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Abstract. With the growing complexity and scale of high perfor-
mance computing (HPC) systems, application performance variation has
become a significant challenge in efficient and resilient system manage-
ment. Application performance variation can be caused by resource con-
tention as well as software- and firmware-related problems, and can lead
to premature job termination, reduced performance, and wasted compute
platform resources. To effectively alleviate this problem, system admin-
istrators must detect and identify the anomalies that are responsible for
performance variation and take preventive actions. However, diagnosing
anomalies is often a difficult task given the vast amount of noisy and
high-dimensional data being collected via a variety of system monitoring
infrastructures.

In this paper, we present a novel framework that uses machine learning
to automatically diagnose previously encountered performance anomalies
in HPC systems. Our framework leverages resource usage and perfor-
mance counter data collected during application runs. We first convert
the collected time series data into statistical features that retain applica-
tion characteristics to significantly reduce the computational overhead of
our technique. We then use machine learning algorithms to learn anomaly
characteristics from this historical data and to identify the types of anom-
alies observed while running applications. We evaluate our framework
both on an HPC cluster and on a public cloud, and demonstrate that
our approach outperforms current state-of-the-art techniques in detect-
ing anomalies, reaching an F-score over 0.97.

1 Introduction

Application performance variations are among the significant challenges
in today’s high performance computing (HPC) systems as they adversely impact
system efficiency. For example, the amount of variation in application running
times can reach 100% on real-life systems [12,28,31]. In addition to leading to
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unpredictable application running times, performance variations can also cause
premature job terminations and wasted compute cycles. Common examples of
anomalies that can lead to performance variation include orphan processes left
over from previous jobs consuming system resources [16], firmware bugs [1], mem-
ory leaks [6], CPU throttling for thermal control [15], and resource contention
[12,18,28]. These anomalies manifest themselves in system logs, performance
counters, or resource usage data.

To detect performance variations and determine the associated root causes,
HPC operators typically monitor system health by continuously collecting sys-
tem logs along with performance counters and resource usage data such as avail-
able network link bandwidth and CPU utilization. Hundreds of metrics collected
from thousands of nodes at frequencies suitable for performance analysis trans-
late to billions of data points per day [7]. As HPC systems grow in size and
complexity, it is becoming increasingly impractical to analyze this data man-
ually. Thus, it is essential to have tools that automatically identify problems
through continuous and/or periodic analysis of data.

In this study, we describe a machine learning framework that can automat-
ically detect compute nodes that have exhibited known performance anomalies
and also diagnose the type of the anomaly. Our framework avoids data deluge by
using easy-to-compute statistical features extracted from applications’ resource
utilization patterns. We evaluate the effectiveness of our framework in two envi-
ronments: a Cray XC30m machine, and a public cloud hosted on a Beowulf-
like cluster [33]. We demonstrate that our framework can detect and classify
anomalies with an F-score above 0.97, while the F-score of the state-of-the-art
techniques are between 0.89 and 0.97. Our specific contributions are:

– An easy-to-compute and fast statistical feature extraction approach that sig-
nificantly reduces the amount of data required for performance analysis at
runtime, while retaining relevant information for anomaly detection.

– A novel low-overhead method based on machine learning algorithms that can
automatically detect and identify the anomalies that cause performance vari-
ations. We demonstrate that our approach outperforms the state-of-the-art
techniques on identifying anomalies on two fundamentally different platforms:
a CRAY XC30m HPC cluster and a public cloud.

The rest of the paper is organized as follows: Sect. 2 provides an overview
of related work, Sect. 3 describes our machine-learning-based anomaly detection
framework, Sect. 4 describes the state-of-the-art algorithms that we implement
as baselines, Sect. 5 explains our experimental methodology, and Sect. 6 provides
our experimental findings. Finally, we conclude in Sect. 7.

2 Related Work

Analysis of performance anomalies in large scale computing systems is a widely
studied topic in the literature [25,32]. Some monitoring systems utilize raw
data directly to define thresholds on monitored metrics to trigger alarms that
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warn system administrators about possible performance impasses [13]. Such
approaches do not provide root cause analysis, and manually defining thresh-
olds for root cause analysis requires expert knowledge and is hard to maintain.

