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ABSTRACT
In Demand Response (DR), consumers regulate their power based
on requests from an energy supplier. Data Centers (DC) are among
the promising candidates to perform DR to help stabilize the power
grid due to their flexibility and controllability. In this work, we
present a novel framework for offering incentives to DCs so they can
dynamically adjust their electricity consumption and provide DR to
the grid. Coordination between an Independent System Operator
(ISO) and DCs is done through pricing where the ISO computes
optimal prices which elicit desired responses from the DCs. We
model DCs using realistic cost functions based on Quality of Service
(QoS) requirements of the DC workloads and present an inverse
optimization approach to cost function parameter estimation for
precise and efficient pricing along with simulation results that
highlight the strength of our approach.
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1 INTRODUCTION
DR is an emerging solution to the issue of power instability; a DR
program is utilized as a means of electricity demand management
for service stability.

A DR program requires a market model that encourages user
participation. One suchmodel is a price-based approach [1, 2] where
a set of users respond to a given price from an ISO by solving a cost
minimization problem. Previous pricing approaches do not consider
a means of customer cost function estimation which can provide
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key information to the supplier; estimated cost functions can be
used to make informed decisions in setting the best DR-inducing
price by allowing anticipation of customer responses.

We consider DCs as a DR resource due to their flexibility and ease
of monitoring and adjustment; if provided the necessary policies for
smart pricing, DCs can deliver flexibility to the grid. DR programs
can harness DC flexibility to allow for the decrease of energy usage
costs by providing financial benefits from participation [3].

In this work, we focus on a real-time pricing market model where
DCs are given price incentives to dynamically reduce their power
consumption during times of power supply deficit. We present a
novel model of a DR mechanism utilizing DCs and we construct
realistic DC cost functions that capture the provisioning of QoS
by the DC to the jobs it services. Finally, we present a means of
reconstructing each cost function by using historical data observa-
tions of the interactions between an ISO and the DCs through an
inverse optimization framework along with simulation results that
highlight the strength of our approach.

2 PROBLEM FORMULATION
We focus on a DC DR setting which involves an ISO and a number
S of DCs. The ISO provisions resources (energy) to each DC; but,
it may experience an energy supply deficit and become unable to
service all DCs. To handle this, the ISO aims to induce each DC to
adjust its energy consumption such that the overall energy con-
sumption by DCs matches available supply. For DC i , i ∈ {1, . . . , S},
to use less energy, it must reduce the number of servers that it has
running from a nominal amount N i to a new smaller amount Ni .

We model a DC as a G/G/1 queuing system where jobs arrive
and are carried out by its running servers. The queueing model
assumes a single server representing a pooled resource consisting
of all available servers in the DC; we scale the service rate linearly
with the number of available servers Ni for DC i .

Next, we model the QoS of a given DC using the probability that
the queue length L in the system is no less than some value U . For
DC i , we use results from [4] to approximate this probability as:
P[L ≥ U ] ∼ e−θ

∗
i U , where θ∗i > 0 depends on the arrival process

A and service process B, respectively. Specifically, θ∗i is the largest
positive root to: ΛA(θ∗i ) + ΛB (−θ

∗
i ) = 0, where ΛA and ΛB are the

corresponding limiting log-moment generating functions.
We want P[L ≥ U ] to be small; thus, θi should be large. We use

this parameter to design DC i’s cost function such that it yields
a small cost for a large θi and vice versa. We model DC i’s cost
function, Ci (θi ), as a convex, non-increasing function.

2.1 Forward problem
DC i solves a cost minimization problemwhen responding to a price
p. We form the general forward optimization problem as:

400

https://doi.org/10.1145/3307772.3330166
https://doi.org/10.1145/3307772.3330166


e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Athanasios Tsiligkaridis, Ioannis Ch. Paschalidis, and Ayse Coskun

minimize
Ni ,θi

− pαi (N i − Ni ) +Ci (θi )

subject to ΛA(θi ) + ΛDi (−θi ) = 0,

N i (1 − ζ ) ≤ Ni ≤ N i ,

(1)

where αi is the amount of power use per server, ζ ∈ [0, 1] is used
to form bounds on the server counts, and A and Di = NiB are
arrival and scaled service processes, respectively. The intuition
behind this formulation is that DC i wants to minimize its cost
when responding to the price p. DC i will be paid pαi (N i − Ni ) by
the ISO for reducing its running server count from N i to Ni ; it will
also be subject to a QoS cost Ci (θi ) for running Ni servers.

For our simulations, we assume that A and Di are i.i.d. Gaussian
processes. This causes the first constraint (QoS) in (1) to be linear
in Ni and θi ; since it will be satisfied with equality, the forward
problem can be expressed in terms of one variable, Ni , where the
cost function becomes: Ci (θi ) = Ci (дNi + h),д ∈ R,h ∈ R.

