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Abstract – Power market operators have recently introduced smart grid demand response (DR), in which
electricity consumers regulate their power usage following market requirements. DR helps stabilize the
grid and enables integrating a larger amount of intermittent renewable power generation. Data centers
provide unique opportunities for DR participation due to their flexibility in both workload servicing and
power consumption. While prior studies have focused on data center participation in legacy DR programs
such as dynamic energy pricing and peak shaving, this paper studies data centers in emerging DR programs,
i.e., demand side capacity reserves. Among different types of capacity reserves, regulation service reserves
(RSRs) are especially attractive due to their relatively higher value. This paper proposes EnergyQARE,
the Energy and Quality-of-Service (QoS) Aware RSR Enabler, an approach that enables data center RSR
provision in real-life scenarios. EnergyQARE not only provides a bidding strategy in RSR provision, but also
contains a runtime policy that adaptively modulates data center power through server power management
and server provisioning based on workload QoS feedback. To reflect real-life scenarios, this runtime policy
handles a heterogeneous set of jobs and considers transition time delay of servers. Simulated numerical
results demonstrate that in a general data center scenario, EnergyQARE provides close to 50% of data
center average power consumption as reserves to the market, and saves up to 44% in data center electricity
cost, while still meeting workload QoS constraints. Case studies in this paper show that the percentages
of savings are not sensitive to a specific type of non-interactive workload, or the size of the data center,
although they depend strongly on data center utilization and parameters of server power states.

CCS Concepts: rHardware→ Smart grid; Enterprise level and data centers power issues; rGeneral
and reference→ Design; rInformation systems→ Data centers; rComputing methodologies→ Mod-
eling methodologies;
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1. INTRODUCTION
Fossil fuels, the major source of today’s electricity production, do not provide a sustain-
able energy solution and have tremendous environmental impact. As a result, massive
integration of renewables is a worldwide objective. The EU aims to achieve integra-
tion of over 20% of renewables in gross energy consumption by 2020 [Bohringer et al.
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2009], while in the US, 38 states have set up long-term standards for their renewable
portfolios, and 14 states have installed more than 1,000 MW of wind power [AWEA
2015]. A growth of the share of renewables to 52% in the US is expected by 2040 [EIA
2014]. However, the volatility and intermittency of renewable generation pose signif-
icant challenges to independent system operators (ISOs), who need to match supply
and demand in power grids in real-time. One solution to this challenge is to mitigate
the intermittency through energy storage devices (ESDs) [Fooladivanda et al. 2014;
Kim et al. 2014; Chen et al. 2015a], which are unfortunately costly. An alternative so-
lution is to harness capacity reserves [Ott 2003; NYISO 2013]. While capacity reserves
are mainly provided by centralized generators, the market has started to offer incen-
tives for the demand side to provide capacity reserves [PJM 2005; Hansen et al. 2014].
Potential demand side reserve providers include smart buildings [Zhang et al. 2014],
plug-in hybrid electric vehicles (PHEVs) [Wei et al. 2014; Cui et al. 2015; Li et al.
2014], and data centers [Ghamkhari and Mohsenian-Rad 2012; Goiri et al. 2015].

As data centers are among the fastest growing electricity consumers, their energy
efficiency, as well as their potential roles in power markets, is an active area of study. A
typical data center today consumes as much energy as 25,000 households [Dayarathna
et al. 2016]. The total power consumption of data centers in 2014 was estimated at
70 billion kWh, close to 2% of US electrical usage [Shehabi et al. 2016]. This power
consumption has increased by 4% since 2010, and is expected to increase by another
4% in 2014-2020 [Shehabi et al. 2016]. With the increase in power usage as well as the
growth of electricity price, the electricity bill of a typical data center tends to double ev-
ery five years, and has become a significant portion of data center expense [Dayarathna
et al. 2016]. In tandem with the data center growth, advanced server power manage-
ment techniques such as dynamic voltage frequency scaling (DVFS) [Li and Martinez
2006; Reda et al. 2012] or server idling [Gandhi et al. 2012; Chase et al. 2001], together
with flexibility in workload servicing [Ghatikar et al. 2012; Cioara et al. 2016], provide
data centers with significant capabilities to modulate their power consumption. Data
centers with such built-in capabilities are highly promising candidates to provide de-
mand side capacity reserves. By providing reserves, data centers help enable efficient
integration of renewable energy and reduce their electricity bill.

Among all types of capacity reserves, secondary reserves, i.e., regulation service re-
serves (RSRs) [NYISO 2013], are especially suitable for data centers, not only for the
relatively high profits from providing reserves, but also because data centers have com-
petitive advantages in offering them. In RSR provision, the demand side is required
to dynamically modulate its power consumption to follow an RSR signal broadcast by
the ISO every few seconds. Data centers have the inherent capability to regulate their
power in the order of seconds (owing to the built-in power states of servers). Though
data centers have been widely studied with respect to legacy demand response (DR)
programs such as dynamic energy pricing [Liu et al. 2014; Le et al. 2016], peak shav-
ing [Wang et al. 2012; Govindan et al. 2011], and emergency demand reduction [Zhang
et al. 2015; Tran et al. 2016; Islam et al. 2016], data center RSR provision is a novel
idea. A few studies have also evaluated the capabilities and benefits of RSR provi-
sion [Aikema et al. 2012; Chen et al. 2013a; Kirpes and Klingert 2016]. However, these
studies apply simplified data center models that ignore important characteristics such
as heterogeneity in workloads or servers with multiple power states (i.e., transition
delay and energy associated with switching server states) [Chen et al. 2015b; Li et al.
2014; Cioara et al. 2016]. Others design offline policies without considering the hourly-
changing power and reserve values in market bidding [Ghasemi-Gol et al. 2014; Ak-
sanli and Rosing 2014]. We believe there is a need to design online policies of RSR pro-
vision with practical data center models that are aware of data center hardware and
software characteristics to achieve realistic results. The most relevant work proposes
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an online “best-tracking” policy, which we have designed in our recent work for the pur-
pose of regulating data center power to track an RSR signal as accurately as possible,
however, without considering any workload Quality of Service (QoS) constraints (de-
termined by users or Service Level Agreements (SLAs)) [Chen et al. 2014a]. Also, that
“best-tracking” policy simply estimates reasonable power and reserve bidding values
without optimizing them.

This paper proposes EnergyQARE, a data center Energy and QoS-Aware RSR
Enabler. EnergyQARE is composed of an RSR bidding strategy and a runtime policy
which together enable data center RSR provision in real-life scenarios. To the best of
our knowledge, EnergyQARE is the first to use a practical data center server and work-
load model that considers workload heterogeneity and multiple server power states to
achieve RSR provision. EnergyQARE not only maximizes the data center monetary
savings by bidding substantial levels of reserves (up to 50% of average power con-
sumption) and following RSR signal tracking requirements, but also guarantees tight
workload QoS constraints. The main contributions of this paper are:

(1) We propose a practical model of the data center in RSR provision, which considers
heterogeneities in workload (i.e., different types of applications running), multiple
server power states, the associated time delay and energy loss during server state
transition, and workload QoS constraints;

(2) We develop a runtime policy as part of EnergyQARE that enables data center to
regulate its power to accurately track the RSR signal broadcast every few seconds,
while also guaranteeing tight workload QoS constraints. The policy regulates data
center power rapidly at fine granularity by dynamic server power management
and server provisioning. It can satisfy both signal tracking and QoS constraints
as it adaptively makes decisions based on the feedback of the accumulated RSR
signal tracking error, workload QoS degradation, and the length of job queues;

(3) We introduce a bidding strategy as part of EnergyQARE that solves a near-optimal
energy and reserve bidding problem for data center RSR provision in hour-ahead
market to minimize the monetary cost of data center electricity. The proposed hour-
ahead market bid is cognizant of the real-time RSR policy employed, and respects
both tracking error and QoS constraints with data center clients.

Our results demonstrate that in realistic data center scenarios, EnergyQARE enables
the data center to provide up to 50% of its average power consumption as reserves
to the power market, rendering massive renewable energy adoption affordable. Ener-
gyQARE also helps the data center save 44% in its electricity bill, while still guaran-
teeing workload QoS. We conduct case studies on the RSR provision of EnergyQARE
in multiple real-life scenarios. The analysis shows that the percentage of monetary
savings are not sensitive to workload types and the size of data centers, although they
depend strongly on data center utilization and parameters of server power states.

The rest of the paper is organized as follows: Section 2 describes the power markets,
DR programs, and RSR. Section 3 introduces the overall framework of data center RSR
provision, as well as the practical server and workload models. Section 4 presents the
runtime policy in EnergyQARE that dynamically regulates data center power to track
the RSR signal. Section 5 studies the optimal data center energy and reserve bidding
strategy. Section 6 presents the simulations and results, followed by discussions in
Section 7. Section 8 surveys related work and Section 9 concludes the paper.

2. POWER MARKET AND REGULATION SERVICE RESERVES
In this section, we review today’s power markets, different types of capacity reserves,
and DR programs. Then, we describe the demand side RSR in detail, as we think it is
the most suitable and profitable market for data centers participation.
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2.1. Capacity Reserves Provisioned in Wholesale Power Markets
Power markets, introduced in the US in 1997 [Ott 2003], have been designed to en-
courage the competitive participation of centralized generators injecting power to and
wholesalers withdrawing power from buses of the high voltage transmission network.
Today’s power markets clear simultaneously (i.e., they co-optimize) several capacity
reserve services and energy. When generation and consumption are not balanced in
(near) real-time, power systems may become unstable, leading to catastrophic events
such as blackouts. To handle unpredictable disturbances that lead to temporary imbal-
ances, ISOs procure a mix of reserves with different dynamic properties in advance.
Each reserve type is characterized by the time scale and the frequency of the associ-
ated reserve command deployment. Cascaded short-term markets that are most rele-
vant to this work include day-ahead markets, hour-ahead adjustment markets, and 5-
minute close-to-real-time economic dispatch markets [NYISO 2013; Ott 2003]. Based
on different frequencies of the reserve command deployments, there are primary (i.e.,
frequency control), secondary (i.e., regulation service) and tertiary (i.e., operating) re-
serves, for which promises are bid and cleared in the day or hour ahead markets and
deployed respectively in millisecond, second, and minute intervals [PJM 2017c].