A critical problem in automated anomaly diagnosis based on application
performance and resource usage is the overwhelming volume of data monitored at
runtime [25]. Time series analysis methods such as correlation and dynamic time
warping [10] incur unacceptable computational overhead when used with high
dimensional data. Various dimensionality reduction techniques such as principal
component analysis (PCA) have been used to address this problem [20,23,27].
However, techniques focused on reducing the dataset can sometimes eliminate
features that are useful for anomaly detection (see Sect. 6.1).

Another way of addressing the data volume problem is to generate finger-
prints (i.e., signatures) by transforming monitored data. Bodik et al. [14] use
quantiles of measured values (e.g., 95th percentile) at different time epochs to
summarize the collected metric time series in a fingerprint. They further reduce
this data using logistic regression to eliminate metrics that are irrelevant for
anomaly detection. We use Bodik et al.’s technique as a baseline and demon-
strate that our approach has superior anomaly detection accuracy (See Sect. 6).

Anomaly detection is typically orthogonal to dimensionality reduction tech-
niques. Researchers have used statistical techniques and machine learning algo-
rithms (i.e., either alone or after dimension reduction) for detecting and classi-
fying specific subsystem anomalies such as high network congestion [11], poor
file system performance [26], temperature-related issues [9], or out-of-memory
errors [16]. These techniques can detect specific anomalies with high precision,
but existing methods do not provide a generic framework to detect and classify
anomalies occurring in compute nodes.

Most of the related work on automated anomaly detection use low-
dimensional data collected via coarse-grained monitoring tools (e.g., 1 min or
greater sampling period). Several researchers have demonstrated that a detailed
view on how platform resources are being utilized using finer-grained monitoring
(e.g., sampling every second) can provide better insight into application behavior
and can be leveraged to more effectively discover anomalies. For this purpose,
they use manually selected examples of power- and thermal-issues [15] as well as
file system congestion and runaway memory demands [6]. These studies do not
propose an automated method to discover these problems.

A large number of studies focus on anomaly detection via log file analysis
(e.g., [19,21,24]). In this work, we use application resource usage and perfor-
mance characteristics to detect anomalies instead of relying on system logs;
hence, our work is orthogonal to log-file based anomaly detection approaches.

To the best of our knowledge, our work is the first to address the anomaly
detection and classification problem using an automated framework in conjunc-
tion with fine-grained monitoring tools in HPC systems. By leveraging statistical
features that are useful for time series clustering, our anomaly detection method
is able to diagnose anomalies more accurately than other known approaches.
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3 Anomaly Detection and Classification

Our goal is to detect anomalies that cause performance variations and to classify
the anomaly into one of the previously encountered anomaly types. To this end,
we propose an automated anomaly detection technique, which takes advantage
of historical data collected from known healthy runs and anomalies, and builds
generic machine learning models that can distinguish anomaly characteristics
in the collected data. In this way, we are able to detect and classify anomalies
when running applications with a variety of previously unobserved inputs. With
a training set that represents the expected application characteristics, our tech-
nique is successful even when a known anomaly impacts an application we have
not encountered during training.

Directly using raw time series data that is continuously collected from thou-
sands of nodes for anomaly detection can incur unacceptable computational
overhead. This can lead to significant time gaps between data collection and
analysis, delayed remedies, and wasted compute resources. Instead of using raw
time series data, we extract concise statistical features that retain the character-
istics of the time series. This significantly reduces our data set, thus decreasing
the computational overhead and storage requirements of our approach. We apply
our anomaly diagnosis offline after application runs are complete. In future work,
online or periodic anomaly detection can be performed by extending our frame-
work. In the next subsections, we explain the details of our proposed approach
on feature extraction and machine learning.

3.1 Feature Extraction

HPC monitoring infrastructures are rapidly evolving and new monitoring sys-
tems are able to periodically collect resource usage metrics (e.g., CPU utiliza-
tion, available memory) and performance counters (e.g., received/transmitted
network packets, CPU interrupt counts) during application runs [7]. This data
provides a detailed view on applications’ runtime characteristics.

