
Online Diagnosis of Performance Variation
in HPC Systems Using Machine Learning

Ozan Tuncer , Emre Ates , Yijia Zhang, Ata Turk, Jim Brandt, Vitus J. Leung,

Manuel Egele,Member, IEEE, and Ayse K. Coskun

Abstract—As the size and complexity of high performance computing (HPC) systems grow in line with advancements in hardware and

software technology, HPC systems increasingly suffer from performance variations due to shared resource contention as well as

software- and hardware-related problems. Such performance variations can lead to failures and inefficiencies, which impact the cost

and resilience of HPC systems. To minimize the impact of performance variations, one must quickly and accurately detect and

diagnose the anomalies that cause the variations and take mitigating actions. However, it is difficult to identify anomalies based on the

voluminous, high-dimensional, and noisy data collected by system monitoring infrastructures. This paper presents a novel machine

learning based framework to automatically diagnose performance anomalies at runtime. Our framework leverages historical resource

usage data to extract signatures of previously-observed anomalies. We first convert collected time series data into easy-to-compute

statistical features. We then identify the features that are required to detect anomalies, and extract the signatures of these anomalies.

At runtime, we use these signatures to diagnose anomalies with negligible overhead. We evaluate our framework using experiments on

a real-world HPC supercomputer and demonstrate that our approach successfully identifies 98 percent of injected anomalies and

consistently outperforms existing anomaly diagnosis techniques.

Index Terms—High performance computing, anomaly detection, machine learning, performance variation

Ç

1 INTRODUCTION

EXTREME-SCALE computing is essential for many engineer-
ing and scientific research applications. These applica-

tions suffer from significant performance variations reaching
up to 100 percent difference between the best andworst com-
pletion times with the same input data [1], [2]. Performance
variations can be caused by hardware- and software-related
anomalies such as orphan processes left over from previous
jobs [3], firmware bugs [4], memory leaks [5], CPU throttling
for thermal control [6], reduced CPU frequency due to hard-
ware problems [7], and shared resource contention [8], [9]. In
addition to performance degradation, these anomalies can
also lead to premature job terminations [3]. The unpredict-
ability caused by anomalies, combined with the growing size
and complexity of high performance computing (HPC) sys-
tems, makes efficient system management challenging. In
fact, unpredictability is a major roadblock towards the design
of exascale HPC systems.

Detection and diagnosis of anomalies have traditionally
relied on the experience and expertise of human operators.
By continuously monitoring and analyzing system logs,

performance counters, and application resource usage pat-
terns, HPC operators can assess system health and identify
the root causes of performance variations. In today’s HPC
systems, this process would translate into manual examina-
tion of billions of data points per day [10]. As system size
and complexity grows, such manual processing becomes
increasingly time-consuming and error-prone. Hence, auto-
mated anomaly diagnosis is essential for efficient operation
of future HPC systems.

While a number of techniques have been proposed for
detecting anomalies that cause performance variations in
HPC systems [11], [12], these techniques still rely on human
operators to discover the root causes of the anomalies, lead-
ing to delayed mitigation and wasted compute resources.
An effective way of decreasing the delay between anomalies
and remedies is to automate the diagnosis of anomalies [13],
which paves the way for automated mitigation.

In this paper, we propose a framework to automatically
detect the compute nodes suffering from previously observed
anomalies and identify the type of the anomaly independent
of the applications running on the compute nodes. Our frame-
work detects and diagnoses anomalies by applying machine
learning algorithms on resource usage and performance
metrics (e.g., number of network packets received), which are
already collected in many HPC systems. Compared to our
earlier work [14], our new framework diagnoses anomalies
online, i.e., without having to wait for an application to com-
plete its execution.

We evaluate our framework on a Cray XC30m supercom-
puter using multiple benchmark suites and synthetic
anomalies that are designed to mimic real-life scenarios.
We demonstrate that our approach effectively identifies

� O. Tuncer, E. Ates, Y. Zhang, A. Turk, M. Egele, and A.K. Coskun are
with the Electrical and Computer Engineering Department, Boston
University, Boston, MA 02215.
E-mail: {otuncer, ates, zhangyj, ataturk, acoskun}@bu.edu.

� J. Brandt and V.J. Leung are with SandiaNational Laboratories, Albuquerque,
NM87185. E-mail: {brandt, vjleung}@sandia.gov.

Manuscript received 5 Mar. 2018; revised 14 July 2018; accepted 17 Aug.
2018. Date of publication 14 Sept. 2018; date of current version 13 Mar. 2019.
(Corresponding author: Ozan Tuncer.)
Recommended for acceptance by F. Cappello.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2870403

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019 883

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4222-1648
https://orcid.org/0000-0003-4222-1648
https://orcid.org/0000-0003-4222-1648
https://orcid.org/0000-0003-4222-1648
https://orcid.org/0000-0003-4222-1648
https://orcid.org/0000-0002-2292-2626
https://orcid.org/0000-0002-2292-2626
https://orcid.org/0000-0002-2292-2626
https://orcid.org/0000-0002-2292-2626
https://orcid.org/0000-0002-2292-2626
https://orcid.org/0000-0002-6554-088X
https://orcid.org/0000-0002-6554-088X
https://orcid.org/0000-0002-6554-088X
https://orcid.org/0000-0002-6554-088X
https://orcid.org/0000-0002-6554-088X
mailto:
mailto:

98 percent of the injected anomalies while leading to only
0.08 percent false anomaly alarms with an F-score over 0.99,
while the F-scores of other state-of-the-art techniques remain
below 0.94. As shown in our evaluation, our approach suc-
cessfully diagnoses anomalies even when running unknown
applications that are not used during training. Our specific
contributions are as follows:

� We design and build an application-agnostic, low-
overhead, online anomaly detection framework
that enables automatic detection and diagnosis of
previously-observed anomalies that contribute to
performance variations. Using experiments on a
Cray XC30m supercomputer, we demonstrate that
our approach consistently outperforms state-of-the-
art techniques on diagnosing anomalies.

� We introduce an easy-to-compute online statistical
feature extraction and selection approach that identi-
fies the features required to detect target anomalies
and reduces the computational overhead of online
anomaly diagnosis by more than 50 percent.

The remainder of the paper starts with an overview of
the related work. Then, Section 3 introduces our anomaly
diagnosis framework. In Section 4, we explain our experi-
mental methodology. Section 5 presents our results, and we
conclude in Section 6.

2 RELATED WORK

In the last decade, there has been growing interest in build-
ing automatic performance anomaly detection tools for
cloud or HPC systems [15]. A number of tools have been
proposed to detect anomalies of either a specific type (such
as network anomalies) or multiple types. These tools in gen-
eral rely on rule-based methods, time-series prediction, or
machine learning algorithms.

Rule-based anomaly detection methods are commonly
deployed in large-scale systems. These methods use thresh-
old-based rules on the monitored resource usage and per-
formance metrics, where the rules are set by domain experts
based on the performance and resource usage constraints,
application characteristics, and the target HPC system [16],
[17]. The reliance of such methods on expert knowledge lim-
its their applicability. In addition, these rules significantly
depend on the target HPC infrastructure and are not easily
generalizable to other systems.

Time-series based approaches build a time-series model
and make predictions based on the collected metrics. These
methods raise an anomaly alert whenever the prediction does
not match the observed metric value beyond an acceptable
range of differences. Previous research has employed multi-
ple time-series models including support vector regres-
sion [18], auto-regressive integrated moving average [19],
spectral Kalman filter [19], and Holt-Winters forecasting [20].
While such methods successfully detect anomalous behavior,
they are not designed to identify the type of the anomalies
(i.e., diagnosis). Moreover, these methods can lead to unac-
ceptable computational overhead when the collected set of
metrics is large.

A number of machine learning based approaches have
been proposed to detect anomalies on cloud and HPC sys-
tems. These approaches utilize unsupervised learning

algorithms such as affinity propagation clustering [21],
DBSCAN [22], isolation forest [23], hierarchical clustering
[24], k-means clustering [25], and kernel density estimation
[20], as well as supervised learning algorithms such as
support vector machines (SVM) [26], k-nearest-neighbors
(kNN) [18], [27], random forest [28], and Bayesian classi-
fier [29]. Although these studies can detect anomalies onHPC
and cloud systemswith high accuracy, only a few studies aim
at diagnosing the anomaly types [13]. Aswe show in our eval-
uation (Section 5), our approach of using tree-based algo-
rithms on features that summarize time series behavior
outperforms existing techniques on detecting and diagnosing
anomalies.