Traditionally, capacity reserves have been offered primarily by centralized genera-
tors, but market rules are changing to allow the demand side to offer reserves as well.
For example, PJM, one of the largest US ISOs, has allowed electricity loads to partic-
ipate in reserve transactions since 2006 [PJM 2005], with other ISOs contemplating
to follow suit. Demand side capacity reserves, as an emerging type of DR, is starting
to play a significant role in stabilizing power systems, and is particularly beneficial as
intermittent and volatile renewable generation is integrated at ever increasing rates.
In the following section, we review both legacy and emerging DR opportunities.

2.2. Demand Response
Demand response (DR) refers to electricity consumers regulating their power usage
following market requirements. Widely studied DR programs pertain to a few legacy
programs such as dynamic energy pricing [Wierman et al. 2014; Zhu et al. 2013] and
peak shaving [Govindan et al. 2011; Wang et al. 2012]. In dynamic energy pricing,
the demand side modulates its power consumption so as to consume more power at
the valley of the energy price and less as prices peak. In addition to charges on energy,
medium to large commercial and industrial power consumers are also charged for their
peak power over an agreed upon period, e.g., over a month [Govindan et al. 2011].
During periods with shortage of supply, there are even stricter limits on the peak power
consumption. In these cases, cutting peak power, known as peak shaving [Wang et al.
2012], has been used to reduce costs and enable stability of power systems.

Recently, power markets have started to allow demand side to provide capacity re-
serves as an emerging DR. In demand side capacity reserves, power consumers com-
plement generators in buying of energy and offering all kinds of capacity reserves in
dynamic market. Thus, consumers are obliged to regulate their power consumption to
track some dynamic power targets based on the amount of reserve that they have of-
fered [Hansen et al. 2014]. As introduced in Section 2.1, there are mainly three types
of reserves: frequency control, RSRs, and operating reserves. In frequency control, the
power targets are determined by local (hence fully distributed) frequency measure-
ments. Reserve providers are required to consume power to counter frequency devia-
tions from 60 Hz, and are required to modulate the power consumption near real-time.
Today, primary reserves are provided by generators through annual contracts, and
there is no short term market for consumers. The targets for RSR are determined
by an ISO signal, which is used to complement primary control reserves. Unlike the
frequency control that is fully distributed, the RSR provider is obligated to follow a
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centrally broadcast signal updated every few seconds. The clearing prices of RSRs are
high and comparable to the price of energy. Operating reserves are designed to replen-
ish other reserves, as well as reduce the load burden and the congestion in power
systems. The targets of the operating reserves are typically constant low power values
maintained for up to a few hours. The speed at which reserves must be offered is far
slower than that of primary or secondary reserves [Chen et al. 2014b].
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Fig. 1. Typical PJM 150sec ramp rate (F) and
300sec ramp rate (S) regulation signal trajecto-
ries.

Among these three types of reserves, we
believe RSRs are the most suitable and prof-
itable ones for data centers to provide: the
required regulation speed is in a few sec-
onds, which is achievable using server power
controls. The rate of change of power con-
sumption required during the deployment of
RSRs is of the order of 0.5% of R per sec-
ond, where R is the maximal amount of re-
serves promised at the beginning of the hour.
Typical clearing prices of reserves scheduled
and hence committed for the duration of an
hour vary around the clearing price of en-
ergy [PJM 2017a]. We focus on typical energy
and reserve price conditions by considering
reserve clearing prices that are comparable
to energy clearing prices. In fact, in anticipa-
tion of future trends, one would expect that higher adoption of volatile renewable gen-
eration is likely to increase reserve clearing prices. Thus, our choice to use comparable
RSR and energy clearing prices is a conservative assumption that likely underesti-
mates monetary savings. The details of demand side RSR provision are introduced in
the following section.

2.3. Demand Side Regulation Service Reserve
An RSR provider who has been cleared in the hour ahead market to consume on aver-
age P̄ power and to provide R reserves with the market clearing prices for energy and
reserves at ΠE and ΠR, respectively, pays ΠEP̄ − ΠRR, where ΠEP̄ is the charge for
the average power consumption and ΠRR is the credit for RSR provision [PJM 2017b;
2017c]. To receive the credit, the provider is obliged to modulate its power consump-
tion Pcon(t) dynamically to track the power target Ptgt(t) calculated based on the RSR
signal y(t):

Ptgt(t) = P̄ + y(t)R. (1)

y(t) is the output of an ISO specified integral proportional filter of the Area Control
Error (the difference between actual and scheduled net imports from adjacent balanc-
ing areas) and frequency excursions outside a tolerance (i.e., [59.980, 60.020Hz]). This
signal is unpredictable and unaffected by any individual market participant. The sta-
tistical behavior of y(t), however, is known and can be modeled in advance. y(t) is
a zero-mean random variable taking values in the interval [−1, 1], and it follows a
well-behaved two-level Markov model whose transition probabilities can be estimated
reasonably well [Bilgin et al. 2016]. The signal is centrally determined and broad-
cast every 4 seconds by the ISO, with the increments in each 4 seconds not exceeding
±R/(τ/4) where τ is 150 seconds for the fast (F) RSR and 300 seconds for the slower
(S) RSR [PJM 2017c]. Fig. 1 shows actual historical hour-long data trajectories of fast
(F) and slow (S) RSR signals that have been recorded in the PJM balancing area.
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The signal tracking error is measured during the hour, as:

ε(t) =
|Pcon(t)− Ptgt(t)|

R
. (2)

PJM and other ISO stakeholders have been discussing the reduction of payments to
RSR providers, ΠRR, by an amount that is proportional to the length of the trajec-
tory that the RSR provider fails to traverse due to poor RSR tracking. For example, if
the average error evaluated in Eq. (2) is 10%, the RSR provider must return 0.1ΠRR
from its hour ahead revenues [PJM 2017b; 2017c]. The tracking error can be therefore
monetized and the cost can be modeled in a manner that is consistent with market
practice. This quantification is valid as long as the tracking error does not exceed a
specified threshold, which, if exceeded, results in the market participant’s loss of the
right to participate in the regulation reserve market. The reserve provider may lose
its contract in further RSR provision, if the track error ε(t) exceeds a probabilistic
tolerance constraint (εtol, ηε), i.e.,:

Probability {ε(t) > εtol} > 1− ηε, (3)

where εtol is the threshold and ηε is the probability.

3. THE MODEL OF DATA CENTER IN REGULATION SERVICE RESERVE
A data center1 system is composed of two major parts: the computational unit and the
cooling unit. The computational unit consists of a number of servers2, and the cooling
unit consists fans, computer room air conditioners, water cooling systems, etc. Due
to the larger thermal time constants involved in thermal dynamics, thus, the cooling
unit is not as suitable for RSR as the computational unit. In this work, we study the
RSR of the computational unit, while cooling unit can be regulated to participate in
slower frequency reserve markets. In the following sections, we first introduce the
overall framework of data center RSR provision. Then, we discuss details of the real-
life practical models of a single server and the computational unit.
3.1. An Overview of the Data Center RSR Framework
Fig. 2 depicts the framework of data center in RSR provision. The central controller of
the data center is the unit responsible for (a) communicating with the power market,
(b) optimizing and making decisions in server and workload controls, and (c) monitor-
ing the performance. Specifically, the central controller repeats the following steps for
each hour (we assume an hour-ahead RSR market participation):

(1) The central controller solves the optimal RSR capacity planning problem; i.e., de-
termine the average power consumption P̄ and the reserve provision R based on
statistical information of workload arrivals for the next hour. The workload is fore-
cast based on historical patterns if the real-time information is not available ahead.

(2) The central controller then bids (P̄ , R) in the power market. Once the bid is ap-
proved, ISO dynamically broadcasts RSR signal y(t) in real time.

(3) The central controller is then required to modulate the power consumption of the
data center to track the power P̄ + y(t)R calculated by the signal y(t). At runtime,
we dynamically classify servers into multiple clusters based on the types of work-
load that they are serving, with each cluster containing servers serving the same
type of workload. With this model, though the data center receives heterogeneous
workload, each cluster serves a homogeneous set of jobs. This model is, in principle,

1We define data centers broadly including both enterprise and high performance computing data centers.
2The computational unit also includes networking, storage, uninterruptible power supply (UPS) and other
elements. This paper focuses on providing RSR using server-level controls.
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Fig. 2. The framework of a data center in power market RSR participation.

similar to the design of today’s high performance computing (HPC) clusters, where
dedicated and optimized sets of servers are assigned to specific jobs. The number
of servers in each cluster and their power budget are dynamically adjusted by the
central controller to track the RSR signal and maintain QoS of the workloads.

(4) In each cluster, jobs arrive in a queue and wait there until scheduled. Servers run
jobs at power states assigned by the central controller. The controller also continu-
ously monitors the RSR signal tracking error, the length of job queue in each clus-
ter, and the QoS of each workload type, and uses this information as feedback to
adaptively update server allocation and power budgeting decisions of each cluster.

The above steps indicate two key problems to be solved: (1) finding an efficient run-
time policy that regulates the data center power to accurately track the RSR signal,
while also guaranteeing workload QoS; (2) designing a power and reserve bidding
strategy that minimizes the data center energy costs. The proposed EnergyQARE so-
lution in this paper aims at solving these two problems on a practical data center RSR
provision model. Our runtime policy in EnergyQARE is introduced in Section 4 and
our proposed bidding strategy is discussed in Section 5.