2.2 Inverse problem and finding the best price
To find the best DR-inducing price p∗, the ISO minimizes a social
cost metric G(p):
G(p) = q

(
T −

∑S
i=1 αi (N i − N ∗

i (p))
)
+
∑S
i=1Ci (дN

∗
i (p) + h). (2)

The first term represents the ISO’s penalty for not achieving a
target load reduction T over all DCs; each DC’s individual reduc-
tion is αi (N i − N ∗

i (p)) where N
∗
i (p) is the optimal solution of (1).

The second term represents social welfare since the ISO wants to
encourage participation in the DR program.

Finding p∗ requires knowledge of DC i’s convex, non-increasing
cost function, Ci (θi ) ∀ i . We express this cost function as the inner
product of a vector of scaling parameters ki and a vector of convex,
non-increasing constituent functions c(θi ) = (c1(θi ), . . . , cV (θi )):
Ci (θi ) = kTi c(θi ). We assume that the ISO knows the constituent
functions but does not know the coefficients ki , ∀ i .

Through the use of the inverse variational inequality framework
[5], the ISO can use data observations to learn the scaling coeffi-
cients. For a specific price pj , each DC i provides a response N j

i ;
we use M observations of ⟨pj ,N

j
i ⟩, i ∈ {1, . . . , S}, j ∈ {1, . . . ,M}

as data observations of the DR system interactions.
For observed pricepj , define the objective function of the forward

problem (1) as: ϕi (N
j
i ,ki ,γi, j ) = −pjαi (N i − N

j
i ) + k

T
i c(дN

j
i + h),

where γi, j = (pj ,αi ,N i ,д,h). With this, we set up the inverse
problem by applying Theorem 3 from [5] as:

min
k1, ...,kS ,y,ϵ

∥ϵ ∥∞ (3)

s.t − y
j
i ≤ 0, ∀i,∀j,

− y
j
i −

∂

∂N
j
i

ϕi (N
j
i ,ki ,γi, j ) + N i (1 − ζ ) ≤ 0, ∀i,∀j,

S∑
i=1

[
∂

∂N
j
i

ϕi (N
j
i ,ki ,γi, j )N

j
i + N iy

j
i

]
− ϵj ≤ 0, ∀j,

∂

∂N
jm
i

ϕi (N
jm
i ,ki ,γi, jm ) = 0, ∀i,

wherey is a dual variable, ϵ is a vector, jm represents a median price
index, and ∥ϵ ∥∞ = maxj |ϵj | is the infinity norm of ϵ = (ϵ1, ..., ϵM ).

The inverse is a minimization of an error norm such that we have
an approximate solution to a variational inequality problem; this is
a Linear Program and can be solved efficiently.

3 SIMULATION RESULTS
We aim to show that the ISO can determine the best DR-inducing
price by first using data observations to learn all DCs’ cost functions
and then minimizing (2). We consider a system with 5 DCs along
with a quadratic penalty function: q(·) = η(·)2/2. We let Ci (θi ) =
kie

−β1θi where ki , ∀i are unknowns to the ISO.
We consider three cases: 1) Optimal (ground truth), where the ISO

has full prior knowledge of each DC’s cost function, 2) Inverse (our
approach), where the ISO uses data to estimate all cost functions
by solving (3), and 3) Averaging [1], where random realizations of
cost coefficients are obtained for different prices to estimate social
cost values over which we average and search for the price that
yields the minimum average social cost.

Figure 1 shows derived prices for all cases. For our approach,
we consider noiseless and noisy data. Perfect observations allow
us to find the correct DR-inducing prices (those in case one) while
noisy data yields prices close to the optimum. For the averaging
approach, we display multiple curves that differ based on how we
obtain realizations of the cost coefficients; we sample fromGaussian
distributions that are either centered on the correct cost parameter
or not with different variances. When we sample coefficients from
the distributions centered on the true parameter value, we get
close to obtaining the optimum DR price as we observe more data
(purple and green curves); but, this situation is not practical since
we initially have no knowledge about the true parameters. With
wrong centering, correct prices cannot be obtained.
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Figure 1: Optimal prices as a function of data observation counts. Our in-
verse approach successfully finds the best DR-inducing price.

4 CONCLUSION
In this work, we proposed a novel framework for DC DR pricing,
modeled DC cost functions using QoS requirements, presented a
data-driven inverse optimization approach for parametric estima-
tion, and displayed simulation results showcasing the success of
our inverse approach in yielding correct prices.

As future work, we can: 1) incorporate power network con-
straints for added realism to our ISO-DC system, and 2) consider
ISO broadcasting of different prices.
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