While an application is running, we periodically collect resource usage and
performance counter metrics from each node during the entire application run.
Note that our technique is also applicable when metrics are collected for a slid-
ing history window to investigate only recent data. The metrics we collect, as
described in detail in Sect. 5.1, are not specific to any monitoring infrastructure
and the proposed framework can be coupled with different HPC monitoring sys-
tems (e.g., [2,5,7]). From the time series of collected metrics, we extract the
following easy-to-compute features to enable fast anomaly analysis:

– Simple order statistics that help differentiate between healthy and anomalous
behavior: the minimum value, 5th, 25th, 50th, 75th, and 95th percentile values,
the maximum value, and the standard deviation;

– Features that are known to be useful for time-series clustering [35]:
• Skewness indicates lack of symmetry. In a time series Xt, skewness S is

defined by S = 1
nσ3

∑n
t=1

(
Xt − Xt

)3
, where Xt is the mean, σ is standard

deviation, and n is the number of data points.
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• Kurtosis refers to the heaviness of the tails of a distribution. The kurtosis
coefficient is defined as K = 1

nσ4

∑n
t=1

(
Xt − Xt

)4
.

• Serial correlation measures the noisiness in given data, and can be esti-
mated by the Box-Pierce statistic [36].

• Linearity is a measure of how well a time series can be forecasted with
traditional linear models [22].

• Self-similarity measures the long-range dependence, i.e., the correlation
of Xt and Xt+k in time series Xt for large values of k.

The calculation of statistical features is a low-overhead procedure, and can
be further optimized to work with data streams for on the fly feature generation.
We provide an evaluation of the overhead of our implementation in Sect. 6.5.

3.2 Anomaly Diagnosis Using Machine Learning

Our machine-learning-based anomaly diagnosis approach is depicted in Fig. 1. As
seen in the figure, during offline training, we run various types of applications
(denoted as A, B, C in the figure) using different input sizes and input data
(denoted with subscripts 1, 2, etc. in the figure). We gather resource usage and
performance counter metrics from the nodes used by each application both when
running without any anomaly and when we inject a synthetic anomaly to one of
the nodes (see Sect. 5.2 for details on injected anomalies). When an application
finishes executing, we compute statistical features using the metrics collected
from individual nodes as described in Sect. 3.1. We label each node with the type
of the introduced anomaly (or healthy). We use these labels and computed per-
node features as input data to train various machine learning algorithms such as
k-nearest neighbors and random forests. As machine learning algorithms do not
use application type as input, they extract anomaly characteristics independent
of applications.

At runtime, we again monitor application resource usage and performance
counter metrics and extract their statistical features. We then use the machine
learning models built during the training phase to detect anomalies and identify
the types of anomalies in the nodes used by the application.

Fig. 1. Overall system architecture. Machine learning models built offline are used for
classifying observations at runtime.
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4 Baseline Methods

We implemented two state-of-the art methods as baselines of comparisons: the
statistical approach proposed by Lan et al. [27] (referred as “ST-Lan”), and the
fingerprinting approach of Bodik et al. [14] (referred as “FP-Bodik”).

4.1 ST-Lan [27]

The core idea of ST-Lan is to detect anomalies based on distances between time
series. ST-Lan applies Independent Component Analysis (ICA) to transform
the monitored time series data into independent components, which represent
the directions of maximal independence in data by using a linear combination
of metrics. The first 3 independent components are used as a behavioral profile
of a node. At runtime, the authors compare the behavioral profiles of the nodes
that are used in new application runs to the profiles of known healthy nodes
to identify whether the collected time series is an outlier using a distance-based
outlier detection algorithm.

4.2 FP-Bodik [14]

This method first divides each metric’s time series into equal-sized epochs. Each
epoch is represented by three values: 25th, 50th, and 95th percentiles within that
epoch. FP-Bodik further reduces data by selecting a subset of monitored metrics
that are indicative of anomalies in the training set using logistic regression with
L1 regularization. Next, a healthy range for the percentiles of each metric is
identified using the values observed in healthy nodes while running applications.
FP-Bodik then creates a summary vector for each percentile of each epoch based
on whether observed metrics are within healthy ranges. The average of all sum-
mary vectors from a node constructs a fingerprint vector of the node. In order
to find and classify anomalies, FP-Bodik compares L2 distances among these
fingerprint vectors and chooses the nearest neighbor’s category as the predicted
anomaly type.

5 Experimental Methodology

Our experiments aim to provide a realistic evaluation of the proposed method in
comparison with the baseline techniques. We run kernels representing common
HPC workloads and infuse synthetic anomalies to mimic anomalies observed in
real-world HPC systems. This section describes our anomaly generation tech-
niques, experimental environments, and the HPC applications we run in detail.