3.2. The Server Model
Servers in data centers can be put into different power states. Typical states include:
active (i.e., running), idle, sleep, and shut down. We use Ps(t) to denote the power con-
sumption of an active server s at time t. This power consumption can be regulated
dynamically. There are a number of dynamic power management techniques to regu-
late the power consumption of active servers, such as DVFS [Li and Martinez 2006;
Reda et al. 2012] and setting CPU resource limits [Chen et al. 2013b].

The server throughput, i.e., the service rate us(t) of the server s at time t, is affected
by the power Ps(t). Prior studies have demonstrated a linear relation between power
and the service rate for active servers [Dayarathna et al. 2016; Chen et al. 2013b;
Tuncer et al. 2014], i.e.,:

Ps(t) = αjus(t) + Pidle,s, (4)

where αj is the coefficient depending on the workload type j, Pidle,s is the idle power
of the server s. To examine the linearity of the relation, we conduct experiments on
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applications from PARSEC-2.1 suite [Christian 2011] on a 1U server that has an AMD
Magny Cours (Opteron 6172) processor, with 12 cores on a single chip. The server is
virtualized by VMware vSphere 5.1 ESXi hypervisor, and we use the CPU resource
limits knob to regulate the power [Chen et al. 2013b]. Tuning the CPU resource limits
adjusts the server power and the throughput by changing the resources allocated to
the virtual machine (VM). It is a desirable control knob for RSR provision as it can
quickly modulate the power at a fine granularity [Chen et al. 2013b]. Fig. 3 shows
power vs. throughput curve on our server. A linear fit between server power and the
service rate (represented by retired instructions per second, i.e., RIPS) provides less
than 5% mean square error for all the applications in PARSEC-2.1 suite.
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Fig. 3. The relation between power and service rate
(in RIPS) for applications in PARSEC-2.1 benchmark
suite. Dots are the real measurements and lines are
the linear fit curves.

A server is “idle” if it is turned on but
not servicing any job. Idle servers can be
put into the “sleep” state to save power.
The power consumption of a server in
idle and sleep states are both constant,
denoted as Pidle,s and Pslp,s respectively
for server s, with Pidle,s > Pslp,s. In this
work, we assume homogeneous servers,
and thus we omit the notation s for sim-
plicity. There are time delays and energy
loss when a server is suspended to or
resumed from the sleep state. The time
delay and energy loss of suspending a
server to sleep is usually small, while
those of resuming a server from the
sleep state is notable and requires ex-
plicit consideration [Gandhi et al. 2012;
Isci et al. 2013]. We denote this server
transition time as Ttran. During the
transition period, the power consump-
tion of the server is denoted as Ptran, which is often constant and close to the maximal
server power [Isci et al. 2013].

A server can also be completely “shut down” and consume zero power. However,
servers are rarely shut down in today’s data centers due to the very large time delay
and energy loss of resuming from a fully shut down state. Thus, we do not consider the
shut down state in this work.

3.3. The Model of the Computational Unit
As shown in Fig. 2, in our data center model, servers in the computational unit are
classified into several sub-units: (1) an idle server pool, (2) a sleeping server pool, (3)
several active server clusters. Active servers are classified into clusters according to
the workload type they are serving, with each cluster of servers running a homoge-
neous set of jobs. Servers in the idle server pool are assigned by the central controller
to active clusters as needed. Active servers are immediately released back to the idle
server pool if they finish their jobs. The number of servers in each cluster, as well as
their power budget, are dynamically modulated by the central controller based on mul-
tiple system states such as the job queue length in each cluster, the RSR signal and the
QoS constraint of each workload type, etc. The sleeping server pool only interacts with
the idle server pool. We ignore the time delay in transition from idle to sleep since it is
relatively short compared to the server wake up delay. On the other hand, if sleeping
servers are resumed, they are turned into the transition state for a certain time before
they become idle and join in the idle server pool.
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In each cluster, we assume there is a first-come-first-served (FCFS) queue for holding
the incoming jobs submitted by the users. Once a job arrives, it is put into the queue
and waits to be scheduled for service. We use the FCFS queue because it is simple
but efficient, and is one of the most widely used scheduling policies in today’s systems.
Moreover, as each cluster contains only homogeneous workload, other scheduling po-
lices such as shortest job first and shortest remaining processing time [Yang et al.
2012] do not provide additional benefits. In addition, we assume that each server can
only serve one job a time; thus, we do not consider server consolidation. In fact, servers
in HPC data centers typically run one job at a time for performance and privacy rea-
sons. We also assume that a running job is not allowed to be stalled or preempted.

Workloads in data centers mainly fall into two catalogs: (1) interactive jobs such
as email clients, web search, stock transactions, etc., which are highly sensitive to the
latency, and (2) batch jobs that are more tolerable to latency. Some of the batch jobs can
be accumulated and run later when there is availability in the data center [Liu et al.
2012; Verma et al. 2015]. In this work, we focus on data center clusters with batch
jobs in RSR provision. Since batch jobs provide more flexibilities in QoS constraints,
clusters with them are more suitable for RSR provision.

4. ENERGYQARE RUNTIME POLICY
To participate in the RSR market, data centers need to dynamically modulate their
power consumption to track the RSR signal, while at the same time guaranteeing QoS
in workload servicing to meet the SLAs. However, there is often a tradeoff between
RSR signal tracking and QoS. For example, a low RSR signal value limits the data
center power budget and degrades the workload QoS. In this section, we introduce
the EnergyQARE runtime policy that efficiently searches for a balance between per-
formance and tracking error. EnergyQARE dynamically monitors signal tracking and
workload servicing, and adaptively makes decisions on which of them (i.e., tracking
error or QoS) should be given higher priority.

4.1. An Overview of the EnergyQARE Runtime Policy
The flowchart of the EnergyQARE runtime policy is shown in Fig. 4. The principle is
to dynamically make decisions based on monitored signal tracking and workload QoS
state variables. At each time t, the monitored main state variables include:
(1) the average of tracking error, i.e., ε̄(t) during the time window [t− T, t];
(2) the average of QoS degradation, i.e., D̄j(t) for each cluster j in [t− T, t];
(3) the total number of additional required active servers Nreq(t) to meet the SLAs

based on the Little’s Law [Leon-Garcial 2008], which is highly correlated with the
length of the job queue;

(4) the states of jobs and servers;
(5) the value of RSR signal y(t).

Based on these dynamically monitored state variables, EnergyQARE selects one or
more from the following actions:
(1) wake up sleeping servers;
(2) put idle servers into sleep;
(3) assign idle servers to clusters to serve waiting jobs;
(4) regulate the power and service rate of the active servers.

In the following sections, we introduce the details of the state variables and actions,
as well as the overall runtime policy. All symbols are listed and described in Table I.
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Table I. Description of symbols.

ε(t) Instant tracking error at time t.
ε̄(t) Average of the instant tracking error in [t− T, t].
(ε̄, σε) Mean and standard deviation of the instant tracking error during the hour.
(εtol, ηε) Probabilistic constraint on RSR signal tracking.
ΠE Market clearing price on energy.
ΠR Market clearing price on reserves.
Πε Price on RSR signal tracking error.
Dj(i) QoS degradation of job i in cluster j.
D̄j(t) Average QoS degradation of all jobs finished in [t− T, t] in cluster j.
(D̄j , σDj

) Mean and standard deviation of the QoS degradation of jobs in cluster j during the hour.
Ii The total number of instructions to be executed in job i.
Ir,i(t) The number of residual instructions of job i at time t.
M The number of clusters (workload types) in the data center.
N The total number of servers in the data center.
Nj(t) The number of servers in cluster j at t.
Nreq,j(t) The number of additional servers required for cluster j at t.
Nreq(t) The total number of additional active servers required for all clusters at t.
Nidle(t) The number of servers in the idle pool at t.
Nrdslp(t) The number of servers that are ready to be put into sleep at t.
Nslp(t) The number of servers in the sleep pool at t.
Ntran(t) The number of servers in the transition state at t.
Nup(t) The number of servers to be woken up at t.
Ntoslp(t) The number of servers to be put into sleep at t.
Nassg,j(t) The number of idle servers that are assigned to cluster j at t.
Nassg(t) The total number of idle servers that are activated and assigned to all clusters at t.
P̄ Hour ahead bidding of the average power consumption.
PSmax The maximal possible server power.
Pj(t) The power of active servers in cluster j at time t.
Pidle Server power in the idle state.
Ptran Server power during the transition state.
Pslp Server power in the sleep state.
Pcon(t) Real data center power consumption at t.
Ptgt(t) Targeted power at t calculated based on the RSR signal and the biddings.
(Qj , ηj) SLA probabilistic contraint for jobs in cluster j.
R Hour ahead bidding of the reserve provision.
T Size of the feedback time window.
Tmin(i) The shortest possible processing time of job i.
Tmin,j The shortest possible processing time of jobs in cluster j.
Tsys(i) Job system time (waiting time plus processing time) of job i.
T̄Lsys,j(t) Average job system time for cluster j at t based on Little’s Law.
Ttran Time delay for waking up a server.
Tw,s(t) Time that a server s has been in the transition state at t.
Tidle,s(t) Time that a server s has been in the idle state at t.
Tout The timeout value used to determine whether to sleep a server.
pj(t) The number of running jobs in cluster j at t.
qj(t) The number of waiting jobs in cluster j at t.
uj(t) Service rate of servers in cluster j at t.
umax,j The maximal possible service rate for workload in cluster j.
umin,j(t) The minimal service rate for job in cluster j at t to meet SLAs.
y(t) The RSR signal at t.
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Fig. 4. The flowchart of the EnergyQARE runtime policy. Actions are denoted by letters: a, b, c, ... g. Similar
actions are denoted by the same letter.

4.2. State variables in EnergyQARE
The system states are measured and updated at the beginning of each time interval t.
The main state variables used for decision making in EnergyQARE are as follows:

A. The average tracking error ε̄(t).

ε̄(t) is an average of the instant signal tracking error ε(t) (calculated in Eq. (2))
during a past time window [t− T, t], i.e.,:

ε̄(t) =
1

T

t∑
τ=t−T

ε(τ). (5)

The size of the time window T is adjustable.

