Late Breaking Results:
Towards Practical Record and Replay for Mobile Applications

Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, Manuel Egele
ECE Department, Boston University, MA, USA
{sahin,aliyevaa,hrhrnm,acoskun,megele}@bu.edu

ABSTRACT

The ability to repeat the execution of a program is a fundamental
requirement in evaluating computer systems and apps. Reproduc-
ing executions of mobile apps has proven difficult under real-life
scenarios due to different sources of external inputs and interac-
tive nature of the apps. We present a new practical record/replay
framework for Android, RANDR, which handles multiple sources
of input and provides cross-device replay capabilities through a
dynamic instrumentation approach. We demonstrate the feasibility
of RANDR by recording and replaying a set of real-world apps.

1 INTRODUCTION

Reproducing the execution of a program is a core requirement in
many areas of computing such as workload characterization for
computer architecture [15], system optimization for performance
or energy [13] or software debugging and testing [6]. For instance,
from the perspective of OS-level power/performance optimization,
the same execution of a program is often repeated under different
scheduling or power management policies to explore energy and
performance tradeoffs. Meeting this core requirement, however,
has proven challenging for mobile apps [10, 14], whose execution
is heavily influenced by various non-deterministic factors such as
user inputs, network or sensory input. Due to inability to easily
reproduce real-life behavior of apps, prior studies analyze mobile
workloads under limited usage scenarios (e.g., only app launch) [12]
or rely on hand-crafted test scripts for specific devices and apps [11].
Systematic understanding of mobile workloads and comparison
of experimental observations require the availability of tools to
reproduce realistic executions in a cross-platform manner.

While various approaches exist for record and replay of mobile
apps, several limitations impair their accuracy and practicality.
First, most prior work [7-9] focus primarily on Ul events and, thus,
cannot handle execution variations that arise due to other inputs
such as random numbers or, most dominantly, network events.
Moreover, reliance on raw screen coordinates of Ul interactions [8,
10, 14] restricts the replay capability to only one specific screen size.
Second, prior approaches incur practical challenges as they require
apps’ source code [2, 4, 7] or perform intrusive modifications to the
underlying OS or virtual machine [10]. Many real world Android
apps are closed-source. Modifying the OS often requires access to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3322476

)) &

www
Record \ _/W
orginal Hook Te t F;ecord g
App > | ook Targe | | | 2
@ Methods Inputs 2
Static Y A
Instrumentation ul Network Random
Events Data Numbers
* Replay - 1
Modified = o
Hook Target | Inject @
app 2P > g
PP @ | Methods | Inputs 3

Figure 1: High-level view of RaNDR.

proprietary code and is difficult to implement and maintain [14] due
to the fragmented Android ecosystem with many software versions
and custom devices [9]. In addition, due to manufacturer imposed
restrictions against gaining root privileges, existing approaches
have limited applicability to commercial off-the-shelf devices.

This paper presents RANDR, which allows for timing-sensitive
and cross-platform record and replay of multiple sources of inputs,
while avoiding the restrictions that undermine practicality. Our
primary insight is to record the inputs that drive the application
execution by runtime hooking (as opposed to static OS or VM instru-
mentation) within an application’s own virtual memory. RANDR
hooks into a set of target Java methods to capture both user inputs
and the random numbers that cause variant application behavior if
not kept deterministic across record and replay. In addition, RANDR
intercepts the network traffic by hooking into native C libraries. By
capturing these multiple data and event streams and performing
timing-sensitive and coordinate-independent replay of Ul inter-
actions, RANDR successfully reproduces the behavior of popular
off-the-shelf Android apps across different devices.

2 RANDR DESIGN

The goal of RANDR (Figure 1) is to provide cross-device record
and replay capabilities for real-world closed-source Android apps.
RANDR does not require root permissions or any modifications
to OS/app source. Instead, RANDR leverages Android application
sandbox which ensures that each app runs in its own process space
within its own instance of Android Runtime. By dynamically in-
strumenting Android Framework from within app’s own virtual
space, RANDR is able to capture and reproduce the inputs to a set of
target method calls (i.e., both Java and C APIs) in the framework.