5.1 HPC Systems and Monitoring Infrastructures

We use two fundamentally different environments to evaluate our anomaly detec-
tion technique: a supercomputer, specifically a Cray XC30m cluster named Volta,
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and the Massachusetts Open Cloud (MOC), a public cloud running on a Beowulf-
like [33] cluster. We select these two environments as they represent modern
deployment options for HPC systems.

Volta is a Cray XC30m cluster located at Sandia National Laboratories and
accessed through Sandia External Collaboration Network1. It consists of 52 com-
pute nodes, organized in 13 fully connected switches with 4 nodes per switch.
The nodes run SUSE Linux with kernel version 3.0.101. Each node has 64 GB
of memory and two sockets, each with an Intel Xeon E5-2695 v2 CPU with 12
2-way hyper-threaded cores, leading to a total of 48 threads per node.

Volta is monitored by the Lightweight Distributed Metric Service (LDMS)
[7]. This service enables aggregation of a number of metrics from a large number
of nodes. At every second, LDMS collects 721 different metrics as described
below:

– Memory metrics (e.g., free, cached, active, inactive, dirty memory)
– CPU metrics (e.g., per core and overall idle time, I/O wait time, hard and

soft interrupt counts, context switch count)
– Virtual memory statistics (e.g., free, active/inactive pages; read/write counts)
– Cray performance counters (e.g., power consumption, dirty, writeback coun-

ters; received/transmitted bytes/packets)
– Aries network interface controller counters (e.g., received/transmitted pack-

ets, flits, blocked packets)

Massachusetts Open Cloud (MOC) is an infrastructure as a service (IaaS)
cloud running in the Massachusetts Green High Performance Computing Center,
which is a 15 MW datacenter dedicated for research purposes [3].

In MOC, we use virtual machines (VMs) managed by OpenStack [30], where
the compute nodes are VMs running on commodity-grade servers which commu-
nicate through the local area network. Although we take measurements from the
VMs, we do not have control or visibility over other VMs running on the same
host. Other VMs naturally add noise to our measurements, making anomaly
detection more challenging.

We periodically collect resource usage data using the monitoring infrastruc-
ture built in MOC [34]. Every 5 s, this infrastructure collects 53 metrics,
which are subset of node-level metrics read from the Linux /proc/stat and
/proc/meminfo pseudo-files as well as iostat and vmstat tools. The specific
set of collected metrics are selected by MOC developers and can be found in the
public MOC code repository [4].

5.2 Synthetic Anomalies

We focus on node-level anomalies that create performance variations. These
anomalies can result from system or application-level issues. Examples of such
anomalies are as follows:
1 http://www.sandia.gov/FSO/docs/ECN Account Process.pdf.

http://www.sandia.gov/FSO/docs/ECN_Account_Process.pdf
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– Out-of-memory: When the system memory is exhausted in an HPC platform,
the Linux out-of-memory killer terminates the executing application. This is
typically caused by memory leaks [6].

– Orphan processes: When a job terminates incorrectly, it may result in
orphan processes that continue using system resources such as memory and
CPU [16,17].

– Hidden hardware problems: Automatic compensation mechanisms for hard-
ware faults can lead to poor overall system performance. An example of such
problems was experienced in Sandia National Laboratories’ Redstorm system
as slower performance in specific nodes, where several CPUs were running at
2.0 GHz instead of 2.2 GHz [32].

We run synthetic anomalies on a single node of a multi-node HPC application
to mimic the anomalies seen in real-life systems by stressing individual compo-
nents of the node (e.g., CPU or memory), emulating interference or malfunction
in that component. As synthetic anomalies, we use the following programs with
two different anomaly intensities:

1. leak: This program allocates a 16 MB char array, fills the array with charac-
ters, and sleeps for two seconds in an infinite loop. The allocated memory is
never released, leading to a memory leak. If the available system memory is
consumed before the running application finishes, the leak program restarts.
In the low intensity mode, a 4 MB array is used.

2. memeater: This program allocates a 36 MB int array and fills the array with
random integers. It then periodically increases the size of the array using
realloc and fills in new elements. After 10 iterations, the application restarts.
In the low intensity mode, an 18 MB array is used.