Feature extraction is essential to reduce computation over-
head and to improve the detection accuracy in learning-based
approaches. In addition to using common statistical features
such as mean/variance [11], previous works on HPC anom-
aly detection have also studied features such as correlation
coefficients [30], Shannon entropy [31], and mutual informa-
tion gain [24]. Some approaches also explored advanced fea-
ture extraction methods including principal component
analysis (PCA) [12], [27], independent component analysis
(ICA) [27], [29], and wavelet-transformation [32], [33]. In
Section 5, we demonstrate that combining statistical feature
extraction with anomaly-aware feature selection results in
superior anomaly indicators compared to the features
selected using statistical techniques such as ICA.

Failure detection and diagnosis on large scale computing
systems is related to performance anomaly detection as these
two fields share some common interests and technologies [7].
Nguyen et al. proposed a method to pinpoint faulty compo-
nents by analyzing the propagation of the faults [34]. Simi-
larly, a diagnostic tool called PerfAugur has been developed
to help administrators trace the cause of an anomaly by find-
ing common attributes that predicate an anomaly [35]. These
studies focus on fault detection, whereas our goal is to find
the causes of performance variation, which do not necessar-
ily lead to failures.

In our recent work [14], we designed an automated
anomaly detection framework that diagnoses anomalies in
contrast to solely detecting anomalies. However, this frame-
work detects anomalies once an application completes its
execution, which can cause significant delays in anomaly
diagnosis especially for long-running applications. More-
over, our earlier work did not have a solution for identify-
ing features that are required for anomaly detection, which
is necessary for low-overhead analysis at runtime.

Our work is different from related work in the following
aspects: Our proposed framework can detect and diagnose
previously observed performance anomalies, which do not
necessarily lead to failures. Our approach does not rely on
expert knowledge beyond initial labeling or determination
of anomalies of interest, has negligible computational over-
head, and can diagnose anomalies at runtime. In Section 5,
we show that our technique consistently outperforms the
state-of-the-art methods in diagnosing performance anoma-
lies in HPC systems.

3 ANOMALY DETECTION AND DIAGNOSIS

Our goal is to quickly and accurately detect whether a
compute node is anomalous (i.e., experiencing anomalous
behavior) and classify the type of the anomaly (e.g., network

884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

contention or memory leak) at runtime, independent of
the application that is running on the compute node. We
target anomalies that are caused by applications or system
software/hardware such as orphan processes, memory leaks,
and shared resource contention. Once an anomaly is detected,
mitigativemeasures can be taken promptly by administrators,
users, or automated systemmanagementmechanisms.

To detect and classify anomalies, we introduce an auto-
mated approach based on machine learning. Fig. 1 shows
an overview of our framework. We leverage historical
resource usage and performance data that are collected
from healthy and anomalous nodes to learn the signatures
of target anomalies. As an HPC application can run on mul-
tiple nodes in parallel, if any of these nodes is anomalous,
the entire application’s resource usage patterns may be
affected. Hence, if a job running on multiple nodes suffers
from an anomaly, we include only the anomalous node in
the training set and discard the remaining nodes’ data.

Using the data collected from known healthy and anom-
alous runs, we extract and identify the statistical features
that are useful to detect target anomalies, and generate con-
cise anomaly signatures using machine learning algorithms.
At runtime, we monitor the compute nodes, extract the fea-
tures that are identified during training, and compare these
features with the anomaly signatures. The remainder of this
section explains these steps in detail.

3.1 Monitoring and Feature Extraction

We leverage data that are already periodically collected in
HPC systems to assess system health. These data typically
consist of time series of resource usage and performance
metrics such as CPU utilization, number of network packets
received, and power consumption. Our framework does not
depend on a specific set of collected metrics and can be cou-
pled with a variety of HPC monitoring tools such as
Ganglia1 and LDMS [10].

For each collected metric, we keep track of the recently
observed W values in a sliding window time series, and
calculate the following statistical features:

� The minimum and the maximum values
� Percentile values (5th, 25th, 50th, 75th, and 95th)
� The first four moments (i.e., mean, variance, skew-

ness, and kurtosis).
The above features retain the time series characteristics

and bring substantial computational and storage savings
compared to directly using the raw values. To enable easy
scaling, we extract these statistical features from individual
compute nodes and do not account for the interaction and
correlation between multiple nodes.

In eachmeasurement time step, the features are calculated
in at most OðlogW Þ computational complexity for a sliding
window size ofW . With a constant and smallW , this enables
us to generate features at runtime with negligible overhead.
The value of W is determined offline based on the target
anomalies and the target system (see Section 5.1 for details).
While using a large window size typically makes it easier to
detect anomalies, it delays anomaly detection.

3.2 Feature Selection

HPC system monitoring infrastructures may collect hun-
dreds of resource usage and performance metrics per com-
pute node [10]. Performing anomaly diagnosis based on
only a subset of these metrics and calculating only the statis-
tical features that are useful for diagnosis can save signifi-
cant computational overhead. Furthermore, feature
selection can improve the accuracy of classification algo-
rithms (see Section 5.2).

During training, we first generate all features, and then
identify the features that are useful for anomaly detection
using the Kolmogorov-Smirnov (KS) test [36] together with
the Benjamini-Yakutieli procedure [37]. This methodology
has been shown to be successful for selection of time series
features for regression and binary classification [38].

Fig. 1. Overall system architecture. In the offline training phase, we use resource usage and performance data from known healthy and anomalous
runs to identify features that are calculated from time series windows and are useful to distinguish anomalies. The selected features are then used
by machine learning algorithms to extract concise anomaly signatures. At runtime, we generate only the selected features from the recently observed
resource usage and performance data, and predict the anomalies using the machine learning models. We raise an anomaly alarm only if the anomaly
prediction is persistent across multiple sliding windows.

1. https://ganglia.info

TUNCER ETAL.: ONLINE DIAGNOSIS OF PERFORMANCE VARIATION IN HPC SYSTEMS USING MACHINE LEARNING 885

https://ganglia.info

For a given feature that is extracted from an anomalous
node, the KS test compares the cumulative distribution
function (CDF) of that feature with the CDF of the same fea-
ture when running the same application without any anom-
aly. Based on the number of data points in the CDFs and the
maximum distance between the CDFs, the KS test provides
a p-value. Here, a small p-value indicates that there is a high
statistical difference between the two CDFs, which, in this
case, is caused by the presence of an anomaly.

The p-values corresponding to all features are then sorted
and passed to the Benjamini-Yakutieli procedure. This pro-
cedure determines a p-value threshold and discards the
features with p-values higher than this threshold. This
threshold is calculated probabilistically based on a given
expected false discovery rate (FDR), which is the proportion of
useful features among all discarded features. As discussed
in Section 5.2 in detail, the FDR parameter has negligible
impact on the number of features selected in our dataset.

The methodology described above has been proposed for
binary classification [38]. We adapt this methodology for
anomaly diagnosis via multi-class classification as follows:
We select the useful features for each anomaly-application
pair that exists in the training data. We then use the union
of the selected features to train machine learning models.
This way, even if a feature is useful only to detect a specific
anomaly when running a specific application, that feature is
included in our analysis. Since this approach looks at every
feature independently, we might filter out features whose
combination (or joint CDF) is an indicator of an anomaly.
However, our results indicate that this is not the case in
practice as the feature selection only results in accuracy
improvement (see Section 5). A feature cross (i.e., multiplying
every feature with every other feature) before feature selec-
tion could be used in cases where this feature selection pro-
cedure eliminates important feature pairs.

3.3 Model Training

We generate the selected features using the data collected
from the individual nodes that are used in the known
healthy and anomalous runs. We use these features to train
supervised machine learning models where the label of
each node is given as the type of the observed anomaly on
that node (or healthy). In the absence of labeled data for
anomalies, the training can be performed using controlled
experiments with synthetic anomalies, which are programs
that mimic real-life anomalies.

