requiring any static OS modi-

fications or access to any device software. Second, since target method structures are
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Figure 5·2: Macro view of our RandR record/replay approach.
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introspected by the application in its own process address space, RandR does not

require any privileged mode operation or root permissions.

Dynamic instrumentation is the key component of RandR that hooks9 into a set

of target method structures in memory to capture (i.e, for record) or modify (i.e., for

replay) inputs and return values. Our aim is to capture and reproduce the inputs to

the application that originate from external non-deterministic sources such as random

numbers, UI interactions and network. During the recording phase, we direct the

control flow to custom detour methods that record inputs into a trace file. RandR

also records timestamps to ensure that the timing between the method invocations are

preserved during replay. Replay logic differs depending on whether the target method

invocation originated from the Android runtime (i.e., upcall) or the application (i.e.,

downcall) while recording. For the upcalls, RandR invokes the original method

with saved arguments during replay. Since the downcalls that originate from the

application are diverted to our detour methods after instrumentation, for such calls,

RandR simply modifies the original method arguments with those from the trace

file.

In order to provide cross-platform replayability of recorded UI events, we present a

widget-sensitive record and replay approach. RandR dynamically instruments strate-

gic locations in the Android framework to associate InputEvents with their target UI

widget (e.g., a button) and assigns each widget a stable identifier. Thus, during re-

play, RandR is able to locate a target widget and send UI events to accurate positions

in the device screen accordingly.

5.1.3 RandR Implementation

This section describes our implementation of the RandR framework. We first de-

scribe our static application instrumentation mechanism. Next, we detail how we

9We use the term hooking and dynamic instrumentation interchangeably in this thesis.
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Figure 5·3: Static instrumentation steps in RandR.

leverage our hooking mechanism to enable record and replay of UI, network and

random number inputs for Android applications.

Static Application Instrumentation

RandR’s static instrumentation component (Figure 5·3) modifies the application

resources and bytecode so as to inject hooks into target method structures within

applications virtual address space. We use apktool10 to disassemble the bytecode

from application’s dex files and obtain the manifest file (AndroidManifest.xml).

The disassembled bytecode is in readable and editable smali11 representation. To

ensure our hooks are in-place before the application starts to execute, RandR injects

a small stub code into the Application subclass of the app. We choose this approach

as the Application subclass in Android is instantiated before any other class. The

small stub code simply invokes System.loadLibrary() to load our native hooking

library, which we insert into the APK. RandR also modifies the manifest file to add

missing storage access permissions to allow the application to read/write trace files.

Dynamic Runtime Instrumentation

This section details how RandR realizes record and replay capabilities for Android

applications by hooking into a set of target method structures in memory. We also

describe the implementation of our hooking library.

10https://ibotpeaches.github.io/Apktool/
11https://github.com/JesusFreke/smali

https://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
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Hooking into Java and Native APIs: We build our Java API instrumentation

setup on top of an open-source hooking framework for ART (i.e., YAHFA (RK700, 2018)).

As per the entry point hooking process described in Section 5.1.1, YAHFA framework

creates a back-up of the original ArtMethod object and replaces the target of the

entry point with a trampoline that simply jumps to the entry point of the ArtMethod

object corresponding to our detour method. The original method can be executed

simply by invoking the backed-up original ArtMethod from our detour functions.

Our implementation of this hooking infrastructure is fully contained in a shared

native library and leverages the reflection API support in JNI to obtain references to

method instances at runtime (e.g., using GetStaticMethodId() routine). Our frame-

work uses dynamic class loading capabilities provided by the Android framework (i.e.,

via DexClassLoader) to dynamically load detour methods (written in Java) as well

as other replay components into the virtual memory space of the target application.

Our implementation of native library hooks uses the AndHook library(Lody, 2018)

which provides a hooking interface for various Application Binary Interfaces (ABIs)

including armeabi-v7a, arm64-v8a, x86 and x86 64. Hooking a native function in-

volves locating the image of the shared library in the process address space, parsing

the ELF structure to identify the address of the target functions and inserting neces-

sary jumps to implement the detour mechanism.

Recording and Replaying UI Inputs: RandR’s approach to UI replay is based

on the observation that a user mostly interacts with an application via UI widgets,

essential UI elements provided by the Android Framework (e.g. Button, SearchBar,

ImageView, etc). Therefore, RandR targets widget-sensitive UI replay, and records

the UI events (e.g., MotionEvent, KeyEvent) with respect to an application’s UI

widgets. To uniquely identify widgets presented in an app, RandR assigns widgets

stable identifiers that are consistent across multiple application runs and devices.
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RandR derives these identifiers from multiple internal properties of a widget, including

the widget’s position in the UI layout, text and other internal fields. During the replay,

RandR identifies the widgets on the screen, updates the recorded events according to

the new location of a widget, and injects updated events into the app.

Recording and Replaying Network I/O: Our RandR framework intercepts

the network I/O by intercepting the system call wrapper methods in Android’s stan-

dard C library (libc) implementation called Bionic. By performing the record and

replay at the system call interface, RandR is agnostic to different network protocol

implementations (e.g., OkHttp, Volley).

Unlike protocols such as HTTP and FTP, recording and replaying the results of

system calls is not sufficient to reproduce an HTTPS traffic, which is widely popular

among applications. The challenge rises due to inherent non-deterministic nature of

the cryptographic protocols (e.g., TLS) used in HTTPS. Our key insight for tackling this

problem is that the root cause of non-determinism is due to the random numbers used

for generating the session keys during the TLS handshake process. RandR inherently

captures the server-side random inputs through system calls (e.g., read()). For the

client-side random numbers, RandR hooks into cryptographic libraries.

Instrumented Lib Instrumentation Points

libc.so
socket(), connect(), read(), write(), close(),

poll(), sendto(), recvfrom(), shutdown()

libcrypto.so RAND bytes()

Table 5.1: Target native instrumentation points in RandR.

Table 5.1 provides the specific set of methods RandR instruments for network

record and replay. During the record phase, we invoke the original function from

our detour method, group the arguments and return values with respect to the file

descriptor and record to a trace file. During the replay phase, once a connect()

call is made on a socket, we identify the corresponding trace file to read from based
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on the target addr argument. Following operations on this socket (e.g., read(),

recv(), recvfrom()) read the data into argument buffer from the corresponding

trace file. write(), send() and sendto() operations are discarded during replay as

the application is not communicating with a server. To enable recording and replaying

the HTTPS traffic, RandR fills the argument buffer in the native RAND bytes crypto

API method with a fixed set of data.

Recording and Replaying Random Numbers Random numbers present an-

other significant source of non-determinism in Android applications which, if not

captured and replayed, can lead to different application behaviors (Continella et al.,

2017). We note that such random input dependent variations could even be inten-

tional from the developer’s perspective (e.g., 2048 gaming app).

RandR hooks into the pseudo-random number generator in the Java API. Specif-

ically, we record the return values from the next() method in the java.util.Random

class. We choose this specific instrumentation point since it is the common

subroutine among other public random number APIs (e.g., Random.nextInt(),

Random.nextBytes(), Math.random()). During replay, return values of the next()

method is overridden by the next number in the sequence of recorded values.