3. ddot: This program allocates two equally sized matrices of double type, using
memalign, fills them with a number, and calculates the dot product of the
two matrices repeatedly. We change the matrix size periodically to be 0.9, 5
and 10 times the sizes of the caches. It simulates CPU and cache interference
by re-using the same array. The low intensity mode allocates arrays half the
size of the original.

4. dcopy: This program again allocates two matrices of sizes equal to those of
ddot, however it copies one matrix to the other one repeatedly. Compared to
ddot, it has less CPU interference and writes back to the matrix.

5. dial: Repeatedly generates random floating point numbers, and performs
arithmetic operations, thus stresses the ALU. In low intensity mode, the
anomaly sleeps for 125 ms every 250 ms.

5.3 Applications

In order to test our system with a variety of applications, we use the NAS Parallel
Benchmarks (NPB) [8]. We pick five NPB applications (bt, cg, ft, lu and sp),
with which we can obtain feasible running times (10–15 min) for three different
custom input sizes. Each application run uses 4 nodes on Volta and 4 VMs on
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MOC. As some of our applications require the number of MPI ranks to be the
square of an integer or to be a power of two, we adjust the number of ranks used
in our experiments to meet these requirements and run applications with 64 and
16 ranks in Volta and MOC, respectively.

In our experiments, we run the selected 5 NPB applications for every com-
bination of 3 different application input sizes and 20 and 10 randomized input
data set in Volta and MOC, respectively. We repeat each of these runs 20 times:
10 without any anomaly, and 10 with one of the 4 application nodes having
a synthetic anomaly for every combination of 5 anomaly types and 2 anomaly
intensities. This results in 3000 application runs in Volta and 1500 in MOC, half
of which use a single unhealthy node, i.e., a node with an anomaly.

We have observed that for the application runs with a single unhealthy node,
the characteristics of the remaining (i.e., healthy) nodes are more similar to the
nodes in a completely healthy application run than to an unhealthy node. This is
because even when the runtime of an application changes due to inclusion of an
unhealthy node, the characteristics that we evaluate do not change significantly
on the remaining healthy nodes for the applications we use.

5.4 Implementation Details

We implement most of our preprocessing and classification steps in python.
Before feature generation, we remove the first and last 30 s of the collected time
series data to strip out the initialization and termination phases of the applica-
tions. Note that the choice of 30 s is based on these particular applications and
the configuration parameters used.

During pre-processing, we take the derivative of the performance counters
so that the resulting metrics represent the number of events that occurred over
the sample interval (e.g., interrupts per second). This is automatically done in
MOC, and can be easily integrated into LDMS in Volta.

Proposed Framework: For feature generation, we use the python scipy-
stats package to calculate skewness and kurtosis. We use R to calculate Box-
Pierce statistics, the tseries R package to calculate the Teräsvirta neural net-
work test for linearity, and the fracdiff R package for self-similarity.

We evaluate the following machine learning algorithms: k-nearest neighbors,
support vector classifiers with the radial basis function kernel, decision trees,
random forests, and AdaBoost. We use python’s scikit-learn packages [29]
for the implementations of these algorithms.

ST-Lan: This algorithm uses the first N = 3 independent components deter-
mined by ICA as the behavioral profile of a node. The first 3 independent compo-
nents do not capture the independent dimensions in our data because the metric
set we monitor is significantly larger than that used by Lan et al. As the authors
do not provide a methodology to select N , we have swept N values within [3, 20]
range and compared accuracy in terms of the percentage of correctly labeled
nodes on both of our experimental platforms as shown in Fig. 2. N = 7 and
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Fig. 2. Classification accuracy of ST-Lan w.r.t. number of independent components
used in the algorithm for the two platforms used in this study.

N = 12 provide the highest accuracy on Volta and MOC, respectively. We set-
tled on N = 10 as it provides a good middleground value that results in high
accuracy on both platforms. In addition to selecting N , we extend ST-Lan to
be able to do multi-class classification (i.e., to identify the type of an anomaly)
as well by using a kNN classifier instead of the distance-based outlier detection
algorithm used by the authors.