B. The average QoS degradation D̄j(t).

We first define QoS degradation D(i) for a single job i as:

D(i) =
Tsys(i)− Tmin(i)

Tmin(i)
, (6)
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where Tsys(i) is the job system time (i.e., job waiting time plus job processing time),
and Tmin(i) is the shortest possible processing time of job i, which refers to the time of
servicing the job without power restrictions and without waiting time. In Eq. (6), D(i)
is a normalized value (to the shortest processing time), and hence is unified among
different types of workloads. Smaller D(i) represents better workload QoS, and D(i) =
0 means no degradation in the service of job i.

Similar to the way that we calculate ε̄(t), we calculate the average QoS degradation
D̄j(t) for each cluster j at time t as an average of D(i) for all jobs i in cluster j that
have finished their servicing in a past time window [t− T, t]:

D̄j(t) =

∑NF,j(t)
i=1 D(i)

NF,j(t)
, (7)

where NF,j(t) is the number of jobs that finished in time window [t− T, t] in cluster j.

C. The total number of additional active servers required for all clusters Nreq(t).

We first calculate the number of additional servers required by each cluster j, i.e.,
Nreq,j(t), based on Little’s Law [Leon-Garcial 2008]. We denote the number of waiting
jobs and running jobs in cluster j as qj(t) and pj(t) at time t, respectively. Since each
cluster contains homogeneous workload, we assume all servers in each cluster run at
the same service rate uj(t), to ensure fairness in servicing the same type of jobs. Then,
the average job system time calculated from Little’s Law for cluster j at time t is:

T̄Lsys,j(t) =
qj(t) + fr(pj(t))

uj(t)nj(t)
, (8)

where nj(t) is the number of servers in cluster j at time t. Superscript L represents that
this average system time is calculated from Little’s Law, which distinguishes it from
the notation T̄sys,j(t), i.e., the average system time from real measurement. Function
fr(·) transforms the unfinished parts of running jobs to the number of full jobs, i.e.,:

fr
(
pj(t)

)
=

pj(t)∑
i=1

Ir,i(t)

Ii
, (9)

where Ir,i(t) is the number of unfinished instructions of job i at time t, Ii is the total
number of instructions of the job i. A job can be considered as a set of instructions, and
finishing a job is equivalent to execute all instructions of that job.

The average job system time T̄Lsys,j(t) is constrained by SLAs. SLAs today are mainly
defined as the availability of the service; e.g., 99.9% of the time the service is guaran-
teed to be available [Amazon 2013]. Customers and service operators start to include
performance measures of the service, e.g., the throughput, or the delay of service, into
SLAs [Ghamkhari and Mohsenian-Rad 2012]. In this paper, we design the SLAs based
on the job system time, as it is a key measure to evaluate the job servicing performance.
For jobs in cluster j, we define SLAs in a probabilistic form:

Probability
{Tsys(i)− Tmin,j

Tmin,j
≤ Qj

}
≥ ηj , (10)

where Tmin,j is the shortest possible job processing time for jobs in cluster j. Here
we use Tmin,j to substitute the Tmin(i) in Eq. (6) because we have assumed that each
cluster contains homogeneous jobs that have the same Tmin(i). (Qj , ηj) are thresholds
in the SLA constraint. Eq. (10) represents that jobs in cluster j are required to be
served with the QoS smaller than Qj at a probability larger than ηj . From Eq. (10), we
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deduce a constraint on the average system time T̄Lsys,j(t) as:

T̄Lsys,j(t) ≤ (βQj + 1) · Tmin,j , (11)

where β is the coefficient determined by the probability distribution of Tsys(i). Putting
Eq. (8) into Eq. (11), we obtain a constraint on the number of servers in cluster j:

nj(t) ≥
qj(t) + fr(pj(t))

(βQj + 1) · Tmin,juj(t)
. (12)

Prior work has shown that servicing jobs at the maximal possible service rate umax in
general provides best energy efficiency [Gandhi et al. 2012; Chen et al. 2014b]. Hence
in this work we assume that by default all the jobs are served at their maximal possible
rate, and we use umax,j to substitute uj(t) in Eq. (12). Since umax,j ·Tmin,j = 1 (recalling
that Tmin,j is the shortest possible processing time when the job is serviced at the
highest service rate umax,j), Eq. (12) is simplified to:

nj(t) ≥
qj(t) + fr(pj(t))

βQj + 1
. (13)

The right hand side of Eq. (13) is the minimal number of required servers for cluster
j at time t, in order to meet the system time constraint from Little’s Law. Assuming
currently there are Nj(t) active servers in cluster j, the number of additional servers
required for cluster j to meet the QoS constraint is:

Nreq,j(t) = max
{

0,
qj(t) + fr(pj(t))

βQj + 1
−Nj(t)

}
. (14)

The total number of required servers for all the clusters at time t, i.e., Nreq(t), is the
summation of the number of the required servers in all clusters:

Nreq(t) =

M∑
j=1

Nreq,j(t). (15)

In addition to these listed three state variables, the state of each job and server, as
well as the RSR signal value y(t) are directly monitored and recorded.

4.3. The Overall EnergyQARE Runtime Policy
In this section, we explain the EnergyQARE runtime policy shown in the flowchart in
Fig. 4. In the figure, we mark each action with a letter. Similar actions are marked
with the same letter.

At the beginning of each time interval t, the system states are updated by:

— Checking whether any servers have finished their jobs. Servers that finished jobs
are put back into the idle server pool. The QoS of finished jobs is calculated;

— Checking whether any servers have finished their transition processes. Servers that
have finished their transition processes are put into the idle server pool;

— Monitoring new coming jobs in the waiting queue for each cluster.

After these updates, we calculate major state variables introduced in Section 4.2. Then
we compare the average tracking error (normalized by its tolerance εtol in Eq. (3)), i.e.,
ε̄(t)
εtol

, with the average QoS degradation (normalized by its tolerance Qj in Eq. (10)),
i.e., γmax

j

Dj(t)
Qj

. Here max
j

D̄j(t)
Qj

represents the worst average QoS degradation (nor-

malized by the tolerance Qj) among all clusters at time t. γ is the coefficient given
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to the QoS degradation in comparison with the tracking error. Different γ indicates
different focuses in terms of tracking error and workload QoS, e.g., a small γ can be
used if tracking error is more cared about. In our simulations, we always set γ = 1. We
also compare the number of required servers Nreq(t) with the number of idle servers
Nidle(t). We move from the main flow to one of the three sub-flows based on these two
comparisons. The three sub-flows are:

(1) ε̄(t)
εtol

> γmax
j

D̄j(t)
Qj

. In this scenario, the signal tracking performance is relatively

worse than the QoS performance, so the policy selects actions to track the signal
accurately. The real power Pcon(t) and the targeted power Ptgt(t+ 4) are calculated
and compared. If Pcon(t) > Ptgt(t + 4), i.e., the real power needs to be reduced, we
first slow down some servers in Action d. If we still have Pcon(t) > Ptgt(t+ 4), then
we put some servers into sleep in Action g. We put Action d before Action g in order
to reduce server transitions that bring time delay and energy loss. On the other
hand, if Pcon(t) < Ptgt(t + 4), i.e., the real power needs to be increased, we first
activate idle servers and assign them to clusters in Action f . After that, if we still
have the condition Pcon(t) < Ptgt(t+4), we wake up some sleeping servers in Action
e. Similarly, we give the server transition action (in Action e) a low priority due to
the concern of additional energy loss and time delay.

(2) ε̄(t)
εtol
≤ γmax

j

D̄j(t)
Qj

, and Nreq(t) ≤ Nidle(t). In this scenario, the QoS performance is

relatively worse than the signal tracking performance, but the current number of
idle servers is sufficient to improve QoS to meet the requirement. We first activate
and assign Nreq(t) idle servers to all clusters to serve waiting jobs in Action a. Then
we focus on the signal tracking and move back to Sub-flow 1.

(3) ε̄(t)
εtol
≤ γmax

j

D̄j(t)
Qj

and Nreq(t) > Nidle(t). In this scenario, the QoS performance

is relatively worse than the signal tracking performance, and the number of idle
servers is not sufficient to meet the requirement. We first activate all idle servers
with waiting jobs in Action b. Then, we wake up additional servers so as to meet the
requirement Nreq(t) in Action c. After that, we consider signal tracking. If Pcon(t) >
Ptgt(t+ 4), we slow down servers in Action d. At this step, we no longer consider to
put servers to sleep, because prior to this action we have already been required to
wake up servers in Action c. On the other hand, if Pcon(t) < Ptgt(t+ 4), since all the
idle servers have been activated in Action b, the only action to increase Pcon(t) is to
wake up additional sleeping servers in Action e.

The details of each action will be introduced in the next section.

4.4. Detailed Actions in EnergyQARE
All the actions in Fig. 4 fall into four basic groups introduced in Section 4.1: wake up
sleeping servers (Actions c and e), put idle servers into sleep (Action g), assign idle
servers to clusters to serve waiting jobs (Actions a, b and f ), and regulate the power
and service rate of active servers (Action d). We discuss each of them in detail below.