With training data from a diverse set of applications that
represent the expected workload characteristics in the target
HPC system, machine learning algorithms extract the signa-
tures of anomalies independent of the applications running
on the compute nodes. This allows us to identify previously
observed anomaly signatures on compute nodes even when
the nodes are running an unknown application that is not
used during training. Hence, our framework does not need
any application-related information from workload manag-
ers such as Slurm.2

We focus on tree-based machine learning models since
our earlier studies demonstrated that tree-based models are
superior for detecting anomalies in HPC systems compared

to SVM or kNN [14]. Tree-based algorithms are inherently
multi-class classifiers, and can perform classification based
on the behavior of combinations of features. Distance based
classifiers such as kNN are often misled by our data since
we have many features in our dataset, and they are from
very different domains, e.g., the 75th percentile of CPU utili-
zation and the standard deviation of incoming packets per
second. Moreover, tree-based algorithms, in general, gener-
ate easy-to-understand models that lend themselves to scru-
tinization by domain experts. Other models such as neural
networks typically provide low observability into their deci-
sion process and reasoning, and require significantly more
training samples compared to tree based algorithms. Tree-
based models also allow us to further reduce the set of fea-
tures that needs to be generated as decision trees typically
do not use all the available features to split the training set.
Hence, at runtime, we calculate only the features that are
selected by both the feature selection phase and the learning
algorithms, further reducing the computational overhead of
our framework.

We focus on three tree-based machine learning models:
decision tree, random forest and adaptive boosting (Ada-
Boost). Decision trees [39] are constructed by selecting the
feature threshold that best splits the training set, which is
then placed in the top of the tree, dividing the training set
into two subsets. This process is repeated recursively with
the resulting subsets of the training data until each subset
belongs to a single class. During testing, the decision tree
compares the given features with the selected thresholds
starting from the top of the tree until a leaf is found. The
predicted class is the class of the leaf node. Random for-
est [40] is an ensemble of decision trees that are constructed
using random subsets of the features. Majority voting is
used to get the final prediction from the ensemble of trees.
AdaBoost [41] is another type of tree ensemble that trains
each tree with examples that the previous trees misclassify.

3.4 Runtime Anomaly Diagnosis

At runtime, we monitor resource usage and performance
metrics from individual nodes. In each monitoring time
step, we use the last W collected metric data to generate the
sliding window features that are selected during the train-
ing phase. These features are then used by the machine
learning models to predict whether each node is anomalous
along with the type of the anomaly.

As our goal is to detect anomalies that cause performance
variations, raising a false anomaly alarm may waste the
time of system administrators or even cause artificial perfor-
mance variations if the anomaly alarm initiates an auto-
mated mitigative action. Hence, avoiding false alarms is
more important for us than missing anomalies.

To increase robustness against false alarms, we do not
raise an alarm when a node is predicted as anomalous
based on data collected from a single sliding window.
Instead, we consider an anomaly prediction as valid only if
the same prediction persists for C consecutive sliding win-
dows. Otherwise, we label the node as healthy. Increasing
the parameter C, which we refer to as the confidence thresh-
old, decreases the number of false anomaly alarms while
delaying the detection time. Similar to W , the value of C
depends on the characteristics of the target anomalies2. https://slurm.schedmd.com/

886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

https://slurm.schedmd.com/

as well as the target system. Hence, C should be sele-
cted empirically based on preliminary experiments (see
Section 5.3 for details).

4 EXPERIMENTAL METHODOLOGY

To evaluate the efficacy of our framework, we run con-
trolled experiments on an HPC testbed. We mimic anoma-
lies observed in this testbed by running synthetic programs
simultaneously with various HPC applications, and diag-
nose the anomalies using our framework and selected base-
line techniques. This section presents the details on our
target HPC testbed as well as the synthetic anomalies and
the applications we use.

4.1 Target HPC System

We perform our experiments on Volta, a Cray XC30m
testbed supercomputer located at Sandia National Laborato-
ries. Volta consists of 52 compute nodes, organized in 13
fully connected switches with 4 nodes per switch. Each node
has 64 GB of memory and two sockets, each with an Intel
Xeon E5-2695 v2 CPUwith 12 2-way hyper-threaded cores.

Volta is monitored by the Lightweight Distributed Metric
Service (LDMS) [10]. At every second, LDMS collects 721
metrics in five categories as described below:

� Memory metrics (e.g., the amount of free, cached,
active, inactive, dirty memory)

� CPUmetrics (e.g., per-core and overall idle time, I/O
wait time, hard and soft interrupt counts, context
switch count)

� Virtual memory statistics (e.g., free, active and inac-
tive pages; read and write counts)

� Cray performance counters (e.g., power consump-
tion, dirty, write-back counters; received/transmit-
ted bytes/packets)

� Aries network interface controller counters (e.g.,
received/transmitted packets, flits, blocked packets)

Out of the collected 721 metrics, we discard 158 metrics
that are constant during all of our experiments.

4.2 Applications

To evaluate our framework using a diverse set of resource
usage characteristics, we use benchmark applications with
which we can obtain 10-15 minute running times using

three different input configurations. Such running times
occur frequently in supercomputers [42].

Table 1 presents the applications we use in our evalua-
tion. The NAS Parallel Benchmarks (NPB) are widely used
by the HPC community as a representative set of HPC
applications. The Mantevo Benchmark Suite is developed
by Sandia National Laboratories as proxy applications for
performance and scaling experiments. These applications
mimic the computational cores of various scientific work-
loads. In addition, we use kripke, which is another proxy
application developed by Lawrence Livermore National
Laboratory for HPC system performance analysis. All appli-
cations in Table 1 use MPI for inter-process and inter-node
communication.

We run all parallel applications first on four compute
nodes, where the nodes are utilized as much as possible by
using one MPI rank per core. In bt and sp applications, we
do not fully utilize the compute nodes as these applications
require the total number of MPI ranks to be the square of an
integer. Similarly, cg, ft, and mg applications require the
total number of MPI ranks to be a power of two.

In addition to the 4-node application runs, we experi-
ment with 32-node runs with four applications (kripke, min-
iMD, miniAMR, and miniGhost), with which we can obtain
10-15 minute running times for two input configurations.
Using these 32-node runs, we show that our framework can
diagnose anomalies when running large applications after
being trained using small applications (see Section 5.9).

In our experiments, each application has three different
input configurations, resulting in a different running time
and resource usage behavior. For example, in miniMD,
which is a molecular dynamics application that performs
the simulation of a Lennard-Jones system, one input config-
uration uses the values of certain physical constants, while
another configuration replaces all constants with the integer
1 and performs a unitless calculation.

The runs of the same application with the same input
configuration leads to slightly different behavior as the
benchmarks randomize the application input data and also
due to the differences in the compute nodes allocated by the
system software. Hence, we repeat each application run five
times with the same input configuration but with different
randomized input data and on different compute nodes.

Before generating features from an application run, we
remove the first and last 30 seconds of the collected time
series data to strip out the initialization and termination
phases of the application. Note that the choice of 30 seconds
is based on these particular applications and the configura-
tion parameters used.

4.3 Synthetic Anomalies

The goal of our framework is to learn and identify the signa-
tures of previously observed anomalies. To evaluate our
approach with controlled experiments, we design synthetic
anomalies that mimic commonly observed performance
anomalies caused by application- or system-level issues.

As shown in Table 2, we experiment with three types of
anomalies. Orphan processes typically result from incorrect
job termination. These processes continue to use system
resources until their execution is completed or until they are
forcefully killed by an external signal [3], [46]. Out-of-memory

TABLE 1
Applications used in Evaluation

Benchmark Application # of MPI
ranks

Description

NAS Parallel
Benchmarks
[44]

bt 169 Block tri-diagonal solver
cg 128 Conjugate gradient
ft 128 3D fast Fourier transform
lu 192 Gauss-Seidel solver
mg 128 Multi-grid on meshes
sp 169 Scalar penta-diagonal solver

Mantevo
Benchmark
Suite [45]

miniMD 192 Molecular dynamics
CoMD 192 Molecular dynamics

miniGhost 192 Partial differential equations
miniAMR 192 Stencil calculation

Other kripke [46] 192 Particle transport

TUNCER ETAL.: ONLINE DIAGNOSIS OF PERFORMANCE VARIATION IN HPC SYSTEMS USING MACHINE LEARNING 887

problems occur due to memory leaks or insufficient available
memory on the compute nodes [5]. Finally, contention of
shared resources such as network links can significantly
degrade performance [8].

For each anomaly, we use six different anomaly intensities
(2, 5, 10, 20, 50, and 100 percent) to create various degrees of
performance variation. We adjust the maximum intensities
of orphan process and resource contention anomalies such that
the anomaly increases the running time of the applications
at most by 3X, which is in line with the performance varia-
tion observed in production systems [2]. The intensity of the
out-of-memory anomalies are limited by the available mem-
ory in the system, and add up to 10 percent overhead to the
job running time without terminating the job. We do not
mimic job termination due to out-of-memory errors as we
primarily focus on performance variation rather than fail-
ures. We use the following programs to implement our syn-
thetic anomalies:

1) dcopy allocates two equally sized matrices of type
double, fills one matrix with a number, and copies
it to the other matrix repeatedly, simulating CPU
and cache interference. After 109 write operations,
the matrix size is changed to cycle between 0.9, 5 and
10 times the sizes of each cache level. The anomaly
intensity scales the sizes of these matrices.