FP-Bodik: This algorithm uses divides the collected metric time series into
epochs before generating fingerprints. In their work [14], Bodik et al. select
the epoch length as 15 min with a sampling rate of a few minutes due to the
restrictions in their monitoring infrastructure. In our implementation, we use
the epoch length as 100 measurements, which corresponds to 100 s.

6 Results

We evaluate the detection algorithms using 5-fold stratified cross validation,
which is a standard technique for evaluating machine learning algorithms, and
is performed as follows: We randomly divide our data set into 5 equal-sized
partitions with each partition having data from a balanced number of application
runs for each anomaly. We use a single partition for testing while using the
other 4 disjoint partitions for training; and repeat this procedure 5 times, where
each partition is used once for testing. Furthermore, we repeat the 5-fold cross
validation 10 times with different randomly-selected partitions.

We calculate the average precision and recall for each class across all test
sets, where the classes are the 5 anomalies we use and “healthy”, and precision
and recall of class Ci are defined as follows:

precisionCi
= (# of correct predictions)Ci

/(# of predictions)Ci
(1)

recallCi
= (# of correct predictions)Ci

/(# of elements)Ci
(2)

For each class, we report F-score, which is the harmonic mean of precision
and recall. In addition, we calculate an overall F-score for each algorithm as
follows: We first calculate the weighted average of precision and recall, where
the precision and recall of each class is weighted by the number of instances of
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that class in our data set. The harmonic mean of these weighted average values
is the overall F-score.

We use the following classifiers in our machine learning framework: k-nearest
neighbors (kNN), support vector classifier (SVC), AdaBoost, decision tree (DT),
and random forest (RF).

The rest of this section begins with comparing anomaly detection techniques
when the disjoint training and test sets include data from the same applications,
application input sizes, and anomaly intensities, but using different application
input data. However, it is not a realistic scenario to know all the possible jobs that
will run on an HPC system. Hence, in the following subsections, we evaluate the
robustness of our approach and the baseline techniques to unknown application
input sizes, unknown applications, and unknown anomaly intensities. Finally,
we provide an experimental evaluation of the computational overhead of our
anomaly detection approach.

6.1 Anomaly Detection and Classification

Figures 3 and 4 show the effectiveness of the anomaly detection approaches in
terms of overall and per-anomaly F-scores in Volta and MOC environments,
respectively. Note that half of our application runs use 4 healthy nodes and the
other half use 3 healthy nodes and a single unhealthy node. Hence, the overall
F-score of majority voting, which simply marks every node as “healthy”, is 0.875
(represented by a dashed line in Figs. 3a and 4a).

(a) Overall F-score
(b) F-scores for each anomaly

Fig. 3. F-scores for anomaly classification in Volta. ST-Lan and FP-Bodik are baseline
algorithms. Majority voting in (a) marks everything as “healthy”.

(a) Overall F-score
(b) F-scores for each anomaly

Fig. 4. F-scores for anomaly classification in MOC.
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Table 1. The most important 10 fea-
tures selected by RF in Volta

Source Feature

/proc/stat avg user

/proc/stat perc5 idle

/proc/stat perc95 softirq

/proc/vmstat std dirty backgnd thrshld

/proc/stat perc25 idle

/proc/vmstat std dirty threshold

cray aries r std current freemem

/proc/stat perc50 idle

/proc/vmstat perc95 pgfault

/proc/vmstat min numa hit

Table 2. The most important 10 met-
rics selected by ST-Lan in Volta

Source Metric

nic WC FLITS

/proc/meminfo VmallocUsed

nic WC PKTS

/proc/meminfo Committed AS

/proc/vmstat nr page table pages

/proc/meminfo PageTables

/proc/meminfo VmallocChunk

nic WC BLOCKED

/proc/vmstat nr active anon

/proc/meminfo Active(anon)

In Volta, DT and RF result in close to ideal detection accuracy. As ddot and
dcopy anomalies both stress caches, all algorithms tend to mislabel them as each
other, resulting in lower F-scores.

The relatively poor performance on ST-Lan in Fig. 3 demonstrates the impor-
tance of feature selection. ST-Lan leverages ICA for dimensionality reduction
and uses features that represent the maximal independence in data but are not
necessarily relevant for anomaly detection. Table 1 presents the most useful 10
features selected by random forests based on the normalized total Gini reduc-
tion brought by each feature as reported by python scikit-learn package. For
comparison, we present the metrics with the 10 highest absolute weight in the
independent components used in ST-Lan in Table 2. Indeed, none of the top-level
metrics used by ST-Lan is used in the most important features of RF.

