
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

RESOURCE AND THERMAL MANAGEMENT IN

3D-STACKED MULTI-/MANY-CORE SYSTEMS

by

TIANSHENG ZHANG

B.S., Harbin Institute of Technology, 2010

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2017

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10254654

10254654

2017

c© 2017 by
TIANSHENG ZHANG
All rights reserved

Approved by

First Reader

Ayse K. Coskun, Ph.D.
Associate Professor of Electrical and Computer Engineering

Second Reader

Ajay Joshi, Ph.D.
Associate Professor of Electrical and Computer Engineering

Third Reader

Manuel Egele, Ph.D.
Assistant Professor of Electrical and Computer Engineering

Fourth Reader

Michel Kinsy, Ph.D.
Assistant Professor of Electrical and Computer Engineering

If little labour, little are our gains:
Man’s fortunes are according to his pains.

Robert Herrick

iv

Acknowledgments

First and foremost, I want to express my deepest gratitude to my PhD advisor, Prof.

Ayse K. Coskun. She has been a tremendous mentor for me. I would like to thank

her for her inspirational guidance, endless support and encouragement, as well as

her patience throughout my PhD study. I appreciate all her contributions, her time,

ideas, and funding that have made my PhD experience productive and stimulating.

Her advice on both research and my future career has been priceless.

In addition to my advisor, I am also grateful to Prof. Ajay Joshi for his valu-

able advice and feedback. Discussions with him have always been enlightening and

productive. I feel very fortunate that I have worked with him.

I would also like to thank the rest of my thesis committee, Prof. Manuel Egele

and Prof. Michel Kinsy, for their precious time and insightful comments.

I extend special thanks to Prof. Andrew B. Kahng, whose research advice and

feedback not only substantially helped improve quality of my papers, but also pro-

vided guidelines for my future career. I must acknowledge Prof. Satish Narayanasamy

for his suggestions and instructions during the heterogeneous memory management

project. I also thank Prof. Jonathan Klamkin for guiding me with his vast knowledge

on silicon-photonic technology.

I sincerely thank Prof. Yusuf Leblebici for the summer internship opportunity

at EPFL, which led to my very first publication in my PhD study. I would also

like to acknowledge Dr. Alessandro Cevrero, Dr. Giulia Beanato, and the other

Microelectronic Systems Lab members for their enormous support during my stay in

Lausanne, Switzerland.

I would like to express my appreciation to Dr. Yuan Lin and Dr. Henry Cox

for their guidance and valuable feedback during my internship at MediaTek, Inc.

Discussions with them were always inspiring and extremely helpful. I would also like

v

to thank Mr. Darrin Johnson for the summer internship opportunity at Oracle Corp.,

Santa Clara, CA.

I am grateful to my collaborators and co-authors: Prof. Jose Abellan at Catholic

University of Murcia, John Recchio, Vaishnav Srinivas, Anjun Gu at the University

of California, San Diego, Shaizeen Aga at University of Michigan, and Raphael Lan-

daverde at Microsoft, for productive collaborations and all the helpful discussions.

I am also grateful to those who made my PhD study at Boston University pleasant

and joyful, including Prof. Martin Herbordt, Prof. Peter Galvin and Ms. Cali

Stephens.

I thank the members of the PEACLab research group, the ICSG research group

and the CAAD research group. They have been great sources of friendship as well as

good advice and collaborations. I would like to especially acknowledge Dr. Jie Meng,

Dr. Chao Chen, Dr. Schuyler Eldridge, Fulya Kaplan, Onur Sahin, and Yenai Ma

for their significant help and encouragement during my time at Boston University.

Finally, I would like to thank my family for their unconditional support and un-

derstanding during my PhD career. Especially, I want to thank my fiance, Liang Li,

for her continuous love, company, and compassion. I would not have been able to

overcome the stress and difficulties without their help and support. I would like to

dedicate this dissertation to all my family.

The research that forms the basis of this dissertation has been partially funded

by NSF CAREER grant CNS-1149703.

The contents of Chapter 3 are in part reprints of the material from the papers,

Jie Meng, Tiansheng Zhang, and Ayse K. Coskun, “Dynamic Cache Pooling for

Improving Energy Efficiency in 3D Stacked Multicore Processors”, in Proceedings

of the IFIP/IEEE International Conference on Very Large Scale Integration, 2013,

and Tiansheng Zhang, Jie Meng, and Ayse K. Coskun, “Dynamic Cache Pooling in

vi

3D Multicore Processors”, in ACM Journal on Emerging Technologies in Computing

Systems, 2015.

The contents of Chapter 4 are in part reprints of the material from the papers,

Tiansheng Zhang, Alessandro Cevrero, Giulia Beanato, Panagiotis Athanasopoulos,

Ayse K. Coskun, and Yusuf Leblebici, “3D-MMC: A Modular 3D Multi-Core Architec-

ture with Efficient Resource Pooling”, in Proceedings of Design, Automation and Test

in Europe (DATE), 2013, and Tiansheng Zhang, Shaizeen Aga, Satish Narayanasamy,

and Ayse K. Coskun, “MOCA: Memory Object Classification and Allocation in Het-

erogeneous Memory Systems” (in review).

The contents of Chapter 5 are in part reprints of the material from the papers,

Tiansheng Zhang, Jose L. Abellan, Ajay Joshi, and Ayse K. Coskun, “Thermal Man-

agement of Manycore Systems with Silicon-Photonic Networks”, in Proceedings of

DATE, 2014, Jose L. Abellan, Ayse K. Coskun, Anjun Gu, Warren Jin, Ajay Joshi,

Andrew B. Kahng, Jonathan Klamkin, Cristian Morales, John Recchio, Vaishnav

Srinivas, and Tiansheng Zhang, “Adaptive Tuning of Photonic Devices in a Pho-

tonic NoC Through Dynamic Workload Allocation”, to appear in IEEE Transac-

tions on Computer Aided Design of Integrated Circuits and Systems, 2016, Chao

Chen, Tiansheng Zhang, Pietro Contu, Jonathan Klamkin, Ayse K. Coskun, and

Ajay Joshi, “Sharing and Placement of On-chip Laser Sources in Silicon-Photonic

NoCs”, in Proceedings of International Symposium on Networks-on-Chip, 2014, and

Ayse K. Coskun, Anjun Gu, Warren Jin, Ajay Joshi, Andrew B. Kahng, Jonathan

Klamkin, Yenai Ma, John Recchio, Vaishnav Srinivas, and Tiansheng Zhang, “Cross-

layer Floorplan Optimization for Silicon Photonic NoCs In Many-core Systems”, in

Proceedings of DATE, 2016.

vii

RESOURCE AND THERMAL MANAGEMENT IN

3D-STACKED MULTI-/MANY-CORE SYSTEMS

TIANSHENG ZHANG

Boston University, College of Engineering, 2017

Major Professor: Ayse K. Coskun, Ph.D.
Associate Professor of Electrical and Computer
Engineering

ABSTRACT

Continuous semiconductor technology scaling and the rapid increase in computa-

tional needs have stimulated the emergence of multi-/many-core processors. While

up to hundreds of cores can be placed on a single chip, the performance capacity of

the cores cannot be fully exploited due to high latencies of interconnects and mem-

ory, high power consumption, and low manufacturing yield in traditional (2D) chips.

3D stacking is an emerging technology that aims to overcome these limitations of

2D designs by stacking processor dies over each other and using through-silicon-vias

(TSVs) for on-chip communication, and thus, provides a large amount of on-chip re-

sources and shortens communication latency. These benefits, however, are limited by

challenges in high power densities and temperatures.

3D stacking also enables integrating heterogeneous technologies into a single chip.

One example of heterogeneous integration is building many-core systems with silicon-

photonic network-on-chip (PNoC), which reduces on-chip communication latency sig-

nificantly and provides higher bandwidth compared to electrical links. However,

silicon-photonic links are vulnerable to on-chip thermal and process variations. These

viii

variations can be countered by actively tuning the temperatures of optical devices

through micro-heaters, but at the cost of substantial power overhead.

This thesis claims that unearthing the energy efficiency potential of 3D-stacked

systems requires intelligent and application-aware resource management. Specifically,

the thesis improves energy efficiency of 3D-stacked systems via three major compo-

nents of computing systems: cache, memory, and on-chip communication. We analyze

characteristics of workloads in computation, memory usage, and communication, and

present techniques that leverage these characteristics for energy-efficient computing.

This thesis introduces 3D cache resource pooling, a cache design that allows for

flexible heterogeneity in cache configuration across a 3D-stacked system and improves

cache utilization and system energy efficiency. We also demonstrate the impact of

resource pooling on a real prototype 3D system with scratchpad memory.

At the main memory level, we claim that utilizing heterogeneous memory modules

and memory object level management significantly helps with energy efficiency. This

thesis proposes a memory management scheme at a finer granularity: memory object

level, and a page allocation policy to leverage the heterogeneity of available memory

modules and cater to the diverse memory requirements of workloads.

On the on-chip communication side, we introduce an approach to limit the power

overhead of PNoC in (3D) many-core systems through cross-layer thermal manage-

ment. Our proposed thermally-aware workload allocation policies coupled with an

adaptive thermal tuning policy minimize the required thermal tuning power for PNoC,

and in this way, help broader integration of PNoC. The thesis also introduces tech-

niques in placement and floorplanning of optical devices to reduce optical loss and,

thus, laser source power consumption.

ix

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Thesis Contribution . 6

1.3 Organization . 8

2 Background and Related Work 10

2.1 3D Stacking Technology . 10

2.2 On-Chip Resource Management . 12

2.3 Heterogeneous Memory Systems . 14

2.4 Silicon-Photonic Network-on-Chips 16

2.4.1 Silicon-Photonic Link . 17

2.4.2 Thermal Sensitivity of Silicon-Photonic Devices 18

2.4.3 Thermal Management in PNoCs 20

2.5 Distinguishing Aspects from Prior Work 22

3 Cache Resource Management in 3D Multi-core Systems 25

3.1 Overview . 25

3.2 Cache Resource Pooling in 3D Stacked Systems 28

3.2.1 Cache Resource Pooling Architecture 28

3.2.2 Cache Resource Management Policy 33

3.2.3 Experimental Methodology . 41

3.2.4 Evaluation . 44

3.3 Summary . 50

x

4 Memory Resource Management in 3D Multi-core Systems 51

4.1 Memory Access Scheduling in 3D-MMC 51

4.1.1 3D Modular Multi-core Architecture Design 52

4.1.2 Resource Pooling For Efficient Memory Access 58

4.1.3 Performance evaluation . 63

4.2 Object-Level Memory Management in Heterogeneous

Memory Systems . 66

4.2.1 Motivation . 68

4.2.2 MOCA: Memory Object Classification and Allocation 69

4.2.3 Implementation . 73

4.2.4 Experimental Results . 76

4.3 Summary . 79

5 Thermal Management of 3D Stacked Many-core Systems with PNoC 81

5.1 Many-core Systems with PNoC . 81

5.1.1 Many-core System Architecture 82

5.1.2 PNoC Design Flow . 85

5.2 Experimental Methodology . 87

5.2.1 Performance and Power Simulation 88

5.2.2 Thermal Simulation . 90

5.3 Runtime Thermal Management Through Workload Allocation 92

5.3.1 Workload Allocation Policies 92

5.3.2 Frequency Tuning Methods 97

5.3.3 Experimental Results . 101

5.3.4 Comparison with Optimal Workload Allocation 112

5.4 Design-time Power Management Through Laser Source Placement . . 113

5.4.1 Laser source power model . 114

xi

5.4.2 Laser source power, efficiency and temperature tradeoffs . . . 115

5.4.3 On-chip laser source sharing and placement strategy 118

5.4.4 Case Studies . 119

5.5 Design-time Thermal Management Through PNoC Floorplanning . . 123

5.5.1 MILP-Based PNoC Floorplan Optimization 124

5.5.2 Experimental Results and Discussion 132

5.6 Summary . 136

6 Conclusions and Future Directions 138

6.1 Summary of Major Contributions . 138

6.2 Future Research Directions . 140

6.2.1 Heterogeneous Memory Architecture in 3D Systems 140

6.2.2 Thermal/Power Management for PNoC with On-chip Laser

Sources and 2.5D Integration 142

References 144

Curriculum Vitae 156

xii

List of Tables

3.1 Core Architecture Parameters . 41

3.2 Main Memory Access Latency for the 3D CRP System 42

3.3 Benchmark classification according to memory-intensiveness and cache-

hungriness . 44

3.4 4-core system workload sets . 44

3.5 16-core system workload sets. nch, lch, mch, hch,ach represent non-

cache-hungry, low-cache-hungry, med-cache-hungry, high-cache-hungry

and all-cache-hungry, respectively. 45

4.1 Power Consumption and Thermal Properties of 3D-MMC 57

4.2 Execution time of different shared memory access scenarios when all

eight cores are active. 65

4.3 Timing and architectural parameters for various memory modules used

in this work. 75

5.1 Notations used in this work. 83

5.2 Classification of applications. 89

5.3 Properties of the materials in our target system. 91

5.4 Workload combinations. HP: High-Power; MP: Medium-Power; LP:

Low-Power. 103

5.5 Running times of jobs (Unit: ms). 103

5.6 Architectural-level parameters for three tested PNoCs. U-shaped and

W-shaped layouts are shown in Fig. 5·1. 122

xiii

5.7 Experimental configurations studied. 132

5.8 Losses in PNoCs.(Joshi et al., 2009) 133

xiv

List of Figures

1·1 40 years of microprocessor trend data (Rupp, 2015). 2

2·1 (a) An example of 3D face-to-back stacked system using TSVs. (b)

Micrograph of TSVs structure (Courtesy of LSM, EPFL). 10

2·2 A silicon photonic link. 17

2·3 Impact of resonant frequency mismatch. Case 1: Small mismatch reduces

the filtered optical power; Case 2: Large mismatch may result in a ring to

filter the data of its neighboring ring in the frequency domain. 19

3·1 IPC of SPEC CPU 2006 benchmarks for increasing L2 cache size. The

IPC values are normalized with respect to using a 256 KB L2 cache. 25

3·2 Power consumption of SPEC CPU 2006 benchmarks under cache sizes

from 256 KB to 2048 KB. 26

3·3 IPC improvement of SPEC CPU 2006 benchmarks using stacked DRAM

in comparison to off-chip DRAM. 26

3·4 L2 MPKI of SPEC CPU 2006 benchmarks under cache sizes from 256

KB to 2048 KB. 27

3·5 Proposed 3D system with cache resource pooling versus 3D systems

with fixed 1 MB caches. In (a), cores are able to access caches on the

adjacent layers through the TSVs. 29

3·6 Cache resource pooling implementation. 30

3·7 (a) The cross-section view of large 3D-CRP system; (b) An example

showing cache resource pooling within a column. 32

xv

3·8 A flow chart illustrating our runtime job allocation and cache resource

pooling policy. (*) pi represents the predicted IPC improvement for

each job when running with 4 cache partitions compared to running

with 1 partition. (**) Condition is checked only if Ji and Jj are com-

peting for the same partition. 34

3·9 The 2-stage intra-column runtime job allocation and cache resource

pooling policy. 36

3·10 The illustration of inter-column job allocation algorithm. 38

3·11 An example of job allocation in a 16-core 3D system. 39

3·12 Time overhead (µs) of cache cold start effect for all applications under

cache sizes from 256 KB to 2048 KB 40

3·13 The relationship between memory access arrival rate and memory con-

troller queuing delay. The data points from left to right represent the

memory access arrival rate of one bzip2, two instances of bzip2 and

four instances of bzip2, respectively. 43

3·14 Normalized IPC, EDP and EDAP of low-power 3D-CRP system and

the 3D baseline systems with 1 MB fixed caches, 2 MB fixed caches

and 1 MB caches with selective cache way. 46

3·15 Normalized IPC, EDP and EDAP of high-performance 3D-CRP system

and the 3D baseline systems with 1 MB fixed caches, 2 MB fixed

caches and 1 MB caches with selective cache way. 47

3·16 Normalized IPC, EDP and EDAP of 16-core low-power 3D-CRP sys-

tem and the 3D baseline systems with 1 MB fixed caches, 2 MB fixed

caches and 1 MB caches with selective cache way. ICA refers to Inter-

column job allocation. 48

xvi

4·1 Overview of the 3D-MMC built with stacking identical layers. The

figure does not show the data TSVs for clarity. 52

4·2 (a) PE internal architecture; (b) PS internal architecture. 54

4·3 (a) Clock distribution and propagation between two layers using three

redundant TSVs; (b) LayerID generation and propagation between two

layers using three redundant TSVs. 55

4·4 The figure demonstrates the peak temperatures at steady state for a

single layer as well as 2-, 4-, and 8-layered stack. On the right, we show

the thermal map of the top layer for the 2-layered stacks. Thermal

variations are similarly low (limited to a few degrees only) for 4- and

8-layered stacks. 58

4·5 Comparison of execution time of Memory Stress benchmark when all

cores access local memory, all cores access remote memory, and when

memory resource pooling is applied. 59

4·6 Performance under different workload allocation and scheduling com-

binations. (a) is the baseline, (b) has the same schedule with (a) but

has fewer remote memory accesses, while (c) has the same number of

remote memory accesses but has a different schedule. 60

4·7 Workload schedules for task level resource pooling. (a). Four threads

accessing remote shared memory at the same time–4-thread-RSM ; (b).

(1)-(3): Two threads accessing remote shared memory at the same

time–2-thread-RSM ; (c). (1)-(3): One thread accessing remote shared

memory–1-thread-RSM. 61

4·8 Test results of different memory resource pooling schedules and the

optimal schedule’s curve based on Eqn. (1). 63

4·9 Performance improvement compared to single core. 64

xvii

4·10 Memory access characteristics of memory objects for selected SPEC CPU2006

applications. The x-axis shows different memory objects in the profiled ap-

plications, and each object’s footprint is denoted on the bar (in MB). For

milc and h264ref, we only mark the objects larger than 1 MB. 67

4·11 The workflow of MOCA. The profiling stage uniquely names objects and

profiles their memory access behavior. Classification stage uses this infor-

mation to classify objects. At runtime, each memory object is allocated

pages from its best-fitting memory module based on its classification. . . . 70

4·12 An example of memory object naming convention. 70

4·13 Classification of memory objects. 71

4·14 Virtual and physical memory space separation for MOCA support in real

systems. 73

4·15 Memory access statistics (average ROB head stall cycles per L2 miss and L2

MPKI) of selected SPEC applications. The letter in each bar represents the

category of that application. L: latency-sensitive; B: bandwidth-sensitive;

P: neither (placed in low-power memory). 76

4·16 Performance of homogeneous memory systems and heterogeneous memory

systems with different page allocation algorithms. 77

4·17 System ED2P of homogeneous memory systems and heterogeneous memory

systems with different page allocation algorithms. 78

4·18 Memory ED2P of homogeneous memory systems and heterogeneous memory

systems with different page allocation algorithms. 79

xviii

5·1 Target many-core system with a PNoC (a), many-core systems with

8-ary 3-stage Clos topology and shifted physical layouts (b)-(c), and

many-core systems with different logical topology and physical layout

combinations (d)-(e). (d) is designed with 16-ary 3-stage Clos topology

and W-shape physical layout; (e) is designed with 8-ary 3-stage Clos

topology and chain-shape physical layout. 82

5·2 PNoC design flow chart. 85

5·3 Our performance (Carlson et al., 2011), power (Thoziyoor et al., 2008;

Li et al., 2009) and thermal (Skadron et al., 2003) simulation setup for

modeling many-core systems with a PNoC. 87

5·4 Thermal dependence between workload distribution and optical device

frequency control power. 91

5·5 (a) Classification of RD0 cores and (b) an example of RingAware al-

location in a 64-core system. 94

5·6 Illustration of FreqAlign workload allocation policy and adaptive fre-

quency tuning AFT policy. Every thread allocated by FreqAlign in-

creases the temperatures of ring groups and causes a downward shift

in their frequencies. When all threads are allocated, thermal tuning is

used to bring all ring groups to the lowest common resonant frequency.

Above, ring groups 1 and 3, as well as the laser source, are tuned to

match the resonant frequency of ring group 2. 99

5·7 Average resonant frequency differences when using Clustered, RingAware

and FreqAlign workload allocation policy for U-shape layout with 8-

ary 3-stage Clos topology shown in Fig. 5·1(a). Each bar represents a

workload and utilization combination case. 103

xix

5·8 Average optical tuning power when using localized tuning for Clus-

tered, RingAware and FreqAlign workload allocation policy for 8-ary

3-stage Clos topology with U-shape layout in Fig. 5·1(a). TFT : Target

Frequency Tuning; AFT : Adaptive Frequency Tuning. 104

5·9 Average resonant frequency difference when comparing RingAware and

FreqAlign workload allocation policy for U-shape layout with 8-ary

3-stage Clos topology and a wavelength variation of 400 pm/cm in

multiple directions due to process variations. The process variation

cases and tuning power reduction of FreqAlign+AFT compared to

RingAware+AFT are shown in the captions of subfigures. 106

5·9 Average resonant frequency difference when comparing RingAware and

FreqAlign workload allocation policy for U-shape layout with 8-ary

3-stage Clos topology and a wavelength variation of 400 pm/cm in

multiple directions due to process variations. The process variation

cases and tuning power reduction of FreqAlign+AFT compared to

RingAware+AFT are shown in the captions of subfigures. 107

5·10 Process variation directions considered for case study. 108

5·11 Comparison of average resonant frequency difference among ring groups

for different PNoC logical topology and physical layout combinations

between RingAware and FreqAlign. The PNoC cases and tuning power

reduction of FreqAlign+AFT compared to RingAware+AFT are shown

in captions of subfigures. 109

xx

5·11 Comparison of average resonant frequency difference among ring groups

for different PNoC logical topology and physical layout combinations

between RingAware and FreqAlign. The PNoC cases and tuning power

reduction of FreqAlign+AFT compared to RingAware+AFT are shown

in captions of subfigures. 110

5·12 Runtime optical frequency difference trace for transient case with large

temporal on-chip temperature gradients prior to applying tuning meth-

ods. 111

5·13 Floorplan of a 2× 4 system. 112

5·14 Ranking percentile of FreqAlign, RingAware and Clustered that indi-

cates the ranking of these workload allocation algorithm among all pos-

sible workload allocation solutions for ten randomly generated power

profiles (varying from 0.4 W to 2.8 W) for cores. 113

5·15 (a) P-I characteristics of a laser source, (b) WPE vs. input current,

and (c) WPE vs. laser source lengths at various temperatures. 116

5·16 Laser source temperature vs. electrical input power for a 300 µm × 50

µm laser source. 117

5·17 Wall-plug efficiency vs. optical output power by the laser source for

different granularities of sharing while a background logical layer op-

erates at 0.4 W per core (a) and 0.7 W per core (b). 117

5·18 Total laser power vs. waveguide loss for various sharing scenarios

and placements of on-chip laser sources. (a) and (b) compare various

topologies with U-shaped layout. (b) and (c) compare various layouts

for 16-ary 3-stage Clos topology. We assume each core in the logical

layer consumes a power of 0.7 W . 120

xxi

5·19 (a) Example of chip floorplan to illustrate our terminology. (b) A

vertex and its surrounding edges in the routing graph. (c) 3-stage Clos

topology with 8 router groups per stage. 126

5·20 The floorplan optimization flow. 130

5·21 Core impact matrix generation: (a) illustrative floorplan with 16 tiles

(64 cores) and nine potential router group positions; (b) sample core

impact calculation for router group (1,3); (c) sample core impact cal-

culation for router group (2,2); (d) a 1x9 core impact array generated

for the floorplan. 131

5·22 Six power profiles studied. Darker tiles indicate higher power cores. . 133

5·23 Accumulated thermal weight profile and optimal floorplan vs. Ncores. 134

5·24 Accumulated thermal weight profile and optimal floorplan vs. AR. . . 135

5·25 Accumulated thermal weight profile on the first row, and optimal floor-

plan with WPE of 5% and 15% on the second and third row respectively

for power profiles (a) - (f) in Figure 5·22. 136

6·1 Thermal maps of single chip case and 16-chiplet case with different spacings. 143

xxii

List of Abbreviations

CMOS Complementary Metal-Oxide-Semiconductor
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage-Frequency Scaling
EDAP Energy Delay Area Product
EDP Energy Delay Product
ENoC Electrical Network-on-Chip
FSR Finite Spectral Range
FWHM Full Width at Half Maximum
GPU Graphics Processing Unit
IPC Instructions Per Cycle
LLC Last Level Cache
LPDRAM Low Power DRAM
MILP Mixed-Integer Linear Programming
MPKI Misses Per Kilo Instructions
NoC Network-on-Chip
OS Operating System
P & R Place and Route
PCM Phase Change Memory
PE Processing Element
PNoC Silicon-photonic Network-on-Chip
PS Peripheral Subsystem
PTE Page Table Entry
RLDRAM Reduced Latency DRAM
ROB Reorder Buffer
SCC Single-chip Cloud Computer
SOI Silicon on Insulator
TLB Translation Lookaside Buffer
TOC Thermo-Optic Coefficient
TSVs Through-Silicon-Vias
WDM Wavelength-Division Multiplexing
WID With-In Die
WPE Wall-Plug Efficiency

xxiii

1

Chapter 1

Introduction

Continuous semiconductor technology scaling has led to a transition from single-core

to multi-core processors, and the trend is now moving towards many-core architec-

tures (Owens et al., 2007), as shown in Fig. 1·1. Using traditional (2D) chip design

methods, as the number of cores per chip grows, chip area increases, which worsens

manufacturing yield in return. In addition, the communication latency among on-

chip resources also increases along with chip area and restricts the performance of

many-core systems. 3D stacking is an emerging integration technology that has the

potential of overcoming these limitations of 2D chip design (Loh, 2008). Instead of

expanding chip size horizontally, 3D stacking utilizes the vertical dimension to inte-

grate more resources by stacking processor dies on top of each other. Since every die

is manufactured separately, yield does not decrease as the number of on-chip cores

grows. Interconnects between dies in 3D stacking are implemented using through-

silicon-vias (TSVs), which provide lower effective communication latency compared

to electrical links in 2D designs owing to the shorter length of TSVs and larger po-

tential bandwidth (i.e., as a large number of TSVs can connect stacked chips without

the pinout restrictions). One other benefit of 3D stacking is the ability of integrating

dies with heterogeneous technologies in a single chip, e.g., multi-core systems with

DRAM or many-core systems with silicon-photonic network-on-chip (PNoC). In sum-

mary, compared to 2D designs, 3D stacking allows for lower communication latency,

better yield, and higher efficiency due to integration of heterogeneous technologies.

2

100

101

102

103

104

105

106

107

1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Year

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham,
K. Olukotun, L. Hammond, and C. Batten. New plot and data collected for 2010-2015 by K. Rupp.

Figure 1·1: 40 years of microprocessor trend data (Rupp, 2015).

