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Abstract—Future high-performance chips will require new
cooling technologies that can extract heat efficiently. Two-phase
cooling is a promising processor cooling solution owing to its
high heat transfer rate and potential benefits in cooling power.
Two-phase cooling mechanisms, including microchannel-based
two-phase cooling or two-phase vapor chambers (VCs), are
typically modeled by computing the temperature-dependent heat
transfer coefficient (HTC) of the evaporator or coolant using an
iterative simulation framework. Precomputed HTC correlations
are specific to a given cooling system design and cannot be
applied to even the same cooling technology with different cooling
parameters (such as different geometries). Another challenge is
that HTC correlations are typically calculated with computa-
tional fluid dynamics (CFD) tools, which induce long design
and simulation times. This paper introduces a learning-based
temperature-dependent HTC simulation framework that is used
to model a two-phase cooling solution with a wide range of
cooling design parameters. In particular, the proposed framework
includes a compact thermal model (CTM) of two-phase VCs
with hybrid wick evaporators (of nanoporous membrane and
microchannels). We build a new simulation tool to integrate
the proposed simulation framework and CTM. We validate the
proposed simulation framework as well as the new CTM through
comparisons against a CFD model. Our simulation framework
and CTM achieve a speedup of 21× with an average error of
0.98◦C (and a maximum error of 2.59◦C). We design an opti-
mization flow for hybrid wicks to select the most beneficial hybrid
wick geometries. Our flow is capable of finding a geometry-
coolant combination that results in a lower (or similar) maximum
chip temperature compared to that of the best coolant-geometry
pair selected by grid search, while providing a speedup of 9.4×.

I. INTRODUCTION
Over the last few decades, processor performance has grown

tremendously following the down-scaling of transistors. High
power densities that reach 1-2 kW/cm2 [8] caused by the
performance boost can occur in future high performance chips
and result in amplified localized hot spots. Existing cooling
solutions such as forced air cooling via fans or traditional
pin-fin heat sinks are often not sufficient to mitigate these high
power densities efficiently and can lead to over/under-cooling,
affecting system design cost and power. Therefore, designing
new cooling solutions for high-performance processors has
started to gain traction.

Recently, researchers have developed several emerging
cooling solutions such as liquid cooling via microchannels
[4], thermoelectric coolers (TECs) [2], two-phase cooling
(e.g., microchannel-based two-phase cooling, two-phase vapor
chambers (VCs), or heat pipes) [1], [14], and hybrid cooling
(e.g., hybrid of liquid cooling via microchannels and TECs
[16]). Among these emerging cooling solutions, two-phase
cooling is particularly attractive as it removes heat effectively
and has the potential to limit the cooling power compared
to the cooling power of single-phase cooling techniques. For
example, VCs and heat pipes leverage capillary pumping to
passively (without active cooling power on the evaporator side)

supply the evaporator [1], [14]. Two-phase cooling thermal
models are usually designed by calculating the temperature-
dependent heat transfer coefficient1 (HTC) [8], [12], [14], [15].
In these models, pre-computed temperature-dependent HTC
correlations embedded in the simulation framework are func-
tions of temperature and cooling parameters (e.g., coolant type,
flow velocity, saturation temperature, and structural parameter
such as microchannel width and height, micropillar height,
diameter, and pitch [12], [15], [17]). The HTC correlations
are derived either based on in-house prototypes or using
computational fluid dynamics (CFD) modules in COMSOL
and ANSYS [1], [15]. HTC correlations based on prototypes
are generally not applicable to the same cooling method
with different cooling parameters, or will likely result in
accuracy loss [12]. Commercial simulation tools (e.g., COM-
SOL and ANSYS), on the other hand, are computationally
expensive and experience long design and simulation times
as well as large memory requirements. To enable cooling
design exploration and optimization, there is a need for a
fast and generalized temperature-dependent HTC simulation
framework that can be applied for a wide range of cooling
parameters for the same two-phase cooling technology while
maintaining the desired accuracy.