A. Wake up sleeping servers.

In Fig. 4, both Actions c and e wake up some sleeping servers. Action c is called
due to a “QoS crisis” (i.e., QoS of jobs in some clusters tends to violate the SLAs), and
the number of idle servers at time t is smaller than the number of required servers.
Therefore, additional servers are required to be woken up in order to increase QoS.
The number of servers to be woken up, i.e., Nup(t) is determined as:

Nup(t) = min
{
Nreq(t)−Nidle(t)− feqv(Ntran(t)), Nslp(t)

}
, (16)
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where Nslp(t) is the number of servers in sleep state at t. In Eq.(16), we also take
the number of servers in the transition state, i.e., Ntran(t), into account by a function
feqv(·). This function calculates the equivalent number of idle servers that the number
of servers in transition is, based on the time that these servers have spent in the
transition state. Specifically, assuming that a server s has been in the transition state
for Tw,s(t) seconds at time t, and the waking up process takes Ttran seconds, then this
server s is equivalent to Tw,s(t)/Ttran idle server. Hence,

feqv(Ntran(t)) =

∑Ntran(t)
s=1 Tw,s(t)

Ttran
. (17)

In Action e, Nup(t) is determined for the purpose of better signal tracking. Waking
up a server can increase its power from Pslp to Ptran. Hence:

Nup(t) = min
{Ptgt(t+ 4)− Pcon(t)

Ptran − Pslp
, Nslp(t)

}
, (18)

where Ptran and Pslp are the power consumption of the server in the transition state
and in the sleeping state, respectively.

B. Put idle servers into sleep.

In Action g, the number of idle servers to be put into sleep state, i.e., Ntoslp(t), is de-
termined for the purpose of achieving better signal tracking, as putting an idle server
into the sleep state can reduce its power from Pidle to Pslp. Therefore,

Ntoslp(t) = min
{Pcon(t)− Ptgt(t+ 4)

Pidle − Pslp
, Nrdslp(t)

}
, (19)

where Pidle is the server idle power, Nrdslp(t) is the number of servers that are ready
to be put into the sleep state at time t. Nrdslp(t) is introduced to avoid waking up
servers or putting servers into sleep over-frequently. We apply a “timeout” mechanism,
in which only when a server has been idle for a time longer than Tout, it can be put
into the sleep state. Prior work introduces a way to determine the Tout from the energy
efficiency perspective [Gandhi et al. 2012], and they suggest

Tout =
Ptran · Ttran

Pidle
. (20)

We use Tidle,s(t) to denote the time that the server s has been in the idle state till t.
If Tidle,s(t) > Tout, then the server s is ready to be put into the sleep state. Therefore:

Nrdslp(t) =

Nidle(t)∑
s=1

I{Tidle,s(t)>Tout}. (21)

C. Assign idle servers to clusters to serve waiting jobs.

If there are both waiting jobs and idle servers in the system, we can assign idle
servers to clusters to serve some of the waiting jobs3. Since all M clusters share the
idle server pool, the number of idle servers assigned to each cluster j, i.e., Nassg,j(t)
needs to be determined. The first step is to determine the total number of idle servers
to be assigned, i.e. Nassg(t). In Fig. 4, Actions a and b are called because of the “QoS
crisis”, hence Nassg(t) is calculated based the QoS requirement. In Action a, since

3If the signal tracking has a higher priority than the workload QoS and the power cap determined by our
policy is not sufficient to support additional active servers, even if there are both waiting jobs and idle
servers in the system, idle servers are not activated for job servicing.
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the number of idle servers is not smaller than the number of required servers, i.e.,
Nidle(t) ≥ Nreq(t), we simply activate and assign Nreq(t) servers to clusters, i.e.,
Nassg(t) = Nreq(t). In Action b, since Nidle(t) < Nreq(t), i.e., the idle servers are not suf-
ficient, thus all the idle servers at time t require to be activated, i.e.,Nassg(t) = Nidle(t).

Differing from Actions a and b, in Action f , Nassg(t) is determined for the purpose of
achieving better signal tracking, hence Nassg(t) is calculated as:

Nassg(t) = min
{Ptgt(t+ 4)− Pcon(t)

PSmax − Pidle
, Nidle(t), q(t)

}
,

where PSmax is the server maximal power, q(t) is the total number of jobs in all the
queues at time t, i.e., q(t) =

∑M
j=1 qj(t). The equation represents that the number of

activated servers must be smaller than the current number of idle servers Nidle(t) and
the total number of jobs in the queue q(t). In Actions a and b we do not need to consider
q(t) again because Nreq(t) is calculated based on q(t) in Eq. (14). Overall we have:

Nassg(t) =


Nreq(t), in Action a,
Nidle(t), in Action b,
min

{Ptgt(t+4)−Pcon(t)
PSmax−Pidle

, Nidle(t), q(t)
}
, in Action f .

(22)

Next, we determine the number of idle servers assigned to each cluster j. First, the
number of assigned servers to each cluster j, i.e., Nassg,j(t) should not be larger than
the number of jobs waiting in the queue in that cluster, i.e., qj(t):∑M

j=1Nassg,j(t) = Nassg(t),
Nassg,j(t) ≤ qj(t), ∀j.

(23)

There are many different ways to allocate idle servers to each cluster. Simple meth-
ods include round robin, random, or shortest job first. From experiments, we find that
an “urgent QoS first” strategy which allocates idle servers based on their QoS con-
straints can provide better performance in both QoS and signal tracking than other
methods in our scenario. Specifically, the “urgent QoS first” strategy is as follows: the
average QoS degradation of each cluster j in the past time window [t− T, t], i.e., D̄j(t)
is first calculated by Eq. (7); then, we calculate the weight for each cluster:

wj(t) =
D̄j(t)

Qj
,∀j ∈ 1, 2, ...M, (24)

where Qj is the degradation tolerance for workload type j introduced in Eq.(10). We
assign Nassg(t) idle servers to each cluster based on the order of wj(t). A large wj(t)
represents an “urgent” scenario in terms of satisfying the SLAs. Thus, clusters with
larger wj(t) are given higher priorities in receiving idle servers. The cluster with the
largest wj(t) first receives its required number of servers Nreq,j(t), followed by the
cluster with the second largest wj(t), etc. Clusters with lower priorities are not guar-
anteed to receive sufficient servers at t to meet with their requirements, but since the
QoS feedback D̄j(t) is updated at every time moment, these clusters would get higher
priorities later, and receive sufficient servers to meet their SLAs in the long run.

In Action f , it is possible that after satisfying Nreq,j(t) for every cluster j, some idle
servers are still required to be assigned for tracking the RSR signal. In this case, addi-
tional idle servers are allocated to clusters in a round robin manner to keep fairness.

D. Regulate the power and service rate of active servers.

At the beginning of policy execution cycle, we assume all servers run at their max-
imal service rate by default for the purpose of overall energy conservation and QoS
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guarantee. However, sometimes in order to track the signal, servers are required to
be slowed down when the signal power cap is low, i.e., in Action d, as decreasing the
service rate can reduce the server power.

Since each cluster runs a homogeneous set of jobs, we have assumed that all servers
in each cluster j are always running at the same service rate uj(t), and thus the same
power rate Pj(t). We determine uj(t) by considering both signal tracking and QoS re-
quirements. To guarantee QoS, we set a lower bound of uj(t) for each cluster j at time
t, i.e., umin,j(t), based on Eq.(8) and (11), i.e.,:

umin,j(t) = umax,j ·min
{

1,
D̄j(t) + 1

βQj + 1

}
. (25)

Eq. (25) represents that if the current average job system time in cluster j satisfies
the constraint in Eq.(11), i.e., T̄sys,j(t) = (D̄j(t) + 1) · Tmin,j < (βQj + 1) · Tmin,j , then
there is room to slow down active servers from the default maximal service rate umax,j ,
otherwise, all active servers should run at their maximal service rate. This lower bound
of the service rate also prevents jobs stalling in the server forever.

We then calculate the total maximal possible reduction in data center power con-
sumption at t based on Eq.(4) and (25) as:

Pmax,rd(t) =

M∑
j=1

Nj(t) · αj
(
umax,j − umin,j(t)

)
. (26)

We define a coefficient δ(t) as:

δ(t) = max
{

1,
Pcon(t)− Ptgt(t+ 4)

Pmax,rd(t)

}
, (27)

where Pcon(t) − Ptgt(t + 4) is the required amount of data center power reduction in
order to perfectly track the signal. Then the service rate uj(t) for each cluster j is:

uj(t) = umax,j − δ(t) ·
(
umax,j − umin,j(t)

)
. (28)

In this way, the power reduction is fairly distributed to clusters based on their lower
bounds in service rate.

5. BIDDINGS IN ENERGYQARE
With the proposed EnergyQARE runtime policy introduced in Section 4, this section
focuses on designing an EnergyQARE power and reserve bidding strategy that min-
imizes the data center energy cost. Since we focus on hour ahead RSR market, the
bidding is conducted hourly and the time period for every real-time RSR signal track-
ing is 1-hour. The energy cost during the hour is calculated as:

Cost = ΠE · P̄ −ΠR ·R+ Πε ·R · ε̄, (29)
where ΠE , ΠR and Πε are the prices of power, reserve, and penalty on tracking error,

respectively. ε̄ is the average of the instant signal tracking error along the time frame
(i.e., 1-hour). Eq. (29) represents that the energy cost of data center in RSR provision
equals to the cost on the bid average power consumption P̄ , reduced by the credit
received from bid reserve provision R, and added by the penalty on the statistics (e.g.,
the mean) of real-time signal tracking error. We formulate an optimization problem to
minimize the data center energy cost with additional constraints on tracking error and
workload SLAs introduced in Eq. (3) and Eq. (10), respectively.

We study the sample frequency distributions on the 1-hour trajectories of the track-
ing error ε(t) and the QoS degradation of jobs in each cluster j (i.e., Dj(i)) for a suffi-
ciently large number of simulations. We notice that they fit the Gamma distribution
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Γ(k, θ) with shape k: kε = ε̄2/σ2
ε , kDj

= D̄2
j/σ

2
Dj

and scale θ: θε = σ2
ε /ε̄, θDj

= σ2
Dj
/D̄j ,

where ε̄, σε, D̄j , σDj
are mean and standard deviation of the tracking error and QoS

degradation during the hour. In our experiments, we see that the Gamma distribu-
tion fits well with our results with on average less than 3% regression error. Then the
optimization problem is formulated as:

minimize
P̄ ,R,dynamic policy

ΠE · P̄ −ΠR ·R+ Πε ·R · ε̄

subject to Γ(kε, θε, ε
tol) ≥ ηε, Γ(kDj , θDj , Qj) ≥ ηj , ∀j,

P̄ +R ≤ N · PSmax, P̄ −R ≥ N · Pslp,
P̄ ≥ 0, R ≥ 0,

(30)

where N is the total number of servers in the data center, PSmax and Pslp are the max-
imal possible server power and power of sleep state, respectively. N ·PSmax and N ·Pslp
are maximal and minimal possible power consumption of the data center. We assume
the given data center runs the EnergyQARE runtime policy introduced in Section 4 as
the “dynamic policy”, and solve the bidding (P̄ , R) problem accordingly.