In tandem with the benefits above, 3D stacking also introduces challenges in on-

chip resource and thermal management. First, due to the diverse resource require-

ments of workloads, statically optimized on-chip resources may be under-utilized,

which leaves potential performance improvement on the table. Second, as a larger

number of on-chip resources are integrated vertically, the power density per footprint

of 3D-stacked systems is much higher than 2D systems, which often leads to ther-

mal violations. Last but not least, technologies such as PNoC are highly sensitive

to on-chip thermal and process variations. These variations may result in PNoC

malfunction (Mohamed et al., 2010) or high power overhead to compensate for the

variations, which limit PNoC’s wide adoption in computing systems.

This thesis claims that application-aware, cross-layer design and resource manage-

ment techniques are essential for energy-efficient 3D-stacked multi-/many-core sys-

tems. Specifically, the thesis improves the performance and energy efficiency of 3D-

stacked multi-/many-core systems by identifying workloads’ resource requirements,

constructing systems with flexible heterogeneity that is capable of catering to these

various requirements, and intelligently managing the available resources under power

and thermal constraints.

3

1.1 Problem Statement

3D stacking enables integrating more on-chip resources compared to 2D designs. At

the same time, resource management becomes even more essential, especially for

memory and communication resources, due to the increasing number of cores. 3D

stacking also allows for heterogeneous technology integration (DRAM + logic, PNoC

+ logic, etc.). Considering the complexity and heterogeneity, design of efficient archi-

tectures and resource management policies in 3D systems, especially in data access

and transmission, can make a tremendous difference in system energy efficiency.

Recent research explores performance and energy efficiency benefits of 3D-stacked

systems by considering fixed computational and memory resources (Black et al., 2006;

Loh, 2008), where a core cannot dynamically change its hardware resources. Differ-

ent types of workloads, however, exhibit different needs for hardware resources (e.g.,

cache/memory usage or computation intensity), where a fixed homogeneous architec-

ture (where each core has the same amount of resources) cannot always meet these

needs. Heterogeneous designs, such as systems with various core types or heteroge-

neous memory architecture designs, have been proposed as a solution to this challenge.

However, such systems also typically have fixed resources that are not reconfigurable

at runtime and do not provide flexibility for diverse resource requirements of applica-

tions. In addition, heterogeneous systems are more complex and expensive to design

compared to homogeneous systems.

Resource pooling, where components of a core can also be used by other cores, en-

ables “flexible heterogeneity” (i.e., each core can adjust its hardware resources flexibly)

in a multi-core processor. The flexible heterogeneity provided by resource pooling can

address various resource needs of workloads by reconfiguring resources among cores

according to the demand (Ipek et al., 2007; Ponomarev et al., 2006). However, in

conventional 2D chips, resource sharing is strongly limited by the long access latency

4

of remote resources in the horizontal dimension (Homayoun et al., 2012). Sharing re-

sources across a chip becomes particularly inefficient for a large number of cores and

large chip sizes. In 3D-stacked systems, TSVs can be used for pooling resources among

multiple layers due to its short length and low latency. A recently proposed resource

pooling design for 3D systems with homogeneous layers enables pooling performance-

critical microarchitectural components such as register files and load/store buffers

vertically (Homayoun et al., 2012). This approach demonstrates considerable energy

efficiency improvement in 3D systems using resource pooling. However, the perfor-

mance and energy efficiency potentials in pooling on-chip memory resources (e.g.,

caches or scratchpad) in 3D-stacked systems has not been studied prior to our work.

Diversity of workloads in resource requirements does not only reflect in cache us-

age, but also in main memory. There are various types of memories provided by

memory vendors optimized for latency, bandwidth, or power, targeting a wide range

of system requirements. For example, Reduced Latency DRAM (RLDRAM) is a

type of memory optimized for low latency, which makes it ideal for network switch

and router applications (MICRON, 2016). RLDRAM’s bandwidth is smaller and

power consumption is significantly higher compared to DDR3. On the other hand,

Low Power DRAM (LPDRAM) reduces power consumption substantially, but has

higher access latency and lower bandwidth (MICRON, 2013); thus, it is attractive

for power-constrained systems such as mobile platforms. However, a single memory

module cannot provide the lowest latency, highest bandwidth, and lowest power con-

sumption at the same time, making a homogeneous memory system sub-optimal in

terms of energy efficiency for serving a diverse set of applications. A heterogeneous

memory system, which contains diverse memory modules, is able to cater to a wide

range of workloads with higher energy efficiency, compared to homogeneous memory

systems (Phadke and Narayanasamy, 2011; Chatterjee et al., 2012). A major chal-

5

lenge, however, lies in how to efficiently manage the memory allocation/reallocation

among different memory modules based on workloads’ memory access patterns (Agar-

wal et al., 2015; Tran et al., 2013).

In many-core systems, the on-chip communication among cores, caches, and on-

chip memory controllers plays an important role in system performance and energy

efficiency. The ever-increasing thread-level parallelism exhibited by multi-threaded

workloads requires network-on-chip (NoC) bandwidth to increase correspondingly.

Emerging application domains (e.g., cognitive or big data applications) are expected

to require even larger network bandwidths. Thus, using electrical links to provide low

latency and large bandwidth while staying within limited power budgets is becoming

increasingly difficult. Silicon-photonic links have been proposed as potential replace-

ments for electrical links in NoC designs because they provide significantly higher

bandwidth density (Gb · s−1 · µm−1), lower global communication latency, and lower

data-dependent power (Joshi et al., 2009; Ramini et al., 2012). However, the thermal

tuning power consumption required to compensate the impact of thermal and process

variations on optical devices (such as ring resonators) and the power consumption of

laser sources restrict the wide adoption of PNoC, especially in many-core systems due

to the large chip area. For example, every ring modulator/filter resonates at a fixed

optical frequency to modulate/filter optical signals. With the presence of thermal

and process variations between a sender and a receiver, optical frequencies of these

devices may shift in different amounts and fail to match each other, leading to po-

tential data loss or errors. Research work that has been carried out in the area of

PNoC thermal management ranges from device-level techniques (DeRose et al., 2010;

Djordjevic et al., 2013) to chip floorplanning techniques (Ding et al., 2012; Coskun

et al., 2016). The most common approach is to integrate a micro-heater under each

optical transmitter (ring modulator or ring filter) and control temperatures of optical

6

devices by heating them up (DeRose et al., 2010). However, this approach is energy-

inefficient when optical frequency variation is high among optical devices or when a

system is underutilized. Thus, there is an essential need for low-power techniques

that can align optical frequencies for on-chip optical devices.

In summary, albeit the benefits of 3D stacking on integrating more on-chip re-

sources and heterogeneous technologies in a single chip, its true potential in perfor-

mance and energy efficiency remains unearthed without application-aware, cross-layer

resource and thermal management techniques.

1.2 Thesis Contribution

This thesis improves energy efficiency of 3D multi-/many-core systems through (1)

resource management techniques and (2) thermal management techniques. Our re-

search does not only show the performance and energy efficiency improvement of

providing heterogeneity in memory resources and conducting thermal management

of 3D multi-/many-core systems, but also provides a reusable cross-layer simulation

framework to enable future research. Specifically, the contributions of this the-

sis are as follows:

• We demonstrate that cache requirement varies significantly among modern

single-thread workloads. Motivated by this observation, we introduce a 3D

Cache Resource Pooling architecture (3D-CRP) (Meng et al., 2013; Zhang

et al., 2015) that requires minimal architectural modifications compared to con-

ventional (fixed) cache. We propose a novel application-aware job allocation and

cache pooling policy for efficient sharing of cache partitions across workloads.

We demonstrate that 3D-CRP achieves 19% improvement on average in sys-

tem energy efficiency (Meng et al., 2013) and show the potential performance

benefits when using 3D-stacked DRAM as well (Zhang et al., 2015).

7

• We introduce a novel low-power 3D Modular Multi-Core system (3D-MMC)

(Zhang et al., 2013), composed of homogeneous layers to augment system per-

formance with minimal design cost compared to traditional 2D design. We

propose a shared memory resource pooling technique to improve system perfor-

mance in 3D-MMC. We demonstrate that memory resource pooling brings up to

48% runtime reduction when memory is highly stressed. 3D-MMC also provides

a demonstration of SW applications running on a 3D multi-core system.

• We argue that designing a system with heterogeneous memory components has

significant potential to improve energy efficiency, and we propose a technique for

memory object classification and allocation (MOCA). MOCA creates a profile

of each object’s memory access behavior to determine which memory module is

the most suitable for this object in a given heterogeneous memory system (con-

sisting of latency-, bandwidth-, and power-optimized memory modules). We

also design a page allocation algorithm cognizant of memory object-level per-

formance profiles. MOCA improves the energy delay square product compared

to an equivalent homogeneous memory system with DDR3 modules by 17.3%

on average for memory-intensive workloads and by 19% on average compared

to application-level page allocation for workloads with memory object diversity.

• As the number of cores integrated on a chip increases, PNoC provides potential

benefits. To be able to accurately model performance, power, and temperature

of many-core systems with PNoC, we design a cross-layer modeling stack, which

considers device properties and layout in thermal simulations and temperature-

dependent laser source power (Abellan et al., 2016).

• This thesis, for the first time, introduces a thermally-aware workload allocation

method to balance temperatures of optical devices in many-core systems with

8

PNoC (i.e., a “RingAware” policy) (Zhang et al., 2014). We demonstrate

that RingAware outperforms existing thermally-aware job allocation policies in

balancing temperatures of on-chip optical devices.

• We enhance RingAware with awareness of thermal and process variations and

design FreqAlign (Abellan et al., 2016), to further minimize optical frequency

difference among optical devices. Coupled with FreqAlign, we also propose an

Adaptive Frequency Tuning policy, (AFT) (Abellan et al., 2016), to control

optical frequencies of optical devices adaptively based on their temperatures at

runtime to reduce tuning power of many-core systems with PNoC. FreqAlign

combined with AFT reduces thermal tuning power in many-core systems with

PNoC from 20 W on average to lower than 1 W .

• As design-time decisions greatly affect on-chip thermal conditions, we also in-

vestigate the impact of place-and-route (P&R) on on-chip thermal conditions,

provide on-chip laser source placement and sharing schemes under various PNoC

logical topology and physical layout combinations (Chen et al., 2014), and pro-

pose a cross-layer framework to optimize P&R solutions (Coskun et al., 2016).

1.3 Organization

The rest of this thesis starts with a review of the background and related work on

3D-stacked architectures, state-of-the-art cache/memory resource management tech-

niques, as well as thermal management approaches for PNoC in Chapter 2. Chapter 3

studies cache requirements of modern workloads. Then, we introduce the proposed

3D-CRP architecture and the corresponding workload allocation policy. In Chapter 4,

we introduce our work on memory access scheduling in 3D-MMC followed by a pro-

posed memory management technique, MOCA, for heterogeneous memory systems.

9

We present a full modeling stack of performance, power, and thermal simulations

for many-core systems with PNoC at the start of Chapter 5. Then, we introduce

the proposed runtime thermal management techniques and the design-time P & R

optimizations. Chapter 6 concludes the thesis and discusses future research directions.

10

Chapter 2

Background and Related Work

This thesis aims to improve the performance and energy efficiency of 3D-stacked sys-

tems through intelligent resource and thermal management techniques. To this end,

this chapter starts with a discussion of the state-of-the-art 3D-stacked architectures

and previous work in memory resource management in multi-core systems. Then,

we introduce the PNoC background and existing work in thermal management tech-

niques for many-core systems with PNoC. We conclude the chapter by highlighting

the novel aspects of our work compared to existing work.

2.1 3D Stacking Technology

3D stacking is a technique to stack silicon dies vertically to make them a single de-

vice. Manufacturers perform 3D die stacking in the following two major approaches:

face-to-face and face-to-back stacking (Noia and Chakrabarty, 2014). Face-to-face

On-chip
Resources

TSVs

(a) (b)

Figure 2·1: (a) An example of 3D face-to-back stacked system using
TSVs. (b) Micrograph of TSVs structure (Courtesy of LSM, EPFL).

11

approach connects the resources on two dies through micro-bumps and uses TSVs

for I/O and power supply. This approach is limited to stacking two dies together.

Face-to-back approach uses either only TSVs or TSVs + micro-bumps for the inter-

connects between dies. A TSV is a vertical electrical link that goes through a silicon

wafer. Compared to micro-bumps, TSVs have substantial higher integration density.

Figure 2·1 shows an example of a 3D system based on face-to-back stacking approach

and TSV connections in (a) and a micrograph of TSV structures in (b). 3D stacking

enables integrating a larger amount of on-chip resources compared to traditional 2D

IC design and integration of dies with different technologies, which provides increased

efficiency by limiting/avoiding off-chip communication.

3D system architectures can be broadly classified into two categories: logic + logic

systems and logic + other systems. The former includes heterogeneous die stacking

and homogeneous die stacking. Heterogeneous die stacking involves splitting a planar

design’s logic area into two or more layers (e.g., the 3D version of an Intel Pentium 4

family processor (Garrou et al., 2008)), and vertically stacking additional blocks (e.g.,

more caches, reservation station, etc.) to target different market segments (Loh, 2008)

to improve processor performance. The latter generally refers to stacked systems that

include other technologies over the logic die. For example, stacked DRAM on the logic

die provides shorter memory access latency and higher bandwidth compared to off-

chip DRAM chips (Garrou et al., 2008). Other examples in this category, utilizing

GlobalFoundries’ 130 nm process and Tezzaron’s FaStack technology, respectively,

are 3D-MAPS (Kim et al., 2012), where the logic die consists of 64 cores operating at

277 MHz and the stacked memory die contains 256KB SRAM, and Centip3De (Fick

et al., 2012), a configurable near-threshold 3D-stacked system with 64 ARM Cortex-

M3 cores. In this thesis, we investigate the resource/thermal management techniques

for 3D systems to improve their performance and energy efficiency.

12

2.2 On-Chip Resource Management

Although 3D stacking allows integration of more on-chip resources, it does not auto-

matically bring more efficient computing compared to 2D designs. Workloads usually

have very diverse needs for chip resources. If the extra resources are only private

(e.g., private cache), the resources might be under-utilized for most of the time. An

architecture that can support sharing resources among dies together with a manage-

ment policy to decide the resources allocation among dies are essential to unveil the

real performance and energy efficiency potential in 3D-stacked systems. In this sec-

tion, we give an introduction on on-chip memory resource management in 2D and 3D

systems and discuss relevant work on management of other microarchitectural units.

Resource Pooling

Resource pooling is a design technique that allows for components of a core to

be shared with other cores, which enables flexible heterogeneity (each core can adjust

its hardware resources flexibly) in a multi-core processor. Prior work on resource

pooling has mainly focused on 2D multi-core systems. Ipek et al. propose a re-

configurable architecture to combine the resources of simple cores into more powerful

processors (Ipek et al., 2007). Ponomarev et al. introduce a technique to dynamically

adjust the sizes of the performance-critical microarchitectural components, such as

reorder buffer or instruction queue (Ponomarev et al., 2006). However, as the number

of on-chip cores increases, the long access latency among resources on 2D chips makes

it difficult to get fast response from the pooled resources. In 3D systems, stacking the

layers vertically and using TSVs for connection enable short access latency among on-

chip resources. Homayoun et al. are the first to explore microarchitectural resource

pooling in 3D-stacked processors for sharing resources at a fine granularity (Homay-

oun et al., 2012). As memory is also a performance-critical component in computer

systems, an architecture with memory resource pooling in 3D system can bring sub-

13

stantial performance improvements to the system. However, none of the prior work

investigates cache or memory resource pooling in 3D systems.

Cache Partitioning and Reconfiguration

Cache resources are important to a processor’s performance, thus, cache sharing

and partitioning have been well studied in 2D multi-core systems. For example, a

cache architecture named molecular caches is proposed to create dynamic heteroge-

neous cache regions (Varadarajan et al., 2006). One other technique partitions caches

between multiple applications based on their cache miss rate during runtime (Qureshi

and Patt, 2006). Chiou et al. propose a dynamic cache partitioning method though

fine-grain control of cache placement policy (Chiou et al., 2000). However, the ben-

efits of cache sharing in 2D systems are highly limited by the on-chip interconnect

latency, and sharing the L2 cache among multiple cores is significantly less attractive

when the interconnect overheads are taken into account (Kumar et al., 2005).

Cache design and management in 3D-stacked systems have been investigated re-

cently. Sun et al. explore the energy efficiency benefits of 3D-stacked MRAM L2

caches (Sun et al., 2009). Prior work on 3D caches and memories either considers

integrating heterogeneous SRAM or DRAM layers into 3D architectures (e.g., (Meng

et al., 2012; Jung et al., 2011)), or involves major modifications to conventional cache

design (e.g., (Sun et al., 2009)). Compared to such heterogeneous 3D systems, a 3D

system with homogeneous layers and resource pooling features is more scalable to a

larger number of cores and a wider range of workloads (Zhang et al., 2015).

Runtime Management of Multi-core Systems

To manage on-chip resources for improved performance and energy efficiency, an

intelligent runtime policy is required. Recent research on runtime policies in 2D

systems generally focuses on improving performance and reducing the communication,

power, or cooling cost through job allocation. For example, Snavely et al. present

14

a mechanism that allows the scheduler to exploit the workload characteristics for

improving processor performance (Snavely and Tullsen, 2000). Das et al. propose an

application-to-core mapping algorithm to maximize system performance (Das et al.,

2012). Bogdan et al. propose a novel dynamic power management approach based

on the dynamics of queue utilizations and fractional differential equations to avoid

inefficient communication and high power density in NoC (Bogdan et al., 2012).

Dynamic job allocation in 3D systems mostly addresses power and thermal chal-

lenges induced by vertical stacking. For example, dynamic thermally-aware job

scheduling techniques use thermal history of cores to balance the temperature and

reduce hot spots (Coskun et al., 2009a; Zhu et al., 2008). Zhou et al. propose an

OS-level workload scheduling algorithm for optimizing 3D system temperature (Zhou

et al., 2008). Another technique is proposed to dynamically adapt core resources

based on application needs and thermal behavior to boost performance while main-

taining thermal safety (Hameed et al., 2011). However, such methods do not perform

a detailed performance analysis of workloads or investigate flexible heterogeneity in

memory resources, and thus, leave potential energy efficiency unclaimed.

2.3 Heterogeneous Memory Systems

3D stacking enables on-chip DRAM for short access latency and high bandwidth.

However, the capacity of stacked DRAM die is highly restricted by the area of logic die,

which limits the performance of applications with large input work sets. Using off-chip

memory together with on-chip memory to construct heterogeneous memory systems

can effectively counter such issues. However, data allocation within heterogeneous

memory systems needs to be carefully managed to improve performance.

There has been extensive study in heterogeneous memory system architecture and

management. We first discuss prior work that exploits heterogeneity in DRAM to

15

construct a heterogeneous memory system. We then discuss other methods that use

on-chip scratchpad memory, 3D-stacked DRAM or phase change memory (PCM) to

construct heterogeneous memory systems.

Exploiting Heterogeneity in DRAM

Phadke et al. (Phadke and Narayanasamy, 2011) employ latency, bandwidth, and

power optimized memory modules and choose a single optimal memory module for an

application based on offline profiling. As shown in Section 5.5.2, their method leaves

substantial performance and energy savings at the table. Chatterjee et al. (Chatterjee

et al., 2012) place critical words in a cache line in latency-optimized memory module

and rest of the cache line in power-optimized modules. For a heterogeneous system

comprising of bandwidth optimized and capacity optimized memories, Agarwal et al.

(Agarwal et al., 2015) propose a page placement policy, which places highly accessed

pages in bandwidth-optimized memory. This is efficient for graphics processing unit

(GPU) programs, which hide memory latency well.

Heterogeneous Memory Architecture

Prior work constructs a heterogeneous memory system comprising of either on-

chip scratchpad memory (Shen et al., 2016; Peón-quirós et al., 2015) or 3D-stacked

memory (Meswani et al., 2015; Tran et al., 2013; Dong et al., 2010b; Lee et al., 2013)

or non-volatile memory such as PCM (Dulloor et al., 2016; Pavlovic et al., 2013)

and traditional DRAM. Many of these employ page-level policies to utilize the lowest

latency memory module available in the system optimally. To do so, they either track

frequently accessed pages and move them to this module (Meswani et al., 2015; Dong

et al., 2010b; Lee et al., 2013; Pavlovic et al., 2013) or control the amount of memory

mapped to such a module based on bandwidth utilization (Tran et al., 2013).

Several prior approaches employ an application profile based scheme to guide data

placement. Shen et al. (Shen et al., 2016) use PIN-based (Luk et al., 2005) profiling

16

to track array allocations to place frequently accessed and low-locality arrays in on-

chip scratchpad. They also decompose larger arrays into smaller chunks for fine grain

data placement. Dulloor et al. (Dulloor et al., 2016) profile memory access patterns

of data structures as either sequential, random, or involving pointer chasing. Data

structures exhibiting latency-sensitive patterns like pointer chasing are then placed

in DRAM and the rest are placed in PCM. Peon-Quiros et al. (Peón-quirós et al.,

2015) profile dynamically allocated data structures for embedded system applications.

They track frequency of access per byte and changing memory footprint over time of

these structures to place them in either on-chip SRAM or off-chip DRAM modules.

While future memory systems will employ such varied forms of memory tech-

nologies as envisioned in these prior works, our work aims to highlight the benefits

of utilizing the heterogeneity in DRAM modules and managing workloads’ data in

memory object level.

2.4 Silicon-Photonic Network-on-Chips

As the number of cores per chip increases and there is higher parallelism in emerging

workloads (especially in emerging cognitive or big data applications), the requirement

for on-chip network bandwidth also raises. Silicon photonics is a promising technol-

ogy to support this increasing demand for high-bandwidth and energy-efficient on-

chip communication in future many-core systems. Compared to an Electrical NoC

(ENoC), a PNoC tends to have higher bandwidth density with lower data-dependent

power dissipation. Thus, designing an energy-efficient PNoC has been widely ex-

plored (Shacham et al., 2007; Joshi et al., 2009; Pan et al., 2009; Vantrease et al.,

2008; Cianchetti et al., 2009; Kirman et al., 2006; Ramini et al., 2012). We provide

the relevant background of PNoC and the challenges in its adoption in this section.

17

Laser
Source

Coupler

Waveguide

Driver Amplifier

Photodetector

Ring
Filter

Ring
Modulatorλ1 λ1

1

2

3

4

5 6

7
8

Figure 2·2: A silicon photonic link.

2.4.1 Silicon-Photonic Link

A PNoC is composed of silicon-photonic links, each of which contains the following

devices: (1) a laser source that emits optical waves, (2) a coupler that couples optical

waves from the laser source to a waveguide, (3) a waveguide that carries optical waves,

(4) a driver that receives electrical signals from the circuit side, (5) a ring modulator

that modulates optical waves at the transmitter side based on the electrical signals

of the driver, (6) a ring filter that filters optical waves at the receiver side, (7) a

photodetector that converts optical signals into electrical signals, and (8) an amplifier

that amplifies electrical signals, as shown in Fig. 2·2. To transmit data without errors

or loss, the ring modulator and filter must resonate at the same frequency as the

optical frequency of the corresponding laser source.

There are two major factors that affect the optical frequencies of silicon-photonic

devices and can lead to optical frequency mismatch: with-in-die (WID) process vari-

ations and thermal variations. The WID process variations means that due to the

manufacturing process limitations, the actual physical dimensions of silicon-photonic

devices (e.g., height, width, or radius) may differ from the designed values. Such

variations depend on the quality of manufacturing process and the locations of these

devices on a wafer. The mismatch in physical dimensions of silicon-photonic devices

caused by such variations results in a mismatch between the designed and the actual

18

optical frequencies of these devices. Since silicon-photonic devices are spread across

the whole chip for a system with a PNoC, they may have different amounts of pro-

cess variations, which causes optical frequency mismatch. Such process variations are

measurable after the chip manufacture and their impact can be compensated through

thermal management. Thermal variations have significant impact on optical frequen-

cies of silicon-photonic devices such as ring resonators, due to the thermo-optic effect

(thermal modulation of the refractive index of a material). We explain the details of

the thermal sensitivity of silicon-photonic devices in the next subsection.

2.4.2 Thermal Sensitivity of Silicon-Photonic Devices

The refractive index of a material changes as its temperature changes, which is known

as thermo-optic effect. Optical devices manufactured using silicon are extremely sen-

sitive to thermal changes because silicon possesses a relatively large thermo-optic coef-

ficient (the refractive index changes significantly under a given temperature change).

For example, the ring resonators for PNoC are commonly designed around a cen-

ter wavelength (λ0) of 1550 nm, and they have a thermal sensitivity (∆λR) of 78

pm/K (Orcutt et al., 2012). This translates to a 9.7 GHz frequency shift per degree

(∆fR), based on the following equations:

F0 =
c

λ0
= 193 THz, (2.1)

∆λR
λ0

=
∆fR
F0

(2.2)

Thus, for every degree of temperature difference between a ring modulator and a ring

filter in a silicon-photonic link, there is a resonant frequency mismatch of 9.7 GHz.

The impact of thermal variations among silicon-photonic devices, depends on the

corresponding resonant frequency difference as well as the frequency spacing between

two adjacent wavelengths in a waveguide. In PNoC, every waveguide is multiplexed

19

f0 fnλ-1

Free Spectal Range (FSR)

FWHM

'f0f1 f2

Ring
Modulator
Side

Ring
Filter
Side

Case 1 Case 2

ΔF1 ΔF2

Figure 2·3: Impact of resonant frequency mismatch. Case 1: Small mis-
match reduces the filtered optical power; Case 2: Large mismatch may result
in a ring to filter the data of its neighboring ring in the frequency domain.

by a number of optical waves in different wavelengths, i.e., wavelength-division mul-

tiplexing (WDM). The spacing between adjacent wavelengths in each waveguide de-

pends on the free spectral range (FSR) of a ring resonator design and the number of

wavelengths multiplexed onto this waveguide (nλ), as shown below:

FSR =
c

2πrng
(2.3)

Fspacing =
FSR

nλ
(2.4)

where ng is the group index, c is the speed of light, and Fspacing is the spacing in

resonant frequency for two adjacent wavelengths in a waveguide. The impact of

resonant frequency mismatch is shown in Fig. 2·3, where FWHM represents full

width at half maximum. When the mismatch is small, a ring filter receives only

a portion of the signal power, resulting in less current from the photodetector and

causing data loss (Case 1). As the mismatch increases, a ring filter may even filter

the optical waves corresponding to its neighboring resonant frequency (Case 2).

The laser sources are also sensitive to temperature variations (Kimoto et al., 2003).

There are two major ways of integrating laser sources with the chip package: off-

20

chip integration and on-chip integration (Heck and Bowers, 2014). For off-chip laser

sources, their temperatures are typically controlled to guarantee the frequencies of

emitted optical waves, or a frequency locking circuit is employed. The operation of

these off-chip laser sources is agnostic to on-chip temperatures. On the other hand,

on-chip laser sources’ temperatures are affected by chip thermal conditions due to

their close proximity to the computational components. Thus, for a PNoC with on-

chip laser sources, one must control the optical frequencies of both ring resonators

and laser sources for reliable silicon-photonic link operation.