In this work, we introduce a learning-based temperature-
dependent HTC simulation framework to model two-phase
cooling technologies for processor cooling. The proposed sim-
ulation framework enables fast and accurate simulations with
a wide range of cooling parameters for the same two-phase
cooling technology. To demonstrate the simulation speedup
and accuracy of our proposed simulation framework, we
build a compact thermal model (CTM) for two-phase VCs
with hybrid wick evaporators (of nanoporous membrane and
microchannels) and integrate it into our proposed simulation
framework. In addition, we design an optimization flow to
select the nanoporous and microchannel geometries that min-
imize the hot spot temperature. The main contributions of our
work are as follows:
• We propose a learning-based temperature-dependent HTC

simulation framework for two-phase cooling solutions
and embed our proposed steady-state two-phase VCs
with hybrid wick evaporators CTM in the simulation
framework (Sec. III).

• We build a CTM tool and integrate our proposed learning-
based temperature-dependent HTC simulation frame-
work and the CTM2 (Sec. III-E). We validate our pro-
posed simulation framework and CTM against a COM-

1Heat transfer coefficient is a parameter that determines the rate of heat
transfer per unit temperature difference.

2We will open source our modeling tool along with paper publication.



SOL model. Our proposed learning-based temperature-
dependent HTC simulation framework achieves a 21×
speedup with an average error of 0.98◦C when compared
to the COMSOL model (Secs. III and V).

• We design an optimization flow that maximizes the
cooling performance of two-phase VCs with hybrid wick
evaporators by selecting the best nanoporous membrane
and microchannel geometry. Our proposed optimization
flow is capable of finding better (or similar) hybrid wick
geometry and coolant combinations than grid search with
an average speedup of 4× (Secs. IV and V).

II. RELATED WORK

High power densities have already become major concerns
in processors. To mitigate the hot spots, a group of work has
focused on creating design-time and run-time thermal manage-
ment policies such as thermal-aware floorplanning, dynamic
voltage and frequency scaling, task scheduling/migration, and
others. Another body of work focuses on designing emerging
cooling technologies such as liquid cooling via microchannels,
TECs, two-phase VCs, hybrid cooling (e.g., of liquid cooling
via microchannels and TEC), and microchannel-based two-
phase cooling, and integrating these technologies as heat sinks
or inter-layer cooling methods [1], [2], [4], [14], [16]. In
addition, recent work has introduced fast and accurate CTMs
for various emerging cooling methods [3], [7], [12], [13].

Sridhar et al. introduced STEAM, a CTM simulator for
microchannel-based two-phase cooling [12]. STEAM is a
temperature-dependent HTC simulation framework integrated
with a set of predetermined HTC correlations. STEAM’s
average error ranges from 10.2% to 23.7% depending on the
HTC correlation it uses. The reason for this accuracy loss
is that these correlations are derived from various prototypes
with different microchannel height, width, shape, and mass
flow velocity values, and they are not sufficiently modular
for application to any other microchannel structures and flow
velocities. Yuan et al. introduced a CTM for two-phase VCs
with micropillar wick evaporators [17], [18]. The HTC values
of micropillar wick geometries are extracted from a finite
element model and stored in a lookup table. However, their
model does not enable simulation for arbitrary geometries that
are not stored in the lookup table. For other valid geometries
that have not been stored in the lookup table, one has to run
CFD simulations first to generate the HTC data.

The key innovation in our work is that we introduce a
learning-based temperature-dependent HTC simulation frame-
work that is capable of running fast and accurate thermal
simulations for two-phase cooling methods with a wide range
of cooling design parameters. We build a tool and integrate the
simulation framework with a CTM for two-phase VCs with
hybrid wick evaporators to show the accuracy and speedup of
our model (in comparison to COMSOL). We also introduce a
hybrid wick evaporator optimization flow to rapidly select the
best geometry to maximize cooling performance.