In MOC, however, the important metrics in the independent components
match with the important features of RF as shown in Tables 3 and 4. The reason
is that we collect 53 metrics in MOC compared to 721 metrics in Volta; and
hence, there is a higher overlap between the metrics in the first 10 independent
components and those selected by decision trees. As the metric space increases,
the independent components become less relevant for anomaly detection.

The overall detection performance in MOC is lower for all algorithms. There
are 4 main factors that can cause the reduced accuracy in MOC: the number of
collected metrics, dataset size, sampling frequency, and platform-related noise.
To measure the impact of the difference in the metric set, we choose 53 metrics
from the Volta dataset that are closest to the MOC metrics and re-run our
analysis with the reduced metric set. This decreases F-score by 0.01 for SVC
and kNN and poses no significant reduction for DT, RF, and AdaBoost. Next,
we reduce the size of the Volta dataset and use 5 randomized application input
data instead of 10. The combined F-score reduction due to reduced dataset size
and metric set is around 0.02 except for DT, RF, and AdaBoost, where the
F-score reduction is insignificant. We also measure the impact of data collection
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Table 3. The most important 10 fea-
tures selected by RF in MOC

Source Feature

/proc/meminfo std free

/proc/meminfo std used

/proc/stat avg cpu idle

vmstat std free memory

/proc/meminfo std freeWOBuffersCaches

/proc/meminfo std used percentage

vmstat perc75 cpu user

/proc/stat max cpu idle

/proc/meminfo std usedWOBuffersCaches

/proc/stat perc75 cpu idle

Table 4. The most important 10 met-
rics selected by ST-Lan in MOC

Source Metric

vmstat cpu user

/proc/stat cpu user

iostat user

vmstat cpu idle

iostat idle

vmstat cpu system

iostat system

/proc/stat cpu system

/proc/meminfo freeWOBuffersCaches

/proc/meminfo usedWOBuffersCaches

period by increasing it to 5 s; however, the impact on classification accuracy is
negligible. We believe that the reduction in accuracy in MOC mainly stems from
the noise in the virtualized environment, caused by the interference due to VM
consolidation and migration.

Considering both MOC and Volta results, our results indicate that RF is the
best-performing algorithm with overall F-scores between 0.97 and 1.0 on both
platforms, while the baselines have overall F-scores between 0.89 and 0.97.

6.2 Classification with Unknown Application Input Sizes

In a real-world scenario, we expect to encounter application input sizes other
than those used during training. This can result in observing application resource
usage and performance characteristics that are new to the anomaly detection
algorithms. To evaluate the robustness of our approach against input sizes that
have not been encountered before, we modify our training and test sets in our
5-fold cross validation, where we remove an unknown input size from all training
sets and the other input sizes from all test sets. We repeat this procedure 3 times
so that all input sizes are selected as the unknown size once. We also evaluate
detection algorithms when two input sizes are simultaneously removed from the
training sets, for all input size combinations.

Figure 5 presents the overall F-score achieved by anomaly detection algo-
rithms for unknown input sizes. As we train the algorithms with a smaller vari-
ety of application input sizes, their effectiveness decrease as expected. In MOC,
FP-Bodik’s F-score decreases down to the majority voting level. However, the
proposed machine learning approach consistently outperforms the baselines, with
RF keeping its near-ideal accuracy in Volta.
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(a) Volta (b) MOC

Fig. 5. Overall F-score when the training data excludes one or two input sizes and the
testing is done using only the excluded input sizes

6.3 Classification with Unknown Applications

In order to evaluate how well our anomaly detection technique identifies anomaly
characteristics independent of specific applications, we remove all runs of an
application from the training sets, and then, remove all the other applications
from the test sets. We repeat this procedure for all 5 applications we use.

Figure 6 shows the overall F-score of the detection algorithms for each
unknown application. The most prominent result in the figure is that most algo-
rithms have very poor classification accuracy in MOC when the unknown appli-
cation is ft. Figure 7a illustrates how ft is different than other applications in
terms of the most important two features used by DT to classify healthy runs.
When not trained with ft, DT uses the threshold indicated by the dashed line
to identify the majority of the healthy nodes, which results in most healthy ft
nodes being marked as unhealthy. In Volta, however, the data has less noise due
to the absence of VM interference and the number of metrics is significantly
larger. Hence, DT is able to find more reliable features to classify healthy runs
as depicted in Fig. 7b.