2.4.3 Thermal Management in PNoCs

To counter the impacts of WID process and thermal variations, there have been

techniques proposed from device level to system design and management level, most

of which utilizes thermo-optic effect.

At the device level, there are two common ways to protect the silicon-photonic

devices from temperature variations: (1) actively control the temperatures of these

devices; (2) choose/design silicon-photonic devices that are less thermally-sensitive.

Active temperature control (or localized thermal tuning) is carried out by integrat-

ing micro-heaters with silicon-photonic devices (DeRose et al., 2010). During PNoC

operation, the micro-heaters can heat up each silicon-photonic device to a fixed tem-

perature, which usually is the maximum temperature allowed for on-chip logic compo-

nents. Process variations can be measured after chip manufacture and their impact on

optical frequency can be countered using thermo-optic effect by heating up ring res-

onators with optical frequency shift. As for the athermalization techniques, one can ei-

ther clad silicon with materials with negative thermo-optic coefficient (TOC) (Djord-

jevic et al., 2013) or couple the silicon-photonic devices with other athermal devices

such as Mach-Zehnder interferometers (MZI) (Guha et al., 2010). Generally speak-

ing, active thermal control techniques are easier to implement, are able to provide

21

flexibility in runtime thermal management, and are more mature. However, it is

very energy-inefficient when the optical frequency difference among silicon-photonic

devices is high. On the other hand, passive techniques that make silicon-photonic

devices athermal do not require extra energy for thermal management, however, they

are usually not compatible with traditional CMOS manufacturing process and may

not correct for process variations. Thus, using micro-heaters is a more common way

for PNoC thermal management.

One of the main challenges of designing an energy-efficient PNoC is the large

thermal tuning power overhead, which negatively affects the system energy efficiency.

There has been extensive research conducted on chip design techniques for preemptive

PNoC thermal management. One approach (Nitta et al., 2011) integrates redundant

ring resonators in order to provide higher tolerable temperature gradients among ring

modulators and filters within a given thermal tuning budget. In this technique, a ring

group is defined as a collection of co-located ring resonators used to implement a com-

munication interface. Usually, every ring modulator has only one associated ring filter

in a silicon-photonic link and they are in different ring groups. If there is a tempera-

ture gradient between these two ring groups, optical signals are either lost or filtered

by neighboring ring filters. Adding extra ring filters creates a sliding ring window,

which takes advantages of the fact that the resonant frequencies of ring resonators

in one ring group shift the same amount during temperature changes and allowing

the optical signals to be all filtered out by the neighboring ring filters. Another chip

design thermally decouples the processor die from the photonics die by inserting an

insulator layer in between to make active thermal tuning more efficient (Demir and

Hardavellas, 2015). This design assumes that each ring resonator is only integrated

with a micro heater (without a temperature sensor) and all the ring resonators work

at a fixed temperature (90 oC) using localized thermal tuning. Normally, the ther-

22

mal tuning power is mostly wasted as it dissipates through the processor stack and

also heats up the processor die. To prevent such power waste, this design adds an

insulator layer between the processor die and the photonics die, which keeps the

temperatures for silicon-photonic devices more stable and minimizes the spatial and

temporal thermal coupling between logic components and silicon-photonic devices.

As for the runtime PNoC thermal management techniques, one method, named

Aurora (Li et al., 2015b), leverages localized tuning and workload allocation tech-

niques and embodies a cross-layer approach at the device, architecture and OS levels.

At the device level, Aurora controls small temperature variations by applying a bias

current through the ring resonators (Manipatruni et al., 2008). For larger tempera-

ture changes, packets are rerouted away from hot regions, and dynamic voltage and

frequency scaling (DVFS) reduces temperature of hot areas. At the OS level, a job

allocation policy prioritizes jobs to the outer cores of the chip. Since workload alloca-

tion decides the power profiles of systems, it directly impact the thermal conditions

of silicon-photonic devices. However, there has not been research focusing PNoC

thermal management through workload allocation techniques until our work.

2.5 Distinguishing Aspects from Prior Work

The novel aspects of our work compared to the existing research are as follows:

Our 3D-CRP work (Meng et al., 2013; Zhang et al., 2015) in Chapter 3 is the first

to propose a cache resource pooling architecture complemented with a novel dynamic

job allocation and cache pooling policy in 3D multi-core systems, which requires min-

imal hardware modifications. Our dynamic job allocation and cache pooling policy

differentiates itself from prior work as it partitions the available cache resources from

adjacent layers in the 3D-stacked system in an application-aware manner and utilizes

the existing cache resources to the maximum extent. We also evaluate the perfor-

23

mance, energy efficiency, and thermal behavior of multi-core 3D systems with and

without DRAM stacking. In addition, our work improves the performance model

of the 3D system with stacked DRAM by introducing a detailed, accurate memory

access latency model for on-chip memory controllers.

Our 3D-MMC work (Zhang et al., 2013) in Chapter 3 introduces both the hard-

ware architecture and software implementation for a novel low-power 3D system. We

focus on exploiting resource pooling at fine granularity and provide a practical im-

plementation. We apply homogeneous stacking, which results in lower wafer and 3D

bonding costs compared to heterogeneous partitioning.

MOCA (Zhang et al., 2017) in Chapter 4 is our proposed technique to name

and allocate the memory objects instantiated during workload execution for better

performance and energy efficiency. MOCA creates a detailed profile of each object’s

memory access behavior so as to determine which memory module is the most suitable

for this object in a given heterogeneous memory system. We design a page allocation

algorithm cognizant of the memory module best suited for an object to improve

system energy efficiency.

Our runtime thermal management of 3D many-core systems with PNoC (Zhang

et al., 2014; Abellan et al., 2016) in Chapter 5, for the first time, addresses matching

the optical frequencies of both ring resonators and on-chip laser sources, at a low

power cost. In our work, we propose a workload allocation policy that considers both

on-chip thermal and process variations coupled with a thermal tuning policy that sets

target frequency for silicon-photonic devices adaptively based on system’s thermal

condition. Our management policies require much lower thermal tuning power for

system, and they are effective also in presence of process variations.

Our laser source sharing and placement methodology (Chen et al., 2014) and cross-

layer floorplan optimizer (Coskun et al., 2016) for 3D many-core systems with PNoC

24

in Chapter 5 simultaneously consider NoC bandwidth constraints, thermal constraints

and physical layout constraints to determine on-chip silicon-photonic devices’ P & R

solution to reduce PNoC power consumption.

25

Chapter 3

Cache Resource Management in 3D

Multi-core Systems

3.1 Overview

Modern processors get significant performance improvement from caches. It is ex-

pected that CPU performance generally increases along with larger cache sizes. How-

ever, larger caches consume higher power, and bring varying performance improve-

ments for different applications due to their varying cache usage. Thus, depending

on the applications, the optimal cache size to achieve the best energy efficiency may

differ. In this work, we use energy-delay-product (EDP) to represent the energy effi-

ciency. In homogeneous 3D-stacked systems, each core on each layer has a fixed size

private last-level cache (LLC), which potentially restrains the system’s performance

and energy efficiency. In this section, we investigate the impact of LLC cache (L2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

astar
bwaves

bzip2
calculix

cactusADM
gamess gcc

gobmk
gromacs

h264ref
hmmer lbm

leslie3d

libquantum mcf milc namd
omnetpp

soplex

N
or

m
al

iz
ed

 IP
C

 to
 2

56
K

B
 C

ac
he

 S
iz

e

no L2 512KB 768KB 1024KB 1280KB 1536KB 1792KB 2048KB

Figure 3·1: IPC of SPEC CPU 2006 benchmarks for increasing L2
cache size. The IPC values are normalized with respect to using a
256 KB L2 cache.

26

1.4

1.7

2

2.3

2.6

2.9

3.2

3.5

astar
bwaves

bzip2
calculix

cactusADM
gamess gcc

gobmk
gromacs

h264ref
hmmer lbm

leslie3d

libquantum mcf milc namd
omnetpp

soplex

P
ow

er
 C

on
su

m
pt

io
n

(W
)

256KB 512KB 768KB 1024KB 1280KB 1536KB 1792KB 2048KB

Figure 3·2: Power consumption of SPEC CPU 2006 benchmarks un-
der cache sizes from 256 KB to 2048 KB.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

astar
bwaves

bzip2
calculix

cactusADM
gamess gcc

gobmk
gromacs

h264ref
hmmer lbm

leslie3d

libquantum mcf milc namd
omnetpp

soplex

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t w

/ S
ta

ck
ed

 D
R

A
M

256KB 512KB 768KB 1024KB 1280KB 1536KB 1792KB 2048KB

Figure 3·3: IPC improvement of SPEC CPU 2006 benchmarks using
stacked DRAM in comparison to off-chip DRAM.

cache, in our target systems) sizes on performance and energy efficiency of various

applications. Although we focus on L2 cache in this work, our proposed technique

can also be applied to the other levels of caches in the multi-core systems.

To quantify the impact of L2 cache, we simulate a single core with varying L2 cache

sizes (from 0 KB to 2048 KB with a step of 256 KB) and compare the performance

and power consumption of the applications in SPEC CPU 2006 benchmark suite.

We use Gem5 (Binkert et al., 2011) for performance simulation, McPAT (Li et al.,

2009) and CACTI 5.3 (Thoziyoor et al., 2008) for core and cache power consumption,

respectively (details of our simulation methodology are presented in Section 3.2.3).

Figure 3·1 shows the normalized IPC of all applications under different L2 cache

sizes. As shown in Fig. 3·1, among all applications, soplex, omnetpp, and bzip2 have

27

0
5

10
15
20
25
30
35
40
45
50
55
60

astar
bwaves

bzip2
calculix

cactusADM
gamess gcc

gobmk
gromacs

h264ref
hmmer lbm

leslie3d

libquantum mcf milc namd
omnetpp

soplex

L2
 C

ac
he

 M
is

s
pe

r
C

yc
le

256KB 512KB 768KB 1024KB 1280KB 1536KB 1792KB 2048KB

Figure 3·4: L2 MPKI of SPEC CPU 2006 benchmarks under cache
sizes from 256 KB to 2048 KB.

significant performance improvement at large L2 cache sizes of up to 1.8x. We call

such applications cache-hungry applications. On the other hand, applications such

as bwaves barely benefit from an L2 cache larger than 256 KB. Figure 3·2 shows the

core + cache power consumption for all applications under different L2 cache sizes.

As shown in the figure, the power consumption increases with L2 cache size in general.

Figure 3·1 and Fig. 3·2 indicate that while some applications’ EDP values strongly

benefit from large caches, others have marginal or no benefits. Such variances of IPC

and power motivates tuning L2 cache size to optimize system EDP. Thus, we propose

a homogeneous 3D architecture that enables vertical cache resource pooling (CRP).

In addition to the requirement of LLC size, the memory access behavior also differs

among applications; thus, memory system architecture is also affecting performance

and energy efficiency. Owing to the small area cost of TSVs, on-chip 3D-stacked

DRAM can have higher bandwidth and more parallelism in memory access, which

leads to a lower average queuing latency in memory controllers and higher system

performance (Loh, 2009). Figure 3·3 shows the performance improvement of on-

chip stacked memory over off-chip memory and Fig. 3·4 shows the L2 miss per kilo-

instruction (MPKI) of the applications under different L2 cache sizes with off-chip

memory. These results demonstrate that there is a strong correlation between per-

formance improvement of using on-chip memory and the L2 MPKI of an application.

28

Applications such as astar, calculix, and hmmer do not show obvious performance

improvement on a system with on-chip DRAM (compared to the same system with

off-chip DRAM) memory while some other applications’ performance is significantly

improved (e.g., bwaves, gcc, libquantum). As for bzip2, omnetpp, and soplex, they

benefit more from stacked memory when they have a small amount of cache resources.

This is because memory access rate directly affects the queuing delay in memory con-

trollers. If all cores attached to a memory controller have high memory access rates,

the memory controller queuing delay increases dramatically. Therefore, in systems

with stacked memory, we also need to consider the memory access intensity for each

memory controller when allocating workloads.

3.2 Cache Resource Pooling in 3D Stacked Systems

3.2.1 Cache Resource Pooling Architecture

In this section, we describe the proposed CRP architecture (Meng et al., 2013; Zhang

et al., 2015). The CRP architecture is demonstrated using a four-layer 3D system

that has one core with a private 1 MB L2 cache on each layer. The vertically

adjacent caches are connected via TSVs for cache pooling, as shown in Fig. 3·5 (a).

On-chip communication is performed through shared memory. Thus, all L2 caches

are connected to a shared memory controller. Figure 3·5 (b) shows an example of

the differences in cache resource allocation between the systems with fixed L2 caches

and CRP. In this example, applications 1 and 3 require larger caches than the other

two applications, and thus, acquire extra cache resources from their adjacent layers

in the proposed CRP architecture. In contrast, in a system with fixed L2 caches, an

application can only work with a fixed amount of cache.

29

Layer1

Layer2

Layer3

Layer4

256KB

Core

L2 Cache

TSVs

App1

App2

App3

App4

App1

App2

App3

App4

App1's L2 Cache

App2's L2 Cache

App3's L2 Cache

App4's L2 Cache

(a) 1MB Cache Pooling (b) Cache resource allocation using static cache and CRP

Static 1MB cache CRP w/ 1MB cachevs.

Figure 3·5: Proposed 3D system with cache resource pooling versus
3D systems with fixed 1 MB caches. In (a), cores are able to access
caches on the adjacent layers through the TSVs.

3D-CRP Design Overview

Enabling cache resource pooling in 3D systems requires some modifications to the

conventional cache architecture. The modified cache architecture allows cores in the

homogeneous 3D-stacked system to increase their private L2 cache sizes by pooling

the cache resources from the other layers at negligible access latency penalty. The

objective of our design is to improve the system energy efficiency, which can be divided

into two aspects: (1) to improve the performance by increasing cache size for cache-

hungry applications, and (2) to save power by turning off unused cache partitions

for non-cache-hungry applications. We focus on pooling L2 caches because L2 cache

usage varies significantly across applications as shown in Section 3.1. It is possible to

extend the strategy to other levels of caches.

Cache size is determined by cache line size, number of sets, and level of associa-

tivity. We adjust cache size by changing the cache associativity with the other two

parameters fixed. We base our architecture on the selective way cache architecture

proposed in prior work (Albonesi, 1999), which aims at turning off unnecessary cache

ways for saving power in 2D systems. We call each cache way a cache partition in our

design. Each partition is independently poolable to one of its adjacent layers. In order

to maintain scalability of the design and provide equivalent access time to different

30

data_sel

LCSR_0

LCSR_1

LCSR_2

LCSR_3

out_location

cache

cntrl

L2_req

cache

cntrl

LCSR_0

LCSR_1

LCSR_2

LCSR_3

Partition_0

local_layerL2_req

RCSR_0

RCSR_1

upper_layer

lower_layer

lower_layer

local_layer

upper_layer

local_hit

sel_way

remote_hit

RCSR

out_location

data_sel

Cache

Used by local layer

Used by upper layer

Used by lower layer

00

01

10

11

Turned off

LCSR Cache Partition Status

Partition_1

Partition_2

Partition_3

(a) Cache partition management implementation

(b) L2 request generation

(c) Output location generation

(d) Local cache status

Figure 3·6: Cache resource pooling implementation.

partitions, we do not allow cores in non-adjacent layers to share cache resources. We

also do not allow a core to pool cache partitions from both upper and lower layers

at the same time to limit the design complexity. In fact, we observe that for most of

the applications in our experiments pooling cache resources from two adjacent layers

at the same time would not bring considerable performance improvement.

3D Cache Partition Management Implementation

To implement cache resource pooling in 3D systems, we introduce additional hardware

components to the conventional cache architecture. As shown in Fig. 3·6, we make

modifications to both cache status registers and cache control logic.

In 3D-CRP, the cores need to access cache partitions from both the local layer and

remote layers. First, we add a Local Cache Status Register (LCSR) for each local

L2 cache partition (e.g., there are four partitions in a 1 MB cache in our design)

to record the status of local cache partitions. There are four possible statuses for

each local cache partition: used by local layer, used by upper layer, used by lower

layer, and turned off. Each LCSR keeps two bits to indicate the current status of the

corresponding partition as listed in Fig. 3·6 (d). The status of local cache partitions

is used for deciding the destination of the output data and hit signals. Second, we

introduce Remote Cache Status Registers (RCSR) for the L1 cache so that L1 cache is

31

aware of its remote L2 cache partitions when sending L2 access requests. We maintain

two 1-bit RCSRs in L1 caches for each core. If both RCSRs of an L1 cache are set

to 0, there is no remote cache partition in use. In contrast, an RCSR bit is set to 1

if the core is using cache partitions from the corresponding adjacent layer. RCSR 0

and RCSR 1 denote the upper layer and the lower layer, respectively. The values of

these registers are set by the runtime management policy in Section 3.2.2.

Through LCSRs and RCSRs, the cores are able to communicate with cache par-

titions from multiple layers. When there is an L1 miss, the core sends a request and

the requested address based on RCSRs, as shown in Fig. 3·6 (b). Once the requests

and addresses arrive at the cache controller, the tag from the requested address is

compared with the tag array. At the same time, the entries of each way are chosen

according to the index. The destinations of data and hit signals are determined by

LCSR of the corresponding cache partition after a cache hit. We add a multiplexer

to select the destination, as shown in Fig. 3·6 (c). When there is an L2 cache hit, the

hit signal is sent back to the cache at the destination based on LCSR. When both

the local hit signal and the remote hit signal are 0, thus indicates an L2 miss.

As the cache partitions can be dynamically re-assigned by the runtime policy, we

need to maintain the data integrity of all the caches. In case of a cache partition

re-allocation (e.g., a partition servicing a remote layer is selected to service the local

core), we write back all the dirty blocks from a cache way before it is re-allocated.

When a cache line is invalidated, both LCSRs and RCSRs are reset to 0 to disable

the access from remote layers.

Larger 3D-CRP Systems with On-Chip DRAM

We name all the cores vertically stacked in the 3D architecture as a column. In the

single-column system, we use off-chip DRAM because the chip area is not sufficiently

large to include a reasonable DRAM size such as 1 GB. For a larger system with more

32

Connection

Memory

L2 cache

Core Heat sink

Heat

TIM

TSVs
Stacked

spreader

(a) (b)

core

core

core

core

core

core

core

core
cache

partitions

App 1

App 2

b/w layers

controller

DRAM

Figure 3·7: (a) The cross-section view of large 3D-CRP system; (b)
An example showing cache resource pooling within a column.

cores organized in columns, the memory access rate increases as the number of cores

increases, which results in longer memory access latency. When multiple memory

controllers are used with stacked DRAM, it helps reduce the average memory access

latency for larger 3D systems. Figure 3·7 shows the cross-section of a 16-core 3D-CRP

system and an example of cache resource pooling within a column, respectively in (a)

and (b). Stacked DRAM layers are located at the bottom of the 3D-CRP system and

there are four memory controllers on the bottom logic layer, one for each column.

However, the workloads of each column may have a different memory access rate,

which results different memory access latencies. The column with workloads that

all have a high memory access rate suffers from long memory access latency while

the column with non-memory-intensive workloads does not. Therefore, a policy to

monitor and adjust the job allocation in the aspect of memory accesses is necessary for

such designs. Through job allocation, we balance the memory access intensity among

columns to decrease the average memory access latency and improve the performance.

Implementation Overhead Evaluation

To evaluate the area overhead of 3D-CRP, we assume that each 1-bit register requires

12 transistors, each 1-bit 4-to-1 multiplexer requires 28 transistors and each 1-bit 2-to-

33

1 multiplexer (mux) has 12 transistors. We need ten 1-bit transistors for LCSRs and

RCSRs, one 64-bit 1-to-4 demultiplexer (demux) and one 64-bit 4-to-1 mux for data

transfers, one 30-bit 1-to-4 demux and one 30-bit 4-to-1 mux for address transfers (for

4 GB memory, we need 32-bit demux and mux), one 2-bit 4-to-1 mux for destination

selection, one 1-to-2 demux to send back the hit signal to remote layers and two AND

gates to generate L2 cache requests. Thus, the total number of required transistors

3D-CRP is limited to 5460 (10×1-bit register+ 2×64-bit 1-to-4 demux + 2×30-bit

4-to-1 mux + 1×2-bit 4-to-1 mux + 1×1-bit 1-to-2 demux + 2×AND gate). We

assume there are 128 TSVs for two-way data transfer between caches, 60 TSVs for

the memory address bits, and four additional TSVs for transferring L2 requests and

hit bits between the caches on adjacent layers. To connect to a memory controller,

we assume there are 30 TSVs for memory address bits, and 512 TSVs for receiving

data from the memory controller. TSV power has been reported to be much lower

compared to the overall power consumption of a chip (Zhao et al., 2011); thus, we do

not take TSV power into account in our power simulations. We assume that TSVs

have 10 µm diameters and a center-to-center pitch of 20 µm. The total area overhead

of TSVs is less than 0.1 mm2, which is negligible compared to the total chip area of

10.9 mm2. Prior work (Homayoun et al., 2012) shows that the layer to layer delay

caused by TSVs is 1.26 ps, which has no impact on the system performance as it is

much smaller than the CPU clock period at 1 GHz. If there is on-chip DRAM, the

memory controller is also connected to DRAM through TSVs, which brings extra 512

TSVs for data transmission and 32 TSVs to send commands to a memory module.

3.2.2 Cache Resource Management Policy

To efficiently manage the cache resources and improve the energy efficiency using

3D-CRP, we introduce a runtime job allocation and cache resource pooling policy.

We first explain the details of the proposed policy for the system shown in Fig. 3·5,

34

where each layer has one core and a 1MB L2 cache. Then we introduce the extended

policy for larger 3D-CRP systems.

Overview of Cache Pooling

Based on the fact that different applications need varying cache resources to achieve

their optimal energy efficiency, as stated in Section 3.1, we propose a two-stage run-

time policy to allocate the cache resources within a single-column 3D-CRP system.

The flowchart is shown in Fig. 3·8. The policy contains two stages: (1) Job allocation,

which decides on the core each job should run on, and (2) Cache resource pooling,

which distributes the cache resources between a pair of jobs.

assign a single cache

partition to each job Ji

predict perf. improvement (pi)

sort all jobs based on pi

allocate J1 & J4, J2 & J3 on

adjacent layers (see Figure. 9)

assign 1 or 4 partitions

to each job Ji based on pi

increase the # of partitions

for each job Ji

pi > pj?

pi > t? revert to previous

partitions

keep the current

partitions

has job Ji reached

max # of partitions?

regression-based

predictor

performance counters

e.g., p1 > p2 > p3 > p4

Stage 1: Job Allocation

Stage 2: Pair-wise

Cache Pooling

No

Yes

Yes

No(**)

(*)

Figure 3·8: A flow chart illustrating our runtime job allocation and
cache resource pooling policy. (*) pi represents the predicted IPC im-
provement for each job when running with 4 cache partitions compared
to running with 1 partition. (**) Condition is checked only if Ji and Jj
are competing for the same partition.

35

Stage 1: Job Allocation Across the Stack

In this stage, we allocate the jobs to the 3D system with both energy efficiency and

thermal considerations. The allocation is based on an estimation of the jobs’ IPC

improvement (pi) when running with four partitions compared to running with one

partition. The estimation of pi is conducted using an off-line linear regression model

that takes runtime performance counter data as inputs. At the beginning, we assign

n jobs to n cores in the system in a random manner, and start running the jobs for

an interval (e.g., 10 ms) using the default reserved cache partition (each core has

a reserved L2 cache partition of 256 KB that cannot be pooled). The performance

counters that we use in estimation are L2 cache replacements, L2 cache write accesses,

L2 cache read misses, L2 cache instruction misses, and number of cycles. The linear

regression model is constructed by their linear and cross items. We train the regression

model with performance statistics from simulations across 15 of our applications and

validate the model using another four applications. The prediction error is less than

5% of the actual performance improvement on average. When implemented in a real

system, this predictor can be integrated with the OS. The OS needs to periodically

read the hardware performance counters to collect data and feedback to the predictor.

In the next step, we sort the jobs based on their predicted performance improve-

ments and group them in pairs by selecting the highest and lowest ones from the

remaining sorted as (J1 ≥ J2 ≥ J3 ≥ J4) according to their pi. In this case, we

group four jobs into two pairs (J1, J4 and J2, J3). As for temperature consideration,

we allocate the job pair with higher average IPC to the available cores closest to heat

sink as shown in Fig. 3·9 (a). The reason is that the cores on layers closer to the

heat sink can be cooled more effectively in comparison to cores farther from the heat

sink (Coskun et al., 2009a).

36

L1

L2

L3

L4

J1

J2

J3

J4

Rank w.r.t. cache needs:

J1 ≥ J2 ≥ J3 ≥ J4

Pair

Rank w.r.t. IPC:

J3 ≥ J1 ≥ J2 ≥ J4

J1J4 J2 J3

Heat Sink

L1

L2

L3

L4

J3

J2

J1

J4

Li: Layer i Ji: Job i

(a) An example to illustrate the job allocation stage

Used cache partition Unused cache partition

core3

core4

Unused partitions

p3 > t

p4 > t

Core3's partition (#PAR3)

core3

core4

p3 > p4

p4 > t

core3

core4

Core4's partition (#PAR4)

#PAR3 = 4

#PAR4 = 1

#PAR3 ++

#PAR4 ++

#PAR3 ++

#PAR4 no change
i. ii. iii.

(b) An example that illustrates the cache resource pooling

among a job-pair in our run-time policy. #PAR refers to the

number of cache partitions

L3

L4

Figure 3·9: The 2-stage intra-column runtime job allocation and cache
resource pooling policy.

Stage 2: Cache Resource Pooling Among Job Pairs

In the second stage, we propose a method to manage the cache resources within

each job pair. In order to determine whether a job needs more cache partitions, we

introduce a performance improvement threshold (t). This threshold represents the

minimum IPC improvement a job should get from an extra cache partition to achieve

a lower EDP. We use (Power/IPC2) to calculate EDP. The key to derive t is based

on the observation: the EDP of cache-hungry jobs decreases when the number of

cache partitions of the job increases due to the high performance improvement. On

the contrary, for non-cache-hungry jobs, the EDP increases when the acquired cache

partitions increase because the performance is only slightly improved while the energy

consumption increases. For a lower EDP, the following inequality should be satisfied:

Power

IPC2
>
Power +4Power
(IPC +4IPC)2

(3.1)

IPC and Power refer to performance and power values before we increase the number

of cache partitions, while 4IPC and 4Power are the variations in IPC and power

when the job uses an additional partition. From this inequality, we obtain:

4IPC
IPC

>

√
1 +
4Power
Power

− 1 = t (3.2)

37

When performance improvement is larger than t, increasing the number of par-

titions reduces the EDP of the job. We compute t as 3% on average based on our

experiments with 19 SPEC benchmarks. We compute the amount of cache partitions

to assign to each job by utilizing t and pi. If pi of one job is greater than 9.3%

((1 + 3%)3 − 1), we assign four cache partitions to it; otherwise, we keep one parti-

tion for the job. The 9% is obtained from the threshold of increasing the partition

from one to four. Then, we iteratively increase the number of cache partitions for

each job if three conditions are satisfied: (1) pi > t, (2) the job has not reached the

maximum number of partitions, and (3) pi > pj. The maximum number of partitions

is seven for jobs that are assigned four partitions, and four for jobs that are assigned

one partition. If pi < t, we revert the job to previous partitions. We keep the job

with current partitions once it reaches the maximum number of partitions. The last

condition is only checked if jobs Ji and Jj are competing for the same cache partition.