5.1.4 Evaluation

We evaluate RandR’s replay accuracy via two metrics: (1) Jaccard similarity between

the set of executed methods of an application during record and replay; (2) user-visible

state similarity as used in prior work (Hu et al., 2015; Halpern et al., 2015; Gomez

et al., 2013). We use a common Java code coverage tool (i.e., EMMA (EMMA, 2006)) to

obtain the set of executed methods. Since EMMA requires the application’s source code

for instrumentation, we crawl a random set of real-world Android applications from

the F-droid dataset, and select 10 applications that EMMA and RandR can instrument

without any errors.
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Jaccard

Similarity

Visual

Similarity

Jaccard

Similarity

Visual

Similarity

App RandR Reran RandR Reran App RandR Reran RandR Reran

Knights of

Alentejo
100% 100% Yes Yes Summation 100% 94% Yes No

Solar Compass 97% 97% Yes No Accordion 100% 97% Yes Yes

Verbiste Android 97% 80% Yes Yes Word Power 100% 98% Yes No

ToneDef 100% 100% Yes No MedicLog 100% 41% Yes No

Mileage 100% 47% Yes No Dicer 100% 94% Yes No

Table 5.2: Cross-device evaluation of RandR and Reran(Gomez et al.,
2013)

We evaluate RandR’s cross device replay capability on two Android SDK em-

ulators (Nexus 5X and Pixel 2 XL) that have different screen sizes. Overall, when

exercising applications during record, we achieve an average 49.45% method coverage.

As shown in Table 5.2, RandR was able to successfully replay all applications across

both devices, unlike the coordinates-based Reran tool.

To assess RandR’s ability to record and replay closed-source applications, we pick

the most popular applications with network dependent functionalities (i.e., using

both HTTP and HTTPs) from 4 Play Store categories: OfficeSuite, Kakao Bus, Mirror

Camera, Hot Pepper Gourmet. For these applications, we verified RandR’s replay

success by comparing the recorded and reproduced user-visible screen states.

We show the importance of handling inputs other than UI (e.g., random numbers)

with a specific study comparing RandR to Reran (Gomez et al., 2013) for a session of

the 2048 game (Figure 5·4). During record, the game reaches the “Game Over” state

and renders a new text on the screen. Replay with Reran diverges to a different state

due to randomized location of numbers, while RandR reproduces the same sequence

of random numbers and reaches the correct final state.

Impact of Accurate Replay on Performance Measurements: RandR allows

for real-life experimentations (e.g., power or performance studies) on mobile systems

with off-the-shelf mobile applications and can substantially improve the quality of

experimental measurements. Figure 5·5 illustrates the significance of replaying net-
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(a) Record (b) Reran (c) RandR

Figure 5·4: Comparison of Reran (Gomez et al., 2013) to RandR for
2048 application

work traffic (e.g., using RandR), as opposed to UI-only replay (Gomez et al., 2013;

Halpern et al., 2015; Fazzini et al., 2017; Qin et al., 2016), for achieving consistent

and meaningful performance measurements. We measured the latency distribution

over 20 executions of UC Browser application from the Play Store while browsing a

web page whose content changes over time (i.e., thefakenewsgenerator.com). Since

RandR replays the same recorded content and is not effected by the network speed

fluctuations or the web content changes on the server, RandR can significantly reduce

measurement variations. Such reproducibility is key to correct analysis of performance

and power bottlenecks in mobile systems research.

Figure 5·5: Performance variance with and without network replay
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5.2 Detecting Discrepancies in System Emulators

Android is an attractive target for cyber criminals due to billions of users world-

wide. To protect users, malware analysis systems which inspect applications in an

emulated sandbox are commonly used in academia and industry (Yan and Yin, 2012;

Tam et al., 2015; Oberheide and Miller, 2012). The effectiveness of these dynamic

malware analysis systems, however, is largely at risk due to an emerging class of eva-

sive malware. Such malware looks for discrepancies that exist between emulated and

real systems before triggering any malicious attempt. By ceasing malicious activities

on an emulated enviroment, the malware can thwart existing emulator-based mal-

ware analyzers. The situation is alarming as studies show a rising number of malware

instances that employ evasion tactics (Lindorfer et al., 2011) (e.g., Branco et al. find

evasion methods in more than 80% of 4M malware samples (Branco et al., 2012)).

For Android, several recent classes of evasive malware (e.g., Xavier (Xu, 2017), Gra-

bos (Davis, 2017)) have already been identified in the Play Store. A crucial step for

defending against such malware is to systematically extract the discrepancies between

emulated and real systems. Once discovered, such discrepancies can be eliminated

(Liu et al., 2017) or can be used to inspect applications for presence of evasion tactics

leveraging these artifacts (Branco et al., 2012).

Many of the approaches to date (Thuxnder, 2015; Petsas et al., 2014; Vidas

and Christin, 2014) discover discrepancies of emulation-based sandboxes in an ad

hoc fashion by engineering malware samples or specific emulator components (e.g.,

scheduling). Such manual approaches cannot provide large-scale discovery of un-

known discrepancies, which is needed to stay ahead of adversaries. Recent work

(Jing et al., 2014) automatically identifies file system and API discrepancies used by

several Android malware (e.g., (Xu, 2017; Davis, 2017)). Evasion tactics that rely

on such artifacts can be rendered ineffective by using modified system images and
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ensuring the API return values match those in real devices (Bordoni et al., 2017).

Besides API/file checks, a malware can also leverage differences in the semantics of

CPU instructions to fingerprint emulation (Branco et al., 2012) (e.g., by embedding

checks in the native code (Petsas et al., 2014)). As opposed to ad hoc approaches or

API/file heuristics, our work focuses on systematically discovering instruction-level

discrepancies that are intrinsically harder to enumerate and fix for complex CPUs.

This thesis proposes the Proteus system which identifies the discrepancies between

emulated and real ARM CPUs that power the vast majority of current mobile de-

vices. Unlike prior discoveries of instruction-level discrepancies (Paleari et al., 2009;

Martignoni et al., 2009), Proteus allows horizontal scaling by alleviating the real hard-

ware requirement and reveals the root causes behind the discrepancies. As a result,

we have discovered and fixed several root causes of discrepancies in a state-of-the-art

emulator (i.e., QEMU) used by Android malware analyzers. This section starts by

providing some critical background for Proteus. Sections 5.2.2 and 5.2.3 presents an

overview and implementation of our Proteus system. Section 5.2.4 evaluates Proteus’

ability to discover discrepancies between real and emulated ARM CPUs.

5.2.1 Background

This section provides a brief overview of the ARM architecture and clarifies the ter-

minology that we use throughout the rest of this paper. We also describe the attack

model we are assuming in this work.

ARMv7-A Architecture

This paper focuses on ARMv7-A instruction set architecture (ISA), the vastly popular

variant of ARMv7 that targets high-performance CPUs which support OS platforms

such as Linux and Android (e.g., smartphones, IoT devices). The ARM architec-

ture implements a Reduced Instruction Set Computer (RISC) organization where
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memory accesses are handled explicitly via load/store instructions. Each ARM in-

struction is of fixed 32-bit length. ARMv7-A features 16 32-bit registers (i.e., 13

general purpose registers (R0-R12), stack pointer (SP), link register (LR), program

counter (PC)) accessible in user-mode (usr) programs. The CPU supports 6 operating

modes (usr,hyp,abt,svc,fiq,irq) and 3 privilege levels PL0, PL1 and PL2 (i.e., lower

numbers correspond to lower privilege levels). The Current Program Status Register

(CPSR) stores the CPU mode, execution state bits (e.g., endianness, ARM/Thumb

instruction set) and status flags.

Undefined Instructions: The ARMv7 specification explicitly defines the set of

encodings that do not correspond to a valid instruction as architecturally Undefined.