III. MODELING OF TWO-PHASE VCS WITH
HYBRID WICK EVAPORATORS

In this work, we focus on two-phase VCs because of their
high heat transfer rate with no additional cooling power on
the evaporator side. A hybrid wick evaporator is particularly
interesting because it enhances both HTC and dry-out heat flux
(dry-out heat flux is the thermal limit of a two-phase device).
We design a CTM as well as a learning-based temperature-
dependent HTC simulation framework to enable fast and

Fig. 1: (a) A vapor chamber structure view, and (b) a hybrid wick
evaporator cross-section view.
accurate thermal simulation for this cooling technology with
a wide range of valid hybrid wick geometries.

Fig. 1 (a) shows the schematic of a VC. The coolant absorbs
heat from the processor when it vaporizes at the evaporator.
Heat is rejected to the ambient at the condenser and the
condensate flows back to the evaporator driven by the wicking
structure along the side walls. The heat removal ability of the
VC is often dominated by the evaporator [1]. An evaporator
with a higher HTC is desired to reduce the thermal resistance
of the VCs. However, such high-HTC evaporators often suffer
from low critical dry-out heat flux [1], [6]. These two metrics
are typically conflicting with each other and it is challenging to
maximize HTC while enhancing dry-out heat flux [1]. In this
work, we focus on a hybrid wick evaporator (of nanoporous
membrane and microchannels) as shown in Fig. 1 (b) that
improves both HTC and dry-out heat flux. The microchannel
and membrane geometries can be varied independently so as
to enhance the permeability of the microchannels and the
heat transfer from highly conductive solids (the substrate,
microchannels, and nanoporous membrane) to the liquid-vapor
interface.

A. CTM for Two-Phase VCs with Hybrid Wick
To build a CTM, we abstract both the nanoporous membrane

and the microchannel layers into a hybrid wick layer. The
whole chip stack is shown in Fig. 2 (a). We divide the whole
chip into grids as in prior work [17]. For the processing layer,
the grid cell structure is shown in Fig. 2 (b). Thermal resistance
along the north, south, east, west, and vertical directions are
represented using silicon properties, i.e., Rsilicon. As for the
hybrid wick layer, the grid cell is shown in Fig. 2 (c). We
represent lateral thermal resistances using Rsilicon and the
vertical thermal resistance, Rhybrid, stands for the inverse of
the heat conduction from the hybrid wick to the saturated
vapor. We add an additional virtual temperature node on top
of the hybrid wick grid cell to represent the saturated vapor.
We consider steady-state and a predetermined VC pressure.
In this way, we do not need to model the heat sink on top of
the VC. Instead, we use a previously established relationship
between HTC and thermal resistance to define Rhybrid [13],
[17]. In addition, we assume the VC itself only contains
saturated vapor at a constant temperature [8], [15]. From the
COMSOL model, we extract HTC correlations for various
nanoporous membranes and microchannel geometries. For a
specific hybrid wick geometry, we use its corresponding HTC
correlation to determine the Rhybrid value.

B. Building a COMSOL Model
We determine the resistance of the hybrid wick layer by

solving for its effective HTC via finite element calculations us-
ing COMSOL. The simulated domain consists of a nanoporous



Fig. 2: (a) The chip stack of the processing layer and two-phase VCs
with hybrid wick evaporators, (b) processing layer grid cell, and (c)
hybrid wick layer grid cell.

silicon membrane, a silicon microchannel, and the coolant.
Due to device symmetry, we only need to simulate one
microchannel and we can additionally limit the domain to
two dimensions by considering the channels to be infinitely
long. We neglect convection in the liquid phase since the
Peclet number is small [8]. Constriction resistance between the
substrate and the hybrid wick is accounted for by including
1 µm of the silicon substrate in the simulation domain.
The thermal conductivities of the silicon and the working
fluid, as well as the resistance to evaporation posed by the
liquid-vapor interface, are temperature-dependent properties.
Thus, the effective HTC of the hybrid wick is dependent on
temperature in addition to geometry and the vapor conditions.