2) dial stresses a single CPU core by repeatedly generat-
ing random floating-point numbers and performing
arithmetic operations. The intensity sets the utiliza-
tion of this process: Every 0.25 seconds, the program
sleeps for 0:25� ð1� intensityÞ seconds.

3) leak allocates a ð200� intensityÞKB char array, fills
the array with characters, sleeps for two seconds,
and repeats the process. The allocated memory is
never released, leading to a memory leak. After 10
iterations, the program restarts to avoid crashing the
main program by consuming all available memory.

4) memeater allocates a ð360� intensityÞKB int array
and fills the array with random integers. It periodi-
cally increases the size of the array using realloc

and fills in new elements. After 10 iterations, the pro-
gram sleeps for 120 seconds and restarts.

5) linkclog adds a delay before MPI messages sent out of
and into the selected anomalous node by wrapping
MPI functions. The duration of this delay is propor-
tional to the message size and the anomaly intensity.
We emulate network contention using message
delays rather than using external jobs with heavy
communication. This is because Volta’s size and

flattened butterfly network topology with fully-
connected routers prevent us from clogging the
network links with external jobs.

Using synthetic anomalies with different characteristics
allows us to study various aspects of online anomaly diag-
nosis such as window size selection, feature selection, and
sensitivity against anomaly intensities. Our method, in prin-
ciple, applies to other types of anomalies as well; however,
depending on the anomaly, the framework will likely select
a different feature set to generate anomaly signatures and
perform diagnosis.

We use two anomaly scenarios: (1) persistent anomalies,
where an anomaly program executes during the entire
application run, and (2) random-offset anomalies, where an
anomaly starts at a randomly selected time while the appli-
cation is running. In the latter scenario, each application has
two randomly selected anomaly start times.

4.4 Baseline Methods

We have implemented two state-of-the-art algorithms for
HPC anomaly detection as baselines to compare with our
work. These algorithms are an independent-component-
analysis-based approach developed by Lan et al. [27]
(referred to as “ICA-Lan”) and a threshold-based fingerprint-
ing approach by Bodik et al. [13] (referred to as “FP-Bodik”).

4.4.1 ICA-Lan

ICA-Lan [27] relies on Independent Component Analy-
sis [47] to detect anomalies on HPC systems. During train-
ing, ICA-Lan first normalizes the collected time series
metrics and applies ICA to extract the independent features of
the data. Each of these features is a linear combination of
the time series data of all metrics within a sliding window,
where the coefficients are determined by ICA. ICA-Lan
then constructs feature vectors composed of the top m inde-
pendent features for each node and each sliding window.

To test for anomalies in an input sliding window, ICA-
Lan constructs a feature vector with the coefficients used
during training, and compares the euclidean distance
between the new feature vector and all the feature vectors
generated during training. If the new feature vector is an
outlier, the input is marked as anomalous. In the original
paper [27], ICA-Lan can tell only whether a node is anoma-
lous or not without classifying the anomaly. In our imple-
mentation, we generalize this method by replacing their
distance-based outlier detector with a kNN (k Nearest
Neighbor) classifier.

The original implementation of Lan et al. chooses the top
m ¼ 3 components. However, because we collect many
more metrics compared to Lan et al.’s experiments, the top
m ¼ 3 are not sufficient to capture the important features
and results in poor prediction performance. Hence, we use
m ¼ 10 as it provides good diagnosis performance in gen-
eral in our experimental environment [14].

4.4.2 FP-Bodik

FP-Bodik [13] uses common statistical features and relies on
thresholding to compress the collected time series data into
feature vectors called fingerprints. Specifically, FP-Bodik first
selects the metrics that are important for anomaly detection

TABLE 2
Target Performance Anomalies

Anomaly
type

Synthetic
anomaly name

Target
subsystem

Orphan process/
CPU contention

dcopy CPU, cache
dial CPU

Out-of-memory leak memory
memeater memory

Resource contention linkclog network

888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

using logistic regression with L1 regularization. FP-Bodik
then calculates the 25th, 50th, and 95th percentiles of the
selected time series metrics for each node and each sliding
time series window. Then, a healthy range of these percen-
tiles are identified from the healthy runs in the training
phase. Next, each percentile is further replaced by a tripar-
tite value (-1, 0, or 1) that represents whether the observed
value is below, within, or beyond the healthy range, respec-
tively. FP-Bodik constructs fingerprints that are composed
of all the tripartite values for each node and each monitor-
ing window. Finally, the fingerprints are compared to each
other, and a fingerprint is marked as anomalous whenever
its closest labeled fingerprint (in terms of L2 distance)
belongs to an anomaly class.

4.5 Implementation Details

We implement our framework in python. We use the SciPy
package for the KS test during feature selection and the
scikit-learn package for the machine learning algorithms. We
use three tree-based machine learning classifiers: decision
tree, adaptive boosting, and random forest. In scikit-learn, the
default parameters of these classifiers are tuned for a
smaller feature set compared to ours. Hence, we increase
the number of decision trees in AdaBoost and random forest
classifiers to one hundred and set the maximum tree depth
in AdaBoost to five. To avoid overfitting to our dataset, we
do not extensively tune the classifier parameters.

While training the classifiers in our evaluation, we use
periodic time series windows instead of sliding windows.
This reduces the training times at the expense of a negligible
decrease in the detection accuracy, allowing us to perform
an extensive evaluation using hundreds of distinct training
sets within feasible duration. In a production environment,
a similar approach can be taken to tune the input parame-
ters of our framework (W and C). However, to achieve the
maximum detection accuracy, the final training should be
performed using sliding windows.

4.6 Evaluation

We collect resource usage and performance counter data
during the following application runs: We run each applica-
tion with three different input configurations and five repe-
titions for each input configuration. For each of these
application runs, we inject one synthetic anomaly to one of
four nodes used by the application during the entire run.
We repeat these runs for every anomaly and three anomaly
intensities (20, 50, and 100 percent) for each anomaly. For
each above application run, we repeat the same run without
any anomaly to generate a healthy data set. In total, the
above experiments correspond to 11� 3� 5� 5� 3� 2 ¼
4950 four-node application runs.

We use five fold stratified cross validation to divide the
collected data into disjoint training and test sets as follows:
We randomly divide our application runs into five disjoint
equal-sized partitions where each partition has a balanced
number of application runs for each anomaly. We use four
of these partitions to train our framework and the baseline
techniques, and the fifth partition for testing. We repeat this
procedure five times where each partition is used once for
testing. Furthermore, we repeat the entire analysis five
times with different randomly-generated partitions.

We calculate the following statistical measures to assess
how well the anomaly detection techniques distinguish
healthy and anomalous time windows from each other:

� False alarm rate: The percentage of the healthy win-
dows that are identified as anomalous (any anomaly
type).

� Anomaly miss rate: The percentage of the anomalous
windows that are identified as healthy.

Additionally, we use the following measures for each
anomaly type to assess how well the anomaly detection
techniques diagnose different anomalies:

� Precision: The fraction of the number of windows cor-
rectly predicted with an anomaly type to the number
of all predictions with the same anomaly type.

� Recall: The fraction of the number of windows cor-
rectly predicted with an anomaly type to the number
of windows with the same anomaly type.

� F-Score: The harmonic mean of precision and recall.
� Overall F-Score: The F-score calculated using the

weighted averages of precision and recall, where the
precision and recall of each class is weighted by
the number of instances of that class. A na€ıve classifier
that marks every window as healthy would achieve
an overall F-score of 0.87 as approximately 87 percent
of our data set consists of healthywindows.

We also evaluate the robustness of our anomaly detec-
tion framework against unknown anomaly intensities, where
the framework is trained using certain anomaly intensities
and tested with the remaining intensities. Additionally, we
use the same approach for unknown application input con-
figurations and unknown applications to show that we can
detect anomaly signatures even when running an applica-
tion that is not encountered during training.