We give an example cache assignment where one job in a job-pair is assigned

one cache partition and the other job is assigned four cache partitions, as shown in

Fig. 3·9 (b). In step i, the performance improvements of both jobs are greater than

the threshold, so we increase one cache partition for both Core3 and Core4 in step ii.

At last, we assign the cache partition to the job with higher performance improvement

(Core3 in this case).

Inter-Column Job Allocation on Larger 3D-CRP Systems

For larger 3D-CRP systems with multiple columns, the cache requirements and perfor-

mance of cores might be different across the columns. To balance the cache-hungriness

among the columns, we perform inter-column job allocation after sorting the jobs as

a load balancing policy in such systems.

We first assign weights to each core according to the corresponding cache require-

ments. We then average the weights for each column (WAV Gi) and the whole 3D

38

W00 W01 W02 W03

W10 W11 W12 W13

W20 W21 W22 W23

W30 W31 W32 W33

Column #

Layer #
0 1 2 3

0

1

2

3

WAVG0 WAVG1WAVG2 WAVG3

WAVGT

Inter-Column Reallocation:

 while (if |WAVGi-WAVGT| ≥ threshold for any i = 0, 1, 2, 3)

 do

 1. Sort WAVGi;

 2. Take the task with the largest weight in the column which

 has the largest WAVGi as task 1;

 3. Take the task with the smallest weight in the column which

 has the smallest WAVGi as task 2;

 4. Swap task 1 and task 2;

 5. Compute the new WAVGi for i = 0, 1, 2, 3;

 endwhile

Figure 3·10: The illustration of inter-column job allocation algorithm.

system (WAV GT) and compare each WAV Gi with WAV GT to see the difference. A

threshold is set up to check whether the difference between WAV Gi and WAV GT is

large. If the threshold is exceeded, the highest-weight task in the column with the

largest WAV Gi and the lowest-weight task in the column with the smallest WAV Gi are

swapped to balance the cache-hungriness. This process is iterated until the difference

between each WAV Gi and WAV GT is under the threshold. We perform job migration if

needed after the iteration converges. The algorithm is shown in Fig. 3·10. After the

inter-column job allocation, the system pairs all jobs and decides the cache resource

allocation inside each column as stated in the previous subsections. Furthermore,

from the memory access perspective, since the jobs within one column could have

higher average memory access than the jobs in the other columns, the memory ac-

cess latency of this particular column may be potentially higher than the latency of

the other columns. Therefore, when doing the inter-column job allocation, we also

consider the L2 miss per cycle (MPC). We balance the L2 MPC as well as the cache

hungriness to balance the memory accesses among all columns.

Figure 3·11 shows a simple example of job allocation in a 16-core 3D system with

cache resource pooling architecture. In this system, we have four columns and each

column has four cores; the columns are named C1, C2, C3, and C4. Columns C1 and

C4 initially have four and three cache-hungry jobs, respectively, while columns C2

39

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Ci: Column i Cache-hungry jobs Non-cache-hungry jobs

Inter-column allocation:

Swap the jobs w/ max

weights in C1 and the jobs

w/ min weights in C2 and

C3 respectively

Intra-column allocation:

Pair the jobs according to

their cache needs and then

allocate the jobs depend

on the IPC values

WAVG1>WAVG4>WAVG2>WAVG3 WAVG4>WAVG1>WAVG2>WAVG3

Figure 3·11: An example of job allocation in a 16-core 3D system.

and C3 only have one cache-hungry job each. We assume that WAV G1 > WAV G4 >

WAV G3 > WAV G2. The job with the highest weight in C1 is swapped with the job with

the lowest weight in C2 and we get WAV G1 > WAV G4 > WAV G2 > WAV G3. Similarly,

we swap the new highest-weight job in C1 with the lowest-weight job in C3 this time

and get the difference between each WAV Gi and WAV GT under the threshold. After the

inter-column job reallocation, the cache-hungriness is balanced across the columns.

Next, we perform the proposed intra-column job pairing and allocation to finalize the

location of each job. In a larger 3D system, using this inter-column job allocation,

the cache needs are balanced and the cache resources can be utilized more efficiently.

Performance Overhead Evaluation

In order to improve the energy efficiency of the 3D system in presence of workload

changes, we run our runtime policy periodically every 100 ms. We re-allocate the

cache partitions among job pairs and flush the cache partitions whenever there is re-

allocation. In the worst case, we decrease the number of cache partitions for a job from

four to one or increase the cache partitions from four to seven, which both result in

the cache partitions getting flushed three times. Following a new cache configuration,

there is no relevant data in the L2 cache. Thus, the applications begin to execute

with cold caches. System performance degrades due to the cold start effect in caches.

Prior work estimates the cold start effect of a similar SPEC benchmark suite as less

40

−50

50

150

250

350

450

550

astar
bwaves

bzip2

cactusADM
calculix

gamess gcc
gobmk

gromacs
h264ref

hmmer lbm
leslie3d

libquantum mcf milc namd
omnetpp

soplex

T
im

e
O

ve
rh

ea
d

of
 C

ac
he

 C
ol

d
S

ta
rt

 E
ffe

ct
 (

µs
)

256KB 512KB 768KB 1024KB 1280KB 1536KB 1792KB 2048KB

Figure 3·12: Time overhead (µs) of cache cold start effect for all
applications under cache sizes from 256 KB to 2048 KB

than 1 ms (Coskun et al., 2009b). We also evaluate the cold start effect overhead by

comparing the performance of the benchmark suite with and without cache warmup,

as shown in Fig. 3·12. We can see that almost all applications suffer from cache cold

start effects, in different amounts. For example, mcf suffers most from cold caches

because it is much more cache intensive compared to the other applications. On

the contrary, lbm almost has no cold start overhead because it does not use much

cache. The highest overhead is around 500 µs from mcf. For most of the applications,

the overhead is lower than 150 µs. For multi-core systems, the memory access rate

is higher than single-core systems, which increases memory access latency. Thus,

we also perform similar experiments for various memory access latencies and the

results demonstrate that the cache warmup overhead is still under 1 ms. Other than

cache cold start effect, when job migration happens, context switch also introduces

performance degradation. However, the context switch overhead is no more than

10 µs (Constantinou et al., 2005; Kamruzzaman et al., 2011), and techniques such

as fast trap can further reduce time spent on it (Gomaa et al., 2004). Thus, the

performance overhead of our policy is negligible for SPEC type of workloads.

41

Table 3.1: Core Architecture Parameters

Parameter High-Perf Low-Power
CPU Clock 2.1 GHz 1.0 GHz
Issue Width out-of-order 3-way out-of-order 2-way
Reorder Buffer 84 entries 40 entries
BTB/RAS size 2048/24 entries 512/16 entries
Integer/FP ALU 3/3 2/1
Integer/FP MultDiv 1/1 1/1
Load/Store Queue 32/32 entries 16/12 entries
L1 I/DCache 64 KB, 2-way, 2 ns 16 KB, 2-way, 2 ns
L2 Cache 1 MB, 4-way, 5 ns 1 MB, 4-way, 5 ns
Core Area 15.75 mm2 3.88 mm2

3.2.3 Experimental Methodology

Target System

We apply the proposed cache resource pooling technique on low-power and high-

performance 3D multi-core systems with four cores and 16 cores, respectively. The

core architecture for the low-power system is based on the one used in Intel SCC

(Howard et al., 2011). For the high-performance system, we use the core architecture

applied in the AMD Magny-Cours processor (Conway et al., 2009). The architectural

parameters for both systems are listed in Table 3.1. For the 4-core 3D-CRP system,

all four cores are stacked in one column using off-chip DRAM. In the 16-core system,

there are four layers and each layer has four cores. Thus, there are four columns in

the system and cores could pool cache resources within each column. Each column

in the 3D system has a memory controller, which is located on the layer farthest

from the heat sink as shown in Fig. 3·7. The stacked DRAM layers are placed at the

bottom of the 3D system, as described in Section 3.2.1. Due to the area limit, the

low-power 3D system needs two DRAM layers to support 1 GB DRAM while the

high-performance system only needs one layer.

42

Table 3.2: Main Memory Access Latency for the 3D CRP System

LLC-to-MC 0 ns (due to the short latency provided by TSVs)
Memory Controller Queuing delay, computed by M/D/1 queuing model
Main Memory On-chip 1 GB DRAM: tRAS = 36 ns, tRP = 15 ns
Total Delay Queuing delay + tRAS + tRP
Memory Bus On-chip memory bus, 2 GHz, 64-byte bus width

Simulation Framework

For our performance simulation infrastructure, we use the system-call emulation mode

in Gem5 simulator (Binkert et al., 2011) with X86 instruction set architecture. For

single-core simulations shown in Section 3.1, we fast-forward two billion instructions

and then execute 100 million instructions in detailed mode for all applications under

L2 cache sizes from 0 to 2 MB. For 4-core and 16-core simulations with the proposed

CRP technique, we also collect performance results from the same segment of instruc-

tions. We run McPAT 0.7 (Li et al., 2009) under 45 nm process to estimate dynamic

power consumption of the cores and then calibrate the results using published power

values. We use CACTI 5.3 (Thoziyoor et al., 2008) to compute L2 cache power and

area, and scale the dynamic L2 cache power based on L2 cache access rate. We use

HotSpot 5.02 (Skadron et al., 2003) for thermal simulations.

In this work, we apply the M/D/1 queuing model for each memory controller to

model the queuing delay rather than using a unified memory latency for all multi-

program workload sets. In the M/D/1 model, arrival rate (λ) and service rate (µ)

are required to compute the queuing delay, tqueuing, as shown below:

tqueuing =
λ

2µ(µ− λ)
(3.3)

In 3D-CRP system, there is one memory controller in each column, thus for multi-

program workloads we sum up the memory access rate of each core in the column

as the arrival rate to the corresponding memory controller. We use the DRAM

43

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

50

100

150

200

Memory access arrival rate (# of accesses per ns)

Q
ue

ui
ng

 d
el

ay
 (

ns
)

Memory service time = 51ns
Arrival rate = 0.0041/ns
Arrival rate = 0.0082/ns
Arrival rate = 0.0164/ns

Figure 3·13: The relationship between memory access arrival rate and
memory controller queuing delay. The data points from left to right
represent the memory access arrival rate of one bzip2, two instances of
bzip2 and four instances of bzip2, respectively.

response time (tRAS+tRP) as the memory system service rate. For each multi-program

workload, we first assign a sufficiently large value as the memory access latency to

ensure that the arrival rate would not exceed the memory system service rate. We

then run performance simulations and collect the memory access rate of the workload.

Based on this arrival rate (λ1), we compute the queuing delay (t1) of the memory

controller. The new memory access latency is the sum of LLC-to-MC delay, DRAM

module access time and the queuing delay (t1 + tRAS + tRP), as shown in Table 3.2.

Next, we feed this new latency back to Gem5 and collect the arrival rate (λ2) from

the second round simulations. If λ1 and λ2 converges (e.g., within 10% difference),

the new queuing delay (t2) is similar to t1 and t1 + tRAS + tRP is the correct memory

access latency in turn. Otherwise, we need to keep iterating until two consecutive

arrival rates converge. Based on our experience, the arrival rates always converge to

a small range after three iterations. By doing this we assign a memory access latency

value according to the various workloads’ memory intensiveness, which improves the

accuracy of the performance results. In Fig. 3·13 we show the relationship between

the memory access arrival rate and queuing delay as computed by Equation 3.3. Here

we take bzip2 as an example. When running bzip2 with 4-way 1 MB L2 cache, the

memory access rate is 0.0041 /ns and the corresponding queuing latency is 6.75 ns.

If there are two instances of bzip2 in the system, the memory access rate doubles and

44

Table 3.3: Benchmark classification according to memory-
intensiveness and cache-hungriness

Memory-intensive Non-memory-intensive
Cache-hungry bzip2, omnetpp (1-3), omnetpp (4-7),

soplex (1-6) soplex (7)
Non-cache-hungry bwaves, gcc, gobmk(1), astar, calculix, cactusADM

mcf, libquantum, lbm milc, namd, gobmk (2-7)
leslie3d gromacs, h264ref, hmmer

Table 3.4: 4-core system workload sets

Workload Benchmarks
non-cache-hungry1 bwaves, gromacs, gobmk, milc
non-cache-hungry2 calculix, leslie3d, milc, namd
low-cache-hungry1 gamess, leslie3d, libquantum, omnetpp
low-cache-hungry2 bwaves, hmmer, namd, bzip2
med-cache-hungry1 astar, bzip2, soplex, mcf
med-cache-hungry2 bzip2, cactusADM, hmmer, omnetpp
high-cache-hungry1 gromacs, bzip2, omnetpp, soplex
high-cache-hungry2 h264ref, bzip2, omnetpp, soplex
all-cache-hungry1 soplex, soplex, omnetpp, bzip2
all-cache-hungry2 soplex, bzip2, soplex, bzip2

the queuing delay becomes 18.3 ns. When there are four instances of bzip2 running,

the queuing delay increases to 130.7 ns. Figure 3·13 shows this relationship. As the

memory access rate increases, the queuing delay increases exponentially. When there

are multiple memory controllers in the system, the memory accesses get distributed;

thus, the memory access latency is lower.

3.2.4 Evaluation

Multi-program Workload Sets

To test 3D-CRP and cache resource pooling policy, we select 19 applications from the

SPEC CPU 2006 benchmark suite as listed in Fig. 3·1. According to the applications’

memory-intensiveness and cache-hungriness, we categorize the applications into four

classes as shown in Table 3.3. The number following an application refers to the

corresponding cache configurations. For example, omnetpp (1-3) means that when

running with one to three cache partitions, omnetpp is memory-intensive. For 4-core

45

Table 3.5: 16-core system workload sets. nch, lch, mch, hch,ach rep-
resent non-cache-hungry, low-cache-hungry, med-cache-hungry, high-
cache-hungry and all-cache-hungry, respectively.

Workload Single column workload sets
nch + nch nch1 nch2 nch1 nch2
nch + lch nch1 nch2 lch1 lch2
nch + mch nch1 nch2 mch1 mch2
nch + hch nch1 nch2 hch1 hch2
nch + ach nch1 nch2 ach1 ach2
lch + ach lch1 lch2 ach1 ach2
mch + ach mch1 mch2 ach1 ach2
hch + ach hch1 hch2 ach1 ach2
ach + ach ach1 ach2 ach1 ach2

3D systems, we create ten multi-program workload sets with four threads each, by

combining cache-hungry and non-cache-hungry applications as shown in Table 3.4.

We use nch to represent non-cache-hungry workload composition. Similarly, we apply

lch, mch, hch, and ach to represent the other workload compositions. Among these

workloads, nch contains only non-cache-hungry applications, lch, mch and hch in-

cludes one, two, and three cache-hungry applications respectively, while ach includes

only cache-hungry applications. For 16-core 3D systems, we group four 4-core work-

load sets for each 16-core workload set based on cache needs, as shown in Table 3.5.

From top to bottom, the number of cache-hungry applications in the workload set

increases. When presenting the results, we compare IPC and EDP for each workload

set under different 3D systems. Since area is a very important metric for evaluating

the 3D systems (die costs are proportional to the 4th power of the area (Rabaey et al.,

2003)), we also use energy-delay-area-product (EDAP) as a metric to evaluate the

cumulative energy and area efficiency (Li et al., 2009) for the 3D systems.

Performance & Energy Efficiency Evaluation

For both low-power and high-performance 3D systems, we provide three baseline

systems where each core has a: (1) fixed 1 MB private L2 cache; (2) fixed 2 MB

private L2 cache; (3) 1 MB private cache with selective cache ways (SCW) (Albonesi,

46

non low med high all
0.3

0.5

0.7

0.9

1.1
(a)

Workload cache−hungriness

N
or

m
al

iz
ed

 IP
C

 to
 2

M
B

 b
as

el
in

e

non low med high all
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9 (b)

Workload cache−hungriness

N
or

m
al

iz
ed

 E
D

P
 to

 2
M

B
 b

as
el

in
e

1MB 2MB SCW CRP

non low med high all
0.3

0.5

0.7

0.9

1.1

1.3 (c)

Workload cache−hungriness

N
or

m
al

iz
ed

 E
D

A
P

 to
 2

M
B

 b
as

el
in

e

Figure 3·14: Normalized IPC, EDP and EDAP of low-power 3D-CRP
system and the 3D baseline systems with 1 MB fixed caches, 2 MB
fixed caches and 1 MB caches with selective cache way.

1999). For the SCW baseline system, we also use the proposed policy to decide the

best cache partitions for each job, but jobs can only require a maximum of four cache

partitions since SCW does not allow pooling cache partitions from the other layers.

4-core 3D System

Figure 3·14 shows the IPC, EDP, EDAP comparison between 3D-CRP system and

the other three baselines for the 4-core low-power system. All of the values for each

metric are normalized to 2 MB baseline. As expected, the 2 MB baseline always

has the best performance among all systems. Among 1 MB baseline, SCW baseline

and 3D-CRP, SCW’s performance is always slightly lower than 1 MB baseline while

3D-CRP outperforms 1 MB baseline as long as there are cache-hungry jobs in the

workloads. The performance improvement of 3D-CRP over 1 MB baseline is up

to 11.2% among all workloads. The reason is that 3D-CRP always turns off the

unnecessary cache partitions and pools them to cache-hungry jobs, which boosts the

system performance. In Fig. 3·14 (b), it is obvious that for all workloads, 3D-CRP

provides lower EDP than 1 MB and SCW baselines. On average, 3D-CRP reduces

EDP by 18.8% and 8.9% compared to 1 MB and SCW baselines respectively. For

SCW, the non-sharing feature limits its improvement in EDP for workload sets with

high cache-hungriness (e.g., hch and ach workloads). For the workloads that contain

47

non low med high all
0.3

0.5

0.7

0.9

1.1

Workload cache−hungriness

N
or

m
al

iz
ed

 IP
C

 to
 2

M
B

 b
as

el
in

e

non low med high all
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

Workload cache−hungriness

N
or

m
al

iz
ed

 E
D

P
 to

 2
M

B
 b

as
el

in
e

1MB 2MB SCW CRP

non low med high all
0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

Workload cache−hungriness

N
or

m
al

iz
ed

 E
D

A
P

 to
 2

M
B

 b
as

el
in

e

Figure 3·15: Normalized IPC, EDP and EDAP of high-performance
3D-CRP system and the 3D baseline systems with 1 MB fixed caches,
2 MB fixed caches and 1 MB caches with selective cache way.

both cache-hungry jobs and non-cache hungry jobs, 3D-CRP improves the energy

efficiency by up to 38.9% compared to 2 MB baseline. Although the 2 MB baseline

always provides the best performance, it cannot offer the optimal system energy

efficiency. For EDAP, as shown in Fig. 3·14 (c), 3D-CRP outperforms all baselines

for all workloads. The improvements brought by CRP over 1 MB and SCW cases are

the same as that of EDP because they have the same area, and the average EDAP

improvement of CRP over 2 MB baseline is 36.1%.

We also evaluate performance and energy efficiency for the high-performance sys-

tem using the proposed 3D-CRP design and runtime policy, as shown in Fig. 3·15.

Similar to the low-power 3D system, 3D-CRP achieves lower energy efficiency than

1 MB and SCW baselines and the average EDP reduction is 14.8% and 13.9% re-

spectively. When comparing to 2 MB baseline, the EDP results are different because

the high-performance core consumes much more power than the low-power core and

1 MB L2 cache. Thus, the percentage of extra power consumption introduced by

larger L2 caches is smaller than the percentage of extra performance improvement

when it comes to cache-hungry jobs, which can be expressed as:

4IPC
IPC

>
4Power
Power

⇒ Power

IPC2
<
Power +4Power
(IPC +4IPC)2

(3.4)

48

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 IP

C
to

 2
M

B
 b

as
el

in
e

1MB 2MB SCW CRP w/o ICA CRP w/ ICA

0.3

0.6

0.9

1.2

1.5

N
or

m
al

iz
ed

 E
D

P
to

 2
M

B
 b

as
el

in
e

0.3

0.5

0.7

0.9

1.1

N
or

m
al

iz
ed

 E
D

A
P

to
 2

M
B

 b
as

el
in

e

nch-nch nch-lch nch-mch nch-hch nch-ach lch-ach mch-ach hch-ach ach-ach

Figure 3·16: Normalized IPC, EDP and EDAP of 16-core low-power
3D-CRP system and the 3D baseline systems with 1 MB fixed caches,
2 MB fixed caches and 1 MB caches with selective cache way. ICA
refers to Inter-column job allocation.

Thus, it ends up with lower energy efficiency. Nevertheless, for the workloads mixed

with cache-hungry and non-cache-hungry jobs, 3D-CRP performs similarly with 2MB

baseline on EDP, while from EDAP perspective, 3D-CRP still improves over 2 MB

baseline by up to 24.7% for nch and by 12.7% on average for mixed workloads.

We also integrate 3D systems with microarchitectural resource pooling (MRP)

(Homayoun et al., 2012). To evaluate the performance improvement with MRP,

we run applications with four times of the default sizes of the performance critical

components (reorder buffer, instruction queue, register file, and load/store queue),

and compare the IPC results with the results with default settings. For applications

running on a single low-power core, our experiments show that MRP improves system

performance by 10.4% on average, and combining MRP and CRP provides an extra

performance improvement of 8.7% on average in comparison to applying MRP alone.

16-core 3D System

We also evaluate our runtime policy on a 16-core low-power 3D-CRP system with

stacked DRAM to investigate our policy’s scalability. The 16-core system has four

49

layers with four cores on each layer, and each core has a private L2 cache. The

DRAM layers are located at the bottom of the chip. The workloads for 16-core low

power system are listed in Table 3.5. Figure 3·16 shows the performance and energy

efficiency results of 3D systems with different cache architectures. In this figure, from

left to right, the cache-hungriness of the workloads increases. For all nine workloads,

3D-CRP outperforms 1 MB and SCW baselines in IPC, EDP and EDAP. 3D-CRP

is always better than the 2 MB baseline on EDAP. In addition, with inter-column

job allocation (ICA), there are further IPC and EDP improvement for 3D-CRP. For

example, for nch-ach workload, 3D CRP + ICA further improves performance by

12.3% and energy-efficiency by 7.8% compared to 3D CRP only. When considering

memory accesses among the columns and adjusting the workload accordingly, the

system performance improvement is around 5% for all the workload sets.

Thermal Evaluation

We conduct steady-state temperature simulations to evaluate the impact of the pro-

posed runtime policy on the on-chip temperature in 3D-CRP systems. For a 4-core

low-power 3D system, since the cores have quite low power consumption, the temper-

ature benefits are slight. While for a 4-core high-performance 3D system, we observe

up to a 6.2 oC reduction in peak on-chip temperature compared to the temperature-

wise worst possible job allocation for 4-core workloads. Across all workloads there

is an average of 3.4 oC reduction in peak on-chip temperature. Such observations

show that our policy can effectively decrease the system peak temperature and pre-

vent cores from exceeding the temperature threshold. In the 16-core 3D system,

our results show that without the temperature-aware job allocation only mch-ach

and ach-ach operate under the system temperature threshold 85 oC, while applying

temperature-aware job allocation keeps all 16-core workloads operating under 85 oC.

50

3.3 Summary

This chapter has proposed a novel design for 3D cache resource pooling that requires

minimal additional circuitry and architectural modification. We have first quantified

the impact of cache sizes and memory access latency on the application performance.

We have then presented an application-aware job allocation and cache pooling policy

to improve the energy efficiency and the thermal behavior of 3D systems. Our policy

dynamically allocates the jobs to cores on and distributes the cache resources based

on the cache hungriness of the applications. In addition, we have designed a memory

controller delay model to adjust the memory access latency for different workloads

and leveraged this model for all the 3D multi-core system evaluations. Experimental

results show that by utilizing cache resource pooling we are able to improve system

EDP and EDAP by 18.8% and 36.1% on average compared to 3D systems with

fixed cache sizes. The proposed inter-column job allocation manages to additionally

improve performance by up to 12.3% and energy-efficiency by up to 7.8% for larger

3D systems with on-chip DRAM. On the thermal side, our policy reduces the peak

on-chip temperature of high-performance systems by up to 6.2 oC.

51

Chapter 4

Memory Resource Management in 3D

Multi-core Systems

3D stacking enables new ways of integrating memory resources in computation sys-

tems. For example, memory resources could be distributed in each layer within a 3D

system composed of homogeneous layers, or a separate DRAM chip could be stacked

on top of a logic chip for fast and high-bandwidth memory access. One other option

is to have both on-chip memory and off-chip memory in a system, which provides

not only high-performance memory access but also large capacity. Along with such

advantages enabled by 3D stacking, there also comes challenges in how to efficiently

manage these memory resources. In this chapter, we propose memory management

techniques to improve the performance and energy efficiency of 3D systems. We first

propose a memory access scheduling policy in a 3D modular multi-core architecture

(3D-MMC, a 3D system with homogeneous layers), then, we develop a novel method

to allocate memory resources in heterogeneous memory systems.

4.1 Memory Access Scheduling in 3D-MMC

This section demonstrates a functional hardware and software design for a 3D-stacked

multi-core system. The presented 3D system is a low-power 3D modular multi-core

architecture built by vertically stacking identical layers. Each layer consists of cores,

private and shared memory units, and communication infrastructures. The system

uses shared memory communication and TSVs to transfer data across layers. A se-

52

LAYER 1

System Clock

PLL

3D conn. macro

Peripheral Subsystem
(PS)

Dualclock
FIFO

Processing Element
(PE)

NI

NI

Private
RAM

Shared
local RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

NoC

Serializer
Deserializer

LAYER 2

PLL

3D conn. macro

Peripheral Subsystem
(PS)

Dualclock
FIFO

Processing Element
(PE)

NI

NI

Private
RAM

Shared
local RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

Processing Element
(PE)

NI
Private
RAM

NoC

Serializer
Deserializer

Figure 4·1: Overview of the 3D-MMC built with stacking identical
layers. The figure does not show the data TSVs for clarity.

rialization scheme is employed for inter-layer communication to minimize the overall

number of TSVs. The proposed architecture has been implemented in HDL and

verified on a test chip. We evaluate the performance, power, and temperature char-

acteristics of the architecture using a set of software applications we designed. To

efficiently manage the shared memory of the 3D-stacked system, we propose a novel

memory resource pooling approach which adapts the memory access based on the

available memory resources in the 3D system.