For example, Figure 5·6 shows the encoding diagram for multiplication instructions

in ARMv7. The architecture specification (ARM, 2018b) states that the instructions

are Undefined when the op field equals 5 or 7 in this encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1 0
cond 0   0   0   0 op    0  0  0  0

Figure 5·6: Encoding diagram for multiplication instructions in
ARMv7 ISA (ARM, 2018b).

An Undefined instruction causes the CPU to switch to the undefined (und) mode

and generates an undefined instruction exception. An undefined instruction excep-

tion is also generated when an instruction tries to access a co-processor that is not

implemented or for which access is restricted to higher privilege levels (ARM, 2018b).

Unpredictable Instruction Behavior: The ARM architecture contains a large

set of instruction encodings for which the resulting instruction behavior is unspecified

and cannot be relied upon (i.e., Unpredictable). ARM instructions can exhibit

Unpredictable behavior depending on specific cases of operand registers, current

CPU mode or system control register values (ARM, 2018b). For example, many

instructions in the ARM architecture are Unpredictable if the PC is used as a register
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operand. In addition, some instruction encoding bits are specified as “should be”

and denoted as “(0)” and “(1)” in ARM’s official encoding diagrams. While different

encodings for “should be” bits do not correspond to different instructions, the resulting

behavior is Unpredictable if a given encoding fails to match against the specified

“should be” bit pattern.

The effect of an Unpredictable instruction is at the sole discretion of the CPU

manufacturer and can behave as a NOP or Undefined instruction, or can change the

architectural state of CPU. Consider the “LDMDA pc!,{r0,r1,r5,r6, r8,sp,lr}”

Unpredictable instruction (encoded as 0xE83F6163), which loads the given set of

registers from consecutive memory addresses starting at PC and writes the final target

address back to PC. This instruction causes undefined instruction exception on a real

CPU while it modifies the PC and causes an infinite loop on QEMU. Note that both

behaviors comply with the ARM specification.

Threat Model

The aim of the malware author is to evade detection by the analysis tools and dis-

tribute a malicious application to real users. The malware possesses a set of detection

heuristics to distinguish emulators from real devices. Malware achieves evasion by

ceasing any malicious behavior on an emulated analysis environment, which could

otherwise be flagged by the analysis tool. Once the malware escapes detection and

reaches real users, it can execute the harmful content within the application or dy-

namically load the malicious payload at runtime (Poeplau et al., 2014).

Our work focuses on discrepancies that are observable by user-level programs.

Thus, we assume applications running in usr mode at the lowest PL0 privilege level.

Since our technique detects emulators by natively executing CPU instructions and

monitoring their effects, we assume an Android application that contains a native

code. This is a common case for many applications (e.g., games, physics simulations)
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Figure 5·7: Overview of Proteus.

that use native code for the performance-critical sections and for the convenience of

reusing existing C/C++ libraries (Poeplau et al., 2014).

We assume that applications are subject to dynamic analysis in a QEMU-based

emulation environment. Indeed, state-of-the-art dynamic analysis frameworks that

are commonly used in academia (Yan and Yin, 2012; Tam et al., 2015) and industry

(Oberheide and Miller, 2012) use QEMU as the emulation engine. In addition, the

Android emulator that is distributed with the Android SDK is also based on QEMU.

5.2.2 Proteus System Architecture

The aim of the proposed Proteus system (Figure 5·7) is to find the differences in

semantics of instructions executed on a real and an emulated ARM CPU. Proteus

consists of a trace collection part and an analysis component to automatically identify

and classify divergences. This section provides an overview of the core components

of Proteus and describes its high-level operation.

Central to our system is collection of detailed instruction-level traces that capture

the execution behavior of programs on both emulated and real CPUs. The traces

capture all updates to user-visible registers as well as the operands in memory trans-

actions from load/store instructions. If a program terminates by a CPU exception,

the respective signal number is also recorded.

The “Program Generator” component ( 1 ) generates the test programs which are
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used for collecting instruction-level traces and discovering discrepancies. Note that

ARM CPU emulation in QEMU is inadvertently tested using millions of applications

by Android developers. Thus, programs generated for divergence identification should

also exercise platforms for uncommon cases beyond the set of instructions emitted by

compilers and found in legitimate Android applications.

For each generated test program, we collect its instruction-level traces by executing

the same binary on two different platforms ( 2 ) which provide the traces corresponding

to execution on an emulator and a real CPU.

The “Divergence Identification & Categorization” component ( 3 ) compares em-

ulator and real CPU traces of a program to identify the initial point of divergence.

A divergence can be due to a mismatch in register values, memory operands or ex-

ception behavior. Divergent cases that stem from the same mismatch are grouped

together automatically to facilitate manual inspection of discovered discrepancies.

Our hypothesis behind the grouping is that there exist a small number of root causes

that cause the same divergent behavior (e.g., exception mismatch) on potentially a

large set of test cases. For instance, we can group together the divergent instructions

that generate an illegal instruction exception in a real CPU but execute as a valid

instruction in emulator. We also check if the divergent instruction is Unpredictable

( 4 ). Since Unpredictable instructions can exhibit different behavior across any two

platforms, we do not treat divergences that stem from these instructions as a reliable

detection method.

Overall, Proteus provides us with the instruction encoding that caused the di-

vergent behavior, register values before that instruction, divergence group as well as

the difference between the traces of emulated and real CPU (e.g., signal number,

CPU mode, etc.) which occurs after executing the divergent instruction. We can

optionally identify why QEMU fails to faithfully provide the correct behavior as im-
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plemented by the real CPU and fix the source of mismatch ( 5 ). Proteus can also

generate a proof-of-concept emulation detector ( 6 ), which reconstructs the divergent

behavior by setting respective register values, executing the divergent instruction and

checking for the resulting mismatch that Proteus identifies during the “Divergence

Identification & Categorization” stage.

5.2.3 Proteus Implementation

In this section, we describe our implementation of the proposed Proteus system

for detecting instruction-level differences between emulated and real ARM CPUs.

We first describe our framework for acquiring instruction-level traces followed by

details on how we use this framework to collect a large number of sample traces and

automatically identify discrepancies.

Instruction-level Tracing on ARM-based Platforms

Collected Trace Information: For our purposes, a trace consists of all general-

purpose registers that are visible to user-level programs, which provide a snapshot

of the architectural state. Specifically, we record the R0-R12, SP, PC, LR and CPSR

registers (see Section 5.2.1). Finally, we record operands of all memory operations.

Various ARM instructions can load/store multiple registers sequentially from a base

address. We record all the data within the memory transaction as well as the base

address. This trace information gives us a detailed program-visible behavior of CPU

instructions. Thus, any discrepancy within the trace is visible to a malware and can

be potentially leveraged for evasion purposes.

Emulator Traces through QEMU Instrumentation: QEMU dynamically

translates the guest instructions (e.g., ARM) for execution on the host machine (e.g.,

x86). Translation consists of several steps. First, guest instructions within a basic

block are disassembled and converted into a platform-agnostic intermediate represen-
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tation called TCG (Tiny Code Generator). Next, generated TCG code blocks (i.e.,

translation block) are compiled into host ISA for execution.

To implement tracing capability in QEMU, we inject extra TCG operations into

each translation block during the translation phase. These extra TCG operations

dump the trace information during the execution phase. We use the helper function-

ality within QEMU to generate the extra TCG code. The main use of the helper

functionality in QEMU is to allow developers to extend the capabilities of TCG

operations for implementing complex instructions. We inject the extra TCG opera-

tions for every disassembled instruction to achieve per-instruction tracing granularity.

Specifically, we modify the disassembly routines of ARM instructions to inject TCG

operations that record registers. We also modify the load/store routines to record

address and data values for memory transactions.