We calculate the HTC by imposing an inward heat flux
(q′′) at the bottom of the domain and an evaporative boundary
condition at the top of the membrane, except where the
membrane is supported by the microchannel, which is set as
an insulated boundary. The evaporative boundary condition is
modeled using a numerical solution to the Boltzmann transport
equation, which governs the flux of vapor molecules from the
liquid-vapor interface to the far-field vapor [11]. We utilize the
numerical Direct Simulation Monte Carlo (DSMC) data and
prescribed boundary conditions from a recent work to model
the evaporative boundary condition [9]. We extract the average
temperature at the substrate-hybrid wick interface (Tb) from
the temperature distribution determined by COMSOL, from
which the effective HTC of the hybrid wick is calculated by
Fourier’s Law (HTC = q′′/(Tb − TSat)), where TSat is the
temperature of the far-field vapor. We obtain HTC as a function
of Tb by imposing a range of heat fluxes on the hybrid wick
for each fixed set of geometries and vapor conditions. This
COMSOL model has been validated against the experimental
results presented in a recent work [5].

C. A Temperature-Dependent HTC Simulation Framework
The HTC of the hybrid wick evaporator is highly dependent

on the temperature distribution [8]. To precisely calculate the
temperature distributions of the hybrid wick layer and the
processing layer, we implement a temperature-dependent HTC
simulation framework for the proposed CTM. The simulation
flow is shown in Fig. 3. We divide the simulation flow into
two domains: (i) the “update HTC” domain, which takes
the HTC correlation from a lookup table generated by the
COMSOL model for a specific nanoporous membrane and
microchannel geometry, and then updates the HTC value
for each hybrid wick layer grid cell, based on both the
HTC correlation and temperature distribution, and (ii) the
“heat conduction” domain, which takes the HTC distribution,

Fig. 3: Temperature-dependent HTC simulation framework and
our proposed learning-based temperature-dependent HTC simulation
framework.

calculates the Rhybrid for the corresponding hybrid wick
layer grid cell, and then carries out the thermal simulation
to generate a new temperature distribution to pass it to the
“update HTC” domain. The simulation framework iteratively
solves for the HTC and temperature distributions until the
temperature distribution converges (temperature difference of
< 0.1◦C).

D. A Learning-Based Temperature-Dependent HTC Simula-
tion Framework

In the original temperature-dependent HTC simulation
framework, the HTC correlation of each hybrid wick geometry
within a valid range is generated from COMSOL simulations.
The naming convention and valid range of hybrid wick geom-
etry parameters are shown in Table I [8]. Fig. 1 (b) shows the
structure of a hybrid wick. We store these HTC correlations
in a lookup table. Generating a 4096-entry lookup table using
COMSOL takes more than 24 hours. If we select 10 cases
for each parameter (total 1 million entries), the generation
time is 786 days. In this case, the HTC correlation lookup
table pre-computing time for the hybrid wick geometry is
the bottleneck of this temperature-dependent HTC simulation
framework. In addition, even if we have a finer granularity
HTC lookup table for one specific geometry range, we cannot
run thermal simulations for a comprehensive range of the
hybrid wick geometries. To enable thermal simulations for a
wide range of valid hybrid wick geometries, we propose a
learning-based temperature-dependent simulation framework
as shown in Fig. 3. Compared to the original temperature-
dependent simulation framework, we add additional machine
learning regression models for different coolants to replace
the HTC lookup table. The selection of the machine learning
regression model depends on the two-phase cooling method as
well as the cooling parameters. For two-phase VCs with hybrid
wick evaporators, we select the random forest regression
model. The inputs of the machine learning regression model
are {t, dp, φ,AR, SF,w, TSat−TCur, coolant} (see Table I).
The output of the machine learning model is an HTC value.
During each iteration, the thermal simulation engine generates
a new temperature distribution and passes it to the machine
learning regression model to predict the HTC value based on
the temperature distribution, hybrid wick geometry parameters,
coolant saturation temperature, and coolant type.