App Instrumentation: RANDR hooks into a set of target API
methods to capture the inputs while recording and to inject the
recorded inputs during replay. We use two open-source hooking
frameworks, YAHFA[5] and AndHook[1] to hook into Java and
native APIs respectively. RANDR backs up the original target method
and modifies the function pointers within the method instances
to point to our hook functions. Our hook functions either record
or modify method arguments and return values, and invoke the
original target methods as necessary. To load our hooking library
at runtime, RANDR also statically re-writes the app bytecode.

https://doi.org/10.1145/3316781.3322476

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

Jaccard Visual Jaccard Visual
Similarity Similarity Similarity Similarity
App RandR | Reran | RandR | Reran App RandR | Reran | RandR | Reran
Knights of | 3500 | 100% | Yes | Yes | Summation | 1007 | 947 | Yes | No
Alentejo
Solar Compass 97% 97% Yes No | Accordion 100% 97% Yes Yes
Verbiste Android | 97% 80% Yes Yes | Word Power | 100% 98% Yes No
ToneDef 100% | 100% Yes No | MedicLog 100% | 41% Yes No
Mileage 100% 47% Yes No | Dicer 100% 94% Yes No

Table 1: Cross-device evaluation of RANDR and Reran|[8]

Widget-sensitive UI Replay: RANDR'’s approach to Ul replay is
based on the observation that a user mostly interacts with an appli-
cation via Ul widgets, essential Ul elements provided by the Android
Framework (e.g. Button, SearchBar, ImageView, etc). Therefore,
RANDR targets widget-sensitive Ul replay, and records the UI events
(e.g., MotionEvent, KeyEvent) with respect to an app’s UI widgets.
To uniquely identify widgets presented in an app, RANDR assigns
widgets stable identifiers that are consistent across multiple ap-
plication runs and devices. RANDR derives these identifiers from
multiple internal properties of a widget, including the widget’s
position in the Ul layout, text and other internal fields. During the
replay, RANDR identifies the widgets on the screen, updates the
recorded events according to the new location of a widget, and
injects updated events into the app.

Network Replay: RANDR records and replays the network I/O
by hooking into the wrapper methods for various system calls
(e.g., socket, recv, write) in Android’s C library. While recording,
RANDR invokes the original library method and saves the arguments
to a separate trace file for each socket descriptor. At the replay, once
the connect () method is called on a socket, RANDR identifies the
target trace file to read based on the target IP address. By focusing
on the system call interface, RANDR is agnostic to different network
protocol implementations in Java (e.g., OkHttp, FTPClient). In fact,
RANDR can even replay encrypted HTTPs traffic by intercepting and
replaying the random numbers generated within crypto libraries
during the TLS handshake.

Random Number Replay: Since random numbers can cause vari-
ant app behavior [10], RANDR also handles this non-determinism by
hooking into the pseudo-random number generator in Java APIs.

3 EVALUATION AND CASE STUDIES

We evaluate RANDR’s replay accuracy via two metrics: (1) Jaccard
similarity between the set of executed methods of an app during
record and replay; (2) user-visible state similarity as used in prior
work [8-10]. We use a common Java code coverage tool (i.e., EMMA
[3]) to obtain the set of executed methods. Since EMMA requires the
app’s source code for instrumentation, we crawl a random set of
real-world Android apps from the F-droid dataset, and select 10
apps that EMMA and RANDR can instrument without any errors.

We evaluate RANDR’s cross device replay capability on two An-
droid SDK emulators (Nexus 5X and Pixel 2 XL) that have different
screen sizes. Overall, when exercising applications during record,
we achieve an average 49.45% method coverage. As shown in Ta-
ble 1, RANDR was able to successfully replay all apps across both
devices, unlike the coordinates-based Reran tool.