In addition to the analyses using five fold stratified cross-
validation, we perform the following three studies where
our framework is trained with the entire data set used in the
previous analyses: First, we demonstrate that our approach
is not specific to four-node application runs by diagnosing
anomalous compute nodes while running 32-node applica-
tions. Second, we evaluate our framework when running
anomalies with low intensities (2, 5, and 10 percent), and
demonstrate that we can successfully detect signatures of
anomalies even when the anomaly intensities are lower
than that observed during training. Third, we start synthetic
anomalies while an application is running and measure the
detection delay.

5 RESULTS

In this section, we first describe our parameter selection for
sliding time series window size (W), the false discovery rate
during feature selection, and the confidence threshold (C).
We then compare different anomaly detection and diagno-
sis methodologies in terms of classification accuracy and
robustness against unknown applications and anomaly
intensities that are not encountered during training. We
demonstrate the generality of our framework by diagnosing
anomalies during large application runs. Finally, we study
the anomaly detection delay and the resource requirements
of different diagnosis methodologies.

TUNCER ETAL.: ONLINE DIAGNOSIS OF PERFORMANCE VARIATION IN HPC SYSTEMS USING MACHINE LEARNING 889

5.1 Window Size Selection

As discussed in Section 3.1, the size of the time series win-
dow that is used to generate statistical features may affect
the efficacy of anomaly detection. While using a large win-
dow size allows capturing longer time series signatures in a
window, it delays the anomaly detection.

Fig. 2 shows the impact of window size on the overall F-
score of baseline algorithms as well as our proposed frame-
work with three different classifiers. The results presented
in the figure are obtained using all features (i.e., without the
feature selection step).

While the impact of window size on the overall F-score is
below 3 percent, the F-scores of most classifiers tend to
decrease with decreasing window size as small windows
cannot capture the time series behavior adequately. The
impact of the window size depends on the anomaly charac-
teristics. This can be seen in Fig. 3, which depicts the per-
class F-scores of the AdaBoost classifier for different win-
dow sizes. The F-score for the memeater anomaly decreases
significantly with the decreasing window size. This is
because the behavior of application runs with memeater is
very similar to the healthy application behavior during
memeater’s sleep phase, which is 120 seconds. Hence, as the
window size gets smaller, more windows occur entirely
within memeater’s sleep phase both in the training and the
testing set, confusing the classifier on memeater’s signature.
The reduction in the F-score of the healthy class due to this
confusion is less significant than that of the memeater class
because our dataset has 42 times more healthy windows
than windows with memeater.

The window size in our framework needs to be deter-
mined based on the nature of the target anomalies and the
system monitoring infrastructure. Based on the results in
Figs. 2 and 3, we conclude that a 45-second window size is a
reasonable choice to accurately detect our target anomalies
while keeping the detection delay low. For the rest of the
paper, we use a window size (W) of 45 seconds.

5.2 Feature Selection

Feature selection is highly beneficial for reducing the compu-
tational overhead needed during online feature generation.
Our framework’s feature selection methodology identifies
43-44 percent of the 6,193 features we generate as useful fea-
tures to identify our target anomalies for an expected False Dis-
covery Rate range between 0.01 and 10 percent. As the FDR
parameter has a negligible impact on the number of selected
features, we simply useFDR ¼ 1%.

Fig. 4 shows the percentage of selected features for each
application-anomaly pair. While less than 28 percent of the
features are identified as useful for detecting dcopy, dial,
leak, and memeater anomalies, up to 41 percent of the
features can be used as indicators of linkclog. For the appli-
cations where the linkclog anomaly is detrimental for per-
formance such as miniMD, more features are marked as
useful. This is because the resource usage patterns of such
applications change significantly when suffering from link-
clog. On the other hand, applications such as bt and sp are
not affected by linkclog as they either have a light communi-
cation load or use non-blocking MPI communication. Fewer
features are marked as useful for such applications.

Using a reduced feature set can also improve the effec-
tiveness of certain machine learning algorithms. For exam-
ple, random forest contains decision trees that are trained
using a subset of randomly selected features. In the absence
of irrelevant features, the effectiveness of random forest
slightly increases as shown in Table 3. The effectiveness
of other learning algorithms such as decision tree and
AdaBoost are not impacted by feature selection as feature
selection is embedded in these algorithms.

5.3 The Impact of Confidence Threshold

As shown in the Fig. 5, the majority of the misclassificat-
ions persist only for a few consecutive windows in all classi-
fiers. To reduce false anomaly alarms, we filter out the

Fig. 2. The impact of window size on the overall F-score. The classifica-
tion is less effective with small window sizes where a window cannot
capture the patterns in the time series adequately.

Fig. 3. The impact of window size on the per-class F-scores of the Ada-
Boost classifier. The F-score of memeater anomaly decreases signifi-
cantly as window size get smaller.

Fig. 4. The percentage of features selected by our feature selection
method (Section 3.2) for different application-anomaly pairs. Except for
the linkclog anomaly, less than 28 percent of the features are useful for
anomaly detection. 41 percent of the features are selected for detecting
linkclog.

890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

non-persistent misclassifications using a confidence thresh-
old, C. A prediction is considered as valid only if it persists
for C consecutive windows.

Fig. 6 shows the change in the false anomaly alarm rate
and the anomaly miss rate when using various confidence
thresholds. Using C ¼ 5 reduces the false alarm rate by
23-44 percent when using the machine learning algo-
rithms and by 25-69 percent when using the baseline
anomaly detection algorithms. On the other hand, the
anomaly miss rate increase by 15-30 and 6-34 percent
when using the machine learning algorithms and the
baselines, respectively. To keep the anomaly detection
delay low while decreasing the false alarm rate in all clas-
sifiers, we use a confidence threshold of C ¼ 5 for the rest
of the paper.

5.4 Anomaly Detection and Classification

Fig. 7 presents the false positive and negative rates for
anomaly detection as well as F-scores for the anomaly types
we study for the 5-fold stratified cross validation. Our pro-
posed machine learning based framework consistently out-
performs the baseline techniques in terms of anomaly miss
rate and F-scores. While FP-Bodik can achieve fewer false
alarms, it misses nearly a third of the anomalies. The best
overall performance is achieved using random forest, which
misses only 1.7 percent of the anomalous windows and clas-
sifies the target anomalies nearly ideally. It raises false
anomaly alarms only for 0.08 percent of the healthy win-
dows, which can be decreased further by adjusting the C
parameter at the expense of slightly increased anomaly
miss rate and delayed diagnosis. As decision tree is a build-
ing block of AdaBoost and random forest, it is simpler and
underperforms AdaBoost and random forest as expected.

The F-scores corresponding to memeater are lower
than those for other anomalies as the classifiers tend to mis-
predictmemeater as healthy (and vice versa) during the sleep

phase of memeater, where its behavior is similar to healthy
application runs. Due to the randomized feature selection in
random forest, random forest also uses the features that are
not the primary anomaly indicators but are still helpful on
anomaly detection. Thus, random forest is more robust
against noise in the data, and can still detect memeaterwhere
other classifiers are unsuccessful. Also note that the mem-
eater anomaly degrades performance only by up to 10 per-
cent while the dcopy, dial, and linkclog anomalies can
degrade application performance by up to 300 percent.
Hence, the detection of memeater is harder but is also less
critical compared to other anomalies.

As seen in Fig. 7, FP-Bodik misses nearly a third of the
anomalous windows. This is because even though FP-Bodik
performs metric selection through L1 regularization, it
gives equal importance to all the selected metrics. However,
metrics should be weighted for robust anomaly detection. For
instance, network-related metrics are more important for
detecting network contention than memory-related metrics.
Tree-basedmachine learning algorithms address this problem
by prioritizing certain features through putting them closer
to the root of a decision tree. Another reason for FP-Bodik’s

TABLE 3
The Impact of Feature Selection on Anomaly Detection

False alarm rate Anomaly miss rate

All
features

Selected
features

All
features

Selected
features

Decision tree 1.5% 1.5% 2.0% 2.0%
AdaBoost 0.8% 0.8% 1.9% 1.9%
Random forest 0.2% 0.1% 1.8% 1.4%

Fig. 5. Distribution of consecutive misclassifications. Most misclassifica-
tions do not persist for more than a few consecutive windows.

Fig. 6. The impact of confidence threshold on the false alarm rate. Filter-
ing non-persistent anomaly predictions using a confidence threshold
reduces the false alarm rate while increasing anomaly miss rate.

Fig. 7. Anomaly detection and diagnosis statistics of various classifiers
using 5-fold stratified cross-validation. Random forest correctly identifies
98 percent of the anomalies while leading to only 0.08 percent false
anomaly alarms.