We use QEMU 2.7.0 from Android repositories12, which forms the base of the SDK

emulator used in modern Android malware analyzers (Yan and Yin, 2012; Oberheide

and Miller, 2012; Tam et al., 2015). QEMU 2.7.0 is the most recent version adopted

in current SDK emulators. To ease instrumentation and facilitate the data collection,

we use QEMU in user-mode configuration as opposed to full-system emulation. We

use full-system SDK emulators during our evaluation of discovered discrepancies.

Accurate Real CPU Traces using ARM Fast Models: Gathering detailed

instruction-level traces from real CPUs is challenging and, due to practical limitations

on the number of devices that can be used, does not scale well. In this work, we

propose to use accurate functional models of ARM CPUs (i.e., Fast Models (ARM,

2018a)) to obtain traces corresponding to execution on real CPUs. Fast Models are

official software models developed and maintained by ARM and provide complete

accuracy of software-visible semantics of instructions.

ARM Fast Models provide a set of trace sources which generate a stream of trace

12https://android.googlesource.com/platform/external/qemu-android/+/qemu-2.7.0
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events when running the simulation. Once a target set of trace sources are specified,

Fast Models emit trace events whenever a change occurs on a trace source. These

trace events are provided over a standardized interface called Model Trace Interface

(MTI). We use an existing plugin called GenericTrace to record trace events over the

MTI interface.

Our work is based on a Cortex-A15 fast model which implements the ARMv7 ISA.

We specify “inst”, “cpsr”, “core loads”, “core stores” and “core regs” trace sources,

which capture changes in register values as well as data/address operand values in

memory transactions.

Figure 5·8 shows an example trace snippet we collect from the Fast Model for an

LDR instruction which loads a word from memory into SP. The model emits two trace

sources, “core loads” and “core regs”, capturing the address/data operands of load

operation as well as the update on SP (e.g., old and new value). The “inst” trace

event also specifies the executed instruction (e.g., PC, byte code, mnemonic).

INST|PC=0x0000807c|OPCODE=0xe59fd01c|SIZE=0x04|MODE=usr|ISET=ARM|PADDR=0x000000000000807c|NSDESC=0x00|

PADDR2=0x000000000000807c|NSDESC2=0x00|NS=0x00|ITSTATE=0x00|INST_COUNT=0x0000000000000003|CORE_NUM=0x00|

DISASS="LDR      sp,{pc}+0x24 ; 0x80a0"

CORE_LOADS|VADDR=0x000080a0|RESPONSE=OK|LOCK=Normal|TRANS=N|ACQREL=None|SIZE=0x04|ELEMENT_SIZE=0x04|

PADDR=0x00000000000080a0|NSDESC=0x00|PADDR2=0x00000000000080a0|NSDESC2=0x00|DATA=0x0xbe fb30:4

CORE_REGS|ID=0x0d|PHYS_ID=SP_usr|VALUE=0xbe fb30|OLD_VALUE=0x00000000|MODE=usr|CORE_NUM=0x00

1

2

3

Figure 5·8: A sample trace from Cortex-A15 Fast Model for an LDR

instruction.

Identifying Emulated vs. Real CPU Discrepancies with Tracing

This section describes how we use our tracing capabilities to find differences in in-

struction semantics between emulated and real ARM CPUs.

Generating Test Cases: We generate valid ELF binaries as inputs to our tracing

platforms. We choose to use programs that contain random instructions. Specifically,

each input binary contains 20 random bytes corresponding to 5 ARM instructions.
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We use this randomized approach to be able to exercise emulators with uncommon

instructions which are not likely to be emitted by compilers. We use more than one

instruction per binary to be able to cover more instructions each time a simulation is

launched for a test program.

Each test program starts with a few instructions that set the CPU state, clear

registers and condition flags. By default, the programs run on the Fast Model in svc

mode and no stack space is allocated. Thus, we use these initialization instructions

to ensure that CPU mode is set to usr and SP points to the same address on both

platforms. We also clear all registers to ensure that programs start from identical

architectural state on both emulator and real CPU. These initialization instructions

are followed by 5 random instructions. Finally, each test case ends with an exit

system call sequence (i.e., mov r7,#1; svc 0x0).

Identifying Divergence Points: This phase of the Proteus system consumes

the traces collected from QEMU and ARM Fast Model to identify and group divergent

behaviors. To identify the initial point where QEMU and Fast Model traces of an

input program diverge, we perform a step-by-step comparison.

The step-by-step comparison procedure is illustrated in Figure 5·9. We skip the

portion of the traces which corresponds to the initialization instructions described

in the previous section (Step 1) to avoid false alarms that arise from the initial

state differences between QEMU and Fast Model. We walk through the remaining

instruction sequence until either a difference exists in the collected trace data or the

test program on QEMU terminates due to an exception. If the program terminates

on QEMU or the CPU mode on Fast Models switches to a different mode than

usr, we examine whether this exception behavior matches between QEMU and real

CPU (Step 2). We perform the comparison using the CPU mode from the Fast

Model and the signal received by the program upon termination on QEMU. Note
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Figure 5·9: Illustration of the flow for comparing the Fast Model and
QEMU traces.

that there is no exception handling or signal mechanism on Fast Models as no OS is

running. Depending on this CPU mode and signal comparison, we determine whether

the observed behavior falls into one of the four possible divergent types below. We

use a tuple representation as <FastModel response, QEMU response> to categorize

divergent behavior.

• <und,!SIGILL>: This group represents the cases where QEMU fails to recog-

nize an architecturally Undefined instruction. If the Fast Models indicate that

CPU switches to und mode, the expected behavior for QEMU is to deliver a

SIGILL signal to the target program. This is because execution of an Undefined

instruction takes the CPU into und mode and generates an illegal instruction ex-

ception. Thus, the cases where Fast Model switches to und mode while QEMU

does not deliver a SIGILL signal is a sign of divergence.

• <usr,SIGILL>: This class of divergence contains cases where QEMU terminates

by an illegal instruction signal (SIGILL) while Fast Models indicate the target

instruction is valid (i.e., cpu remains in usr mode).
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• <abt,!SIGBUS>: This class captures the cases where QEMU fails to recognize

a data/prefetch abort and hence does not generate a bus error (i.e., deliver

SIGBUS). Prefetch aborts are caused by failing to load a target instruction while

data aborts indicate that the CPU is unable to read data from memory (e.g.,

due to privilage restrictions, misaligned addresses etc.) (ARM, 2018b).

• <usr,SIGBUS>: This divergence type represents the opposite of the previous

case. Specifically, QEMU detects a bus error and delivers a SIGBUS to the test

program while the Fast Models indicate that the memory access made by the

target program is valid (i.e., cpu is not in abt mode).

If no exception is triggered for an instruction, we further compare the registers and

memory operands within the collected trace data. We determine memory operand

divergence (Step 3) if the address or the number of transferred bytes differ between

QEMU and Fast Model traces. We do not treat data differences as divergence since

subtle differences may exist in the initial memory states of QEMU and Fast Models.

We drop cases with different memory values from further examination as the loaded

data would propagate into register state and cause false positive divergence detection.

Finally, if no divergence is identified in exception behavior or in memory operands,

we compare the user-level registers (Step 4) to detect any register state divergence.

Steps 2-4 presented in Figure 5·9 continues for the remaining random instructions in

the test program.

Since Unpredictable instructions can cause different legitimate behaviors on any

two CPU implementations, we cannot use these instructions to deterministically dif-

ferentiate emulators from real systems. Thus, if a divergent instruction identified in

Steps 2-4 is Unpredictable, we do not classify this case into any divergence group.