Due to the complexity of the problem, instead of applying analytical methods, we
solve the optimal solution using numerical methods. We conduct exhaustive search of
(P̄ , R) over sufficient fine granularity. For each pair of (P̄ , R), we first simulate a 1-hour
RSR provision period multiple times with varying signals and workload arrival, so as
to estimate the mean and standard deviation statistics of ε(t) and Dj(i). Then we apply
these statistics to Eq. (30) and search for the optimal (P̄ , R). An alternative solution is
to build regression models of statistics of tracking error and the QoS degradation via
(P̄ , R) through extensive simulations, and leverage these models to solve Eq. (30).

6. EXPERIMENTS AND CASE STUDIES
In this section, we simulate data center RSR provision with EnergyQARE in different
scenarios, and evaluate the signal tracking performance, workload QoS, and the data
center monetary savings.

6.1. Methodology
We first simulate workload arrival as a Poisson process (i.e., the arrival time interval
follows exponential distribution) with Monte Carlo simulation methods. Evaluation
using a real cluster trace is discussed in Section 6.8. In simulation, the workloads are
randomly selected from the PARSEC-2.1 benchmark suite. The power-throughput pro-
files of each job are taken from real-life measurements (in Section 3.2). The workload
arrival rate is calculated based on the size of the data center, i.e., the total number
of servers N , and the utilization U , i.e., the percentage of servers that are in active
state. In this section, by default, we use the data center consisting of 100 servers and
at 50% utilization. Results of different data center sizes and utilization are evaluated
in case studies. We use the shallow sleep ( Ttran = 10s, Pslp = 10%PSmax) as the default
sleep state [Gandhi et al. 2012; Isci et al. 2013]. We simulate a 3-hour period exper-
iment multiple times with different signal traces and workload arrivals. We extract
the middle 1-hour of each 3-hour period for analysis and neglect the warm-up period,
as there may initially be a lack of waiting jobs. We evaluate the signal tracking, QoS
performance, and the energy monetary savings.

6.2. Signal Tracking Performance and Workload QoS
We first conduct experiments on the default settings with multiple random workload
traces. In each workload trace, the types of workload contained, the arrival rate λj
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Table II. Workloads and Their Properties in Experiments

Workload Name Shortest Runtime Arrival Rate QoS Degradation
j Tmin,j (sec) λj (# of jobs / sec) Tolerance Qj

Trace 1
Canneal 44.3 0.11 0.3

Bodytrack 51.0 0.10 2.0
Ferret 74.3 0.20 1.0

Freqmine 95.2 0.11 0.1
Facesim 149.6 0.10 0.5

Trace 2
Blackscholes 23.5 0.43 1.0

Vips 24.5 0.20 0.7
Raytrace 42.4 0.07 0.8
Dedup 58.8 0.14 0.3
Ferret 74.3 0.07 1.0

Fluidanimate 93.3 0.14 2.0
Steamcluster 151.2 0.05 0.5

Trace 3
Raytrace 42.4 0.12 0.8
Canneal 44.3 0.29 0.3

Bodytrack 51.0 0.25 2.0
Swaptions 74.0 0.07 0.8

X264 93.3 0.11 1.0
Steamcluster 151.2 0.03 0.5
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Fig. 5. The average of the RSR signal tracking error (Fig. 5(a)), and the average of QoS degradation of
Canneal in workload trace 1 (Fig. 5(b)), via different average power P̄ and reserve R (normalized to the
maximal possible value given P̄ ).

of each workload j, and the QoS tolerances Qj in SLAs, are randomly selected. All
these traces are constrained to have utilization at U = 50%. To better evaluate the
capability of our policy in guaranteeing SLAs, we set some Qj to small values (shown
in Table II), so that the SLAs are tight and easy to be violated with random policies.
In SLAs, ηj is set to 90% for all cases. The tracking error probabilistic constraint is set
as (εtol, ηε) = (0.3, 90%) based on today’s market information [PJM 2017c].

Since results are dependent on workload arrival traces (though the differences are
small from our observation), to achieve generalized results, we test on multiple differ-
ent workload arrival traces, and we randomly select three of them to demonstrate the
results. Properties of three selected workload traces are shown in Table II.

Fig. 5 shows the signal tracking performance and the workload QoS via different
pairs of bidding values (P̄ , R), where R is normalized to its maximal possible value
Rmax given P̄ , i.e., Rmax = min

{
N · Pmax − P̄ , P̄ − N · Pslp

}
. Fig. 5(a) is the average
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Fig. 6. Results of RSR signal tracking and QoS degradation for the workload set 1 with (P̄ , R) at their
optimal values. Fig. 6(a) is the real dynamic power consumption Pcon(t) compared with the RSR signal
power cap Ptgt(t) during the simulation period. Fig. 6(b) is the CDF of the tracking error ε(t). The green
lines show the tracking error probabilistic constraints, i.e., (εtol, ηε). Fig. 6(c) - 6(e) are the CDF of the QoS
degradation of the workloads Canneal, Freqmine and Facesim, respectively. The green lines are the QoS
degradation constraints, i.e., (Qj , ηj). Fig. 6(f) shows the impact of the size of the feedback window T on the
tracking error and workload QoS. The probabilities of the tracking error and the QoS degradation that are
smaller than εtol, and Qj for Canneal and Freqmine are shown in the figure.

tracking error during the 1-hour experiment via (P̄ , R) pairs for the workload trace
1. From the figure, tracking error is more sensitive to the average power P̄ than the
reserve R. The tracking error is large when the average power P̄ is either low or high;
in other words, the best tracking performance appears in the middle of the range of P̄ .
When P̄ is low, the overall power budget to the data center is insufficient to guarantee
workload SLAs. As a result, to satisfy the SLAs, the signal power cap is frequently
violated, resulting in low signal tracking accuracy. When P̄ is high, workloads are
fast served and queues are often empty. Then servers are frequently in the idle or
sleep states, in which the power cannot be regulated, leading to poor signal tracking
performance. Similar results are found in all the other workload traces we have tested.

Fig. 5(b) is the average of QoS degradation of the Canneal application in workload
trace 1. Unlike the tracking error, the QoS degradation has a monotonic relation to P̄ :
the higher P̄ is, the smaller the QoS degradation will be. When P̄ is high, the power
budget is sufficient to run workloads faster. Similar behaviors are found for all the
other applications in trace 1. We also notice that the QoS is more sensitive to R when
P̄ is low. When P̄ is low, a higherR provides larger range in power and more flexibilities
in power budgeting and workload servicing, and thus leads to better QoS performance.
Similar results are found in all the other workload traces we have tested.

Next, we evaluate the signal tracking and the QoS in the runtime given (P̄ , R) at
the optimal values in Fig. 6 (for workload trace 1). Fig. 6(a) visualizes the real power
consumption Pcon(t) and the RSR signal power Ptgt(t). Ptgt(t) is well tracked by Pcon(t)
with only a few notable violations when the signal values are high but there are no suf-
ficient workloads in the system. In fact, the tracking accuracy can be further increased
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Fig. 7. The CDF of tracking error and QoS degradation of both the EnergyQARE, the best-tracking, and
the SoftReactive policy for workload trace 1. The blue curves represent the best-tracking policy, and the
red curves represent the EnergyQARE. The green lines represent the tracking error and the workload SLA
probabilistic constraints, i.e., (εtol, ηε) and (Qj , ηj).

if a lower P̄ is selected. However, the workload SLAs are then violated as a side effect.
Our solution can better handle the trade-off between signal tracking and QoS.

Fig. 6(b) is the cumulative distribution function (CDF) of the tracking error ε(t)
during the 1-hour simulation. The green lines represent the probabilistic constraints
(εtol, ηε). Figure 6(c) - 6(e) are the CDF of the QoS degradation of three selected applica-
tions from workload trace 1 with the tightest SLA constraints: the Canneal, Freqmine
and Facesim applications (see in Table II). The green lines represent the SLA proba-
bilistic constraints (Qj , ηj). Tracking error and workload QoS all meet the constraints
from the figures. The rest of two applications (not shown here) in workload trace 1 have
even better QoS (i.e., higher probabilities ηj in satisfying the tolerances Qj) due to the
loosen SLA constraints. Moreover, all the other tested traces show similar results to
these figures. Overall, our EnergyQARE enables the data center to participate in the
RSR provision with accurate signal tracking, while also guaranteeing workload QoS.

Fig. 6(f) shows the impact of the feedback window sizes T (introduced in Eq. (5))
on the tracking error and workload QoS. The probabilities of the tracking error and
QoS degradation (of Canneal and Freqmine) that are smaller than εtol and Qj respec-
tively are shown in the figure. From the figure, the QoS is poor with a small window
size. When the window size is small, the policy makes decisions only based on recent
observation of the performance, hence decisions are with higher variances. Since the
execution time of applications in simulation varies from a few seconds to minutes,
short observation in a small window fails to effectively characterize the overall work-
load QoS, and thus leads to inaccurate feedback and poor decisions. In terms of the
signal tracking, however, the policy with a small window size tends to make decisions
based on instant tracking error, which is similar to what a best-tracking policy pro-
posed in prior study does [Chen et al. 2014a], and therefore leads to better tracking
performance. In addition, Fig. 6(f) shows that the tracking performance and workload
QoS approach constants after the window size increases and reaches a certain value.