4.1.1 3D Modular Multi-core Architecture Design

In this subsection, we provide the details of 3D-MMC, describe out performance eval-

uation setup, and then demonstrate the thermal feasibility of this system. Figure 4·1

provides a diagram of 3D-MMC system composed of two layers interconnected by

TSVs. The number of layers in the stack determines the total core count as well as

53

the memory size and the level of memory resource pooling. A single layer can function

either as a stand-alone 2D-CMP and as part of a 3D-system when integrated with

the 3D communication infrastructure.

Planar (single-layer) architecture

A single layer is composed of four Processing Elements (PE) that exchange data

through a shared memory, which is placed in the Peripheral Subsystem (PS) unit.

A system of semaphores arbitrates the access of PEs to the shared memory. The

routing between each PE and the shared memory occurs through a NoC. Several

3D-NoC topologies have been proposed recently, and their superior performance over

2D-NoC have been demonstrated (Pavlidis and Friedman, 2007). In 3D-MMC, a

specific source-routed NoC is implemented to manage the signals routing to and from

six directions (North, South, East, West, Up, Down). In the 3D stack, NoC on

different layers are interconnected to enable the management of the signals in both

horizontal and vertical directions.

Figures 4·2a and 4·2b illustrate the internal architecture of a PE and a PS, respec-

tively. Each PE is built out of a 32-bit RISC processor, the open-source LEON3 unit

from Aeroflex Gaisler, which is connected to the slave modules through an AMBA

bus. An AHB JTAG master module is included for debugging purposes. Slave devices

for each PE are a privately addressable memory space including a ROM for booting

and a private RAM to host the program code. The Network-Interface (NI) block is

a master located within both PE and PS. It interfaces the AMBA bus to the NoC,

and is responsible of transferring data packets to/from the shared memory, which has

an address space visible to each core. Similar to PEs, the PS contains NI and AHB

JTAG acting as masters, whereas the remaining units act as slaves.

Each PE in an N -layer system has access to N + 1 different memory modules

that can be accessed in parallel: a private-RAM contained in its own PE, a shared

54

cpu-id

I-cache

LEON3
core

Private
RAM

Network
Interface (NI)

timer IRQ

AMBA AHB 2.0

AMBA APB 2.0

Processing Element

(PE)

to/from Switch

layer
ID

ROM
APB

bridge
AHB
JTAG JTAG

I/O pads

(a)

Shared
RAM

Network
Interface (NI)

UART

AMBA AHB 2.0

AMBA APB 2.0

Peripheral Sub-system

(PS)

to/from Switch

layer
ID

Semaphore
APB

bridge
AHB
JTAG JTAG

I/O pads

(b)

Figure 4·2: (a) PE internal architecture; (b) PS internal architecture.

local-RAM located in the PS of its layer, and N − 1 shared remote-RAMs situated in

the PS of the other stacked layers. The proposed memory hierarchy that uses shared

data memory for inter-processor communication simplifies the hardware complexity

and avoids memory coherency overhead. The multi-core synchronization is handled

at the software level.

3D communication and control infrastructure

Inter-layer communication is achieved through a 3D communication unit, 3D-macro,

which leverages an array of TSVs as a vertical data bus. To limit the TSV area

overhead, we use a serializer-deserializer (serdes) module to minimize the total number

of TSVs. This serdes module is explained in detail in our prior work (Beanato et al.,

2012). Data signals are serialized before the transmission through TSVs, and de-

serialized at the receiving layer. The bandwidth loss due to serialization can be

compensated by increasing the serdes clock frequency. Serialization is more cost-

efficient than parallel buses in 3D stacked systems (Sun et al., 2010).

A challenging issue for 3D stacked systems is the reliable distribution of the clock

signal (Pavlidis et al., 2008). In 3D-MMC, each stacked layer has an independent

clock domain. The clock is injected onto a pad of the top layer, passes through a

55

1

0

Pad clk

PLL

LAYER 1

’0’

Layer_ID

Clock
tree

to
flip flops

to
flip flops

1

0

PLL

LAYER 2

’1’

Layer_ID

Clock
tree

buried pad
pulled down

(a)

LAYER 1

Pad
Layer_ID

1

0
"00"

weak
pull down

2

2

"01"

"00"

"01"

to
logic

LAYER 2

1

0
2

2

to
logicburied pad

pulled down

"01"

"01"

to next
layer

(b)

Figure 4·3: (a) Clock distribution and propagation between two layers
using three redundant TSVs; (b) LayerID generation and propagation
between two layers using three redundant TSVs.

PLL module, and is both distributed in the circuit and sent to the next layer. The

bottom layer receives the clock from power TSVs, and forwards it to a PLL module

to be re-generated for maintaining its integrity. Hence, all layers operate at the same

frequency, but are asynchronous from each other due to potential phase shifts among

the clocks. In the multi-clock domain approach, signals are transmitted among the

layers together with their clock and then they are re-synchronized to the clock domain

of the receiving layer using a Dual Clock FIFO, as shown in Fig. 4·3a.

Once identical layers are stacked, they need to operate as a complete system

without further modification. For this purpose, a dedicated control signal, namely the

layer identification number (LayerID) is implemented for enabling auto-configuration

of the layers depending on their positions in the 3D-system. As shown in Fig. 4·3b

for an example of two layers, the sequence “00”, is injected through the pads and

selected by a multiplexer as the LayerID of the top layer. The value is forwarded to

a half adder that computes the ID for the layer below, “01”. The pads of the bottom

56

tier are designed to be pulled-down when no signal is applied to them. As a result,

the multiplexer on the second layer selects the LayerID transmitted by the TSVs.

Evaluation platform

We implement the proposed architecture in HDL and verify it on a test chip at an

operating frequency of 400 MHz and a vertical bandwidth of 3.2 Gbps. We fabricate

the 2D-CMPs using a standard UMC 90nm CMOS technology. We test and verify

single dies, and then process them for in-house TSV fabrication and stacking.

We conduct the performance study in this work through cycle-accurate post-layout

simulations in ModelSim. We design a set of software benchmarks to evaluate per-

formance, and compile these benchmarks using a SPARC compiler. We load the

compiled binary files into the ROM, and execute them following the boot script.

Thermal Evaluation

A significant challenge in 3D stacking is the power density increase per footprint,

which may cause temperature to increase beyond reliable thresholds. This section

demonstrates the thermal feasibility of 3D-MMC.

The power consumption of each component in a layer of the 3D stack is estimated

via statistical power analysis using Encounter Power System by Cadence. We assume

a switching rate of 50% for each flip flop and each input port, and we use a 100%

toggling rate for the clock. The tool automatically estimates the power consumption

based on the average toggling rate of each gate. Table 4.1 provides the power con-

sumption of all the components at 400 MHz including leakage power. Core power in

the table includes the logic, I-Cache, ROM, and all other sub-blocks of the core except

for the local RAM. Table 4.1 highlights the low power consumption of 3D-MMC.

We use HotSpot version 5.02 (Skadron et al., 2003) for thermal simulations. The

package and die parameters used in the simulation are provided in Table 4.1. The

57

Table 4.1: Power Consumption and Thermal Properties of 3D-MMC

Power Consumption Characteristics
Components Power (mW)
Core 37.98
Local RAM for each core 17.13
Router 10.07
Data TSV arrays 1.6 (smaller array) to 8.11 (larger array)
Shared memory 22.16
PLL 5

Package and Die Thermal Characteristics
Die area 3.5 mm x 3.5 mm
Die thickness (bottom layer) 280 µm
Die thickness (other layers) 50 µm
Die (Si) resistivity 0.01 mK/W (meter-Kelvin per Watt)
Glue conductivity 0.082 W/mK at 25 oC
Glue thickness 2 µm

floorplan of each layer is identical and is shown in Fig. 4·1 and 4·4. To take the

impact of TSVs into account during thermal evaluation, we use a modified version

of HotSpot that enables modeling heterogeneity within a layer (Meng et al., 2012).

We compute joint thermal resistivities for each TSV block based on the ratio of TSV

(Cu) area to overall TSV array area (including all the spacing between the TSVs).

We simulate the system without a heat sink by using a very small number for the

heat sink thickness in HotSpot. Layers are stacked using a glue (interface material)

layer of Parylene-C.

Figure 4·4 provides the steady state peak temperatures for a single layer chip and

3D systems including two layers, four layers, and eight layers when all cores are active.

In the figure, we also provide a thermal map for the top layer of the 2-layered system.

For 2- and 4-layered systems, even though cores overlap on top of each other and all

cores are active, we do not observe high temperatures. For the 8-layered stack, peak

temperature reaches 74 oC, which is still below the typical 85 oC thermal thresholds

used in most processor chips. As we focus on a 2-layered stack in this work, we do

not apply thermal management strategies.

58

Figure 4·4: The figure demonstrates the peak temperatures at steady
state for a single layer as well as 2-, 4-, and 8-layered stack. On the
right, we show the thermal map of the top layer for the 2-layered stacks.
Thermal variations are similarly low (limited to a few degrees only) for
4- and 8-layered stacks.

4.1.2 Resource Pooling For Efficient Memory Access

In traditional 2D design, as the number of cores increases, the bandwidth of the

shared memory becomes a performance bottleneck. In 3D-MMC, the ability of pool-

ing other layers’ resources alleviates the memory bottleneck problem. This section

first demonstrates the memory bottleneck problem on a 2-layer 3D-MMC, and then

proposes a methodology to find the optimal way to apply resource pooling.

3D-MMC’s memory subsystem has only one write port and one read port. When

the memory access rate exceeds a certain level, access blocking occurs. Aiming to

evaluate memory bottlenecks and resource pooling, we create a memory-intensive

benchmark, Memory Stress, which performs 1000 writes of integer-length values into

the shared memory. We perform experiments that write on local (same layer’s) shared

memory and remote (different layer’s) shared memory respectively, with 1-core, 2-

core, 3-core, and 4-core cases. In this group of experiments, all active cores are on the

same layer. The resulting execution times for both local and remote shared memory

cases are shown in Fig. 4·5. This figure shows that as more cores attempt to access

shared memory, performance penalty increases. When there are either more than two

59

1 Core 2 Cores 3 Cores 4 Cores
0

50

100

150

200

250

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

Local Shared Memory

Remote Shared Memory

Resource Pooling

Figure 4·5: Comparison of execution time of Memory Stress bench-
mark when all cores access local memory, all cores access remote mem-
ory, and when memory resource pooling is applied.

cores accessing the remote shared memory or more than three cores accessing the local

shared memory, the extra cores are blocked for a while. Blocking of cores happens

because of the memory bottleneck and the communication limitation between layers.

To mitigate the local shared memory contention, we propose utilizing the remote

shared memory for local cores. We call this scenario Memory Resource Pooling. For

the experiment in Fig. 4·5, for the multi-core cases we assign one core to access the

remote shared memory while the others still access the local shared memory. In the

3-core case, one core is assigned to access remote shared memory while the other

two write to the local shared memory. For 3-core and 4-core cases, memory resource

pooling brings 26.6% and 42.3% runtime reduction, respectively.

The above memory resource pooling strategy schedules memory accesses at the

core granularity; thus, we call it Core Level Resource Pooling (CLRP). Task Level

Resource Pooling (TLRP) includes adjustable Workload Allocation and Workload

60

Local Shared Memory Access Remote Shared Memory Access Blocked Memory Access

Scheduled Actual Scheduled Actual Scheduled Actual

(a). Baseline

 Same Schedule &

 Different Amount of

Remote Memory Accesses

 Different Schedule &

 Same Amount of

Remote Memory Accesses

(b). (c).

E
x
ecu

tio
n
 T

im
e

Figure 4·6: Performance under different workload allocation and
scheduling combinations. (a) is the baseline, (b) has the same schedule
with (a) but has fewer remote memory accesses, while (c) has the same
number of remote memory accesses but has a different schedule.

Scheduling within each core. With TLRP, the workload of each core is divided into

two parts: local memory accesses and remote memory accesses. For each core in the

system, workload allocation determines the ratio of local and remote memory accesses,

while workload scheduling defines the execution sequence of memory accesses. We

allocate equal amount of workload to all the cores for a fair comparison.

In Fig. 4·6, each group of four bars represents the workload execution of four

cores on the same layer. White and gray blocks stand for local and remote memory

accesses, respectively, and black ones represent the memory stalls. In the same figure,

Scheduled refers to the sequence of workload execution planed for each core, while

Actual shows the real execution. We consider (a) as a baseline case, where simultane-

ous local memory accesses from four cores are avoided. In this case, all cores behave

as scheduled and no core is blocked because of contention. Case (b) shows the situ-

ation where the system applies the same workload schedule with (a) but with fewer

remote memory accesses. As local shared memory allows for at most three cores to

simultaneously access to it, there is a noticeable performance loss once all four cores

access the local shared memory. Case (c) demonstrates the system’s behavior when

the cores have the same amount of remote memory accesses as case (a) but they are

61

(a). 4-thread-RSM

(b). 2-thread-RSM

1-thread-RSM

Local Shared Memory Access

Remote Shared Memory Access

1+2 thread-RSM 2+4 thread-RSM

2+4 thread-RSM

(1)

E
x
ecu

tio
n
 T

im
e

E
x
ecu

tio
n
 T

im
e

E
x
ecu

tio
n
 T

im
e

(2) (3) (4)

(1) (2) (3) (4) (5)

(1) (2) (3) (4) (5) (6) (7)

(c). Optimal Schedule:

Figure 4·7: Workload schedules for task level resource pooling. (a).
Four threads accessing remote shared memory at the same time–4-
thread-RSM ; (b). (1)-(3): Two threads accessing remote shared mem-
ory at the same time–2-thread-RSM ; (c). (1)-(3): One thread accessing
remote shared memory–1-thread-RSM.

scheduled to access local and remote shared memory at the same time, which causes

considerable performance loss compared to case (a). Thus, both workload alloca-

tion and scheduling in TLRP affect performance significantly and need to be jointly

considered to achieve the best performance.

To optimize performance via memory resource pooling, we should avoid the mem-

ory bottleneck as much as possible. Next, we propose an approach for computing

the relationship between performance and the number of remote memory accesses.

We introduce three workload schedules as shown in Fig. 4·7, where each schedule is

applicable to any workload allocation. In Fig. 4·7, remote memory accesses increase

gradually from left side to right side. Schedule (a) always makes all four cores ac-

cess the remote shared memory (4-thread-RSM, where RSM stands for remote shared

62

memory). Schedule (b) issues two cores to access remote shared memory at a time (2-

thread-RSM) from (1) to (3). In (4-7), there are too many remote memory accesses to

be scheduled using 2-thread-RSM, thus we apply mixed 2+4 thread-RSM until the ra-

tio of remote memory accesses increases to 100%. 1-thread-RSM has only one thread

accessing remote shared memory at a time to minimize simultaneous local memory

access, as shown in case (c) from (1) to (3). As the remote memory accesses increase,

schedule (c) uses 1-thread-RSM, 1+2 thread-RSM, and 2+4 thread-RSM successively,

which minimizes simultaneous local memory accesses.

To compare the performance of these three schedules, we observe the execution

time of the whole application, i.e., the longest execution time among all four cores.

The execution time on each core is the product of Instruction Count, Cycles per

Instruction and Cycle Time. Since most memory-intensive applications contain a

large number of memory accesses, in this case we can substitute instructions with

memory accesses, which means execution time equals the product of # of Memory

Accesses, Cycles per Memory Access and also Cycle Time. To apply TLRP, we need

to split memory accesses into local memory accesses and remote memory accesses.

In the following equation, Texec stands for the execution time, NMemAcc is the total

number of shared memory accesses in the application, WL and WR represent the

weight (i.e., ratio) of local and remote memory accesses, and CLi and CRi refer to

the number of cycles when i cores are accessing local shared memory and remote

shared memory, respectively. CLi and CRi can be obtained from the shared memory

access test. We can calculate the execution time based on the ratio of remote memory

accesses using the following equations:

Texec = (
∑

(WLi ×NMemAcc × CLi) +
∑

(WRi ×NMemAcc × CRi))× TCycle (4.1)

WL +WR =
∑

WLi +
∑

WRi = 1 (4.2)

63

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
75

100

125

150

175

200

225

250

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Remote Shared Memory Access Percentage

Optimal Schedule (Based on Equ.1)

Optimal Schedule Test Results

2−thread−RSM Test Results

4−thread−RSM Test Results

Figure 4·8: Test results of different memory resource pooling schedules
and the optimal schedule’s curve based on Eqn. (1).

Figure 4·8 shows the test results and fitted curves of the workload schedules in

Fig. 4·7. For the optimal schedule, we also draw the theoretical curve based on

Eqn. (4.1). The experimental results fit very well with the theoretical curve. Although

all of the three schedules can take advantage of resource pooling, the optimal one

improves the performance by up to 48.9%, which coincides with the curve for 2-

thread-RSM. The optimal schedule shown in the figure demonstrates the potential

benefits of memory resource pooling and TLRP workload scheduling.

In Eqn. (4.1), NMemAcc is related to the application, Tcycle depends on the architec-

ture, and CLi and CRi are both application and architecture related. Thus, for most

of the shared-memory systems and applications, the proposed approach is applicable

for quantifying the potential performance improvement of memory resource pooling.

4.1.3 Performance evaluation

This section demonstrates the performance benefits of 3D-MMC. To evaluate the

performance, we design four benchmarks: 1D DCT, a single dimension 8× 8 matrix

64

1−Core 2−Cores 4−Cores 8−Cores
0

1

2

3

4

5

6

7

8

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

1D DCT

1D FFT

1D Median Filter

Matrix Multiplication

Ideal Performance Improvement

Figure 4·9: Performance improvement compared to single core.

discrete cosine transformation; 1D FFT, 8 × 8 matrix 12 butterfly Fast Fourier

Transformation; 1D Median Filter with a window size of three and an input array

with 64 integers; Matrix Multiplication, 8 × 8 multiplication implemented using

divide and conquer algorithm.

The test results are shown in Fig. 4·9. Ideal performance improvement refers to

the improvement we can get from the multi-core system if the benchmarks can be

fully parallelized. For 1-core to 4-core cases, the cores are all on one layer and thus

the system can be viewed as a 2D layer only. As for 8-core case, we have two 2D

layers with four cores on each, which is the 3D-MMC architecture described above.

It can be observed from this figure that the performance improves significantly (61%

on average) from 4-core (2D) to 8-core (3D). The difference of improvement among

benchmarks is because the benchmarks vary in their scalability. For example, both

DCT and FFT have the same input matrix and large amounts of computation, but

FFT is more computation-bound compared to DCT. Reading the input can be viewed

as the serial part of a benchmark and the computation is the parallel part since it can

be done locally in each PE. Thus, the scalability of DCT is lower compared to FFT,

65

Table 4.2: Execution time of different shared memory access scenarios
when all eight cores are active.

Benchmark
All cores access a single
shared memory (ns)

All cores access their lo-
cal shared memory (ns)

1D DCT 16716 16495
1D FFT 26260 26063
Median Filter 8674 7420
Matrix Multiplication 52838 51935

and this difference in turn results in different performance improvements. Assuming

a negligible area overhead is imposed by stacking, performance per area is 61% better

than a 2D chip on average.

For the 8-core case there are two ways of accessing shared memory for the cores:

accessing a single shared memory in the system or each core accessing their local

shared memory only. Table 4.2 shows the execution times of these two scenarios. For

DCT and FFT, execution times differ by 1.3% and 0.8% only. Matrix Multiplication

has 1.7% difference between these two situations because of its slightly higher memory

access rate. There is a much larger difference (16.9%) for Median Filter because it is

the most memory-intensive benchmark.

Finally, we apply memory resource pooling to the Median Filter benchmark. As

this benchmark also needs a lot of private memory accesses, four cores running this

benchmark do not stress the shared memory sufficiently to reach the memory bot-

tleneck, limiting the performance improvement to 5%. The available benefit from

memory resource pooling is proportional to the memory access rate. The memory

access rate becomes higher with a larger number of cores on 2D layer and/or by run-

ning more memory-intensive applications. When applying resource pooling to more

than 2 layers in a 3D system, the benefits are expected to increase as the cores can

utilize a larger number of shared memory blocks across different layers.

66

4.2 Object-Level Memory Management in Heterogeneous

Memory Systems

In the previous section, we have investigated performance improvement of a homo-

geneous 3D system by pooling on-chip scratchpad memory resources. Main memory

often plays an even more important role in system performance and energy efficiency.

An outstanding feature of 3D stacking is the ability to integrate different technolo-

gies into a single chip by stacking layers with various technologies, such as logic +

DRAM. Stacked DRAM can provide shorter access latency and higher bandwidth

utilizing TSVs (Loh, 2008). However, stacked DRAM’s capacity is limited by chip

area and temperature thresholds, which motivates including both on-chip stacked

DRAM and off-chip DRAM, forming a heterogeneous memory system. Including

multiple types of memory modules in the system, in traditional 2D systems as well

as in 3D-stacked systems, allows for higher performance and energy efficiency.

In this section, we study applications’ sensitivities to memory characteristics

(bandwidth, access latency and power consumption) and explore the performance and

energy efficiency benefits of heterogeneous memory systems1. In our investigation,

we observe that not only applications differ in their memory requirements, but there

are memory objects within each application that also exhibit different sensitivities to

memory characteristics. We propose a technique to classify memory objects within

applications and allocate each memory object to their best-fitting memory module to

improve the system performance and energy-efficiency. We present the details on our

motivation, technique, and experimental results in the following subsections.

67

0 5 10 15 20 25 30 35 40 45 50 55 60 64
Memory Object Index

0

20

40

60

80

100

120

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s

2.7MB

2.7MB

1.3MB

25.1MB

10.2MBROB stall time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L2
 M

P
K

I

h264ref

L2 MPKI

0 1 2
Memory Object Index

0

20

40

60

80

100

120

140

160

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s

2MB
32MB

32MB
0

1

2

3

4

5

6

L2
 M

P
K

I

libquantum

0 1 2 3 4 5
Memory Object Index

0

10

20

30

40

50

60

70

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s

5KB 55KB

256KB

243MB

1.9MB

1.9MB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L2
 M

P
K

I

bzip2

0 1 2 3 4 5 6
Memory Object Index

0
10
20
30
40
50
60
70
80
90

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s

101KB 1KB

568B

12.8MB

4.1MB
340.5MB

163.8MB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L2
 M

P
K

I

gcc

0
Memory Object Index

0

5

10

15

20

25

30

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s

408.9MB

1

408.9MB
31.5

32.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

L2
 M

P
K

I

lbm

0 1 2 3
Memory Object Index

0

20

40

60

80

100

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s 1.6MB

12.5MB 2.6MB
195.6MB

0

5

10

15

20

25

30

35

L2
 M

P
K

I

mcf

0 1 2 3
Memory Object Index

0

10

20

30

40

50

60

70

80

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s

57.2MB

57.2MB

11.4MB

45.8MB

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L2
 M

P
K

I

sjeng

0 1 2 3 4 5 6 7 8 9 101112131415161718
Memory Object Index

0

20

40

60

80

100

120

140

R
O

B
 H

e
a
d

 S
ta

ll
C

y
cl

e
s

P
e
r

Lo
a
d

 M
is

s

3MB
4MB

4MB

424MB

424MB

3MB
11MB
410MB

11MB
41MB

0
1
2
3
4
5
6
7
8
9

L2
 M

P
K

I

milc

Figure 4·10: Memory access characteristics of memory objects for selected
SPEC CPU2006 applications. The x-axis shows different memory objects in
the profiled applications, and each object’s footprint is denoted on the bar
(in MB). For milc and h264ref, we only mark the objects larger than 1 MB.

68

4.2.1 Motivation

Memory vendors provide memory modules with various performance and power char-

acteristics, targeting a wide range of system requirements. For example, Reduced

Latency DRAM (RLDRAM) is a type of memory optimized for low access latency,

which makes it ideal for switch and router applications. RLDRAM’s bandwidth is

smaller and power consumption is significantly higher compared to DDR3 memory

modules. On the other hand, Low Power DRAM (LPDRAM) reduces power con-

sumption substantially, but has higher access latency and lower bandwidth; thus, it

is attractive for low-power platforms. However, there is no single memory module that

can provide the lowest latency, highest bandwidth, and lowest power consumption.

Homogeneous memory systems (i.e., the typical way systems are designed today)

employ a single type of memory module. However, applications differ widely in their

memory access behavior, making homogeneous memory systems sub-optimal in terms

of energy efficiency. A computation-bound workload can achieve similar performance

using any type of memory module but the overall energy consumption can be re-

duced using LPDRAM. On the other hand, a memory-intensive workload achieves

substantially better performance using memory modules with low access latency or

high bandwidth. A heterogeneous memory system, which contains different memory

modules, is able to cater to a wide range of applications and provide higher energy

efficiency (Phadke and Narayanasamy, 2011; Chatterjee et al., 2012). Yet, achieving

higher energy efficiency is contingent upon placing an application’s data in the right

memory module.

In addition to application-level differences of memory use, most applications con-

tain a number of memory objects, which are often accessed at different frequencies,

1Our investigation in this subsection does not specifically focus on 3D-stacked memory, but
instead, we design methods for efficient management of heterogeneous memory system broadly, with
applications to both 2D and 3D systems.

69

have different memory footprints, and different LLC miss rates. We claim that it

would therefore be beneficial to classify memory objects and conduct object-level

data placement. Figure 4·10 shows the heterogeneity in memory access characteris-

tics for memory objects for a set of SPEC applications. We plot the LLC misses per

kilo-instruction (L2 MPKI, since we have two levels of caches in the tested system)

and the Reorder Buffer (ROB) stall time2 incurred by various memory objects within

each application. These metrics together indicate whether a given memory object is

latency-sensitive, bandwidth-sensitive, or not sensitive to main memory properties. A

high L2 MPKI and a high ROB stall time are indicative of a latency-sensitive object

that lacks MLP. On the other hand, a high L2 MPKI but low ROB stall time (low

stall time indicates good MLP) for an object indicates a bandwidth-sensitive memory

object. If a memory object is neither latency-sensitive nor bandwidth-sensitive, it can

be allocated with pages from a low-power memory module. In Fig. 4·10, we see a wide

range across both LLC miss rates and ROB stall times among the memory objects

of the applications. In order to tap into this heterogeneity within an application,

we design an object-level memory allocation technique, which allocates memory ob-

jects within an application based on their memory access behavior, to the best-fitting

memory module.

4.2.2 MOCA: Memory Object Classification and Allocation

To leverage the advantages of heterogeneous memory systems for system performance

and energy efficiency improvement, we propose an object-level memory allocation

technique, MOCA, which profiles the memory objects within an application, classi-

fies them, and allocates pages to these memory objects based on their classification.

The flow of MOCA is shown in Fig. 4·11. First, we profile memory objects in each

2ROB stall time is computed as the average number of cycles spent waiting at the head of ROB
for each LLC miss. This metric has been shown as an effective measure of MLP in prior work (Mutlu
et al., 2006).

70

Application

Profiling

MO0

Classification

S
tatic Instrum

entation

Application

MO: Memory Object

Object Level
Page Allocation

Heterogen. Mem.
System Param.