E. Proposed Thermal Simulation Tool
We build a CTM simulator that models emerging cooling

techniques integrated on a silicon chip. Our CTM simulator
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Fig. 4: Proposed Simulation Tool Flow.

works with the same RC modeling principle in popular CTM
simulators such as HotSpot and 3D-ICE [10], [13]. We support
only steady-state simulations in this first version. Our tool has
well-defined interfaces that allow easy integration of CTMs
for different materials or technologies as libraries, and also
includes interfaces for the machine learning models. Fig. 4
shows a high-level tool flow. The user first passes informa-
tion of the chip stack (including silicon and cooling layers,
floorplans, and power traces), material properties (such as
thermal resistivity or microchannel geometry), and modeling
specifications (e.g., # of grid rows and columns, compact
models, solver name) to the tool. Next, the tool parses the input
data, performs sanity checks and then bundles the user inputs
into various data structures and passes them to a grid manager.
The grid manager systematically carries out 3 functions: (i)
forming a 3D network of grids in the chip, (ii) redistributing
the power traces of the floorplan blocks to the grids, and
(iii) calculating the lateral and vertical thermal resistances of
the grids using compact libraries. Our proposed hybrid wick
CTM (that uses a learning-based temperature-dependent HTC
simulation framework) is also integrated with the tool. The
grid manager creates resistance and power arrays for all the
grids and passes them to the SuperLU solver to solve for grid
temperatures.

IV. OPTIMIZATION OF HYBRID WICK EVAPORATORS

The ultimate goal of the optimization flow is to find a
hybrid wick geometry that minimizes the hot spot temperatures
while satisfying the dry-out constraint. We adopt the dry-out
heat flux formula from recent work and use this formula to
define the dry-out limit [8]. For each hybrid wick geometry
parameter, there is a range of values we can select. It is time-
consuming and inefficient to use the grid search to find the
optimal geometry and coolant from a fine-grained geometry
and coolant solution space. To speed up the searching time for
the optimal hybrid wick geometry and coolant, we propose a
multi-start simulated annealing (MSA) approach.

Our proposed MSA algorithm is shown in Algorithm 1.
The algorithm randomly selects a hybrid wick geometry G and
checks whether it satisfies the dry-out constraint by comparing
it to the maximum power density PDMax (lines 2-6). If the

TABLE I: Hybrid wick geometry parameters and valid range.

Symbol Parameters Valid range
t Nanoporous membrane thickness 250-1000 nm
dp Membrane pore diameter 50-200 nm
φ Membrane porosity 0.2-0.8
AR Microchannel aspect ratio 0.5-2
SF Microchannel wall solid fraction 0.1-0.4
w Microchannel width 2-8 µm
TSat Coolant saturation temperature 50◦C
TCur Current temperature of the grid NA

dry-out heat constraint is satisfied, MSA runs the learning-
based temperature-dependent HTC simulation framework to
get the maximum chip temperature TMax (line 7). The al-
gorithm then randomly adds a perturbation to one of the
geometry parameters and makes a new geometry GNbr (line
9). Next, MSA checks if GNbr is in the valid parameter
range and and also satisfies the dry-out constraint (lines 11-
13). If the constraints are met, MSA runs the learning-based
simulation framework for GNbr to get TMax Nbr (line 14).
If the GNbr results in a lower peak temperature than G, the
algorithm sets G to GNbr and TMax to TMax Nbr (lines 15-
17). Otherwise, the algorithm sets G to GNbr based on the
probability function (lines 18-20). The algorithm terminates
based on the numstart, energy E, and decay factor δ (lines
1, 8-9, and 21). It also saves the best G and TMax into an
array Opt (lines 22-23). For each type of coolant, we execute
this MSA algorithm and select the best geometry and coolant
that result in the minimum TMax.