However, an officially verified tool or a programmatic methodology to check if a given

ARM instruction would generate Unpredictable behavior is unavailable. Thus, we
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use an open-source specification of ARMv7 architecture written in Standard ML

(SML) and proposed by the earlier work (Fox, 2012).

Generating Detector Programs: Based on the identified divergent instruc-

tion semantics, Proteus can optionally generate a proof-of-concept program that

determines whether the program is executed on an emulator or a real system. This

section describes how our system generates these programs and provides insight into

how a real-life malware can implement CPU semantic attacks.

Proteus generates detector programs by rewriting a set of pre-built template

binaries to reconstruct the divergent behavior. The template programs simply execute

the divergent instruction and check whether the resulting effect matches with QEMU

or real CPU behavior. Before executing the divergent instruction, we set up the

environment with the necessary changes to trigger divergent behavior and observe its

effect. These changes are (1) setting the register values (CPSR and R0-R12) with the

values provided from the divergence identification phase, (2) installing signal handlers

for exception-related divergent behavior. We use sigsetjmp/siglongjmp provided by

the standard C library to preserve the CPU state which would otherwise be altered

by the changes we perform. Listing 5.1 illustrates an example detector program

for the <abt,!SIGBUS> group. The current CPU state is saved with sigsetjmp on

line 11. The register state is loaded with target values (line 13) and the divergent

instruction (LDM r7,{r4}) is executed (line 15) to reconstruct the divergent behavior.

The program determines emulation if it does not receive a SIGBUS after the divergent

instruction accesses the misaligned memory address stored in R4. The original CPU

state before constructing the divergent behavior is restored on either line 7 or 16. We

simply build one template program for each of the six divergence groups. Depending

on the divergence group, for a given divergent instruction, we pick the corresponding

sample template to rewrite a new detector program.
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Listing 5.1: A sample program snippet for detecting Android emula-
tor.

s i g a t o m i c t s i g i n f o = 0 ;
s ig jmp buf buf ;

void c a t c h s i g n a l s ( i n t signum ) {
i f ( signum == SIGBUS)

s i g i n f o = 1 ;
s ig longjmp ( buf , 1 ) ;

}
s i g a t o m i c t say my name ( ) {

prepare ( ) ; // r e g i s t e r s i g n a l hand le r s
i f ( ! s i g s e t jmp ( buf , 1 ) ) {

// Set t a r g e t r e g i s t e r s
asm( ”LDR r4 ,=0 x00008075” ) ;
// execute d ive rgent i n s t r u c t i o n
asm( ” . byte 0x10 , 0 x00 , 0 x97 , 0 xe8” ) ;
s ig longjmp ( buf , 1 ) ;

}
cleanup ( ) ; // remove s i g n a l hand le r s
re turn s i g i n f o ;

}
void main ( ) {

s i g a t o m i c t r e t = say my name ( ) ;
( r e t==1) ? p r i n t f ( ” r e a l cpu” ) : p r i n t f ( ” emulator ” ) ;

}
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5.2.4 Evaluation

This section demonstrates the capabilities of Proteus for identifying the discrepan-

cies of QEMU’s emulated CPU from a real ARM CPU. We systematically analyze

the divergences reported by Proteus to identify the root causes of the discrepan-

cies. On a real smartphone and Android emulator, we demonstrate how our findings

can fingerprint the underlying platform. Finally, we demonstrate the feasibility of

fixing several root causes of divergences without any observable performance penalty.

Overall, we seek to answer the following questions:

• Are there any observable discrepancies between an emulated and real CPU? If

so, how prevalent are these differences?

• How effective are the divergences reported by Proteus in terms of fingerprint-

ing real hardware and dynamic analysis platforms?

• What are the root causes of the discrepancies and can we eliminate them in

QEMU without impacting its performance?

Divergence Statistics from Proteus

In order to address our first research question, we use Proteus to examine the

Figure 5·10: #Instructions
before divergence or exception.

instruction-level traces from 500K input test pro-

grams. Figure 5·10 shows the number of instructions

executed in the test programs until a divergence oc-

curs or QEMU stops due to an exception. The ma-

jority of the test cases (45%) finish after a single in-

struction only and, almost all test cases (above 94%),

either diverge or cause an exception on QEMU after executing the 5 instructions in

our test programs. Overall, our system analyzed over 1.06M CPU instructions. Table
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QEMU Response

SIGILL SIGSEGV None

F
a
st

M
o
d
e
l

B
e
h
a
v
io
r und 149436 (30%) 826 (0.2%) 9341 (1.9%)

abt 11 (0.002%) 12471 (2.5%) 528 (0.1%)

svc 0 18932 (3.8%) 14609 (2.9%)

usr 5270 (1.1%) 176975 (35%) 0

(a) Exception behavior comparison.

<und, !SIGILL> 10167 (2%)

<usr, SIGILL> 5270 (1.1%)

<abt, !SIGBUS> 13010 (2.6%)

<usr, SIGBUS> 0
mem op difference 200 (0.05%)

register divergence 12 (0.002%)

(b) Divergences by type.

Table 5.3: Divergence statistics generated by Proteus for 500K
test cases containing 2.5M random ARM instructions. Remaining in-
stances of 500K programs (not shown in the Table 5.3a) are (1) 83,125
(17%) cases due to Unpredictable instructions, (2) 27,048 (5.4%) non-
divergent cases where programs finish successfully on both platforms
and (3) 1216 cases that differ due to memory values. Note that we do
not treat these 3 cases as divergent.

5.3 presents an overall view of the results by Proteus showing a comparison between

QEMU and Fast Models in terms of the exception behavior (Table 5.3a) as well as

extent of divergences per group (Table 5.3b).

Table 5.3a presents a summary of the cases where either QEMU terminates the

program or the CPU mode changes in Fast Models. Overall, we observe two types of

signals in QEMU (i.e., SIGILL, SIGSEGV) and CPU mode in Fast Models cover und,

abt, svc and usr modes. None represents the cases where QEMU does not gener-

ate an exception. Most instances correspond to illegal instruction (<und, SIGILL>)

and valid memory access (<usr, SIGSEGV>) cases in which the behavior in QEMU

complies with Fast Models (i.e., not divergent). A large number of instances are Su-

pervisor Call (svc) instructions which cover a large encoding space in ARM ISA. svc

instructions are used to request OS services and are not a major point of interest for
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our work as we focus on the discrepancies that are observable in the user space. In

Table 5.3a, such non-divergent cases are highlighted in gray. The remaining instances

in Table 5.3a, along with the non-exception related differences (i.e., memory operand

and register) are grouped into the divergence types as per the methodology described

in Section 5.2.3.

Table 5.3b provides the number of instances per each divergence type. The largest

number of divergences (i.e., 2.6% of 500K test programs) belong to <abt, !SIGBUS>

group which hints that QEMU does not correctly sanitize the invalid memory refer-

ences that cause data/prefetch aborts in CPU. Proteus also finds a large number

of instructions that are recognized as architecturally Undefined only by the Fast

Models (i.e., <und, !SIGILL> group). These point to cases where QEMU does not

properly validate the encoding before treating the instruction as architecturally valid.

We also find a large number of instructions which are detected as illegal only by

QEMU, executing without raising an illegal instruction exception on the Fast Model

(i.e., <usr, SIGILL> group). Proteus also finds a smaller number of cases (i.e.,

0.05%) with divergent register update or memory operation which correspond to

register divergence and mem op difference groups in Table 5.3b, respectively.