Lat_Mem

 Pow_Mem:Lowest power & Highest latency
Lat_Mem:Lowest latency & highest power

MO1

MO3MO2

MO0 MO1

MO3MO2

Med_Mem Pow_Mem

 Med_Mem:Medium latency & power

Figure 4·11: The workflow of MOCA. The profiling stage uniquely names
objects and profiles their memory access behavior. Classification stage uses
this information to classify objects. At runtime, each memory object is allo-
cated pages from its best-fitting memory module based on its classification.

App C code:
void main() {
 array = malloc(16);
 ...
 foo();
}
void foo() {
 string = malloc(20);
}

App ASM code:...
4004e9: e8 ca fe ff ff callq 4003b8 <malloc@plt>
4004ee: 48 89 45 f8 mov %rax,-0x8(%rbp)
...
4004f7: e8 c8 ff ff ff callq 4004c4 <foo>
4004fc: c9 leaveq
...
4004d1: e8 e2 fe ff ff callq 4003b8 <malloc@plt>
4004d6: 48 89 45 f8 mov %rax,-0x8(%rbp)

Heap Status:

array

string

 ...

Naming Information:

return addr. start addr. size

0x4004ee

0x4004d6
0x4004fc

0x602010

0x602030

16

20

Figure 4·12: An example of memory object naming convention.

application based on their memory access behavior. Using these profiling results, we

classify memory objects based on their sensitivity to memory access latency and mem-

ory bandwidth. These two steps are conducted offline. At runtime, MOCA allocates

each memory object based on its classification to the appropriate memory module.

Memory Object Profiling

The profiling stage uniquely names each memory object and collects performance

statistics for them. We use the return addresses of (1) the memory allocation function

(e.g., malloc()) and (2) its caller functions in the stack to assign a name to a memory

object, as these addresses are unique for each object. We also record the starting

virtual memory address and the size of each memory object to identify load operations

belonging to a given memory object. Figure 4·12 shows an example of our memory

71

Pow_Mem

Pow_Mem Lat_MemMed_Mem

Lat_Mem
Med_Mem

Med_Mem
Pow_Mem

B
an

dw
id

th
S

en
si

ti
vi

ty

Latency Sensitivity

memory objects

memory objects

objects

Lat-sensitive

BW-sensitive

Other memory

Figure 4·13: Classification of memory objects.

object naming process. We collect two performance statistics for each memory object:

(a) average number of stall cycles at the ROB head per LLC read miss (because read

misses cause significant delays in application executions) and (b) LLC MPKI, as

discussed in Section 4.2.1.

Memory Object Classification

The classification stage uses the output of profiling stage (memory objects, their

LLC MPKI, ROB head stall time and footprints) to classify objects as being latency-

sensitive or bandwidth-sensitive or neither. Memory objects with high LLC MPKI

are generally memory-bound. Among these, those exhibiting low ROB head stall time

have high MLP (memory latencies are largely hidden as indicated low ROB stalls),

i.e., such objects will benefit from a memory module which can process multiple

requests in parallel or a high-bandwidth memory module. We classify such objects

as bandwidth-sensitive. The rest of the memory-bound objects with low MLP (high

ROB head stall time) are sensitive to access latency of memory modules (i.e., larger

latencies translate to larger ROB stall time) and we classify them as latency-sensitive.

Objects with low LLC MPKI are neither sensitive to latency or bandwidth. Such

objects can be placed in low-power memory modules without affecting performance,

saving memory power consumption.

We empirically classify the memory objects within each application based on

their latency and bandwidth sensitivity. Figure 4·13 depicts this classification, where

Lat Mem is a RLDRAM module, Pow Mem is a LPDRAM module and Med Mem

72

is a traditional DDR3 module. We further classify latency-sensitive and bandwidth-

sensitive memory objects into two subcategories each based on their latency sensitiv-

ity. For example, for bandwidth-sensitive memory objects with higher latency sensi-

tivity, we spread the pages of such memory objects across Lat Mem and Med Mem to

prevent the degradation caused by Pow Mem. As for the rest of bandwidth-sensitive

memory objects, we use Med Mem and Pow Mem only.

Page Allocation for Memory Objects

When running applications in a system with heterogeneous memory, we use the mem-

ory object classification (Section 4.2.2) to conduct object-level physical memory page

allocation during application execution. We also implement application-level page

allocation (Phadke and Narayanasamy, 2011) as a baseline of comparison.

Application-level page allocation

To implement application-level page allocation, we collect cumulative memory

access patterns for each application and classify available applications into three cat-

egories: latency-sensitive, bandwidth-sensitive, or neither (i.e., can use low-power

memory). When allocating physical pages to applications, we select the pages from

its best-fitting memory module first. Eventually, if there are not enough pages left

in the best-fit module, we first select pages from the bandwidth-optimized memory

module and then the low-power module.

Object-level page allocation

In MOCA, to enable object-level page allocation in a heterogeneous memory sys-

tem, we (1) modify the memory allocation function in glibc to separate the heap

memory space based on the memory object types and add an extra input argument

in this function to specify the memory object type, and (2) divide the physical mem-

ory space based on the available memory modules.

73

Then, when a memory object is instantiated through a modified memory allocation

function call (including the extra input of object type), this object is allocated with

the virtual memory pages depending on its type. When doing page translation,

based on a memory object’s virtual page number, the OS can identify its type and

then allocate a physical page from the memory module corresponding to its type, as

shown in Fig. 4·14. If there is enough space in the requested memory module, the

memory object gets the physical pages it needs from its favored memory modules.

Otherwise, we first use the pages from Med Mem and then the ones from Pow Mem

to map a sufficient number of physical pages to the memory object.

4.2.3 Implementation

In a real-life system, MOCA first conducts memory object profiling and classification

for a given application using a set of typical (training) inputs (i.e., as in any profiling-

based approach). The memory object classification obtained via profiling can then be

integrated into the application binaries through application instrumentation. Then,

when running an instrumented application, the OS allocates memory based on the

object classification information provided by the application and the types of memory

modules available in the system.

We implement an experimental framework that mimics this real-life scenario in

text

data

bss

heap

stack

Memory Map

Lat_Mem

Med_Mem

Pow_Mem

Hetero. Mem System

Lat-MO
Heap

BW-MO
Heap

Pow-MO
Heap

Figure 4·14: Virtual and physical memory space separation for MOCA
support in real systems.

74

an instruction-level performance simulator (Gem5 (Binkert et al., 2011)). The frame-

work includes a memory object profiler, statistics collection, and page allocation. We

track memory objects allocated using the memory allocation library of C language

(malloc()). This framework can be implemented in other simulators and other pro-

gramming languages as well. Details of our implementation are provided below.

Memory Object Profiler (Offline)

To profile memory objects within an application, we need to give each of them

a unique name and enable the performance simulator to keep track of them during

application runs. As introduced in Section 4.2.2, we use return addresses of memory

allocation function and its caller functions to uniquely name memory objects. To

do this, we modify the memory allocation function to get its call stack information

and pass the memory object information (including the call stack information) to the

simulator. For profiling, we modify the simulator to register memory objects based

on the received memory object information, and collect the performance statistics for

these memory objects.

For modifying the memory allocation function, we use a built-in function in C

language, builtin return address(), to get the return addresses of each memory

allocation function and its caller functions. The return addresses, with the start

address and size of a memory object, form the memory object information. We

add pseudo instructions as part of the simulated ISA in the simulator to create a

path transmitting the memory object information from the simulated system to the

simulator. When the simulator receives memory object information, it registers the

incoming memory object and compares it with the existing ones based on the call

stack information. If there is no match in the registered memory objects, the simulator

instantiates a new counter for this memory object. In case of a match, the simulator

relates this memory object with the counter that has the same call stack information.

75

Table 4.3: Timing and architectural parameters for various memory
modules used in this work.

DDR3 (MI-
CRON, 2011)

RLDDR3 (MI-
CRON, 2016)

LPDDR2 (MI-
CRON, 2013)

Burst length 8 4 2
of banks 8 16 4

Row buffer size 128 B 16 B 128 B
of rows 32 K 8 K 8 K

Device width 8 32 16
tCK 1.07 1.25 1.875
tRAS 35 6 42
tRCD 13.75 2 18
tRC 48.75 8 60
tRFC 160 110 130

Standby Power 256 mW/GB 33 mW/GB 5.6 W/GB

Statistics collection (Offline)

For the registered memory objects, we collect ROB stall cycles and LLC MPKI

to identify their memory access behavior. For each simulated clock tick, when the

ROB stalls (or when there is a LLC miss), we poll all the registered memory objects

to see which memory object the requested address belongs to, and then the simulator

increments the corresponding counter for that memory object.

Page allocation (Runtime)

When a memory allocation function is called, based on the type of memory object,

the function allocates virtual pages in the corresponding heap space for this memory

object. Since the OS is aware of the correspondence between virtual memory (heap)

and physical memory, it maps corresponding physical pages to the virtual pages

according to the heap space they reside in, as shown in Fig. 4·14. We implement the

page allocation mechanism inside the simulator by maintaining our own page table.

76

hmmer

gobmk
sje

ng

h264ref
gcc

bzip
2

lib
quantummilc lbm mcf

0

20

40

60

80

100

120

140

R
O

B
 H

e
a
d
 S

ta
ll

C
y
cl

e
s

P
e
r

Lo
a
d
 M

is
s

ROB stall time

0

10

20

30

40

50

60

L2
 M

P
K

IL2 MPKI

P P P P L L L L B L

Figure 4·15: Memory access statistics (average ROB head stall cycles
per L2 miss and L2 MPKI) of selected SPEC applications. The letter in
each bar represents the category of that application. L: latency-sensitive; B:
bandwidth-sensitive; P: neither (placed in low-power memory).

4.2.4 Experimental Results

Simulation Methodology

We model a AMD Magny-Cours processor using Gem5 (Binkert et al., 2011) for per-

formance simulations. We use McPAT (Li et al., 2009) to get the core and cache power

values, and MICRON data sheets (MICRON, 2011; MICRON, 2013; MICRON, 2016)

to calculate memory power consumption. To demonstrate the benefits of the proposed

technique we run C-based applications from SPEC CPU2006 benchmark suite with

reference input set by fast-forwarding two billion instructions and executing 100 mil-

lion instructions. For memory object profiling, we generate the simpoints (Hamerly

et al., 2005) of applications with training input sets and run applications using these

simpoints to collect memory object statistics.

For performance and energy efficiency evaluation, we have three 2 GB homo-

geneous memory systems, each of which is composed of DDR3 memory, LPDDR2

memory or RLDDR3 memory, respectively. To test the application level page al-

location and proposed MOCA design, we model a heterogeneous memory system

composed of a 768 MB DDR3 module, a 256 MB RLDDR3 module and a 1 GB

LPDDR2 module. This heterogeneous memory system consists of four memory chan-

77

h264re
f

hmmer

gobmk
sje

ng
bzip

2
gcc

lib
quantu

m
milc lbm mcf

avera
ge

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
m

a
liz

e
d
 I
P
C

DDR3 LPDDR2 RLDDR3 App-lvl MOCA

Figure 4·16: Performance of homogeneous memory systems and hetero-
geneous memory systems with different page allocation algorithms.

nels and each channel is connected to a type of memory module (DDR3, RLDDR3

or LPDDR2). Each memory channel has a continuous memory address range (e.g.,

0x0000000-0xFFFFFFF for 1 MB memory channel). We use a dedicated memory

controller for each channel as the device timing parameters differ among different

memory modules. The architectural, timing and power parameters of the applied

memory modules are shown in Table 4.3 (MICRON, 2011; MICRON, 2013; MICRON,

2016). We use the proposed profiler to profile the target applications and classify these

applications based on L2 MPKI and ROB stall time. The application-level profiling

and classification results are shown in Fig. 4·15. In the following discussion, we denote

application-level memory allocation as App-lvl and our proposed object-level memory

allocation as MOCA.

Homogeneous vs. heterogeneous memory system

Figure 4·16 and 4·17 show the normalized performance and normalized energy

delay square product (ED2P) of the baseline memory systems and proposed hetero-

geneous memory systems, respectively. Besides these, we also show the memory ED2P

in Fig. 4·18. As shown in the figures, LPDDR2 has the worst performance, but due to

its low power cost, it still has the better memory energy efficiency than other systems

for low-power applications (e.g., h264ref and gobmk). On the other hand, RLDDR3

78

h264re
f

hmmer

gobmk
sje

ng
bzip

2
gcc

lib
quantu

m
milc lbm mcf

avera
ge

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 E

D
2
P

DDR3 LPDDR2 RLDDR3 App-lvl MOCA

26.3 32.3 19.5 10.6 5.1

Figure 4·17: System ED2P of homogeneous memory systems and hetero-
geneous memory systems with different page allocation algorithms.

always performs the best compared to the other systems, however, its high power

consumption significantly degrades its energy efficiency. DDR3 has the best memory

energy efficiency at a cost of 8.4% performance degradation compared to RLDDR3.

As for heterogeneous memory systems (both App-lvl and MOCA) outperform DDR3.

They achieve better system ED2P (11.6% for App-lvl and 13.6% for MOCA) and have

similar memory ED2P with DDR3 (9.2% for App-lvl and 3.1% for MOCA). Thus, the

heterogeneous memory systems can achieve better energy efficiency over homogeneous

memory systems with improved performance.

Application-level allocation vs. MOCA

For applications without object diversity (e.g., all objects belong to the same

category or an application has single memory object), MOCA has the same perfor-

mance/energy efficiency as App-lvl. However, when there are various memory objects

within an application, MOCA can achieve better performance and energy efficiency.

For example, the memory object with highest L2 MPKI in bzip2 has low ROB

stall time (as shown in Fig.4·10), thus this memory object is bandwidth-sensitive.

The other memory objects within bzip2, however, are neither latency-sensitive nor

bandwidth-sensitive, so they should be placed in LPDDR2 modules. As for lbm, App-

lvl allocates pages from all memory modules to its memory objects in a round robin

79

h264re
f

hmmer

gobmk
sje

ng
bzip

2
gcc

lib
quantu

m
milc lbm mcf

avera
ge

Benchmarks

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
o
rm

a
liz

e
d

DDR3 LPDDR2 RLDDR3 App-lvl MOCA

22.1 22 21.3 20.4 20.5 20.6 10.5 10.4 9.2 9.3 16
10.9 10.4 9.2

M
e
m

o
ry

 E
D

2
P

Figure 4·18: Memory ED2P of homogeneous memory systems and het-
erogeneous memory systems with different page allocation algorithms.

fashion, however, the low-power memory module hurts the general performance due

to its low bandwidth and high access latency. By allocating pages only from DDR3

and RLDRAM module, we can improve the performance by 24.4% and reduce system

ED2P by 49.3%. Overall, for memory intensive applications, MOCA can improve the

performance by 11% and reduce system ED2P by 17.3% on average compared to tra-

ditional homogeneous memory system composed of DDR3 modules. For applications

with memory object diversity, MOCA outperforms App-lvl by 5.4% in performance

and reduce system ED2P by 19%.

4.3 Summary

In this chapter, we have demonstrated the potential of 3D stacking to build a low

power multi-core system based on homogeneous stacking through 3D-MMC. We have

described an optimal way of exploiting the additional resources offered by the 3D-

stacked system through memory resource pooling. In addition, this work has shown

an analytical approach to evaluate the benefits of resource pooling. On the other

hand, we have proposed a memory object level management for heterogeneous mem-

ory systems, which shows a greater potential of 3D stacking on improving the system

performance and energy efficiency. We have demonstrated that in comparison to a ho-

80

mogeneous memory system with DDR3 modules, for memory-intensive applications,

MOCA improves performance by 11% and reduces system ED2P by 17.3% on average.

For applications with memory object diversity, MOCA outperforms application-level

page allocation by 5.4% in performance and by 19% in system ED2P.

81

Chapter 5

Thermal Management of 3D Stacked

Many-core Systems with PNoC

Silicon-photonic links are projected to replace the electrical links for global on-chip

communication in future many-core systems, however, the thermal sensitivity of pho-

tonic devices limits its wide adoption. Thus, it is in critical need for thermal manage-

ment for silicon-photonic network-on-chip (PNoC). In this chapter, we present novel

runtime and design-time thermal management techniques to guarantee the optical

link integrity and improve the power efficiency of many-core systems with PNoC.

Our proposed runtime management policy adjusts the temperature of optical devices

through workload allocation to match their optical frequencies as much as possible

and the remaining difference in optical frequencies is tuned to the same level during

runtime using our proposed tuning policy. Our proposed design-time methods reduce

the localized thermal tuning power and laser source power consumption through on-

chip silicon-photonic devices placement and floorplanning. We start this chapter

with a introduction of many-core systems with PNoC, followed by our experimental

methodology. Then, we present the proposed runtime and design-time thermal/power

management techniques in details.

5.1 Many-core Systems with PNoC

Many-core systems, designed for a high degree of parallel processing, is composed of a

large number of simple and independent cores and an on-chip communication network.

82

Ring Group

L2
Core +

L1

(a) 256-core system with U-shape layout of PNoC.

(b) 256-core system with
horizontally shifted ring groups.

(c) 256-core system with
vertically shifted ring groups.

Waveguides

y inputs
for input
stage router Clos Network

z-ary

On-Chip
Laser Source

(d) 256-core system with
W-shape physical layout.

(e) 256-core system with 1:4 chip aspect
ratio and chain-shape physical layout.

Input
Stage

Middle
Stage

Output
Stage

50µm
300µm

Active Region Cross Section:

30nm 2µm

470nm 470nm 1µm

WG* Ring WG Next WG

1.5µm

PD*

*WG -- Waveguide
Ring -- Ring modulators/filters

50µm

100nm
buried oxide layer

SiO2 SiO2

substrate
190nm

PD -- Photodetector

5µm

Figure 5·1: Target many-core system with a PNoC (a), many-core
systems with 8-ary 3-stage Clos topology and shifted physical layouts
(b)-(c), and many-core systems with different logical topology and phys-
ical layout combinations (d)-(e). (d) is designed with 16-ary 3-stage
Clos topology and W-shape physical layout; (e) is designed with 8-ary
3-stage Clos topology and chain-shape physical layout.

To design a many-core system with PNoC, we must consider the requirements and

constraints for both electronic components and silicon-photonic components. In this

section, we introduce the architecture of our target many-core system and a general

PNoC design flow. Table 5.1 shows the notations used in this chapter.

5.1.1 Many-core System Architecture

In our work, we use a 256-core system designed using a typical 22 nm SOI CMOS

process, operating at 1 GHz with 0.9 V supply voltage. For each core, we use an

architecture similar to the IA-32 core from Intel SCC (Howard et al., 2011). Every

core consists of a 16 KB I/D L1 cache and a 256 KB private L2 cache. We scale the

core architecture to 22 nm, resulting in a single core area of 0.93 mm2 (including the

83

Table 5.1: Notations used in this work.

Variable Definition Unit
i Ring group index
j Core index
k Thread index
l Laser source index
s Simulation step index
g Material index
R Thermal resistivity m ·K/W

Rjoint Thermal resistivity of the NoC block m ·K/W
∆fR/∆fLS

Thermal sensitivity of ring resonators / laser
sources in frequency domain

GHz/K

∆λR/∆λLS
Thermal sensitivity of ring resonators / laser
sources in wavelength domain

pm/K

ηR/ηLS
Thermal tuning efficiency of ring resonators /
laser sources

W/K

ng Refractive index of the ring resonator material
r Ring resonator radius µm
V Volume m3

M Total number of ring groups
H Total number of rings in a ring group
N Total number of cores
S Total number of threads
Q Total number of laser sources
nλ Number of wavelengths per waveguide
x Number of middle stage routers
y Number of I/O ports on first or last stage routers
z Number of first or last stage routers
w Weight factor K/W

wij
Weight factor for ring group i and core j for tem-
perature impact

K/W

∆w Weight factor difference K/W
t Time ms
T Temperature oC
TRGi Temperature of ring group i oC
TLSl Temperature of laser source l oC
Pj Power of core j W
PFT Optical frequency tuning power W
Pleak Leakage power W
λ Wavelength nm
F Frequency GHz
FRGi Frequency of ring group i GHz
FLSl Frequency of laser source l GHz

84

L1 cache), and an L2 cache area of 0.35 mm2. Our total chip area1 is 326.5 mm2.

The average power consumption for each core is 1.17 W . The system is organized into

64 equal tiles. In each tile, four cores are connected via an electrical router. There

are 16 memory controllers that are uniformly distributed along two edges of the chip.

We use an 8-ary 3-stage Clos network topology to connect the L2 caches and memory

controllers. Our Clos can be described by the triplet (x=8, y=10, z=8), where x is

the number of middle stage routers, y is the number of I/O ports on the first or last

stage routers, and z is the number of first or last stage routers. Therefore, the 8-ary

3-stage Clos PNoC has 128 channels in total.

We map the 8-ary 3-stage Clos topology to a U-shaped physical layout of silicon-

photonic waveguides as shown in Fig. 5·1(a), where each ring group is assigned to the

nearest eight tiles and two memory controllers. We apply the silicon-photonic link

technology described in prior work (Orcutt et al., 2012; Moss et al., 2013; Georgas

et al., 2014), where optical devices are monolithically integrated with CMOS devices.

In this system, single crystal Si is utilized for waveguides and ring resonators, and

Ge on Si is utilized for photodetectors. Ring resonators are designed in Si by ion

implantation and are tuned with metal heaters. We combine the ring modulators

and filters from one electrical router of each of the three network stages into a ring

group (RG). The optical waves from laser sources arrive at a ring group and are

modulated. The modulated optical waves traverse the network and are filtered by

the ring filters in the destination ring group, where a photodetector converts the

optical signal into an electrical current that is fed to the link receiver circuit. We

assume on-chip laser sources, which simplify packaging, reduce cost and improve

laser source control. Several approaches have been proposed for realizing on-chip

laser sources (Song et al., 2015; Wang et al., 2011; Lourdudoss, 2012). Specifically,

1There are commercial products with similar die size and power consumption, e.g., SPARC T4
processor (Oracle, 2011).

85

of cores & NoC topology

Apps

BW per λ

BW requirement

of λ

of waveguides

of λ per waveguide

Radius
Ring design

Thermal

Spacing between λ

Resonant Frequency

Free Spetral Range

Optical NoC

Mismatch Impact

sensitivityng

needed area constraint

Figure 5·2: PNoC design flow chart.

we assume heterogeneous integration to incorporate laser sources above the logic and

silicon-photonic devices. Such a monolithic approach can be cost effective because it

does not require separate fabrication of laser sources and would avoid chip attachment

steps that require precise alignment.

Alternative core and cache architectures may require different logical topology and

physical layout combinations, so we also present system designs with other layouts

and ring group locations in Fig. 5·1(b) to 5·1(e). Figures 5·1(b) and 5·1(c) show two

layouts that use the same logical topology but have horizontal and vertical shifts,

respectively, in ring group locations. Figure 5·1(d) presents a system with 16-ary

3-stage logical topology and a W-shaped physical layout. Figure 5·1(e) shows a

rectangular chip with 8-ary 3-stage logical topology and chain-shaped physical layout.

5.1.2 PNoC Design Flow

Designing a PNoC for a many-core system has many factors to consider, e.g., band-

width requirement and area constraints of the target system, data rate of the optical

waves as well as the design of ring resonators. To investigate the design space of a

PNoC, we adopt a cross-layer approach where we jointly consider the photonic device

design and NoC architecture design. Figure 5·2 shows the design flow adopted for

jointly choosing the ring dimensions, the number of wavelengths per waveguide, and

86

the number of waveguides for a given thermal gradient and area constraint. We con-

sider area overhead as a constraint in the design flow because monolithic integration

increases die area, resulting in increased manufacturing cost.

The bandwidth requirement of a PNoC depends on targeted applications in a

many-core system. In our work, we simulate selected SPLASH-2 (Woo et al., 1995),

PARSEC (Bienia et al., 2008) and UHPC (Campbell et al., 2012) applications on our

many-core system and determine the peak NoC bandwidth (BW) requirement to be

512GB/s, which corresponds to 64 bits/cycle for each photonic channel in our 8-ary 3-

stage Clos network. A monolithically integrated silicon-photonic link with 2.5 Gbps/λ

bandwidth has been demonstrated in prior work (Moss et al., 2013). In this work,

we assume a bandwidth of 4 Gbps/λ. This is reasonable considering the performance

of current silicon-photonic devices that operate beyond 25 Gbps (Baehr-Jones et al.,

2012). The link bandwidth and the required bandwidth of the applications define the

total number of wavelengths needed in the PNoC. We constrain PNoC area to be at

most 10% of the total die area. This constraint puts an upper limit on the number of

waveguides in the system and thus a lower limit on the number of wavelengths that

need to be mapped to a waveguide. We ignore the non-linearity limit on the power

that can be injected into a waveguide (Joshi et al., 2009). As for the ring resonator

design, we choose 10 µm as the ring radius.

Within each ring group in a PNoC, there are ring resonators with varying fre-

quencies belonging to different silicon-photonic links. Each silicon-photonic link is

multiplexed with other links on a waveguide and has one ring modulator (on the

transmitter side) in one ring group and a ring filter (on the receiver side) with the

same resonant frequency in another ring group. For the sake of brevity, we refer to

“resonant frequencies of ring resonators within a ring group” as “the resonant fre-

quency of a ring group”. We use “resonant frequency difference between two ring

87

McPAT HotSpot

Workload
Alloc. Policy

Sniper
CACTI

Perf.
Stats

Power Traces

Leakage
Power Model

Laser Source
Power Model

Arr.
Time

Job
Name

Thread
Count

Job Queue

10 barnes 32

Figure 5·3: Our performance (Carlson et al., 2011), power (Thoziy-
oor et al., 2008; Li et al., 2009) and thermal (Skadron et al., 2003)
simulation setup for modeling many-core systems with a PNoC.

groups” to represent “resonant frequency difference between a ring modulator in one

ring group, and the corresponding ring filter in the other ring group”.

For systems without process variations, a corresponding resonant frequency differ-

ence between two ring groups can be computed using the temperature gradient (∆T)

between them: ∆F = ∆T × ∆fR. Due to manufacturing process variations, there

are variations in the dimensions of the waveguides across a chip (Chen et al., 2013).

Since the resonant frequency is very sensitive to these dimensions, there is an initial

gradient in frequency across ring groups. Thus, temperature alone cannot accurately

indicate the frequency difference among ring groups.

5.2 Experimental Methodology

To investigate thermal variations’ impact on optical frequencies of ring resonators

and laser sources at runtime when running realistic workloads on a many-core system

with PNoC, we set up a simulation infrastructure composed of performance, power

and thermal simulators, as shown in Fig. 5·3. We use Sniper (Carlson et al., 2011)

to simulate performance. Sniper comes interfaced with McPAT (Li et al., 2009) to

estimate the power consumption of the simulated system. The power traces generated

by McPAT are given as inputs to the HotSpot 3D Extension (Skadron et al., 2003;

Meng et al., 2012) for transient thermal simulations.

