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Abstract

With today’s rapidly-evolving cloud software landscape,
users of cloud systems must constantly monitor software
running on their containers and virtual machines (VMs) to
ensure compliance, security, and efficiency. Traditional so-
lutions to this problem rely on manually-created rules that
identify software installations and modifications, but these
require expert authors and are often unmaintainable. More
recent automated techniques leverage knowledge of pack-
aging practices to aid in discovery without requiring any
pre-training, but these practice-based methods cannot pro-
vide precise-enough information to perform discovery by
themselves. Other approaches use machine learning mod-
els to facilitate discovery of software present in a training
corpus, but prior approaches have high runtime and stor-
age requirements. This demonstration features Praxi, a new
software discovery method that builds upon the strengths
of prior approaches by combining the accuracy of learning-
based methods with the efficiency of practice-based methods.
We demonstrate Praxi’s training and detection process in real
time while allowing laptop-equipped participants to follow
along using a provided remote virtual machine.
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1 Introduction

Modern cloud application development processes emphasize
developer speed and agility as key determinants of business
success. The shift from vendor-supplied proprietary software
to open-source software has made the use of ready-to-use
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software components a common method of speeding up
development. When put into practice, these forces often lead
to small teams of developers making independent decisions
on which components to use, causing software applications
to end up with far more component diversity compared to
that of software observed just a few years ago.

With rapid development and deployment cycles often mov-
ing too fast for proper documentation, it is all too easy to lose
track of what software is installed on a system, leading to
inadvertent hosting of non-compliant or buggy applications.
Awareness of these issues is a must for proper protection of
high-value cloud deployments, and with constant iteration,
one-time scans are not enough — continuous awareness is
necessary for security assurance in the cloud. Therefore, be-
ing able to continuously identify what software exists in a
given system, i.e., “software discovery,” is becoming a core
requirement for ensuring security and compliance.

Initial efforts for software discovery began with rule-based
systems [2], where administrators often wrote rules detect-
ing software that had been cataloged in knowledgebases like
the National Vulnerability Database. A triggered rule would
indicate a vulnerable system, which would then be quar-
antined and manually patched. This fragile, labor-intensive
nature of rule-based methods became the motivation for
more novel software detection systems, such as practice-
based systems that exploited common patterns of software
organization [4] and learning-based systems that could be
automatically trained to identify software installations of
concern [5]. These new methods had limitations of their own,
of course, including a lack of machine-readability and slow
machine learning model training times.

In this demonstration, we present a novel hybrid method
of automated software discovery, Praxi, that combines as-
pects from both learning- and practice-based approaches.
Praxi uses a recent practice-based method to generate in-
formative tags without requiring any pre-training and then
employs fast incremental learning methods to quickly up-
date discovery models as new software packages become
available. Praxi significantly reduces training time and the
overhead associated with incremental training compared
to existing learning-based approaches, while still providing
highly accurate software discovery without requiring human
involvement.
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2 Technical Approach

Praxi’s approach to software discovery can be separated
into three main phases: system change recording, feature
reduction, and discovery by example.

2.1 System Change Recording

In much the same way as other modern software discovery
approaches, Praxi begins by taking in as an input a set of
filesystem changes observed during a software installation,
known as a changeset. In our implementation, these changes
are collected using the Linux kernel’s inotify feature, which
notifies a change recording daemon running in the back-
ground on the target system of the creation, modification, or
deletion of any file or directory that has an inotify “watch”
placed on it. After a certain amount of time or upon some
user-configurable event, the recording daemon “closes” the
changeset by sorting its changeset records by time of occur-
rence, removing any duplicate entries, and either saving the
changeset to a file on-disk or uploading the changeset to a
remote server for processing. The daemon then “opens” a
new empty changeset for writing in preparation for the next
software installation.

2.2 Feature Reduction

After a changeset has been closed, it is analyzed using a
practice-based method called Columbus [4]. Columbus uses
a frequency trie to discover a set of tags made up of the
most frequent longest-common-prefix string tokens found
in a changeset, relying on the organizational conventions
in place among today’s software developers and package
maintainers. Because Columbus places only the tags that
occur more than once in the resulting tagset, noise arising
from irrelevant stimuli (such as log file rotations, caching,
etc.) during the recording period is filtered out.

Beyond noise reduction, the practice-based analysis step
also offers other practical benefits. By condensing changesets
(which vary in size from a few kilobytes to tens of megabytes,
depending on number of changes captured) down to tagsets
(which are typically less than a kilobyte), Praxi requires
much less storage space than other methods. Perhaps most
importantly, the simple data structure of tagsets (basic space-
separated-value strings) also makes them easy to use with
text-based machine learning tools such as Vowpal Wabbit
(VW) [3].

2.3 Discovery By Example

After a tagset has been produced, it is used as a feature to
train a machine learning model using sparse gradient descent
on a hinge loss function. The tagset is treated as if it was a
“bag of words,” much in the same way that human-readable
sentences are processed by natural language classification
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models. Vowpal Wabbit, the tool we use to train our mod-

els, vastly outperforms the other machine learning engines
we tested (such as scikit-learn) and unlike many traditional

learning engines, VW supports incremental or “online” learn-
ing, where trained machine learning models can be updated
with new data without requiring a full retraining.

Finally, once a trained model has been created, we present
it with unlabeled tagsets (presumably created from live in-
stallations of unknown software) for classification.

3 Related Work

As mentioned, there are three main approaches to the prob-
lem of software discovery. Rule-based approaches are the
usual choices for discovering and identifying system changes
in the cloud [2]. Rule-based approaches, however, are of-
ten not performant at scale and require too much human-
intervention to be practically maintained in today’s large
cloud deployment. Practice-based approaches like Colum-
bus [4] have the advantage of not requiring any training
or corpus, but since these approaches operate on natural
language principles, their output is not consistent-enough
to be machine-readable. Similarly to Praxi, learning-based
approaches like DeltaSherlock leverage “discovery by exam-
ple” to perform high-accuracy software discovery with the
aid of machine learning [1, 5]. Unlike Praxi, however, pre-
existing learning-based methods require full regeneration
and retraining of models (a slow and storage-intensive pro-
cess) whenever new or updated software needs to be added
to the corpus. In addition to its incremental training abilities,
Praxi significantly outperforms DeltaSherlock in terms of
runtime, and requires significantly less storage.
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