TUNCER ETAL.: ONLINE DIAGNOSIS OF PERFORMANCE VARIATION IN HPC SYSTEMS USING MACHINE LEARNING 891

poor anomaly miss rate is that FP-Bodik only uses 25th, 50th,
and 95th percentiles in the time series data. Other statistics
such as variance and skew are also needed to capture more
complex patterns in the time series.

The diagnosis effectiveness of ICA-Lan is lower than that
of both FP-Bodik and our proposed framework, primarily
due to ICA-Lan’s feature extraction methodology. ICA-Lan
uses ICA to extract features from time series. This technique
is commonly used for data analysis to reduce data
dimensionality, and provides features that represent the
independent components of the data. While these features suc-
cessfully represent deviations, they are not necessarily able
to capture anomaly signatures. We illustrate this by com-
paring the features and metrics that are deemed as impor-
tant by ICA-Lan and random forest.

The most important ICA-Lan metrics are those with the
highest absolute weight in the first ten independent compo-
nents. In our models, the most important ICA-Lan metrics
are the time series of idle time spent in various CPU cores.
Idle CPU core time is indeed independent from other met-
rics in our data as some of our applications do not use all
the available CPU cores in a node (see Section 4.2), and the
decision on which cores are used by an application is gov-
erned by the operating system of the compute nodes.

The most important random forest features are those that
successfully distinguish different classes in the training
data and are reported by the python scikit-learn package
based on the normalized Gini reduction brought by each fea-
ture. In our random forest models, the most important fea-
tures are calculated from time series metrics such as the
number of context switches, the number of bytes and pack-
ets transmitted by fast memory access short messaging (a
special form of point-to-point communication), total CPU
load average, and the number of processes and threads cre-
ated. These metrics are indeed different from those deemed
important by ICA-Lan, indicating that the most important
ICA-Lan metrics are not necessarily useful to distinguish
anomalies.

5.5 Classification with Unknown Input
Configurations

In a real supercomputer, it is not possible to know all
input configurations for given applications during training.

Hence, we evaluate the robustness of anomaly diagnosis
when running applications with unknown input configura-
tions that are not seen during training. For this purpose, we
train our framework and the baseline techniques using
application runs with certain input configurations and test
only using the remaining input configurations.

Fig. 8 shows F-scores for each anomaly obtained during
our unknown input configuration study. Except for the
memeater anomaly, our approach can diagnose anomalies
with over 0.8 F-score even when the behavior of the applica-
tions are different than that observed during training due to
the unknown input configurations. The F-scores tend to
decrease when more input configurations are unknown.
There are two reasons for the decreasing F-scores: First,
removing certain input configurations from the training set
reduces the training set size, resulting in a less detailed
modeling of the anomaly signatures. Second, the behavior
of an application with an unknown input configuration
may be similar to an anomaly, making diagnosis more diffi-
cult. One such example is the memeater anomaly, where
healthy application runs with certain unknown input con-
figurations are predicted as memeater by the classifiers.

5.6 Classification with Unknown Applications

In a production environment, we expect to encounter appli-
cations other than those used during offline training. To ver-
ify that our framework can diagnose anomalies when
running unknown applications, we train our framework
and the baseline techniques using all applications except for

Fig. 8. Anomaly diagnosis statistics when the training data excludes cer-
tain unknown input configurations for each application and the testing is
done using only the excluded input configurations.

Fig. 9. Anomaly detection and diagnosis statistics when the training data
excludes one application and the testing is done using only the excluded
unknown application. With the random forest classifier, the proposed
framework is robust against unknown applications, achieving over 0.94
F-score and below 6 percent false alarm rate on the average.

892 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

one application that is designated as the unknown applica-
tion, and test using only that unknown application.

Fig. 9 presents the anomaly detection results when we
repeat this procedure where each applications is selected
once as the unknown application. With the AdaBoost and
random forest classifiers, the proposed framework achieves
over 0.94 overall F-score on the average, while the average
F-score of ICA-Lan is below 0.65. FP-Bodik achieves a simi-
lar F-score but misses 44 percent of the anomalous windows
when unknown applications are running.

With random forest, the false alarm rate stays below
5 percent in all cases except when the unknown application
is ft or sp. This rate can be further reduced by increasing the
confidence threshold, C.

When the characteristics of applications are significantly
different than those observed during training, the classifiers
mispredict the healthy behavior of these applications as one
of the anomalies. When such cases are encountered, the
framework should be re-trained with a training set that
includes the healthy resource usage and performance data
of these applications. False alarm rates tend to increase with
unknown applications as unknown applications lead to
inconsistent consecutive predictions, which are filtered out
during testing. Based on these results, we observe that our
approach is robust against unknown applications.

5.7 Classification with Unknown Anomaly
Intensities

We also study how the diagnosis effectiveness is impacted
by unknown anomaly intensities where we use distinct
anomaly intensities during training and the remaining
intensities during testing. Fig. 10 shows the F-scores for dif-
ferent anomalies with unknown intensities. High F-scores
indicate that the anomaly signatures do not change signifi-
cantly when their intensity changes, and our proposed
framework can successfully diagnose anomalies. For exam-
ple, the memory usage gradually increases with the leak
anomaly in all intensities. Hence, leak can be detected based
on the skew in the time series of the allocated memory size.

The slight decrease in the F-scores is mainly caused by
the reduction in the training set. In the dial anomaly, how-
ever, the intensity determines the utilization of the anomaly

program. That means with an intensity of 20 percent, the
anomaly sleeps 80 percent of the time, minimizing its
impact on the application performance as well as its signa-
ture in resource usage patterns. Hence, when trained with
high intensities, the algorithms tend to misclassify low
intensity dial as healthy application behavior.

5.8 Diagnosing Anomalies with Low Intensities

We study anomaly diagnosis effectiveness when the anoma-
lies have 1/10th of the intensities we have used so far. In
this section, we train the framework with the anomaly
intensities 20, 50, and 100 percent, and test with the anomaly
intensities 2, 5, and 10 percent. Fig. 11 shows the resulting
per-anomaly F-scores. In dcopy, leak, andmemeater, the inten-
sity determines the size of the memory used in the anomaly
program. With low anomaly intensities, random forest diag-
noses the signatures of these anomalies with F-scores above
0.98. In linkclog, the intensity determines the delay injected
into the MPI communication functions, which is detected
even with low intensities. In dial, the intensity sets the utili-
zation of the anomaly program. As the intensity drops, the
impact of dial on the application performance and resource
usage patterns decreases, making it harder and also less
critical to detect the anomaly.

5.9 Classification with Large Applications

Our framework can be used to diagnose anomalies when
trained only with small application runs. We demonstrate
this by using all 4-node application runs for training and 32-
node runs for testing.

Fig. 12 shows the detection and diagnosis statistics when
running 32-node applications. As our framework checks
individual nodes for anomalies and does not depend on how

Fig. 10. Anomaly diagnosis statistics when the training data excludes
certain unknown anomaly intensities and the testing is done using only
the excluded anomaly intensity.

Fig. 11. Anomaly diagnosis statistics when the models are trained with
anomaly intensities 20, 50, and 100 percent, and tested with intensities
2, 5, and 10 percent. Most anomaly signatures are detected when the
intensity is lowered. In the dial anomaly, the intensity sets the utilization
of the synthetic anomaly program, making it less impactful on the appli-
cation performance and also harder to detect.

TUNCER ETAL.: ONLINE DIAGNOSIS OF PERFORMANCE VARIATION IN HPC SYSTEMS USING MACHINE LEARNING 893

many nodes are being used in parallel by an application, the
application size has minimal impact on the F-scores. The
decrease in the F-scores is mainly because large application
runs use input configurations that are unknown to the
trained models. Hence, the F-scores in Fig. 12 are similar to
those in Fig. 8, where the classifiers are trained with certain
input configurations and testedwith the remaining ones.

5.10 Detection Delay

To analyze the delay during diagnosis, we use random-offset
anomalies where the anomaly starts at a randomly selected
time while the application is running. For each classifier, we
record the time difference between the anomaly start time
and the first window where C consecutive windows are
labeled as anomalous with the correct anomaly type.

Fig. 13 shows the diagnosis delay observed for each anom-
aly and each classifier as well as the fraction of the anomalies
that are not detected until the application execution finished.
Random forest achieves only five to ten seconds of delay
while diagnosing linkclog andmemeater. This delay is due to
the fact that the proposed framework requiresC ¼ 5 consecu-
tive windows to be diagnosed with the same anomaly before

accepting that diagnosis. The delay is larger for other anoma-
lies, where the diagnosis is performed with statistics that
slowly change as the 45-second sliding window moves (e.g.,
mean and variance).