88

5.2.1 Performance and Power Simulation

For performance simulations, we simulate the region of interest of a representative

set of multi-threaded applications from the SPLASH-2 (Woo et al., 1995) (barnes,

lu cont and water nsq), PARSEC (Bienia et al., 2008) (blackscholes and canneal),

and UHPC (Campbell et al., 2012) (md and shock) benchmark suites. To investigate

the impact of core thermal variations on the photonic devices under varying system

utilizations, we run each application on a target many-core system (explained in

Section 5.1.1) with 32, 64, 96 and 128 threads.

We use the performance statistics from Sniper as input to McPAT to calculate

power for cores and caches. After generating all power traces, we use published power

dissipation data from Intel Single-Chip Cloud Computer (SCC) (Howard et al., 2011),

scaled to 22 nm, to calibrate our dynamic power data. HotSpot takes these power

traces as inputs, and outputs corresponding temperature traces. We assume that idle

cores are put into sleep states and consume 0 W . We also assume that 35% of the

average core power (1.17 W) at 70 oC comes from leakage (Meng et al., 2012). We

calculate the average core power consumption in one core for each application and

categorize the applications as shown in Table 5.2. We compose and evaluate different

workload combinations based on this categorization in Section 5.5.2.

To simulate thermal behavior of the cores more accurately, we implement a linear

leakage power model inside HotSpot. This model is suitable due to the relatively

limited range in the operating temperature on our target system (Su et al., 2003).

We use published data for Intel 22 nm commercial processors (Wong, 2012) to extract

this linear leakage power model as shown in Equation (5.1). In this equation, T (ts−1)

is the temperature in oC at time ts−1 and Pleak(ts) is the leakage power in W at time

ts, where s is the thermal simulation step index and ts is the time at which the leakage

power is recalculated. c1 and c2 are constant coefficients with values 1.4e-3 and 0.31,

89

Table 5.2: Classification of applications.

High Power (HP) Apps md (2.15 W), shock (1.7 W)
Medium Power (MP) Apps blackscholes (1.46 W), barnes (1.3 W)

Low Power (LP) Apps canneal (0.9 W), water nsq (0.7 W),
lu cont (0.75 W)

respectively. During thermal simulations, we update the leakage power for every core

based on its temperature at ts−1.

Pleak(ts) = c1 × T (ts−1) + c2 (5.1)

A novel part of our simulation infrastructure is modeling the laser source power

consumption at runtime as a function of temperature, and including this model in

our HotSpot transient thermal simulations. Previous work (Li et al., 2015a) imple-

mented a temperature-dependent laser source power model for steady state thermal

simulations. We put together a similar framework that works with both steady state

simulations and transient simulations. In our framework, we generate a lookup table

for laser power by employing the theory described in prior work (Coldren et al., 2012).

The laser source power that contributes to heat dissipation is the difference between

the required input electrical power and the required output optical power. The re-

quired input electrical power depends on the required output optical power and the

laser source efficiency. The required output optical power is determined by the optical

loss during optical wave transmission in the PNoC, and thus is fixed for a given PNoC

design. The laser source efficiency is based on the required output optical power and

laser source temperature. Thus, the lookup table takes required output optical power

and laser source temperature as inputs, and computes the required input electrical

power based on the corresponding laser source efficiency. During transient thermal

simulations, we update the laser source power at the beginning of each simulation

step for each laser source based on its temperature.

90

5.2.2 Thermal Simulation

We perform transient thermal simulations to evaluate our proposed dynamic workload

allocation policies. To do this, we enable HotSpot to read the upcoming jobs from a

job queue, in which each job entry has an arrival time, an application name, and a

required thread count. We also integrate a workload allocation module in HotSpot.

When a job arrives, this module allocates the threads to cores. HotSpot assigns a

power value for each core at each simulation step based on the specific thread it

runs (assigned from a power trace database generated via Sniper-McPAT). Thread

migration can be applied to this framework as needed.

In our HotSpot setup, we use the default configuration with 35 oC ambient tem-

perature, and the properties of the materials shown in Table 5.3. The floorplans

of the target systems are shown in Fig. 5·1. For our system, we assume monolithic

integration of waveguides, ring resonators and photodetectors on the logic layer (Or-

cutt et al., 2012), while laser sources are on a separate layer. On the laser source

layer, the laser sources are placed along the upper chip edge, arranged in two groups

surrounding the waveguides in a matrix fashion, as shown in Fig. 5·1(a).

The number of laser sources depends on the design choice of laser source type,

sharing degree and required network bandwidth. Sharing a laser source among mul-

tiple waveguides has been shown to improve laser source efficiency and reduce total

on-chip power (Chen et al., 2014). We choose 32 waveguides for our PNoC design

to allow for laser source sharing between waveguides while remaining within the 10%

area overhead maximum given for the photonic devices in our system.

We aggregate waveguides, ring resonators and photodetectors into larger simula-

tion blocks in our floorplan in HotSpot. We calculate the joint thermal resistivity

for each PNoC block based on the percentage of each material’s volume and thermal

resistivity of each material using Rjoint = Vtotal/Σ(Vg/Rg), where Vtotal represents the

91

Table 5.3: Properties of the materials in our target system.

Thickness (mm) Side (mm)
Heat Sink 6.9 80
Spreader 1 40

Interface Material 0.02
Laser Source Layer 0.005

Core Layer 0.05
Thermal Conductivity Specific Heat

(W ·m−1 ·K−1) (J · g−1 ·K−1)
Spreader 400

Interface Material 4
Si 100 0.71
InP 68 0.31

Photonic Device Dimensions Material
Laser Source Size 300 µm × 50 µm InP

Ring Radius 10 µm Si

Workload
Distribution

Core & Cache
Power

Ring Group
Temperature

Laser Source
Temperature

Laser & Ring
Control Power

Core & Cache
Temperature

Ring Group
Process Variation

Figure 5·4: Thermal dependence between workload distribution and
optical device frequency control power.

total volume of a PNoC block, Rg refers to the thermal resistivity of material g and

Vg indicates the volume of material g in this PNoC block. Rjoint of the ring blocks is

1.006e-2 m ·K/W , while Rjoint for the waveguide blocks is 1.004e-2 m ·K/W (both

are almost identical to the thermal resistivity of Si).

Transient thermal simulations are initialized with a steady state simulation. As

the temperature-dependent leakage model changes the power traces, we run each

transient thermal simulation for another round to ensure convergence of temperature.

92

5.3 Runtime Thermal Management Through Workload Al-

location

In a PNoC, WID process and thermal variations cause optical frequency difference

among ring groups and laser sources, which needs to be compensated through lo-

calized thermal tuning technique. Process variations depend on the quality of the

manufacturing process while the temperature variations are highly dependent on the

workload distribution in the many-core system. The thermal dependence between

workload distribution and optical device frequency control power is shown in Fig. 5·4.

Our target is to change the chip thermal map through workload allocation to reduce

the resonant frequency difference among all the ring groups. On top of this, we pro-

pose an adaptive frequency tuning method to match the remaining optical frequency

difference between laser sources and ring groups.

We describe our proposed ring-location-aware workload allocation policy, RingAw-

are (Zhang et al., 2014), and its improved version, FreqAlign (Abellan et al., 2016),

in Section 5.3.1. In Section 5.3.2, we introduce a baseline frequency tuning policy and

present a novel adaptive frequency tuning policy for many-core systems with on-chip

laser sources. We discuss the performance overhead of FreqAlign in Section 5.3.2.

5.3.1 Workload Allocation Policies

RingAware

The RingAware workload allocation policy balances the ring group temperatures by

maintaining similar power profiles around each ring group. For a given layout, this

policy categorizes cores based on the distance of a core from its closest ring group.

We use RD# notation for each region, where # represents the cores’ relative distance

to the ring group, as shown in Fig. 5·5. Since RD0 cores have the highest impact

on a ring group’s temperature, RingAware maintains similar power profile across the

93

RD0 regions for all ring groups to minimize their temperature gradients.

We use single-threaded cores and each workload is composed of S threads. For an

N -core system with M ring groups, if there are S threads to allocate, we first compare

S with the total number of non-RD0 cores. If S is larger, the RD0 cores need to be

Identify RD0 cores → RD0 core list;
Partition the system into 4 quadrants;
Sort all threads based on their power consumption;
if S > N −#RD0Cores then

foreach ring group in the system do

assign dS−(N−#RD0Cores)
M

e threads;
end

Each quadrant ← S−dS−(N−#RD0Cores)
M

e∗M
4

threads;

else
Each quadrant ← S

4
threads;

foreach quadrant in the system do
foreach thread left in queue do

allocatedCore← 0;
nextThread← 0;
foreach alternative core j on boundary do

if core j is idle & core j 6∈ RD0 core list then
allocatedCore← j;
nextThread← 1;
break;

end

end
if nextThread == 0 then

foreach alternative core j in inner area do
if core j is idle & core j 6∈ RD0 core list then

allocatedCore← j;
nextThread← 1;
break;

end

end

end

end

end

end
Algorithm 1: Pseudocode for RingAware (Zhang et al., 2014) policy.

94

RD0 cores Ring groups

Thr7

CoreCenter

(a) (b)

RD1 cores Waveguides

Thr5 Thr6

Thr3

Thr4

Thr8

Thr1

Thr2

Figure 5·5: (a) Classification of RD0 cores and (b) an example of
RingAware allocation in a 64-core system.

utilized to run all the threads and we assign dS−(N−#RD0Cores)
M

e threads to each RD0

region. The RD0 regions of all ring groups need to have the same active core count

to minimize the ring group temperature gradient. Then, we partition the system

into four quadrants and then assign the rest of the threads evenly in each quadrant.

The residual threads, if any, are allocated to the quadrants in a round-robin fashion.

For each quadrant, RingAware activates non-RD0 cores alternately from the outer

boundaries to the inner part of the chip (i.e., to reduce chip temperature) until all

threads are allocated, starting from the corner core, as shown in Algorithm 1. If there

are power variations among threads, we rank the threads according to their power

consumptions at the beginning and start the allocation process with the high-power

threads in the order (Thr1 to Thr8) shown in Fig. 5·5(b).

RingAware allocation effectively reduces the ring group temperature gradient,

which results in a low resonant frequency gradient when the system does not have

process variations. For systems with process variations, only balancing the tempera-

tures of ring groups is not sufficient to reduce the resonant frequency difference among

ring groups. Also, when the ring groups are not symmetrically placed on the chip,

RingAware starts to require larger thermal tuning power. Hence, we now propose an

improved policy that jointly accounts for thermal variations and process variations.

This policy works even for asymmetric placement of ring groups.

95

FreqAlign

The goal of FreqAlign workload allocation policy is to reduce the resonant frequency

difference among ring groups. To do this, we estimate the ring group resonant fre-

quency for every potential workload allocation decision by estimating the ring group

temperatures. In a system that has M ring groups and N cores, for each ring group,

we use an M × N weight matrix of wij that contains the steady state temperature

impact per unit of power of core j on ring group i. This weight matrix is used to

estimate the temperature of ring groups. For example, if core j has a weight factor of

0.5 for ring group i, it means at steady state, ring group i’s temperature increases by

0.5 K when core j consumes 1 W . This weight matrix can be obtained using HotSpot

for a given physical layout.

When calculating the resonant frequency shifts of ring resonators in ring group i

due to thermal variations, we use Eqn. (5.2) and (5.3), where FRGi
post and TRGi

post are

the resonant frequency and temperature, respectively, of ring group i after an updated

workload allocation. FRGi
pre and TRGi

pre are the resonant frequency and temperature

of ring group i before this updated workload allocation. ∆fR is 9.7 GHz/K, Pj is

the power of core j, and wij is the weight factor of core j to ring group i.

FRGi
post = FRGi

pre −∆fR × (TRGi
post − TRGipre) (5.2)

TRGi
post =

N∑
j=1

wij × Pj (5.3)

Algorithm 2 shows the pseudocode of FreqAlign. Here, we define a job as an appli-

cation with a number of threads to be allocated (our target system has single-threaded

cores, so we can only assign one thread per core), and we put the threads into a queue

and allocate them to the available cores in the many-core system. The objective func-

tion of the optimization is to minimize the sum of the absolute differences in resonant

96

Sort all threads based on their power consumption;
foreach thread in queue do

∆wmin ← −1;
allocatedCore← 0;
foreach available core j in many-core system do

foreach ring group i in many-core system do
west ← wcurr + core j impact on RG i;

end
∆west ← max(west)−min(west);
if ∆west < ∆wmin or ∆wmin == −1 then ∆wmin ← ∆west;
allocatedCore← j;
else continue;

end
allocatedCore in coreArray ← active;
wcurr ← wcurr + core(allocatedCore) impact on RGs;

end
Algorithm 2: Pseudocode for FreqAlign Policy.

frequencies of all the ring groups (
M−1∑
i=1

M∑
i′=i+1

|FRGi − FRGi′ |).

Every ring group has a designed resonant frequency value F 0
i . Due to process

variations, this value varies depending on the ring group location. The variations in

the resonant frequency could be diagnosed after the chip is manufactured. We track

the resonant frequencies using an array (wcurr in Algorithm 2) for the ring groups

during the system operation. This array contains the initial values of w which depend

on the resonant frequency shift of each ring group caused by its process variations.

For example, an initial array of [5, 0, 0, 0, 0, 0, 0,−5], means that RG1 has a resonant

frequency 5 K × 9.7 GHz/K = 48.5 GHz lower than the designed frequency while

RG8 has a resonant frequency 48.5 GHz higher than the designed frequency. Every

time a core is activated, we update this array based on the core’s impact on the ring

groups. Our target in workload allocation is to equalize the values in this array.

During the system operation, when an application with S threads arrives, we

rank the threads based on their power consumption (which can be estimated through

97

previous runs or performance counters history) and assign them to the cores while

balancing the resonant frequency of the ring groups. After all S threads are allocated

to the corresponding cores, the system starts to run. As Algorithm 2 shows, when

assigning the threads, we go through all the available cores in the system. For each

available core, we calculate the expected resonant frequency difference among all ring

groups if a thread is assigned to that core. For each thread, we select the core that

leads to the smallest resonant frequency difference among all ring groups (∆wmin).

After assigning a thread, we update the estimated resonant frequency values for all

ring groups. We iterate this process until all threads are assigned. If there are jobs

currently running on the many-core system and a new job arrives, we rank them

together with new threads based on their power consumptions and reallocate all

workloads. The potential workload migration when redoing the allocation induces

context switch overhead and cache cold start effect to the system. FreqAlign can be

integrated with the operating system scheduler and run on any available core in the

system. We discuss the performance overhead of FreqAlign in Section 5.3.2.

5.3.2 Frequency Tuning Methods

Baseline Frequency Tuning

Workload allocation can help decrease the resonant frequency difference among the

ring groups. We use localized tuning to compensate for the remaining resonant fre-

quency difference as well as the optical frequency difference between ring groups and

laser sources. Resonant frequencies of ring resonators can be controlled through ther-

mal tuning devices such as micro-heaters. As for on-chip laser sources, their optical

frequencies can be controlled in a number of ways, depending on the laser source type.

For example, multi-section distributed Bragg reflector laser sources comprise of wave-

length tuning control elements such as mirrors and a phase section. The wavelengths

of distributed feedback lasers, which we use in this work, are controlled by injecting

98

current. More advanced laser sources on silicon-photonic platforms may comprise of

extra ring filters within the laser cavity for tuning purposes.

Our baseline frequency tuning method is Target Frequency Tuning (TFT). In this

tuning method, at any given time during system operation, all ring groups and laser

sources are first tuned to their optical frequencies at the temperature threshold of the

target many-core system (90 oC in our case), and then are individually tuned further

to compensate for process variations to match their optical frequencies. We also

assume that all the ring resonators within a ring group share the same temperature.

Since the material used for the laser sources and ring resonators have different thermo-

optic coefficients, their respective tuning efficiencies (8 mW/nm (Larson et al., 2015)

for the laser sources and 2.6 mW/nm (Orcutt et al., 2012) for the ring resonators) also

differ. The temperature sensitivity values for laser sources and ring resonators are 12.5

GHz/K (Kimoto et al., 2003) and 9.7 GHz/K (Dong et al., 2010a), respectively. For

a fixed target optical frequency, the amount of frequency tuning power (PFT) required

is shown in Equation (5.4), where FLSl is the frequency of laser source l, Ftargeti/l is the

desired target optical frequency of a photonic device i/l at the target temperature,

∆fLS is the thermal sensitivity of the laser source, ηLS is the tuning efficiency of the

laser sources, FRGi is the frequency of ring group i, ∆fR is the thermal sensitivity

of the ring resonators, ηR is the tuning efficiency of a single ring resonator, Q is the

total number of laser sources, M is the total number of ring groups, and H is the

amount of ring resonators in a ring group.

PFT =

Q∑
l=1

|FLSl − Ftargetl |
∆fLS

× ηLS+

M∑
i=1

FRGi − Ftargeti
∆fR

× ηR ×H

(5.4)

99

Ring Group 1

Ring Group 2

Ring Group 3

Optical Frequency

Designed
optical freq.

Actual optical freq.
(Process Variation)
Optical freq. after
each thread allocation

1

1

1234

4

4

3 2

3 2

Laser Source14 3 2

k Thread index

Optical freq.
after tuning

Using tuning to adjust laser
source's optical freq.

Figure 5·6: Illustration of FreqAlign workload allocation policy and
adaptive frequency tuning AFT policy. Every thread allocated by Fre-
qAlign increases the temperatures of ring groups and causes a down-
ward shift in their frequencies. When all threads are allocated, thermal
tuning is used to bring all ring groups to the lowest common resonant
frequency. Above, ring groups 1 and 3, as well as the laser source, are
tuned to match the resonant frequency of ring group 2.

Adaptive Frequency Tuning

TFT tunes all ring groups and laser sources in PNoC to a target optical frequency.

Using this method, the total tuning power depends directly on the sum of differences

between the optical frequency of optical devices and the target frequency. When

the system is underutilized, the tuning power becomes significant due to the low

average temperature. Since in our work we use on-chip laser sources, which provide

a much shorter control loop compared to off-chip laser sources, we propose a new

tuning method to match the optical frequency of laser sources and ring resonators,

called Adaptive Frequency Tuning (AFT). In this tuning method, we set the lowest

frequency among the ring groups as the target frequency and tune all the other devices

to this target frequency. Because ring groups’ resonant frequencies change with their

temperatures, the target frequency is chosen adaptively based on the current lowest

100

resonant frequency among all ring groups. Therefore, the tuning power depends on

the combination of relative differences between the lowest resonant frequency among

the ring groups and the optical frequencies of other optical devices. As a result,

FreqAlign requires lower power consumption for optical frequency tuning (Fig. 5·6).

Performance Overhead Analysis

The performance overhead of FreqAlign policy is composed of two parts: (1) the

execution time of FreqAlign and (2) the potential thread migration overhead in a

many-core system. To evaluate the execution time of FreqAlign, we carried out an

off-line experimental analysis considering the worst-case scenario of allocating one

thread to each core in the target 256-core system. For our analysis, we implement

FreqAlign in C programming language, compile it using gcc with -O3 flag, and run

it on Sniper. The simulation results show that the allocation of 256 threads to 256

cores takes a total of 192 µs.

Whenever a new job enters the system, thread allocation in FreqAlign also in-

volves a reallocation process, in which we migrate the existing threads if necessary.

Thread migration may hurt application performance due to the context switch and

the cache cold start effect. We use Sniper along with its hardware thread migration

scheme (Van Craeynest et al., 2013) to investigate the impact of thread migration

overhead on our target system’s performance. Once the pipeline of the core a thread

is originally running on has been drained, its architectural state is transferred to the

destination core. The destination core then starts running the thread and endures

the cache cold start effect. The overhead from migrating a thread from one core to

another core includes three major components: (1) a fixed penalty of 1000 cycles for

storing and restoring the core’s architectural state (Van Craeynest et al., 2013); (2)

the time to drain the source core’s pipeline prior to migration; and (3) the cache cold

start effect. As quantified in several previous studies (Van Craeynest et al., 2013;

101

Van Craeynest et al., 2012), cache cold start effect is the dominant component in

migration overhead and can be two orders of magnitude larger than the other two

components combined. In our thread migration scheme, there is no flushing of the

source core’s caches. Every cache miss in the destination core sends a memory request

to the source core’s L2 cache instead of memory. This lowers the number of memory

accesses. Any source core’s L2 cache block that is in shared/modified state triggers

a writeback/invalidation using the normal cache coherency protocol.

As thread migration overhead varies with both workload and the number of

threads to migrate, we carry out a comprehensive evaluation that considers all ap-

plications under varying number of threads used in this work (further details in Sec-

tion 5.5.2). We configure Sniper with multiple thread migration intervals (time slice

after which a thread migrating process occurs): 500 µs, 1 ms and 10 ms. For each

interval case, we configure the migration percentage, i.e., the number of threads that

actually migrate: 0.0 (baseline case without thread migration), 0.05 (5% of the threads

migrate), 0.1, 0.25, 0.5 and 1.0 (all threads migrate). We compare the migration cases

with the baseline cases to calculate the average cycle count per migration for each

of the combinations. From the results, we observe a maximum of 147.3 µs (14.3 µs

on average) increment in running time due to thread migration. The running times

of our applications with native input size vary from hundreds of milliseconds to sec-

onds (Carlson et al., 2012). Real-life running times for similar scientific applications

vary from minutes to hours. As FreqAlign executes only when a new job arrives at

the system, we conclude that it entails negligible performance overhead.

5.3.3 Experimental Results

To demonstrate the benefits and scalability of FreqAlign, we conduct experiments us-

ing systems with different logical topology / physical layout combinations and process

variations and compare FreqAlign with two other policies: assignment of threads start-

102

ing from the lowest indexed core (Clustered, shown in Algorithm 3) and RingAware

(shown in Algorithm 1). In our target system, the cores are indexed from left to right

and from bottom to top. There are 32 waveguides in the PNoC, and the data rate for

each wavelength is 4 Gbps. Our design of experiments contains the following cases:

1. Six workload combination cases using two different jobs (see Table 5.4) at the

same time: HPHP, HPMP, HPLP, MPMP, MPLP, LPLP; Job 1 arrives at 1 ms

and Job 2 arrives at 2 ms after the start of each simulation. Jobs have different

running times (see Table 5.5), and the shorter job repeats itself until the longer

job finishes execution.

2. Six utilization cases: 25% (Job 1: 32 cores + Job 2: 32 cores), 50% (32+96,

64+64, 96+32 cores), 75% (96+96 cores), 100% (128+128 cores).

3. One case without process variations and four cases with process variations in

different directions.

4. Five logical topology and physical layout combinations (Fig. 5·1(a) to 5·1(e)).

Sort all threads based on their power consumption;
foreach thread in queue do

allocatedCore← 0;
for j = 1 to N do

if core j is available then
allocatedCore← j;
break;

end

end

end
Algorithm 3: Pseudocode for Clustered policy.

103

Table 5.4: Workload combinations. HP: High-Power; MP: Medium-
Power; LP: Low-Power.

Workload Job 1 Job 2
HPHP md shock
HPMP md blackscholes
HPLP shock lu cont
MPMP barnes blackscholes
MPLP barnes water nsq
LPLP lu cont canneal

Table 5.5: Running times of jobs (Unit: ms).

Thread
count

md shock
black-
scholes

lu cont barnes water nsq canneal

32 320 397 30 140 237 17 72
64 295 309 24 128 218 16 68
96 221 205 16 104 158 16 62
128 167 188 12 89 139 16 59

Optical Frequency Tuning Evaluation

We compare the optical frequency difference and required tuning power for the three

policies. Figure 5·7 shows resonant frequency differences among the ring groups for

the three policies using a U-shape 8-ary 3-stage Clos PNoC (as shown in Fig. 5·1(a)).

We can see that Clustered results in highest resonant frequency gradient among all

three policies. FreqAlign reduces resonant frequency difference by 60.6% on average

compared to RingAware. This is because RingAware only focuses on RD0 cores, but

HPHP HPMP HPLP MPMP MPLP LPLP
(a) Cluster Workload Allocation

0

20

40

60

80

100

120

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)

32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
(b) RingAware Workload Allocation

0

20

40

60

80

100

120

HPHP HPMP HPLP MPMP MPLP LPLP
(c) FreqAlign Workload Allocation

0

20

40

60

80

100

120 HP: High Power
MP: Medium Power
LP: Low Power

Figure 5·7: Average resonant frequency differences when using Clus-
tered, RingAware and FreqAlign workload allocation policy for U-shape
layout with 8-ary 3-stage Clos topology shown in Fig. 5·1(a). Each bar
represents a workload and utilization combination case.

104

HPHPHPMP HPLP MPMPMPLP LPLP

(a) Cluster + TFT

0

5

10

15

20

25

30

35
T
h
e
rm

a
l
T
u
n
in

g
 P

o
w

e
r

(W
)

32+32 64+64 32+96 96+32 96+96 128+128

HPHPHPMP HPLP MPMPMPLP LPLP

(b) RingAware + TFT

0

5

10

15

20

25

30

35

HPHPHPMP HPLP MPMPMPLP LPLP

(c) RingAware + AFT

0

5

10

15

20

25

30

35

HPHPHPMP HPLP MPMPMPLP LPLP

(d) FreqAlign + AFT

0

5

10

15

20

25

30

35

Figure 5·8: Average optical tuning power when using localized tuning
for Clustered, RingAware and FreqAlign workload allocation policy for
8-ary 3-stage Clos topology with U-shape layout in Fig. 5·1(a). TFT :
Target Frequency Tuning; AFT : Adaptive Frequency Tuning.

the aggregation of non-RD0 cores still has a huge impact on ring group temperature.

FreqAlign estimates the impact of allocating a thread to a core on all ring group

temperatures, which reduces resonant frequency difference among all ring groups.

In Fig. 5·8, we present the thermal tuning power when applying different workload

allocation policies and tuning mechanisms. Here, we do not show the cases (e.g.,

HPHP with 128+128 threads) in which the maximum on-chip temperature is higher

than the temperature threshold, 90 oC. This rule also applies to all the other figures in

this section. Since TFT requires every ring group and laser source to be tuned to the

resonant frequency at 90 oC, the required tuning power only depends on the absolute

operating temperatures of the photonic devices. Under such scenarios, temperature

balancing techniques without proper tuning strategies do not show advantage on

reducing thermal tuning power. Thus Clustered and RingAware have similar required

tuning power. Adaptive Frequency Tuning (AFT), on the other hand, tunes the

laser source frequency to align with the lowest of the current resonant frequencies

of ring groups, which is balanced through the proposed workload allocation policy.

FreqAlign+AFT saves 19.28 W thermal tuning power on average and up to 34.57 W

compared to RingAware+TFT. This result demonstrates the need for proper control

of the on-chip laser source and ring resonator optical frequency tuning mechanism.

105

Apart from edge-placed laser sources, we also test the proposed policy and baseline

policies for the same many-core chip, but this time with locally-placed laser sources,

where on-chip laser sources are placed around the ring groups along the U-shape

waveguide. We observe similar percentages of thermal tuning power reduction for

FreqAlign. For off-chip laser sources, due to the lack of runtime control, AFT is not

applicable in this scenario. Thus, systems with off-chip laser sources have similar ring

resonator thermal tuning power as the cases with TFT (Fig. 5·8(a) and (b)).