Algorithm 1: Multi-Start Simulated Annealing
Initialize: E, iter, δ, num start, EMin

1 while num start > 0 do
2 randomly select hybrid wick geometry G
3 calculate dry-out heat flux QDry G [8]
4 if QDry < PDMax then
5 continue
6 else
7 run thermal simulation using G and get TMax
8 while E > EMin and iter > 0 do
9 randomly select a neighbor geometry GNbr

10 iter -= 1
11 if GNbr in valid parameter range then
12 calculate dry-out heat flux QDry Nbr [8]
13 if QDry < PDMax then
14 run thermal simulation using GNbr and get

TMax Nbr
15 if TMax Nbr < TMax then
16 G = GNbr
17 TMax = TMax Nbr

18 else if Random(0,1)< TMax Nbr−TMax
TMax∗E then

19 G = GNbr
20 TMax = TMax Nbr

21 E = E ∗ δ

22 Save G and TMax into an array Opt
23 num start -= 1

24 Pick the best G from Opt based on TMax

V. EXPERIMENTAL RESULTS

In this section, we first show the validation results of our
learning-based temperature-dependent HTC simulation frame-
work. We then demonstrate our MSA results using various
chip floorplans and power profiles against grid search results.
We select water, R245fa, and R141b as our coolants and the
saturation temperature is set to 50◦C. We use the CTM for
two-phase VCs with hybrid wick evaporators as our thermal
model and show comparisons to COMSOL.

A. Validation of the Machine Learning Model
Before validating the learning-based temperature-dependent

HTC simulation framework, we first perform cross-validation
of the machine learning regression model to show that our
regression model can accurately predict HTC for various
hybrid wick geometries and coolants. For each hybrid wick
geometry parameter range shown in Table I, we select the
minimum value, 25 percentile value, 75 percentile value, and
the maximum value as our training and testing geometry



parameters. There is a total number of 4096 geometries. We
use COMSOL to generate the temperature-dependent HTC
correlations for these 4096 geometries for three different
coolants. For each temperature-dependent HTC correlation, we
range TCur − TSat from 0 to 40◦C with a step of 1◦C to
generate the golden HTC data. The total HTC data size for all
the three coolants is 163840. For each coolant, we do k-fold
cross-validation to show that our machine-learning regression
model is capable of predicting HTC for arbitrary hybrid wick
geometries. We use the training data to train a random forest
model with a number of trees equal to 100 for each coolant.
We also test with various machine learning models including
support vector regression (SVR), neural network regression
(NNR), decision tree, gradient boosting regression (GDR), etc.
Since random forest results in the best accuracy, we only report
the regression accuracy results of random forest regression.
We show the worst-case scenario results from the k-fold
cross-validation for each coolant in Table II. As we can see
from the table, our machine learning model can successfully
predict HTC for an extensive selection of valid hybrid wick
geometries.

B. Learning-based Temperature-Dependent HTC Simulation
Framework Validation

Next, we perform an accuracy and speedup comparison
among the learning-based temperature-dependent HTC sim-
ulation framework, temperature-dependent HTC simulation
framework, and COMSOL model using various chip power
profiles and hybrid wick geometries. Both the temperature-
dependent HTC simulation framework and learning-based
temperature-dependent HTC simulation framework are inte-
grated into our proposed thermal modeling tool. We model
a 2 mm × 2 mm chip with a thickness of 100 µm in
COMSOL, the learning-based framework, and the original
temperature-dependent framework. We run two sets of sim-
ulations for each floorplan as shown in Fig. 5: (i) processing
layer with a uniform power density, and (ii) processing layer
with a non-uniform power density with 500 × 500 µm2

hot spots. Each simulation set uses three different hybrid
wick geometries as shown in Table III and three different
coolants. We train the machine learning regression model with
4096 geometries described in the previous section. The three
validation geometries are excluded from the training set. For
uniform power density tests, we use 100 W/cm2 and 200
W/cm2. For non-uniform power density tests, we set the
background power density to 50 W/cm2 and hot spots power
density to 100, 500, and 1000 W/cm2 [8]. The COMSOL
model uses 428 nodes to compute the temperature distribu-
tion, while we use 16×16×3 nodes in our modeling tool to
simulate the temperature. We compare the average simulation
runtime of COMSOL, temperature-dependent HTC simulation
framework, and learning-based temperature-dependent HTC
simulation framework. For uniform power density validation
tests, the maximum and average errors of the learning-based
temperature-dependent HTC simulation framework are less