All of the nodes where the linkclog anomaly is not
detected run bt and sp applications. These applications
intensively use asynchronous MPI functions, which are in
general not affected by linkclog. Hence, the impact of linkclog
on the running time of bt and sp is negligible, and the detec-
tion of linkclog is harder for these applications.

5.11 Overhead

We assume that the node resource usage data is already
being collected from the target nodes for the purposes of
checking system health and diagnostics. State-of-the-art
monitoring tools such as LDMS collect data with a sampling
period of one second while using less than 0.1 percent of a
core on most compute nodes [10].

Table 4 presents the average training and testing time of
the baseline techniques as well as our framework with dif-
ferent machine learning algorithms when using a single
thread on an Intel Xeon E5-2680 processor. As seen in
Table 4, all approaches require the longest time for feature
generation and selection. Note that feature generation and
selection are embarrassingly-parallel processes and are con-
ducted only once during training.

Decision tree and random forest classifiers are trained
within ten minutes. Although a random forest classifier con-
sists of 100 decision trees, its training is faster than the deci-
sion tree classifier. This is because random forest uses a
subset of input features for each of its decision trees
whereas all features are used in the decision tree classifier.
The storage requirements for the trained models of decision
tree, AdaBoost, and random forest is a 25 KB, 150 KB, and
4 MB, respectively, whereas the baseline models both
require approximately 60 MB.

Detecting and diagnosing anomalies in a single sliding
window of a single node with AdaBoost and random forest
takes approximately 13 ms using a single thread, which is
negligible given that the window period is one second.
Decision tree achieves the smallest feature generation over-
head because it uses only a third of the features selected by
our feature selection method (Section 3.2), whereas Ada-
Boost and random forest use nearly all selected features.

FP-Bodik has the highest overhead for runtime testing.
This is because FP-Bodik calculates the L2 distance of the
new fingerprint with all the fingerprints used for training to
find the closest fingerprint. While ICA-Lan has a similar

Fig. 12. Anomaly detection and diagnosis statistics when the models are
trained with 4-node application runs and tested with 32-node runs. The
results are very similar to those with unknown input configurations as
the 32-node runs use input configurations that are not used for training.

Fig. 13. Anomaly detection delay and percentage of nodes with unde-
tected anomalies when anomalies start at a random time while the appli-
cation is running.

TABLE 4
Single-threaded Computational Overhead
of Model Training and Anomaly Detection

Training time for 8 billion
time series data points

Testing time per slid-
ing window per node

Feature generation
& selection

Model
training

Feature
generation

Model
prediction

ICA-Lan 10 days 30 s 62 ms 0.03 ms
FP-Bodik 5 days 10 mins 31 ms 148 ms
Decision tree 5 days 7 mins 4 ms 0.01 ms
AdaBoost 5 days 138 mins 13 ms 0.1 ms
Random forest 5 days 6 mins 13 ms 0.03 ms

894 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

process during model prediction with kNN classification,
the dimensionality of the space used in the ICA-Lan (10) is
significantly smaller than that of FP-Bodik (> 1000), leading
to a much faster model prediction.

6 CONCLUSIONS AND FUTURE WORK

Automatic and online detection and diagnosis of perfor-
mance anomalies in HPC platforms have become increas-
ingly important in today’s growing HPC systems for robust
and efficient operation. In this paper, we proposed an online
anomaly diagnosis framework, which leverages the already-
monitored performance and resource usage data to learn
and detect the signatures of previously-observed anomalies.
We evaluated our framework using experiments on a real-
world HPC supercomputer and demonstrate that our
approach effectively identifies 98 percent of the synthetic
anomalies while leading to only 0.08 percent false anomaly
alarms, consistently outperforming the state-of-the-art for
anomaly diagnosis. We also showed that our approach
learns the anomaly signatures independent of the executing
applications, enabling anomaly diagnosis even when run-
ning applications that are not seen during training.

In this paper, we have focused on detecting signatures of
synthetic anomalies. In future work, we will focus on
designing elaborate synthetic anomalies that closely mimic
the anomalies experienced by HPC system users based on
user complaints and feedback. Furthermore, we will inte-
grate our framework with the Lightweight Distributed
Monitoring Service to diagnose anomalies while users are
running production HPC applications.

ACKNOWLEDGMENTS

This work has been partially funded by Sandia National
Laboratories. Sandia National Laboratories is a multimis-
sion laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security
Administration under Contract DE-NA0003525. This paper
describes objective technical results and analysis. Any sub-
jective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

REFERENCES

[1] V. J. Leung, C. A. Phillips, M. A. Bender, and D. P. Bunde,
“Algorithmic support for commodity-based parallel computing
systems,” Sandia National Laboratories, Albuquerque, NM, Tech.
Rep. SAND2003–3702, 2003.

[2] D. Skinner and W. Kramer, “Understanding the causes of perfor-
mance variability in HPC workloads,” in Proc. IEEE Int. Symp.
Workload Characterization, Oct. 2005, pp. 137–149.

[3] J. Brandt, F. Chen, V. De Sapio, A. Gentile, J. Mayo, et al.,
“Quantifying effectiveness of failure prediction and response in
HPC systems: Methodology and example,” in Proc. Int. Conf.
Depend. Syst. Netw. Workshops, Jun. 2010, pp. 2–7.

[4] Cisco, “Cisco bug: Csctf52095-manually flushing os cache
during load impacts server,” 2017. [Online]. Available: https://
quickview.cloudapps.cisco.com/quickview/bug/CSCtf52095

[5] A. Agelastos, B. Allan, J. Brandt, A. Gentile, S. Lefantzi, et al.,
“Toward rapid understanding of production HPC applications
and systems,” in Proc. IEEE Int. Conf. Cluster Comput., Sep. 2015,
pp. 464–473.

[6] J. Brandt, D.DeBonis, A.Gentile, J. Lujan, C.Martin, et al., “Enabling
advanced operational analysis through multi-subsystem data inte-
gration on trinity,” Proc. CrayUsers Group, 2015.

[7] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
et al., “Addressing failures in exascale computing,” Int. J. High
Perform. Comput. Appl., vol. 28, pp. 129–173, May 2014.

[8] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: Performance degradation due to nearby jobs,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
Nov. 2013, pp. 41:1–41:12.

[9] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim,
“CALCioM: Mitigating I/O interference in HPC systems through
cross-application coordination,” in Proc. IEEE 28th Int. Parallel
Distrib. Process. Symp., May 2014, pp. 155–164.

[10] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, et al., “The
lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and
applications,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., Nov. 2014, pp. 154–165.

[11] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Muller, “Data
mining-based analysis of HPC center operations,” in Proc. IEEE
Int. Conf. Cluster Comput., 2017, pp. 766–773.

[12] L. Yu and Z. Lan, “A scalable, non-parametric method for detect-
ing performance anomaly in large scale computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 7, pp. 1902–1914, Jul. 2016.

[13] P. Bodik,M. Goldszmidt, A. Fox, D. B.Woodard, andH. Andersen,
“Fingerprinting the datacenter: Automated classification of per-
formance crises,” in Proc. 5th Eur. Conf. Comput. Syst., 2010,
pp. 111–124.

[14] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, et al.,
“Diagnosing performance variations in HPC applications using
machine learning,” in Proc. Int. Supercomput. Conf., 2017, pp. 355–
373.

[15] O. Ibidunmoye, F. Hern�andez-Rodriguez, and E. Elmroth, “Perfo-
rmance anomaly detection and bottleneck identification,” ACM
Comput. Surv., vol. 48, no. 1, pp. 1–35, 2015.

[16] R. Ahad, E. Chan, and A. Santos, “Toward autonomic cloud:
Automatic anomaly detection and resolution,” in Proc. Int. Conf.
Cloud Autonomic Comput., 2015, pp. 200–203.

[17] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitor-
ing and root cause analysis for cloud-hosted web applications,” in
Proc. 26th Int. Conf. World Wide Web, 2017, pp. 469–478.

[18] S. Jin, Z. Zhang, K. Chakrabarty, and X. Gu, “Accurate anomaly
detection using correlation-based time-series analysis in a core
router system,” in Proc. IEEE Int. Test Conf., 2016, pp. 1–10.