These examples hint at cases where the implementation of a valid instruction con-

tains potential errors in QEMU, causing a different register or memory state than on

a real CPU. Overall, despite the significant testing of QEMU, we observe that there

are still many divergences where QEMU does not implement the ARM ISA faithfully.

Root Cause Analysis

While the Proteus system can identify large numbers of discrepancies between real

and emulated ARM CPU, it does not pinpoint the root causes in QEMU that lead

to a different behavior than ground truth (i.e., Fast Model behavior). This section

presents our findings from an analysis of root causes of divergent behavior in QEMU.
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This analysis gives us, compared to large number of divergences identified, a smaller

set of unique errors in QEMU that lead to divergence on a wide set of programs

(Table 5.3b). Analyzing the root causes also allows us to pinpoint implementation

flaws and devise fixes.

In our analysis, for a divergence group, we first identify common occurrences in the

bit fields [27:20] of a divergent 32-bit instruction encoding. In the ARM architecture,

these bits contain opcodes that are checked while decoding the instruction on QEMU

and real CPU. We identify the instructions with the most commonly occuring opcodes

to (1) consult the ISA specification to check how these instruction should be decoded

and (2) check how QEMU processes these instruction. We determine the root cause of

the discrepancy by manually analyzing QEMU’s control flow while executing a sample

of these instructions. Once we examine the source of discrepancy (e.g., a missing

check, an unimplemented feature of QEMU), we remove all possible encodings that

stem from the same root cause from our statistics to find other unique instances of

errors in QEMU.

Through this iterative procedure, we identified several important classes of flaws

in QEMU that result in a different instruction-level behavior than a real CPU. We

discuss some of our findings in the following paragraphs.

Incomplete Sanitization for Undefined Instructions: We discover that QEMU

does not correctly generate illegal instruction exception for a set of Undefined in-

struction encodings. These cases are identified from the <und, !SIGILL> group pro-

vided by Proteus. Thus, a malware can achieve evasion simply by executing one of

these instructions and ceasing malicious activity if no illegal instruction exception is

generated.

We find that this particular group of divergences arises as QEMU relaxes the num-

ber of checks performed on the encoding while decoding the instructions. For instance,
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Instruction Encoding (cond ∈ [0, 0xE])
Divergent

Condition

QEMU

Behavior

Real CPU

Behavior
#Cases

cond:4|0001|op:4|*:12|1001|*:4 op = 1,2,3,5,6,7 SWP Inst. Undefined 715

cond:4|1100010|*:9|101|*:1|op:4|*:4 op != 1,3 64-bit VMOV Undefined 424

cond:4|11|op:6|*:20 op = 1,2 VFP Store Undefined 51

cond:4|11101|*:2|0|*:8|1011|*:1|op:2|1|*:4 op = 2,3 VDUP Inst. Undefined 3

cond:4|110|op:5|*:8|101|*:9
op != 4,5,8-25,

28,29
VFP Store Undefined 2

Table 5.4: Several Undefined instruction encodings that are treated
as valid instructions by QEMU. “:X” notation represents the bit length
of a field while “*” represents that the field can be filled with any value
(i.e., 0 or 1).

the ARM ISA defines a set of opcodes for which the synchronization instructions (e.g.,

SWP, LDREX) are Undefined, and thus should generate an illegal instruction exception.

However, QEMU does not check against these invalid opcodes while decoding the syn-

chronization instructions, causing a set of Undefined encodings to be treated as a

valid SWP instruction. In fact, we identified 715 divergent test cases which are caused

by this missing invalid opcode check for the SWP instruction. In Table 5.4, we provide

the encoding and the conditions that cause divergent behavior for this SWP instruction

example as well as other similar errors in QEMU that we have identified.

During our root cause analysis, we find that a large portion of the instances

in <und, !SIGILL> group (87%) are due to instructions accessing the co-processors

with ids 1 and 2. These co-processors correspond to FPA11 floating-point processor

that existed in earlier variants of the ARM architecture while newer architectures

(¿ARMv5) use co-processor 10 for floating point (VFP) and 11 for vector processing

(SIMD). While accesses to co-processors 1 and 2 are Undefined on a real CPU,

QEMU still supports emulation of these co-processors (Bambrough, 1999). Thus,

these instructions generate an illegal instruction exception only on the real CPU.

Misaligned Memory Access Checks: As hinted by Proteus with the large

number of instances in the <abt, !SIGBUS> group in Table 5.3b, we identify that
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QEMU does not enforce memory alignment requirements (e.g., alignment at word

boundaries) for the ARM instructions that do not support misaligned memory ac-

cesses. The data aborts caused by such misaligned accesses would take the CPU into

abt mode and the program is expected to be signalled with SIGBUS to notify that

the memory subsystem cannot handle the request. Due to missing alignment checks

in QEMU, a malware can easily fingerprint emulation by generating a memory ref-

erence with a misaligned address and observing whether the operation succeeds (i.e.,

in QEMU) or fails (i.e., on a real system).

The ARMv7 implementations can support misaligned accesses for the load/store

instructions that access a single word (e.g., LDR, STR), a half-word (e.g., LDRH, STRH)

or only a byte of data (e.g., LDRB, STRB). However, other instructions that perform

multiple loads/stores (e.g., LDM, STM) or memory-register swaps for synchronization

(e.g., SWP, LDREX, STREX) require proper alignment of the data being referenced. The

alignment requirement can be word, half-word or double-word depending on the size

of data being accessed by the instruction.

Updates to Execution State Bits: By analyzing the divergent instructions

reported by Proteus within the register divergence group, we identified another

important root cause in QEMU due to masking out of the execution state bits during

a status register update. Specifically, we analyzed the cases where execution state bits

within CPSR differ after an MSR (move to special registers) instruction. Execution state

bits in CPSR determine the current instruction set (e.g., ARM, Thumb, Jazelle) and

the endianness for loads and stores. While MSR system instructions allow to update

CPSR, writes to execution state bits are not allowed with the only exception being the

endianness bit (CPSR.E). The ARM ISA specifies that “CPSR.E bit is writable from

any mode using an MSR instruction” (ARM, 2018b). However, since updates on the

CPSR.E bit by an MSR instruction are ignored in current QEMU, software can easily
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fingerprint the emulation by simply trying to flip this bit (e.g., using MSR CPSR x,

0x200 instruction) and checking whether the endianness has been succesfully changed.

Observations from other statistics: Our initial investigations on <usr, SIGILL>

and mem op divergence groups did not reveal any further root causes as above. We

find that the majority of the divergent cases in mem op divergence group (¿97%)

are due to VFP/SIMD instructions effecting the extension registers. Our current

work focuses on the user-mode general purpose registers only. During analysis on

<usr, SIGILL> group, we identified divergences due to Unpredictable instructions.

This issue is due to the incomplete SML model (Fox, 2012) which misses some

Unpredictable instructions in our test cases (Figure 5·7). For instance, we find

that 761 divergence cases in <usr, SIGILL> group are due to Unpredictable encod-

ings of a PLD (i.e., preload data) instruction, which behave as a NOP in Fast Model

but generate an illegal instruction exception in QEMU.

Demonstration with Real Smartphones and the SDK Emulator

In this section, we address our second research question on evaluating the effectiveness

of the divergences found by Proteus for real-world emulation detection. To tackle

this objective, we evaluate the divergences identified by Proteus on a physical mobile

platform and Android emulator. We use Nexus 5 (ARMv7) and Nexus 6P (ARMv8)

smartphones as our real hardware test-beds and use the full-system emulator from

the Android SDK. We choose the SDK emulator as it has been a popular base for

Android dynamic analysis frameworks (Yan and Yin, 2012; Oberheide and Miller,

2012; Tam et al., 2015).