6.3. Comparison of Policies: Tracking Error and Quality of Service
We then compare EnergyQARE with state-of-the-art policies: the best-tracking pol-
icy [Chen et al. 2014a] and the SoftReactive policy [Gandhi et al. 2012]. The best-
tracking policy regulates the data center power dynamically to track the RSR signal
as accurate as possible, but does not explicitly consider workload QoS. The SoftReactive
policy simply applies the timeout mechanism to turn servers into sleeping states using
the threshold in Eq. (20), and it wakes up servers whenever there are more jobs in the
queue than the number of idle servers. This policy does not follow the RSR signal.

Fig. 7 shows the results of the EnergyQARE, the best-tracking policy, and the Soft-
Reactive policy with workload set 1. The CDF of the tracking error, of the QoS degrada-

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 H. Chen et al.

tion of Canneal and Freqmine are shown in Fig. 7(a), 7(b) and 7(c), respectively. Green
lines represent the probabilitistic constraints on the tracking error and the SLAs, i.e.,
(εtol, ηε) and (Qj , ηj). From the figure, though the best-tracking policy provides better
tracking performance in Fig. 7(a), because it minimizes the instantaneous tracking er-
ror, the workload QoS of the policy is much worse than that of the EnergyQARE based
on Fig. 7(b) and Fig. 7(c). The workload SLAs are violated by the best-tracking policy
in both figures, due to the fact that the best-tracking policy does not take QoS feedback
into account in decision making. The EnergyQARE, on the other hand, satisfies all sig-
nal tracking and workload SLA constraints. The SoftReactive policy is not specifically
designed for RSR signal tracking, thus it shows poor tracking performance in Fig. 7(a).

6.4. Comparison of Policies: Monetary Savings
In this section, we evaluate the energy monetary savings of data center participation
in RSR. In Fig. 8(a), we compare the optimal monetary costs of data centers with RSR
provision by EnergyQARE, i.e., “optimal RSR”, to the “fixed cap” scenario, the “without
cap” scenario, as well as the best-tracking policy [Chen et al. 2014a], and the SoftReac-
tive policy [Gandhi et al. 2012] for workload traces 1, 2 and 3. The “fixed cap” scenario
represents that the data center consumes the average power at P̄ (so the overall en-
ergy consumption is close to that of “optimal RSR”), but with no reserve provision, i.e.,
R = 0. The “without cap” scenario represents that the data center serves workloads
without any constraints on the power consumption.

The energy monetary costs in “fixed cap”, “without cap” scenarios, as well as the
SoftReactive policy are calculated simply based on the total energy consumed, i.e.,
ΠE · E, where E is the total energy consumed during the simulation period (i.e., 1-
hour). To better evaluate the savings, we normalize the energy monetary cost of each
scenario to the largest value in all the scenarios demonstrated in each figure. As we
mentioned in Section 2.2 and 2.3, we make a conservative assumption that the reserve
price ΠR is close to the energy price ΠE . Based on today’s markets [PJM 2017a; 2017b;
2017c], the energy price ΠE is around 0.1$kWh, and the cost of tracking error is around
the reserve price ΠR. Therefore, we use ΠE = ΠR = Πε = 0.1$/kWh in our formulation.

From Fig. 8(a), savings in different workload traces are similar: our extensive sim-
ulations on different traces demonstrate a less than 5% variation in energy monetary
savings. Providing RSR with EnergyQARE, the data center saves on average 41% en-
ergy cost compared to the “fixed cap” scenario, 44% compared to the “without cap”
scenario, and 31% compared to the SoftReactive policy, while also satisfying the work-
load SLAs. To fairly compare “optimal RSR” with best-tracking, when simulating the
best-tracking policy, we choose the same P̄ and R values as in the “optimal RSR” sce-
nario. Compared to “optimal RSR”, the best-tracking policy reduces monetary costs by
5% on average owing to its smaller tracking error. However, as shown in Fig. 7(b) and
7(c), workloads cannot meet their SLAs using the best-tracking policy.

6.5. Case Study 1: Multiple Utilization Settings
We now study how the utilization of data centers impacts the performance and the
savings in RSR provision. The utilization of a data center is defined as the average
number of active servers. For example, U = 50% means on average each server is
active for half of the whole period, and is in idle or sleep state for the rest of the
time. The utilization depends on the arrival frequency and the servicing time of the
workloads. We simulate the workload arrivals using the same type of applications and
the same SLAs to workload trace 1, but with different utilization as: 10%, 25%, 50%
and 75%. All information in Table II remains the same, except for the arrival rates,
which are scaled up for the 75% utilization scenario and scaled down for the 10% and
25% utilization scenarios. The same RSR signal trace is used in all scenarios.
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Fig. 8. The energy monetary costs in “optimal RSR”, “fixed cap”, and “without cap” scenarios, as well as
the best-tracking and SoftReactive policy. All the costs are normalized to the largest value in each figure.
In Fig. 8(b) we also calculate the absolute value of the savings from the “optimal RSR” scenarios to their
corresponding “fixed cap” scenarios, and represent the savings in the black line.

Fig. 8(b) shows the data center energy monetary costs of the “optimal RSR”, “fixed
cap”, and “without cap” scenarios, as well as the best-tracking and SoftReactive policy
in different utilization settings. Costs in all the scenarios and settings are normalized
to the maximal value in the figure. For 10%, 25%, 50% and 75% utilization cases, the
savings from the “optimal RSR” to the “fixed cap” scenario are 63.7%, 59.3%, 36.0% and
15.1%, and to the “without cap” scenario are 77.4%, 65.9%, 40.4% and 16.4%, respec-
tively. We see that the percentage of savings increases when the utilization decreases.
We also calculate the absolute values of the savings from the “optimal RSR” scenar-
ios to the corresponding “fixed cap” scenarios for all utilization settings, and present
the results in the black line in Fig. 8(b). We notice that the largest absolute value of
the monetary saving (i.e., corresponding to the largest amount of reserve provision)
appears in the middle level of the utilization. When the utilization is high, the data
center is busy with job servicing, and has small flexibility in regulating the power and
tracking the signal. When the utilization is low, the data center does not have suffi-
cient jobs to be served, which limits the number of servers activated, and thus limits
the data center power regulation capabilities. Therefore, the amount of RSR provision
is small when the data center utilization is either too high or too low.

6.6. Case Study 2: Shallow Sleep vs. Deep Sleep
Many servers in today’s data centers support different sleep modes. So far by default
we have used a shallow sleep mode that has relatively high sleep power but short
transition delay. In this section, we compare shallow sleep mode with a “deep sleep”
mode that has longer transition period for waking up, but lower sleep power. In this
case study, we use Pslp = 5%PSmax, Ttran = 200s, Ptran = PSmax for the deep sleep, and
Pslp = 10%PSmax, Ttran = 10s, Ptran = PSmax for the shallow sleep, based on recent
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studies [Gandhi et al. 2012; Isci et al. 2013]. We apply the workload trace 1 and the
same RSR signal trace to both cases for fair comparison.

Fig. 8(c) presents the monetary costs using the shallow or the deep sleep mode. Using
the shallow sleep, the savings from the “optimal RSR” to the “fixed cap” and the “with-
out cap” are 36.0% and 40.4%, respectively, while using the deep sleep, both numbers
drop to 24%. Since RSR provision requires fast and frequent data center power regula-
tion to track the fast-changing signal, the shallow sleep mode is more suitable due to
the short delay in state transition, and therefore leads to higher savings than the deep
sleep mode. We also find that with a deep sleep mode, having a fixed power cap (i.e.,
“fixed cap”) does not provide much energy cost savings compared to “without cap” from
the figure. When having a power cap, servers are frequently forced to sleep to meet the
cap, and woken up later once needed. The deep sleep mode leads to tremendous time
delay and energy loss during the frequent switches. As a result, having a power cap
with a deep sleep mode is not an efficient strategy in terms of the energy cost savings.

6.7. Case Study 3: Scalability via Data Center Size
Finally, we study the scalability of savings via the size of data centers, i.e., the number
of servers in them. We simulate the workload arrivals based on workload trace 1, at
50% utilization with different number of servers. All information in Table II remains
the same, except for the arrival rates, which are scaled up and down based on the
number of servers. Still, we use the same RSR signal trace in simulation. Fig. 8(d)
shows the monetary costs for data centers containing 100, 500 and 1000 servers. From
the figure, we see similar percentage of savings from RSR provision in all three cases,
which demonstrates that the savings are scalable via sizes of data centers.

6.8. Simulations Using Real Google Cluster Trace
We further evaluate EnergyQARE using a real Google cluster trace [C. Reiss and
Hellerstein 2011] as a proxy for workload arrivals. The total length of the trace is
one month, and we randomly select days from this trace for our experiments. The fol-
lowing results use the Google trace on May, 18, 2011. During that day, 14198 jobs are
submitted to Google’s cluster and executed successfully. Since the trace only contains
schedule information and has no power information, we take the arrival time from the
Google trace and assume the power usage of these jobs are the same as the 13 bench-
marks discussed in Section 3.2. We map the power usage of a benchmark to that of a
Google trace job according to the execution time. To be specific, jobs in the Google trace
with a relatively smaller execution time are assumed to share the same power usage
with a benchmark that also has smaller execution time. To experiment with higher
utilizations, we increase the number of jobs in the trace by repeating each arrival mul-
tiple times. The QoS constraint (defined in Eq. (10)) and the execution time for all 13
benchmarks used in the following simulations are the same as the ones in Table II.