[19] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable frame-
work for automated time-series anomaly detection,” in Proc. ACM
SIGKDDInt. Conf. Knowl.DiscoveryDataMining, 2015, pp. 1939–1947.

[20] O. Ibidunmoye, T. Metsch, and E. Elmroth, “Real-time detection
of performance anomalies for cloud services,” in Proc. IEEE/ACM
24th Int. Symp. Quality Service, 2016, pp. 1–2.

[21] V. Nair, A. Raul, S. Khanduja, S. Sundararajan, S. Keerthi, et al.,
“Learning a hierarchical monitoring system for detecting and
diagnosing service issues,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2015, pp. 2029–2038.

[22] X. Zhang, F. Meng, P. Chen, and J. Xu, “Taskinsight : A fine-
grained performace anomaly detection and problem locating sys-
tem,” in Proc. IEEE Int. Conf. Cloud Comput., 2016, pp. 2–5.

[23] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, et al.,
“HPCTOOLKIT: Tools for performance analysis of optimized par-
allel programs,” Concurrency Comput. Practice Experience, vol. 22,
no. 6, pp. 685–701, 2010.

[24] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and
J. Browne, “CRUDE: Combining resource usage data and error
logs for accurate error detection in large-scale distributed sys-
tems,” in Proc. IEEE Symp. Reliable Distrib. Syst., 2016, pp. 51–60.

[25] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “NADO: Net-
work anomaly detection using outlier approach,” in Proc. Int.
Conf. Commun. Comput. Secur., 2011, pp. 531–536.

[26] B. L. Dalmazo, J. P. Vilela, P. Simoes, and M. Curado, “Expedite
feature extraction for enhanced cloud anomaly detection,” in Proc.
IEEE/IFIP Netw. Operations Manage. Symp., 2016, pp. 1215–1220.

[27] Z. Lan, Z. Zheng, and Y. Li, “Toward automated anomaly identifi-
cation in large-scale systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 21, no. 2, pp. 174–187, Feb. 2010.

[28] B. Arzani and G. Outhred, “Taking the blame game out of data
centers operations with netpoirot,” in Proc. ACM Conf. Special
Interest Group Data Commun., 2016, pp. 440–453.

TUNCER ETAL.: ONLINE DIAGNOSIS OF PERFORMANCE VARIATION IN HPC SYSTEMS USING MACHINE LEARNING 895

https://quickview.cloudapps.cisco.com/quickview/bug/CSCtf52095
https://quickview.cloudapps.cisco.com/quickview/bug/CSCtf52095

[29] G. Wang, J. Yang, and R. Li, “An anomaly detection framework
based on ICA and Bayesian classification for IaaS platforms,” KSII
Trans. Internet Inf. Syst., vol. 10, no. 8, pp. 3865–3883, 2016.

[30] X. Chen, X. He, H. Guo, and Y. Wang, “Design and evaluation of
an online anomaly detector for distributed storage systems,” J.
Softw., vol. 6, no. 12, pp. 2379–2390, 2011.

[31] M. V. O. De Assis, J. J. P. C. Rodrigues, and M. L. Proenca, “A
novel anomaly detection system based on seven-dimensional
flow analysis,” in Proc. IEEE Global Telecommun. Conf., 2013,
pp. 735–740.

[32] Q. Guan, S. Fu, N. De Bardeleben, and S. Blanchard, “Exploring
time and frequency domains for accurate and automated anomaly
detection in cloud computing systems,” in Proc. IEEE Pacific Rim
Int. Symp. Depend. Comput., 2013, pp. 196–205.

[33] D. O’Shea, V. C. Emeakaroha, J. Pendlebury, N. Cafferkey,
J. P. Morrison, and T. Lynn, “A wavelet-inspired anomaly detec-
tion framework for cloud platforms,” in Proc. Int. Conf. Cloud Com-
put. Serv. Sci., Apr. 2016, pp. 106–117.

[34] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “FChain: Toward black-
box online fault localization for cloud systems,” in Proc. Int. Conf.
Distrib. Comput. Syst., 2013, pp. 21–30.

[35] S. Roy, A. C. K€onig, I. Dvorkin, and M. Kumar, “PerfAugur:
Robust diagnostics for performance anomalies in cloud services,”
in Proc. Int. Conf. Data Eng., 2015, pp. 1167–1178.

[36] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
J. Amer. Statistical Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[37] Y. Benjamini and D. Yekutieli, “The control of the false discovery
rate in multiple testing under dependency,” Ann. Statist., vol. 29,
pp. 1165–1188, 2001.

[38] M. Christ, A. W. Kempa-Liehr, and M. Feindt, “Distributed and
parallel time series feature extraction for industrial big data
applications,” arXiv:1610.07717, pp. 1–36, 2016.

[39] L. Breiman, Classification and Regression Trees. Abingdon, United
Kingdom: Routledge, 2017.

[40] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–
32, 2001.

[41] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” J. Comput.
Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997.

[42] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” J. Parallel Distrib. Comput., vol. 74,
no. 10, pp. 2967–2982, 2014.

[43] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
et al., “The NAS parallel benchmarks-summary and preliminary
results,” in Proc. ACM/IEEE Conf. Supercomput., Aug. 1991,
pp. 158–165.

[44] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring,
H. C. Edwards, et al., “Improving performance via mini-
applications,” Sandia National Laboratories, Albuquerque, NM,
Tech. Rep. SAND2009–5574, 2009.

[45] A. Kunen, T. Bailey, and P. Brown, “Kripke-a massively parallel
transport mini-app,” Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, Tech. Rep. LLNL-CONF-675389, 2015.

[46] J. Brandt, A. Gentile, J. Mayo, P. P�ebay, D. Roe, et al.,
“Methodologies for advance warning of compute cluster prob-
lems via statistical analysis: A case study,” in Proc. Workshop Resil-
iency High Perform., Jun. 2009, pp. 7–14.

[47] P. Comon, “Independent component analysis, a new concept?”
Signal Process., vol. 36, pp. 287–314, 1992.

Ozan Tuncer received the BS degree in Electrical
and Electronics Engineering from the Middle East
Technical University, Turkey. He is working toward
the PhD degree in the Department of Electrical
and Computer Engineering, Boston University. His
research interests include data center power and
thermal management, workload management for
high performance computing, and data analytics
for cloud systemmanagement.

Emre Ates received the BSc degree in Electrical
and Electronics Engineering with honors from
the Middle East Technical University, Ankara, Tur-
key. He is working toward the PhD degree in the
Department of Electrical and Computer Engineer-
ing, Boston University. His current research inter-
ests include management and monitoring of
large-scale computing systems.

Yijia Zhang received the BS degree from the
Department of Physics, Peking University, Bei-
jing, China. He is working toward the PhD degree
in the Department of Electrical and Computer
Engineering, Boston University. His current rese-
arch interests include performance optimization
of high performance computing.

Ata Turk is a research scientist with the Electrical
Computer Engineering Department, Boston Uni-
versity (BU). He leads the healthcare and bigdata
analytics groups in the Massachusetts Open
Cloud project. His research interests include big-
data analytics and combinatorial optimization for
performance, energy, and cost improvements in
cloud computing applications. Prior to joining BU,
he was a postdoctoral researcher at Yahoo Labs.

Jim Brandt is a distinguished member of Technical Staff at Sandia
National Laboratories in Albuquerque, New Mexico, where he leads
research in HPC monitoring and analysis.

Vitus J. Leung is a principal member of Techni-
cal Staff at Sandia National Laboratories in
Albuquerque, New Mexico, where he leads
research in distributed memory resource man-
agement. He has won R&D 100, US Patent,
and Federal-Laboratory-Consortium Excellence-
in-Technology-Transfer Awards for work in this
area. He is a senior member of the ACM and has
been a member of Technical Staff at Bell Labora-
tories in Holmdel, New Jersey and a Regents
Dissertation fellow at the University of California.

Manuel Egele is an assistant professor with the
Electrical and Computer Engineering Depart-
ment, Boston University (BU). He is the head of
the Boston University Security Lab where his
research focuses on practical security of com-
modity and mobile systems. He is a member of
the IEEE and the ACM.

Ayse K. Coskun received the MS and PhD
degrees in Computer Science and Engineering
from the University of California, San Diego. She
is an associate professor with the Department of
Electrical and Computer Engineering, Boston
University (BU). She was with Sun Microsystems
(now Oracle), San Diego, prior to her current
position at BU. Her research interests include
energy-efficient computing, 3-D stack architec-
tures, computer architecture, and embedded sys-
tems and software.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

896 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 4, APRIL 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