Evaluating Unsanitized Undefined Encodings: We use the detection binaries

generated by Proteus to evaluate the Undefined instructions that are incompletely

sanitized in QEMU (i.e., <und, !SIGILL> group). These cases are expected to gen-
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erate an illegal instruction exception only on a real CPU.

We find that the SDK’s copy of QEMU does not incorporate the FPA11 floating

point co-processor emulation which is supported in our version of QEMU and ac-

cessed by the instructions that use co-processors 1 and 2. Thus, these instructions

are Undefined in SDK emulator as well and we cannot successfully distinguish the

emulator from the real hardware. As discussed previously, FPA11 instructions ac-

count for 87% of the cases in <und, !SIGILL> group. However, we can successfully

fingerprint the SDK emulator using all the other divergent Undefined instructions.

Specifically, all the encodings described in Table 5.4 can deterministically distinguish

between SDK emulator and Nexus 5. The detector programs simply register a set of

signal handlers and detect the SDK emulator if the program does not receive SIGILL

upon executing the divergent Undefined instruction.

Listing 5.2: PoC for emulator detection by flipping endian-

ness bit.

/∗ Put some known data in t o memory ∗/
int ∗ptr = c a l l o c (1 , s izeof ( int ) ) ;

ptr [ 0 ] = 0x12345678 ;

asm( ”mov r8 ,%0” : : ” r ” ( ptr ) ) ;

/∗ Read p t r [ 0 ] wi th CPSR.E s e t to 1 ∗/
asm( ”msr CPSR x , #0x200\n\ t ” ) ;

asm( ” l d r r4 , [ r8 ]\n\ t ” ) ;

asm( ”msr CPSR x , #0x000\n\ t ” ) ;

asm( ”mov %0, r4 ” : ”=r ” ( va l ) : : ) ;

p r i n t f ( ”0x%08X\n” , va l ) ;
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Listing 5.3: PoC for emulator detection by misaligned mem-

ory read.

/∗ Put some known data in t o memory ∗/
int ∗ptr = c a l l o c (1 , s izeof ( int ) ) ;

ptr [ 0 ] = 0x12345678 ;

// S h i f t address to a non−word boundary

ptr = ( int ∗ ) ( ( char∗) ptr + 0x1 ) ;

//Try to read from misa l i gned address

asm( ”mov r3 ,%0” : : ” r ” ( ptr ) ) ;

asm( ”LDM r3 ,{%0}” : ”=r ” ( va l ) : : ) ;

p r i n t f ( ”0x%08X\n” , va l ) ;

Evaluating Missing Alignment Checks and Endianness Support: We also

show that we can successfully detect the SDK emulator by leveraging the ignored en-

dianness bit updates as well as the missing memory address alignment checks. Listing

5.2 provides a proof-of-concept (PoC) code sample that fingerprints emulation by flip-

ping the endianness bit in the CPU (i.e., CPSR.E) and performing a load operation

on a known data value to determine whether the endianness has been changed. Exe-

cuting this code snippet on a real hardware (i.e., Nexus 5 in our case) reads the array

value as 0x78563412 instead of 0x12345678 as the CPSR.E bit is set to switch from

little-endian to big-endian operation for data accesses. However, since the CPSR.E

bit update is ignored in QEMU, the LDR instruction reads the array element into

R4 as 0x12345678 on the SDK emulator. Thus, a malware can easily fingerprint

emulation by simply checking the value of target register (i.e., R4 in this example).

Similarly, Listing 5.3 illustrates how the missing alignments checks in QEMU can be

leveraged to fingerprint emulation. We shift the word-aligned ptr pointer by one byte

to create a misaligned reference address. Reading from this misaligned pointer with
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an LDM (i.e., load multiple) instruction causes a bus error (program receives SIGBUS)

on a real hardware while it succesfully reads the high-order part (0x123456) of the

target address on the SDK emulator. Thus, a malware can simply determine emula-

tion depending on whether a SIGBUS signal is received (i.e., on a real system) upon

intentionally causing a misaligned memory access.

Evaluation on a ARMv8 CPU: The 64-bit ARMv8 architecture, which is used

in recent smartphones, is compatible with ARMv7. Thus, the CPU semantic attacks

we demonstrate in this work also apply to devices powered with ARMv8 CPUs (e.g.,

Nexus 6P). We evaluated PoC detectors for each root cause we discovered (i.e., Table

5.4, Listings 5.2 and 5.3) on a Nexus 6P smartphone and successfully distinguished

this device from the SDK emulator as well.

Improving the Fidelity of QEMU

With the capabilities of Proteus for identifying and classifying divergences in

instruction-level behavior, in this section, we show the feasibility of eliminating the

sources of discrepancies to improve QEMU’s fidelity.

We have modified the QEMU source code of the SDK emulator to eliminate the

Figure 5·11: Overhead evalua-
tion of fidelity enhancements.

top 3 detection methods in Table 5.4 based on

incomplete sanitization of opcodes for Undefined

encodings. Specifically, based on the ARM ISA

specification (ARM, 2018b), we fixed the decod-

ing logic of QEMU to verify all opcode fields for

these 3 cases and trigger an illegal instruction ex-

ception for the Undefined encodings. These fixes

eliminated 1190 divergent cases in Table 5.4. Us-

ing various CPU benchmarks from MiBench suite (Guthaus et al., 2001), in Figure
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5·11, we verified that the minimal extra code needed to perform additional opcode

checks does not introduce any measurable performance overhead. We acknowledge,

however, that addressing the alignment check and endianness support in QEMU will

require more comprehensive changes than the missing opcode checks for Undefined

encodings.
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Chapter 6

Conclusion and Open Problems

This thesis has presented techniques to improve sustained performance under thermal

limitations of contemporary mobile devices. We have presented thermally-efficient

runtime strategies that leverage insights from real-world mobile applications as well

as providing software frameworks to aid systematic study of such applications. In

this section, we briefly discuss several future directions for these techniques. We also

summarize the distinguishing aspects of this work.

6.1 Future Research Directions and Open Problems

As the computational power needed to support the emerging field of applications (e.g.,

AI/ML, healthcare) increases, energy and thermal restrictions of mobile devices will

be even more crucial. Therefore, innovations across all layers of the computing stack

is necessary. For instance, use of domain-specific hardware accelerators to efficiently

execute common daily use cases can drastically reduce power while improving per-

formance (e.g., for Web browsing (Zhu and Reddi, 2014) or machine learning (Chen

et al., 2014)). Similarly, more synergistic design of applications or system software to-

gether with the hardware architecture can unlock orders of magnitude improvements

in energy efficiency and performance (Zhu et al., 2018; Belay et al., 2014; Belay et al.,

2012). In this section, we describe several specific future steps for the work presented

in this thesis. In Section 6.1.1, we describe several future directions to improve the

mobile system efficiency through advancements in system software. Section 6.1.2
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discusses the future work for record and replay of mobile applications.

6.1.1 Runtime Management in Mobile Systems

This thesis has presented runtime techniques to provide extended durations of sus-

tained QoS. We have proposed to tune the short-term QoS under thermal limitations

to provide “just enough” performance for the user needs. Through real-system eval-

uations, we have demonstrated significantly longer durations of sustained QoS using

our techniques. However, there are several opportunities to advance our runtime

policies and extend the scope of our work.