TABLE II: Worst-case results from the k-fold cross-validation tests.
MAE stands for mean absolute error, RMSE stands for root mean
square error. The errors are normalized with respect to the golden
HTC data.

5-fold
Coolant MAE RMSE R2
Water 0.11% 0.16% 99.95%

R245fa 0.41% 0.76% 99.92%
R141b 0.17% 0.31% 99.94%

3-fold
Coolant MAE RMSE R2
Water 0.13% 0.19% 99.93%

R245fa 1.1% 2.1% 99.91%
R141b 0.8% 1.2% 99.92%

Fig. 5: Floorplans used in validation. Dimensions are in mm.

Fig. 6: Non-uniform power profile maximum and average tempera-
ture error validation results. PDHs stands for hot spot power density.

than 0.46 ◦C and 0.24 ◦C, respectively. The accuracy results
for non-uniform validation tests are shown in Fig. 6. Compared
to the COMSOL model, the temperature-dependent HTC sim-
ulation framework has a maximum error of 1.34◦C with an av-
erage speedup of 22×. The maximum error and average error
of our proposed learning-based temperature-dependent HTC
simulation framework are 2.59◦C and 0.98◦C, respectively
and the average speedup is 21×. Note that the accuracy results
include all of the validation floorplans and geometries. Since
we replace temperature-dependent HTC correlation lookup
table with machine learning regression models, the simulation
speedup and accuracy are expected to decrease. However, our
proposed model still achieves good accuracy and speedup
when compared to the COMSOL model. Most importantly,
our proposed learning-based temperature-dependent HTC sim-
ulation framework enables accurate thermal simulations with
valid and comprehensive geometries.

C. MSA vs. A (Coarse) Grid Search
To evaluate the efficiency of our proposed optimization flow,

we compare the optimal geometries, coolants, the correspond-
ing peak temperatures, and the searching time of MSA and
grid search. For grid search, we select the solution space to
be 4096 hybrid wick geometries defined in Section V-A. For
each geometry, we first compare the dry-out heat flux of the
geometry to the maximum power density PDMax. We then
collect all the geometries that satisfy the dry-out constraint
and select the one that has the minimum peak temperature.
For each coolant, we perform this grid search and pick the
optimal coolant and the best hybrid wick geometry. This grid

TABLE III: Hybrid wick geometries for validation tests.

Geometry t dp φ AR SF w
1 450 120 0.4 2 0.25 4
2 300 100 0.2 1 0.2 5
3 700 150 0.45 0.6 0.1 8



TABLE IV: Optimization results for grid search and MSA. The optimal hybrid wick geometry is written in a format of
{t (µm), dp (µm), φ, AR, SF,w (µm)}. Table on the top shows the grid search results.

Floorplan Hot Spot Power Density (W/cm2)
100 500 1500 2000

1 R245fa{0.75, 0.2, 0.4, 1, 0.2, 4} R245fa{1, 0.2, 0.6, 1.5, 0.3, 4} R245fa{0.75, 0.2, 0.8, 2, 0.3, 4} R245fa{1, 0.2, 0.4, 1.5, 0.3, 6}
2 R245fa{1, 0.05, 0.2, 2, 0.2, 8} R141b{1, 0.05, 0.2, 2, 0.2, 8} R141b{0.25, 0.05, 0.2, 2, 0.2, 8} R141b{0.25, 0.05, 0.2, 2, 0.2, 8}
3 R245fa{1, 0.05, 0.2, 2, 0.2, 8} R141b{1, 0.05, 0.2, 2, 0.2, 8} Water{1, 0.2, 0.6, 1.5, 0.2, 6} Water{1, 0.2, 0.6, 1.5, 0.2, 6}