To assess RANDR’s ability to record and replay closed-source
apps, we pick the most popular apps with network dependent
functionalities (i.e., using both HTTP and HTTPs) from 4 Play Store
categories: OfficeSuite, Kakao Bus, Mirror Camera, Hot Pepper

Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, Manuel Egele

2048 2048 2048
2
2|2
Game Over! . Game Over!
2 o 2
- -] - -] - -]
(a) Recorded (b) RERAN (c) RanDR

Figure 2: Comparison of Reran [8] to RandR for 2048 app

Gourmet. For these apps, we verified RANDR’s replay success by
comparing the recorded and reproduced user-visible screen states.

We show the importance of handling inputs other than UI (e.g.,
random numbers) with a specific study comparing RANDR to Reran
[8] for a session of the 2048 game (Figure 2). During record, the
game reaches the “Game Over” state and renders a new text on
the screen. Replay with Reran diverges to a different state due to
randomized location of numbers, while RANDR reproduces the same
sequence of random numbers and reaches the correct final state.
Impact of Accurate Replay on Performance Measurements:
RANDR allows for real-life experimentations (e.g., power or perfor-
mance studies) on mobile systems with off-the-shelf mobile apps
and can substantially improve the quality of experimental measure-
ments. Figure 3 illustrates the significance of replaying network
traffic (e.g., using RANDR), as opposed to Ul-only replay [7-9, 14], for
achieving consistent and meaningful performance measurements.
We measured the latency distribution over 20 executions of UC
Browser app from the Play Store while browsing a web page whose
content changes over time (i.e., thefakenewsgenerator. com). Since
RANDR replays the same recorded content and is not effected by
the network speed fluctuations or the web content changes on the
server, RANDR can significantly reduce measurement variations.
Such reproducibility is key to correct analysis of performance and
power bottlenecks in mobile systems research.

‘H = Ul Replay Only
Ul Replay + Network Replay (RandR)

L0

0 03 0.6 0.9 12 15 1.8 21
. Measured Performance (Latency in Seconds)
Figure 3: Performance variance with and without network replay

REFERENCES

[1] Andhook. https://github.com/asLody/AndHook.
[2] Android ui automator. https://developer.android.com/training/testing/ui-automator.
[3] Emma. http://emma.sourceforge.net.
[4] Espresso. https://developer.android.com/training/testing/espresso/.
[5] Yahfa. https://github.com/rk700/YAHFA.
[6] T.Azim and I Neamtiu. Targeted and depth-first exploration for systematic testing of android
apps. In OOPSLA, 2013.
[7] M.Fazzini, E.N.D. A. Freitas, S. R. Choudhary, and A. Orso. Barista: A technique for recording,
encoding, and running platform independent android tests. In ICST, 2017.
[8] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing- and touch-sensitive record
and replay for android. In ICSE, 2013.
[9] M. Halpern, Y. Zhu, R. Peri, and V. Janapa Reddi. Mosaic: cross-platform user-interaction
record and replay for the fragmented android ecosystem. In ISPASS, 2015.
[10] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-and-replay for android. In
OOPSLA, 2015.
[11] X.Li, G. Chen, and W. Wen. Energy-efficient execution for repetitive app usages on big little
architectures. In DAC, 2017.
[12] D. Pandiyan, S. Lee, and C. Wu. Performance, energy characterizations and architectural
implications of an emerging mobile platform benchmark suite - mobilebench. In IISWC, 2013.
[13] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated cpu-gpu power management for 3d
mobile games. In DAC, 2014.
[14] Z.Qin, Y. Tang, E. Novak, and Q. Li. Mobiplay: A remote execution based record-and-replay
tool for mobile applications. In ICSE, 2016.
[15] D. Sunwoo, W. Wang, M. Ghosh, C. Sudanthi, G. Blake, C. D. Emmons, and N. C. Paver. A
structured approach to the simulation, analysis and characterization of smartphone applica-
tions. In IISWC, 2013.

https://github.com/asLody/AndHook
https://developer.android.com/training/testing/ui-automator
http://emma.sourceforge.net
https://developer.android.com/training/testing/espresso/
https://github.com/rk700/YAHFA