Figure 6 shows that the F-score of FP-Bodik also decreases significantly in
both Volta and MOC when ft is the unknown application. This is because when

(a) Volta (b) MOC

Fig. 6. Overall F-score when the training data excludes one application and the testing
is done using only the excluded application
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(a) MOC. When ft is excluded from the training set, DT classifies runs below the
dashed line as unhealthy, which causes healthy ft nodes to be classified as unhealthy.

(b) Volta. The distinction between healthy and unhealthy clusters is clearly visible.

Fig. 7. The scatter plots of the datasets for the most important two features used by
DT to classify healthy data.

not trained with ft, the generated fingerprint of the memeater anomaly by FP-
Bodik is similar to the fingerprint of healthy ft, resulting in FP-Bodik marking
healthy ft nodes as memeater.

These examples show that when the training set does not represent the
expected application runtime characteristics, both our framework and the base-
line algorithms may mislabel the nodes where unknown applications run. To
avoid such problems, a diverse and representative set of applications should be
used during training.

6.4 Classification with Unknown Anomaly Intensities

In this section, we evaluate the robustness of the anomaly detection algorithms
when they encounter previously-unknown anomaly intensities. Thus, we train the
algorithms with data collected when running with either high- or low-intensity
anomalies test with the other intensity. Figure 8 shows the resulting F-scores
in Volta and MOC environments. When the detection algorithms are trained
with anomalies with high intensity, the thresholds placed by the algorithms are
adjusted for highly anomalous behavior. Hence, when tested with low anomaly
intensity, the algorithms misclassify some of the unhealthy nodes as healthy,
leading to a slightly lower F-score. The baseline algorithms demonstrate a more
robust behavior against unknown anomaly intensities compared to our approach
except for RF, which outperforms the baselines on Volta and performs similarly
on MOC when trained with low anomaly intensity.
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(a) Volta (b) MOC

Fig. 8. Overall F-score when the training data excludes one anomaly intensity and the
testing is done using only the excluded anomaly intensity

6.5 Overhead

In our framework, the most computationally intensive part is feature generation.
Generating features for a 900-second time window in Volta, i.e., from a 48-thread
server for 721 metrics with 1 s sampling period, takes 10.1 s on average using a
single thread. This translates into 11 ms single-thread computational overhead
per second to calculate features for the metrics collected from a 48-thread server.
Assuming that these features are calculated on the server by monitoring agents,
this corresponds to a total of 11/48 = 0.23ms computational overhead per sec-
ond (0.02%) on Volta servers. Performing classification with trained machine
learning algorithms takes approximately 10 ms and this overhead is negligible
compared to application running times. With our implementations, the classifi-
cation overheads of FP-Bodik and ST-Lan are 0.01% and below 0.01%, respec-
tively. The training overhead of both the machine learning algorithms and the
baseline algorithms is negligible as it can be done offline.

Regarding the storage savings, the data collected for a 4-node 15-minute run
on Volta takes 6.2 MB as raw time series, and only 252 KB as features (4% of
the raw data). This number can be further reduced for tree-based classifiers by
storing only the features that are deemed to be important by the classifiers.

7 Conclusion and Future Work

Performance variation is an important factor that degrades efficiency and
resiliency of HPC systems. Detection and diagnosis of the root causes of perfor-
mance variation is a hard task due to the complexity and size of HPC systems. In
this paper, we present an automated, low-overhead, and highly-accurate frame-
work using machine learning for detection and identification of anomalies in HPC
systems. We evaluate our proposed framework on two fundamentally different
platforms and demonstrate that our framework is superior to other state-of-the-
art approaches in detecting and diagnosing anomalies, and robust to previously
unencountered applications and application characteristics.
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In this work, we have focused on a subset of NPB applications, for which
we have observed mostly flat profiles. As future work, we will explore runtime
detection of anomalies considering applications that contain substantial varia-
tions in their resource usage. We are also planning to embed our solutions within
the LDMS monitoring framework and evaluate our approach with a wider set of
real-life applications.
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