Floorplan Hot Spot Power Density (W/cm2)
100 500 1500 2000

1 R245fa{0.76, 0.17, 0.44, 1.15, 0.18, 4.57} R245fa{0.96, 0.19, 0.42, 1.69, 0.32, 3.53} R245fa{0.86, 0.19, 0.47, 1.23, 0.3, 6.11} R245fa{0.98, 0.19, 0.5, 1.8, 0.36, 4.96}
2 R245fa{0.98, 0.05, 0.22, 1.99, 0.19, 7.95} R141b{0.99, 0.05, 0.23, 1.88, 0.2, 7.98} R141b{0.25, 0.05, 0.23, 1.74, 0.15, 7.94} R141b{0.27, 0.08, 0.36, 1.94, 0.12, 7.94}
3 R245fa{0.99, 0.05, 0.33, 1.99, 0.22, 7.99} R141b{0.99, 0.05, 0.2, 1.94, 0.3, 8} Water{0.98, 0.19, 0.48, 1.69, 0.19, 6.4} Water{0.99, 0.19, 0.49, 1.37, 0.2, 6.8}

Fig. 7: Experimental floorplans. Dimensions are in mm.

search is coarse-grained because the solution space does not
contain all possible valid hybrid wick geometries. As for MSA,
we set the initial energy E to 1, the decay factor δ to 0.9, and
minimum energy EMin to 0.01. num start and iter are set to
10 and 100, respectively. We use three different floorplans (see
Fig. 7) with a background power density PDBg of 50 W/cm2

and hot spot power density PDHs of {100, 500, 1500, 2000}
W/cm2. The results of the grid search and MSA are shown
in Table IV. In all of the experiments, our proposed optimiza-
tion flow selects combinations of coolant and geometry that
result in lower temperatures (average 0.67 ◦C and maximum
1.78 ◦C) compared to the selections made by grid search.
Most importantly, the maximum and average searching and
simulation time for 4096 solutions grid search are 19 and
6.67 hours, respectively. However, the maximum and average
simulation times of our proposed MSA are 2.05 and 1.57
hours, respectively. The maximum and average speedup of
our proposed MSA are 9.4× and 4×, respectively, which
means our proposed optimization flow is more efficient than
the grid search. We also observe that the dry-out limit is highly
correlated with the chip size and number of hot spots. If the
chip size is larger and there are a larger number of hot spots,
only water meets the dry-out constraint. R245fa and R141b
generally have better HTC than water, but they suffer from
low critical dry-out heat flux. R245fa and R141b can be used
as coolants for small-size chips and fewer hot spots.
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VII. CONCLUSION

In this paper, we introduce a learning-based temperature-
dependent HTC simulation framework for two-phase cooling.
This framework has the ability to enable accurate thermal sim-
ulations for two-phase cooling technology with a wide range
of cooling parameters. We build a compact thermal simulator
to integrate the proposed two-phase VCs with hybrid wick
evaporators CTM into the simulation framework and validate
the temperature results against a COMSOL model as well as
a temperature-dependent HTC simulation framework designed
for the same cooling technology. Compared to the COMSOL

model, our simulation framework with CTM achieves a 21×
speedup with an average accuracy loss of less than 0.98◦C
when simulating with three hybrid wick geometries that are
excluded from the training set. We also design an optimization
flow for our proposed CTM to finds the best hybrid wick
geometry and coolant for a given floorplan and power profile.
Our future work includes integrating other two-phase cooling
CTMs (e.g., microchannel-based two-phase cooling and two-
phase VCs with single wick evaporators) into our simulation
framework and investigating the tradeoffs between the training
set size and the machine learning model accuracy.
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