Current schedulers in state-of-the-art heterogeneous mobile platforms take actions

based on coarse-grained utilization metrics. In our work (Sahin and Coskun, 2016b),

we have demonstrated the benefits of guiding scheduling decisions based on the criti-

cality of thread in terms of QoS in mobile applications. However, identifying the QoS

critical threads in a systematic and practical manner remains an important open

problem. A promising approach to address this problem could be to provide runtime

management with information from the application or the Android framework. Prior

work (Zhang et al., 2013; Ravindranath et al., 2012) has proposed techniques to ex-

tract various critical computations within the application as well as the framework

that relate to user perceived performance. Such identification of critical computations

can be provided as an input to runtime management to guide scheduling decisions.

The runtime policies we have presented in this thesis focus primarily on the CPU

subsystem. Current mobile SoCs employ increasing number of on-chip accelerators

(e.g., a GPU), which can also substantially contribute to power consumption (Halpern

et al., 2016; Hill and Reddi, 2019). Thus, further improvements in sustained QoS

durations can be achieved by regulating the power consumption of other IP blocks

than the CPU to deliver “just enough” performance. However, managing the power

and performance tradeoffs across multiple IP blocks is a challenging problem due to



122

the need to consider the tight interactions between IPs (Nachiappan et al., 2015).

6.1.2 Record and Replay for Android

The record and replay framework we have proposed for Android, RandR (Sahin

et al., 2019), provides cross-platform reproducibility of multiple non-deterministic

input sources. Our current implementation of RandR, however, can be improved

along several dimensions to provide higher replay fidelity and generality.

RandR currently does not support record and replay of various other non-

deterministic input sources such as GPS or other sensor data. This limitation can be

addressed by identifying the additional instrumentation points in the Android frame-

work. RandR can be provided with the additional instrumentation points as well as

the necessary logic for record and replay to handle other input sources.

RandR only supports cross-platform replayability for the applications that use

the Android’s UI toolkit (i.e., widgets). However, various applications (i.e., primarily

games) render their UI screen natively without relying on the UI components provided

by Android. This problem can be addressed to some extent with learning-based ap-

proaches that automatically analyze user-visible screen states and mimic the recorded

user interactions (Hu et al., 2018).

RandR also does not guarantee any scheduling order among threads. Thus, RandR

may not be able to accurately reproduce any application behavior that depend on

the order of execution between threads (e.g., race conditions). Prior work has en-

forced such ordering constraints with modifications to the kernel (Veeraraghavan

et al., 2012). However, such modifications would change the nature of RandR as

they would necessitate elevated privileges on the target device.
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6.2 Summary of Major Contributions

As the mobile SoC designs push the performance envelope to serve our complex daily

applications with high performance, power and thermal limitations have became a

major roadblock. Increased power densities cause thermal violations and lead to

unsustainability of the QoS levels delivered to users. This thesis has claimed that

systematic understanding of real-world mobile applications and leveraging insights

from their characteristics allow to exploit unique tradeoffs between temperature and

QoS, and maximize sustained performance. To this end, we proposed 1) runtime

management techniques that provide thermally-efficient and application-aware QoS

management for mobile applications; 2) software frameworks to enable systematic

and reproducible experiments with real-world mobile applications.

This thesis first experimentally shows that existing thermal management strategies

in mobile devices that greedily boost performance can result in significant QoS loss

over extended durations of application use (e.g., as in gaming). We have argued for

QoS-centric thermal management that is optimized for “just enough”, as opposed to

the maximum, performance needed to satisfy user demands.

We have proposed thermally-efficient QoS control techniques for both homoge-

neous and heterogeneous multi-core CPUs. Our closed-loop QoS controller with

thermally-efficient DVFS state scheduling technique reduces peak temperatures by

exploiting thermal time constants while precisely delivering QoS targets. Such DVFS-

based policies can be broadly applied to both homogeneous and heterogeneous CPU

platforms. However, leveraging the unique power/performance tradeoffs offered by

heterogeneous CPUs (e.g., big.LITTLE) via efficient scheduling can provide further

room for optimization. To this end, we have proposed a thermally-efficient QoS con-

trol framework, QScale, for heterogeneous platforms. QScale exploits low TLP in

mobile applications along with considering the QoS criticality of individual threads
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to reduce the load on power-hungry cores while meeting QoS targets. QScale strate-

gically activates the power-hungry cores that provide the most thermally-efficient

operation by monitoring CPU-GPU thermal couplings at runtime. Overall, our real-

system implementation and evaluation of QScale has shown up to 8x longer durations

of sustained QoS.

Our thermally-efficient runtime techniques described above meets a target QoS

constraint while minimizing temperatures, A related important question is how to

determine the target QoS levels for mobile applications. We have addressed this

problem with a runtime QoS management framework, Maestro. Maestro identifies

an application’s compute behavior in runtime and manages QoS accordingly. For

applications dominated by bursty tasks, Maestro allows to maximize QoS (i.e., to

reduce latency) as the durations of thermal throttling is relatively short (i.e., less than

a few seconds) and the idleness between the bursts allows to reduce temperature. For

the cases of continuous throughput-oriented computations with high power, Maestro

proactively trades off QoS to enable sustained QoS over the use. Through real-

life implementation and evaluation, we have shown Maestro’s ability to adapt to

application behavior and autonomously manage QoS to improve the durations of

sustained performance by 41% to 6.7x.

Our thermally-efficient runtime management strategies described above derives

insights from the real-world behavior of mobile applications (e.g., QoS contraints,

bursty and throughput-oriented computations). Systematically exploring real-world

behavior of mobile applications, however, has proven challenging. This is due to

non-deterministic behavior of mobile applications whose execution vastly vary due to

multiple sources of input (e.g., UI, network). This thesis provides software frameworks

for systematic evaluation of real-world mobile applications.

We have presented the RandR system for record and replay of Android appli-
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cations to enable reproducibility of their executions while also eliminating the de-

ployment challenges of existing toos. RandR captures the inputs to an application

by hooking into a specific set of instrumentation points in the Android framework

and native libraries. By performing the instrumentation within an application’s own

sandbox, RandR runs on unmodified devices and works with real-world closed-source

applications with only minimal modifications to an application’s bytecode. RandR

captures UI and random number inputs by hooking into a set of Java APIs in the

Android framework and provides widget-sensitive cross-platform replay capabilities.

RandR also reproduces network traffic in applications by intercepting the random

inputs in the TLS protocol as well as the system call wrappers methods in libc. We

have implemented a prototype of RandR and demonstrated its accurate record and

replay capabilities using 10 real-world Android applications both qualitatively (i.e.,

via visual comparison) and quantitatively (i.e., via the similarity between the sets of

executed methods).

We have also studied the malicious non-determinism in Android applications that

seek to evade emulated dynamic analysis sandboxes. We have presented the first

systematic study of differences in instruction-level behavior of emulated and real

ARM CPUs that power the vast majority of Android devices. We have proposed the

Proteus system to automatically analyze detailed instruction-level traces collected

from QEMU and accurate software models of ARM CPUs, and identify discrepancies

in the instruction-level behavior. Our evaluation has revealed several major root

causes for instruction-level discrepancies in QEMU. We have also demonstrated the

feasibility of enhancing the fidelity of QEMU by fixing the root causes of divergences

without any performance impact.

Overall, we have shown that the thermally-efficient runtime management strate-

gies we have presented in this work can improve the durations of sustained QoS by up
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to 8x. We have also proposed a technique to autonomously manage QoS tradeoffs to

achieve sustainable performance in real-world mobile applications. Finally, in order

to facilitate the mobile system research on real-life systems (i.e., as in this thesis),

we have presented software frameworks to aid systematic study of real-world mobile

application behavior.
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