Fig. 9 are results using the Google trace, assuming a data center with 100 servers
and at 50% utilization. Fig. 9(a) shows that our EnergyQARE enables the data center
to follow the RS signal well. Fig. 9(b) shows that the tracking error meet the con-
straint. Fig. 9(c) shows the CDF of QoS degradation of workload Steamcluster. The
QoS constraints of other workloads are also met well by EnergyQARE. By comparing
EnergyQARE with the best-tracking policy, we see in Fig. 9(b) that the best-tracking
policy follows the signal better than EnergyQARE at the cost of the QoS of workloads,
whereas the EnergyQARE policy guarantees that both the tracking error and the QoS
meet the constraints. The QoS of other workloads when using the best-tracking policy
also cannot meet the QoS constraints. Fig. 9(d) compares the monetary savings among
different policies as we did in Section 6.4. They are quite similar to the results from
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Fig. 9. Results from simulations using Google cluster trace. Fig. 9(a) is the real power consumption com-
pared with the RSR signal power. Fig. 9(b) compares the CDF of the tracking error among different policies.
Fig. 9(c) compares the CDF of the QoS degradation of workload Steamcluster. Fig. 9(d) compares the mon-
etary savings. Fig. 9(e) is a zoom-in view of signal tracking in the time range 1000∼2000 seconds, with the
bars showing the number of jobs arriving in each time interval (right axis).

generated-trace experiments in Section 6.4. We also explore tracking performance and
QoS at different (P̄ , R) and observe that the results are almost the same as Fig. 5.

Fig. 9(a) shows that there are temporary noticeable tracking errors. The biggest one
of them is zoomed in to the time range 1000∼2000 seconds in Fig. 9(e). This tracking
error around t = 1850 results from a significant variation in workload arrival as shown
by the bars in the figure. At t = 1850, the workload arrival temporarily increases to be
more than twice as large as the average. Since our policy needs to maintain the QoS
of the workloads, the real power is unable to match the low RS signal. On the other
hand, the spike of workload arrival at t = 1200 is handled well because the signal is
higher at that time. Therefore, in real systems which show large variation in workload
arrival, we expect some temporary mis-tracking. Nonetheless, Fig. 9(b) shows that the
overall tracking error meets the constraint on tracking error defined in Eq. (3).

7. DISCUSSION
Characteristics of the RSR signal y(t) can be leveraged to potentially improve the cur-
rent solution. As introduced in Section 2.3, the values of y(t) are not independent from
each other, and the statistical behavior of y(t) can be known ahead. For example, when
the signal value is close to its valley, there is a higher chance that the signal will
increase rather than decease in the near future. Some previous studies estimate the
RSR signal by a Markov chain with two states: the signal value y(t), and the signal
change D(t) = y(t)− y(t− 4). Then, the signal is estimated as: y(t+ 4) = f1

(
y(t), D(t)

)
,

D(t + 4) = f2

(
y(t), D(t)

)
. Function f1(·) and f2(·) can be calibrated in advance since

the statistic behavior of y(t) is usually known ahead, or can be mined from historical
data [Zhang et al. 2014].
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The current EnergyQARE runtime policy only considers the instant signal value.
Better decisions may be made if the policy also predicts future values, or uses sta-
tistical information. For example, if there is a high chance that the signal value will
increase, consuming slightly more power than the signal to improve the workload QoS
may be a better decision than exactly following the signal at that moment.

Not only can the prediction of the RSR signal help improve performance, but also
the prediction of workload arrivals can. Predictable workload arrivals may assist the
data center to plan ahead. In that case, stochastic methods such as model predictive
control or stochastic dynamic programming can be applied to optimize the policy.

In addition, currently we search the optimal (P̄ , R) over a grid with sufficiently fine
granularity. Another future direction could be the investigation of alternative search
solutions. For example, an sensitivity analysis of the QoS degradation and the signal
tracking error via (P̄ , R) may guide for a more structured search.

While this work relies on simulation, our previous experiments on a single server
have shown that good tracking performance (with a tracking error reaching up to 5%)
and QoS can be achieved by power capping [Chen et al. 2013b]. Experimenting with a
real cluster is also in our future work agenda.

8. RELATED WORK
This section first reviews data center power management methods, followed by a liter-
ature review on data center participation in both legacy and emerging DR programs.

8.1. Server and Data Center Power Management
Server dynamic power management has been widely studied. Dynamic voltage-
frequency scaling (DVFS) manages server power by leveraging different CPU fre-
quency settings [Li and Martinez 2006; Reda et al. 2012]. Modern servers support
putting idle units into intermediate states instead of simply turning them off, which
reduces transition cost [Meisner et al. 2009; Isci et al. 2013]. For multi-core processors
and multi-threaded applications, threads packing, as well as their dynamic allocation
and migration offer additional degrees of freedom in power management [Teodorescu
and Torrellas 2008; Rangan et al. 2009]. Voltage and frequency islands (VFIs) are in-
troduced to achieve fine-grained system level power management [Ogras et al. 2007].
Due to the increasing demand of limiting power, many studies focus on power cap-
ping methods [David et al. 2010; Ma and Wang 2012]. Resource management and
workload consolidation are employed in modulating the power of virtual machines
(VMs) [Hwang et al. 2012; Dhiman et al. 2009]. CPU resource limits are investigated
for VMs that can provide finer granularity than DVFS [Chen et al. 2013b].

In addition to single server power management, there are data center level power
management techniques, such as power budgeting and server provisioning. Power bud-
geting determines how to budget the total data center power to each server and cooling
unit [Zhan and Reda 2013; Rajamani et al. 2006]. Server provisioning determines how
many servers should be activated to serve workload at a given time, and which states
other servers should be put in. Traditional data centers seldom sleep or turn off idle
servers in order to guarantee workload QoS conservatively. Being aware of the tremen-
dous energy waste, recent studies investigate putting unused servers into power sav-
ing states, mainly the sleeping state, though most of them use simple models and hy-
pothetical server states that ignore the transition costs during state switches [Chase
et al. 2001; Meisner et al. 2009]. Recently, Gandhi et al. introduce a timeout mecha-
nism to smartly put servers into sleep in their SoftReactive policy [Gandhi et al. 2012].
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8.2. Data Center Demand Response
Data center participation in DR programs has been significantly advanced in recent
years. The opportunities and challenges of data center in both legacy and emerging DR
programs are surveyed [Wierman et al. 2014; Kirpes and Klingert 2016]. Real-time dy-
namic energy pricing [Le et al. 2016], peak shaving [Wang et al. 2012; Govindan et al.
2011] and emergency load reduction [Zhang et al. 2015; Tran et al. 2016; Islam et al.
2016] are three most popular legacy DR programs. Data centers participate in legacy
DR programs mostly through load shedding, shifting and migration [Ghamkhari and
Mohsenian-Rad 2012; Liu et al. 2014; Wang et al. 2014; Cioara et al. 2016]. Load shed-
ding reduces load by turning off servers, without any future pay back. Load shifting
temporarily turns off servers but reschedules loads to a future spot [Ghatikar et al.
2012]. Load migration shifts load geographically to other data centers [Wang et al.
2014]. Unlike load shedding and shifting, load migration causes less or even no QoS
degradation in workload servicing. Some migration strategies have been proposed, and
the environmental benefits are evaluated [Chiu et al. 2012; Hu et al. 2016; Wang et al.
2013]. Apart from load management, enabling data center DR participation with an-
cillary systems, such as ESDs [Urgaonkar et al. 2011; Wang et al. 2012; Kim et al.
2014], or PHEVs [Cui et al. 2015; Li et al. 2014] is another popular research direction.

There is a growing interest in data center participation in emerging DR programs,
i.e., capacity reserves. Aikema et al. review multiple types of ancillary service markets
for data centers to participate in, and evaluate the capability and benefit [Aikema et al.
2012]. A systematic comparison demonstrates that RSR is more suitable and profitable
for data centers than legacy DR programs and other types of capacity reserves [Chen
et al. 2014b]. A few control policies for data centers RSR provision have been pro-
posed [Chen et al. 2013b; Ghasemi-Gol et al. 2014; Aksanli and Rosing 2014; Chen
et al. 2015b]. Some work also studies the joint management of data center and em-
ployee PHEVs in RSR provision [Li et al. 2014]. However, existing studies use highly
simplified data center models for RSR provision, while none of them use practical mod-
els that consider heterogeneous workloads, different server power states, transition
costs, and workload SLAs. Moreover, none of them study the optimal power and re-
serve provisioning problem together with the design of online runtime policies.

Our earlier work proposes an online policy that regulates data center power to track
the RSR signal as accurate as possible, however, without considering any workload
QoS constraints [Chen et al. 2014a]. To the best of our knowledge, this work is the
first to address all these aspects together in data center RSR provision. We propose
practical models for workloads, servers and data centers. Our designed EnergyQARE
runtime policy and the bidding mechanism consider both signal tracking and work-
load QoS. The policy uses both signal tracking and workload QoS as feedback in de-
cision making, and leverages server-level power management, server provisioning,
power budgeting and workload control together. The bidding strategy solves the op-
timal power and reserve provisioning problem along with the runtime policy.

9. CONCLUSION AND FUTURE WORK
In this paper, we propose EnergyQARE, a novel system that enables data centers to
participate in RSR provision in practical scenarios. In EnergyQARE, a practical data
center model is first introduced, which takes heterogeneous workloads, different server
power states, and workload SLAs into account. Then, we propose an EnergyQARE
runtime policy that dynamically regulates data center power following the RSR sig-
nal, while also guaranteeing workload SLAs. The policy utilizes historical feedback on
both signal tracking error and workload QoS in decision making. It leverages not only
server power management but also server provisioning techniques. We also design an
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optimal energy and reserve bidding strategy to minimize the overall data center elec-
tricity cost. We simulate the RSR provision in multiple scenarios with different work-
load arrivals, server power states, utilization and sizes of data centers. Results show
that in a general data center scenario with 50% utilization, providing RSRs with Ener-
gyQARE offers the data center an average of 44% energy monetary savings, while also
guaranteeing tight workload SLAs. The amount of savings is not sensitive to work-
load types, but is highly correlated with the data center utilization and parameters in
server power states. The savings are scalable via sizes of data centers. In the future,
one research direction could be investigating stochastic methods to figure out optimal
solutions when the RSR signal and workload arrivals are predictable, or the statistical
information of them is available. Investigating data center RSR provision associated
with energy storage devices is another interesting direction.
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