Case Study on Process Variation

Ring resonators are sensitive to process variations, and the resonant frequency can

vary approximately linearly with distance on the scale of waveguide length (Zortman

et al., 2010). To study the impact of process variations, we consider a wavelength

variation of 400 pm/cm due to process variations by considering a linear process

variation of 0.76 nm (Mohamed et al., 2010) over our approximately 1.9 cm long chip.2

In this case study, we consider four process variation directions as shown in Fig. 5·10:

(a) horizontal, (b) vertical, (c) diagonal which results in largest process variations

among ring groups and (d) diagonal which results in largest process variations across

the chip. We evaluate both RingAware and FreqAlign policies, with the assumed

process variation directions. The results in Fig. 5·9 show that FreqAlign reduces the

resonant frequency difference by 52.7% on average compared to RingAware. This is

because RingAware is designed to balance the operating temperatures among the ring

groups, and does not account for process variations. On the other hand, FreqAlign

considers both temperature and process variations, so it significantly reduces the

average resonant frequency difference.3

2While we are using linear process variation for our case study, FreqAlign comprehends unique
process variation parameters for each ring group in a system, so any pattern of process variation
between ring groups could be considered.

3We also investigate systematic WID process variations for both ring resonators and cores. We
assume 50% leakage power variations across the chip from top to bottom due to WID process

106

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

20

40

60

80

100

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)
32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

20

40

60

80

100

(a) Horizontal process variation gradient. Average (maximum) power reduction
is 1.83 W (2.77 W), 62.9% (82.5%).

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

20

40

60

80

100

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)

32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

20

40

60

80

100

(b) Vertical process variation gradient. Average (maximum) power reduction is
1.81 W (2.91 W), 64.7% (84.3%).

Figure 5·9: Average resonant frequency difference when comparing
RingAware and FreqAlign workload allocation policy for U-shape lay-
out with 8-ary 3-stage Clos topology and a wavelength variation of 400
pm/cm in multiple directions due to process variations. The process
variation cases and tuning power reduction of FreqAlign+AFT com-
pared to RingAware+AFT are shown in the captions of subfigures.

107

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

20

40

60

80

100

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)
32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

20

40

60

80

100

(c) Maximum process variation among ring groups. Average (maximum) power
reduction is 2.04 W (3.26 W), 60.1% (80.8%).

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

20

40

60

80

100

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)

32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

20

40

60

80

100

(d) Maximum on-chip process variation. Average (maximum) power reduction is
2.12 W (3.13 W), 61.4% (76.2%).

Figure 5·9: Average resonant frequency difference when comparing
RingAware and FreqAlign workload allocation policy for U-shape lay-
out with 8-ary 3-stage Clos topology and a wavelength variation of 400
pm/cm in multiple directions due to process variations. The process
variation cases and tuning power reduction of FreqAlign+AFT com-
pared to RingAware+AFT are shown in the captions of subfigures.

108

Manycore Chip Ring Group

Max. process

Process Variation
Direction

(a) Horizontal (b) Vertical
(c) Max. process (d)

ring groups
variation among

across the chip
variation

Figure 5·10: Process variation directions considered for case study.

Case Study on Layout Sensitivity

In addition to process variations, we also evaluate FreqAlign for various PNoC layouts.

We conduct this case study in two aspects: (1) using the same PNoC logical topology

and physical layout combination but slightly shifted ring group locations; (2) using

different PNoC logical topology and physical layout combinations.

For Case (1), we test the two layouts with shifted ring group placements in

Fig. 5·1(b) and Fig. 5·1(c). When using these two layouts, FreqAlign has 60% and

50.7% reduction in resonant frequency difference, respectively, compared to RingAware

(see Fig. 5·11(a) and Fig. 5·11(b)) since it considers the estimated resonant frequen-

cies of ring groups and their placement, when allocating the jobs. This case study

demonstrates that FreqAlign is adaptive to minor changes in system layout.

For Case (2), we use two other logical topology and physical layout combina-

tions shown in Fig. 5·1(d) (16-ary 3-stage Clos topology and a W-shape layout) and

Fig. 5·1(e) (8-ary 3-stage Clos topology and chain-shape layout). The comparisons of

average resonant frequency difference among ring groups for these two cases between

RingAware and FreqAlign are shown in Fig. 5·11(c) and Fig. 5·11(d), respectively.

Compared to RingAware, FreqAlign reduces the average resonant frequency differ-

ence by 42.8% and 59.2% for W-shape 16-ary 3-stage PNoC and chain-shape 8-ary

variations in a decreasing gradient (Dighe et al., 2011). Our results show that FreqAlign reduces the
resonant frequency difference by 57.3% compared to RingAware. Without WID process variations
for cores, the reduction is 55.6%.

109

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

10

20

30

40

50

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)
32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

10

20

30

40

50

(a) Horizontally shifted U-shape layout with 8-ary 3-stage Clos topology (Fig.
5·1(b)). Average (maximum) power reduction is 1.03 W (2.05 W), 72.7% (96.3%).

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

10

20

30

40

50

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)

32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

10

20

30

40

50

(b) Vertically shifted U-shape layout with 8-ary 3-stage Clos topology (Fig.
5·1(c)). Average (maximum) power reduction is 0.80 W (1.47 W), 65.8% (90.3%).

Figure 5·11: Comparison of average resonant frequency difference
among ring groups for different PNoC logical topology and physical
layout combinations between RingAware and FreqAlign. The PNoC
cases and tuning power reduction of FreqAlign+AFT compared to
RingAware+AFT are shown in captions of subfigures.

110

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

10

20

30

40

50

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)
32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

10

20

30

40

50

(c) W-shape layout with 16-ary 3-stage Clos topology (Fig. 5·1(d)). Average
(maximum) power reduction is 1.63 W (3.47 W), 30.1% (82.7%).

HPHP HPMP HPLP MPMP MPLP LPLP
RingAware Workload Allocation

0

10

20

30

40

50

60

70

Re
so

na
nc

e
Fr

eq
ue

nc
y

Di
ffe

re
nc

e
Am

on
g

Ri
ng

 G
ro

up
s

(G
Hz

)

32+32 64+64 32+96 96+32 96+96 128+128

HPHP HPMP HPLP MPMP MPLP LPLP
FreqAlign Workload Allocation

0

10

20

30

40

50

60

70

(d) Chain-shape layout with 8-ary 3-stage Clos topology (Fig. 5·1(e)). Average
(maximum) power reduction is 0.92 W (1.8 W), 70.3% (77.9%).

Figure 5·11: Comparison of average resonant frequency difference
among ring groups for different PNoC logical topology and physical
layout combinations between RingAware and FreqAlign. The PNoC
cases and tuning power reduction of FreqAlign+AFT compared to
RingAware+AFT are shown in captions of subfigures.

111

0 200 400 600 800 1000

Time (ms)

0

10

20

30

40

50

60

70

80

90

RingAware - RingFreqAlign - Ring

RingAware - LaserFreqAlign - Laser

P
re

-t
u
n

e
d
 O

p
ti

ca
l
Fr

e
q
u
e
n
cy

D
iff

e
re

n
ce

 (
G

H
z)

shock (128)
lucont
(128)

shock (128)
lucont
(128)

shock (128)
lucont
(128)

shock (128)

Workload Trace: [Application Name] ([number of threads])

shock (128)
lu_cont
(128) shock (128) shock (128) shock (128)

lu_cont
(128)

lu_cont
(128)

Figure 5·12: Runtime optical frequency difference trace for transient
case with large temporal on-chip temperature gradients prior to apply-
ing tuning methods.

3-stage PNoC, respectively. Thus, FreqAlign is more adaptive to different PNoC

logical topology and physical layout combinations.

Transient Resonance Frequency Investigation

To compare the transient behavior of RingAware and FreqAlign, we conduct a test case

where the target system has a large temporal temperature gradient during operation.

We use HPLP (shock + lu cont) as the jobs and let them run alternately. We use

the U-shape layout and 8-ary 3-stage Clos topology for the many-core system and

set the initial temperatures of all units at 65 oC, so RingAware and FreqAlign have

the same starting point. We also limit the running time to be 1000 ms. Figure 5·12

shows the maximum optical frequency difference between the target frequency and

the optical frequencies of ring groups and on-chip laser sources for this test case prior

to applying tuning methods. We observe that at first RingAware results in lower

frequency difference than FreqAlign. This is because RingAware has a more even

112

core1 core2 core3 core4

core5 core6 core7 core8

RG1 RG2WG1

WS2

WS4

WS1

WS3

RG: Ring Group WG: Waveguide WS: White Space

Figure 5·13: Floorplan of a 2× 4 system.

workload distribution than FreqAlign. However, such a distribution causes the inner

ring groups to be hotter than the outer ring groups. As the time progresses and

the system enters its steady state, the resonant frequency difference of RingAware

increases. On the other hand, FreqAlign achieves much lower resonant frequency

difference. The jittering during shock (128) and variation during lu cont (128) in the

traces are caused by applications going through different phases during execution.

FreqAlign reduces the amount of optical frequency that the on-chip laser sources

need to be tuned compared to RingAware. Since scientific applications usually have

long running times (minutes or hours), which is sufficient for the system to enter

steady state, using FreqAlign can achieve lower resonant frequency difference than

RingAware in general.

5.3.4 Comparison with Optimal Workload Allocation

An important issue, which is difficult to address in the context of heuristics for NP-

hard optimizations, is the degree of suboptimality of heuristic solutions. To offer some

insight into the quality of FreqAlign workload allocation solutions relative to optimal

solutions, we have studied the various heuristics on a smaller chip architecture (a 2×4-

core system with two ring groups placed on the two shorter opposite edges, as shown

in Fig. 5·13). This is because finding the optimal solution is practically infeasible for

larger systems (N ! workload allocation solutions for a fully utilized N -core system).

113

1 2 3 4 5 6 7 8 9 10 Avg
Power Profile Index

0

20%

40%

60%

80%

100%

R
a
n
ki

n
g
 P

e
rc

e
n
ti

le
FreqAlign RingAware Cluster

Figure 5·14: Ranking percentile of FreqAlign, RingAware and Clus-
tered that indicates the ranking of these workload allocation algorithm
among all possible workload allocation solutions for ten randomly gen-
erated power profiles (varying from 0.4 W to 2.8 W) for cores.

For the 2×4 system, we run all 10080 workload allocation solutions (10080 = 8!/4 after

accounting for horizontal and vertical symmetries) for ten power profiles generated

by picking power numbers randomly between 0.4 W and 2.8 W for each core. On

average, FreqAlign results in lower resonant frequency difference between two ring

groups than 87.7% of all workload allocation solutions, while RingAware outperforms

69.3% of all workload allocation solutions, as shown in Fig. 5·14. This suggests that

FreqAlign returns solutions that are substantially closer to optimal than those of

RingAware. We leave the closing of this suboptimality gap for future research.

5.4 Design-time Power Management Through Laser Source

Placement

In addition to runtime thermal management, design-time choices also impact the

on-chip thermal conditions and PNoC power. For example, laser source power, one

114

of the major components of PNoC power, significantly depends on the routing of

waveguides and the placement of router groups in a many-core system. Thus, we

also design techniques in floorplanning and placing on-chip silicon-photonic devices

to reduce PNoC power.

This section describes our on-chip laser source placement and sharing strategies.

We first present the laser source model we use to evaluate the laser source operating

regimes. We then discuss the tradeoffs among laser source optical output power,

wall-plug efficiency (WPE) and temperature, followed by the proposed methodology

to determine the sharing and placement of on-chip laser sources for minimizing laser

source power.

5.4.1 Laser source power model

A laser source’s power consumption depends on its input current and operating tem-

perature. A laser source takes electrical input power and converts a portion of it to

optical output power. The ratio of optical output power (Po) to electrical input power

(PIN) is named as laser source WPE (ηWPE):

ηWPE =
Po
PIN

, (5.5)

Po = ηiηd
hc

λq
(I − Ith), (5.6)

where ηi and ηd are the laser source internal efficiency and differential quantum ef-

ficiency, respectively; h, c and q are Planck’s constant, the speed of light, and the

elementary electric charge, respectively; λ is the laser source operating wavelength; I

and Ith are the drive and threshold currents, respectively (Coldren et al., 2012).

The electrical input power of a laser source is the product of the input current

115

and the total voltage across the laser source’s terminals and can be calculated as:

PIN = I2Rs + IVd, (5.7)

where Rs is the laser source series resistance and Vd represents the diode voltage.

For semiconductor laser sources, Po has a strong dependence on temperature.

Fortunately, simple empirical formulae match well with the measured characteristics

of many different semiconductor diode laser sources (Coldren et al., 2012).

Ith = I0the
T/T0 , (5.8a)

ηd = η0de
−T/Tη , (5.8b)

where T0 and Tη are the characteristic temperatures of the threshold current and

the differential quantum efficiency, respectively, and I0th and η0d are the threshold

current and the differential quantum efficiency projected to a reference temperature.

Additionally, the diode voltage Vd is determined through the Shockley diode equation:

Vd =
kBT

q
ln

(
I

Is

)
, (5.9)

where kB is the Boltzmann constant and Is is the reverse bias saturation current. By

substituting Eqs. (5.8) and (5.9) into Eqs. (5.6) and (5.7), simple relationships are

expressed for the dependence of WPE on operating temperature. This model is well

established and the parameters are extracted from measurement results (Hu et al.,

1994b; Hu et al., 1994a). We consider a strained InP -based multi-quantum well laser

source structure.

5.4.2 Laser source power, efficiency and temperature tradeoffs

Since laser source power and WPE strongly depend on the input current and the

operating temperature, for energy-efficient computing, it is essential to operate a laser

116

0 100 200 300 400 500
0

30

60

90

120

150

180

Current I (mA)

O
pt

ic
al

 P
ow

er
 P

o (
m

W
)

(a)

0 100 200 300 400 500
0%

2%

4%

6%

8%

10%

12%

Current I (mA)

η W
P

E

(b)

200 400 600 800
0%

2%

4%

6%

8%

10%

12%

Laser source length (µm)

M
ax

im
um

 η
W

P
E

T=65°C
T=70°C
T=75°C
T=80°C
T=85°C
T=90°C
T=95°C

(c)

Figure 5·15: (a) P-I characteristics of a laser source, (b) WPE vs.
input current, and (c) WPE vs. laser source lengths at various temper-
atures.

source at its highest possible efficiency. The following discussion provides insights

on finding a laser source’s optimal operation point (i.e., a set of input current and

operating temperature).

The P-I characteristic (the optical output power of a laser source versus the input

current) of the target laser source under various temperatures is shown in Fig. 5·15a.

It shows that the threshold current Ith increases along with temperature while the

laser optical output power decreases with increment in temperature for a given input

current. For a fixed temperature, as the input current increases, the WPE initially

increases, reaches a peak value and then decreases, as shown in Fig. 5·15b. The peak

efficiency decreases at higher temperature as expected from the laser source power

model (Eqs. 5.8). Thus, it is preferred to keep the laser source operating at a low

temperature and ensure that the input current is at the value where the WPE is

maximized. In addition to input current and operating temperature, a laser source’s

dimension also impacts its WPE. Figure 5·15c shows the relationship between WPE

and laser source length under various temperatures. We fix the laser source width at

50 µm while vary the laser source length from 200 µm to 700 µm. We can observe

from Fig. 5·15c that a 300 µm long laser source has the highest efficiency at all

temperatures. This is because for short cavity length, high-order effects result in a

reduction of the carrier density above threshold, which in turn decreases ηi. For long

117

0 200 400 600 800 1000 1200
50

60

70

80

90

100

Electrical input Power P
IN

 (mW)

T
em

pe
ra

tu
re

(°C
)

P
core

=0.4W

P
core

=0.5W

P
core

=0.6W

P
core

=0.7W

Figure 5·16: Laser source temperature vs. electrical input power for
a 300 µm × 50 µm laser source.

0%

2%

4%

6%

8%

10%

η W
P

E

0 10 20 30 40 50
0

200

400

600

800

1000

In
pu

t P
ow

er
 P

IN
 (

m
W

)

Optical Power per wavelength P
o
 (mW)

(a)

0%

2%

4%

6%

8%

10%

η W
P

E

0 10 20 30 40 50
0

200

400

600

800

1000

In
pu

t P
ow

er
 P

IN
 (

m
W

)

Optical Power per wavelength P
o
 (mW)

η
WPE

P
IN

(b)

Figure 5·17: Wall-plug efficiency vs. optical output power by the laser
source for different granularities of sharing while a background logical
layer operates at 0.4 W per core (a) and 0.7 W per core (b).

cavity length, ηd dominates and the efficiency decreases. Based on this model, we

select a 300 µm × 50 µm laser source for the following analysis.

To determine the impact of electrical input power on laser source temperature,

we ran thermal simulations for a 256-core system with each core consuming 0.4 W ,

0.5 W , 0.6 W and 0.7 W of power. The laser sources are placed on a separate layer

on top of the logic layer that contains cores and caches. As shown in Fig. 5·16, as

electrical input power increases, the laser source temperature increases, and the WPE

decreases in return. The increase in core power also increases the temperature of the

laser source, which further lowers the WPE.

Based on the power-temperature-efficiency tradeoffs of the laser source, Fig. 5·17

118

shows the laser source efficiency and electrical input power as a function of optical

output power of laser sources for two scenarios – one where each core has 0.4 W

power and the second where each core has 0.7 W . The required optical output power

from a laser depends on the optical loss in the photonic link being driven by that

laser source. For 0.4 W case, Fig. 5·17a shows that the optimal operation point is

a laser output power of 23 mW per wavelength, where the laser source has its peak

efficiency of 8.2% and an electrical input power of 268 mW . When every core’s power

is 0.7 W , the optimal laser output power is still approximately 23 mW , but the laser

efficiency decreases to 6.2% due to the higher operating temperature, which results in

an electrical input power of 355 mW . This analysis demonstrates that the electrical

input power of a laser source increases along with core power consumption. Hence,

it is essential to consider system power profile for laser source power reduction.

As shown in Fig. 5·17, a laser source outputs a specific optical output power at its

maximum efficiency. Depending on the optical power required per λ and the applied

laser technology, it may be desirable to share laser source output power across two

or more waveguides. In the next section, we investigate the impact of laser source

sharing on the total laser source power consumption. We assume the sharing of one

laser source among multiple waveguides is done by splitting the emitted lightwave

from the laser source (the corresponding optical loss is 0.2 dB/split).

5.4.3 On-chip laser source sharing and placement strategy

To determine the sharing and placement of laser sources in a many-core system, we

propose a cross-layer approach where we jointly consider the NoC bandwidth con-

straints driven by the target applications, thermal constraints driven by the power of

cores and laser sources, and physical layout constraints driven by the losses in silicon-

photonic devices. Following the flow in Fig. 5·2, we can determine the number of

silicon-photonic links, i.e., number of wavelengths required by the target system. The

119

chosen logical topology for an NoC can be mapped to several different layouts (Batten

et al., 2013). We identify various potential physical layouts of PNoC with three candi-

date schemes for the on-chip laser source placement and sharing – 1) all laser sources

are placed locally next to the router with each laser source emitting one wavelength

for one waveguide (no sharing); 2) all laser sources are placed locally next to the

router with each laser source emitting one wavelength that is shared across multiple

waveguides; and 3) all laser sources are placed along the chip edge with each laser

source emitting one wavelength shared by two or more waveguides. For a fixed set of

physical layout and bandwidth per channel, based on the on-chip thermal conditions

and the laser source power model, we use the placement and sharing scheme with the

lowest laser source power among the three candidates.

5.4.4 Case Studies

In this section, we present two case studies to show how the sharing and placement

of laser sources change with logical topologies and physical layouts. We assume the

target system bisection bandwidth is 512 GB/s, and each core is consuming 0.7 W

power. We use the described laser source power model to calculate laser source WPE

and power. Since the waveguide propagation optical loss is the major component of

total optical loss, we vary the per unit length (cm) waveguide loss in the analysis to

provide an insight for waveguide selection when designing PNoCs.

Laser source placement and sharing across various logical topologies

First, we look into the impact of logical topologies on the choice of on-chip laser

source placement and sharing scheme. Figure 5·18a shows the total electrical input

power of laser sources for an 8-ary 3-stage Clos topology for different placements of

laser sources. There are 64 photonic channels connecting the 1st and 2nd stage of

routers and another 64 connecting the 2nd and 3rd stage of routers. The detailed

120

0 1 2 3 4 5
1

10

100

1000
A

ll
In

pu
t P

ow
er

 P
IN

 (
W

)

Waveguide Loss (dB/cm)

(a) 8-ary 3-stage Clos with U-shaped lay-
out

0 1 2 3 4 5
1

10

100

1000

A
ll

In
pu

t P
ow

er
 P

IN
 (

W
)

Waveguide Loss (dB/cm)

(b) 16-ary 3-stage Clos with U-shaped
layout

0 1 2 3 4 5
1

10

100

1000

Al
l I

np
ut

 P
ow

er
 P

IN
(W

)

Waveguide Loss (dB/cm)

local non−share
local share
edge share

(c) 16-ary 3-stage Clos with W-shaped
layout

Figure 5·18: Total laser power vs. waveguide loss for various sharing
scenarios and placements of on-chip laser sources. (a) and (b) compare
various topologies with U-shaped layout. (b) and (c) compare various
layouts for 16-ary 3-stage Clos topology. We assume each core in the
logical layer consumes a power of 0.7 W .

specifications of the 8-ary 3-stage Clos are given in Table 5.6. The photonic channels

are mapped to a U-shaped layout shown in Fig. 5·1. For a typical waveguide loss of

2 dB/cm, 0.15 mW of optical output power per wavelength is required. If local laser

sources are not shared, the efficiency of each local laser source for 0.15 mW optical

output power is 0.12%. This results in a total electrical input power for laser sources

of 243 W (119 mW per laser source).

Given that the routers in the 1st, 2nd and 3rd stage of the Clos network are placed

next to each other, we can share the local laser sources among the 16 photonic chan-

nels, whereby the optical output power of a laser source is split and routed into the

waveguides associated with these photonic channels. Such sharing mechanism in-

creases the total optical output power of each local laser source, and thus, improves

121

its WPE. For this particular example, each one of the 16 photonic channels is mapped

to a waveguide with 16 λ per photonic channel, i.e. 16 λ per waveguide. If each laser

source is shared across these 16 waveguides, the total optical output power is 2.4 mW

for each λ, which corresponds to a laser source efficiency of 1.3% and a total electrical

input power of 23.63 W (185 mW per laser source).

For the laser source considered in this study, the maximum efficiency is achieved at

an optical output power of 23 mW . To use a laser source that outputs 23 mW optical

power, we propose to place laser sources along the chip edge and share them among

all waveguides. In this case, the optical output power required for each waveguide is

0.18 mW for each λ. This value is higher than local share scheme because average

waveguide propagation loss increases with lengths of waveguides. We share 16 laser

sources (1 for each λ) across 128 waveguides so that they can operate at 6.38%

efficiency. This results in a total electrical input power of the lasers of 5.74 W (359

mW per laser source).

As the waveguide loss per cm increases, the total required optical output power in-

creases. In the case of local non-shared laser sources, this increment in optical output

power improves WPE. As a result, the total electrical input power does not increase

significantly. In the case of local shared laser sources, such increase in optical output

power drives the WPE towards the peak value. Hence, similar to local non-shared

laser sources, there is only a marginal increment in the total electrical input power.

The layout with laser sources located along the edge has longer waveguides, and so the

optical loss increases significantly when waveguide propagation loss increases, which

in turn lowers the WPE. Overall, if the waveguide loss is low (< 3 dB/cm), using

edge-placed shared laser sources is the best option. If the waveguide loss is high (>

3 dB/cm), placing shared laser sources locally is beneficial.

For the same 256-core target system, we could use a 16-ary 3-stage Clos network

122

Table 5.6: Architectural-level parameters for three tested PNoCs. U-
shaped and W-shaped layouts are shown in Fig. 5·1.

Logical
topology

Physical
layout

Dimension Concen-
tration

λ/Channel Number of
channels

Clos U-shaped 8-ary 3-stage 4 16 128
Clos U-shaped 16-ary 3-stage 1 4 512
Clos W-shaped 16-ary 3-stage 1 4 512

for less contention among cores at the input of each router. This 16-ary 3-stage Clos

topology has 48 routers (16 routers in each stage) with each router in the 1st and

3rd stage connected to 16 cores (one core per router input). This network topology

requires a total of 512 channels. To match the bisection bandwidth of this topology

with the 8-ary 3-stage Clos, each channel needs four λ, and the system has a total of

128 waveguides with four channels (four λ for each channel) sharing one waveguide

(16 λ in each waveguide). In general, the trends for the electrical input power of the

laser for the 16-ary 3-stage Clos are similar to the trends for the 8-ary 3-stage Clos.

One exception is that the electrical input power for the case using shared local laser

sources is higher for the 16-ary 3-stage topology due to the decrease in the degree of

sharing of laser sources.

Overall, the best sharing and placement of on-chip laser sources depend on the

network topology. For example, at 3.5 dB/cm waveguide loss, for 8-ary 3-stage Clos

topology mapped to U-shape physical layout, using shared local laser sources min-

imizes the electrical input power, while for 16-ary 3-stage Clos using shared laser

sources located along the edge is the better choice. On the other hand for a 2 dB/cm

waveguide loss, shared local laser sources are preferable for all three logical topologies.

Laser source placement and sharing across various physical layouts

Depending on alternate power, performance and area design constraints, the place-

ment and routing tools may generate physical layouts that are different from the

U-shaped layout that we considered in the earlier subsection. The choice of laser

123

source sharing and placement changes with a change in the physical layout. For ex-

ample, mapping the 16-ary 3-stage Clos topology to a W-shaped layout (see Fig. 5·1)

increases optical waveguide losses, and hence the electrical input power required for a

laser source. Figure 5·18c shows the total electrical input power for the lasers varying

with waveguide loss per cm for the 16-ary 3-stage Clos with W-shaped layout, respec-

tively. Similar to the U-shaped layout, for low waveguide loss shared laser sources

placed along the edge are preferable, while for high waveguide loss shared local laser

sources are preferable. The crossover point (i.e., where the choice of laser source

placement and sharing changes from shared laser sources placed along the edge to

shared laser source placed locally) is different for the two layouts. For the 16-ary

3-stage Clos topology, the crossover points are 3.6 dB/cm and 2.2 dB/cm for the

U-shaped and W-shaped layouts, respectively.

5.5 Design-time Thermal Management Through PNoC Floor-

planning

Placing laser sources on-chip and sharing them among waveguides is not the only

way to reduce laser source power consumption. Since the total optical loss primarily

comes from waveguide propagation loss, crossing loss, and bending loss, the routing

of waveguides among computation clusters also plays an important role. In this

section, we propose a cross-layer optimization of PNoC and core cluster floorplan

for many-core systems. Our technique takes a many-core system’s parameters (e.g.,

number of cores, core parameters, aspect ratio) as input and output a floorplan with

the lowest PNoC power consumption. The core of our technique is a mixed-integer

linear programming (MILP) formulation that minimizes PNoC power, including (1)

laser source power due to propagation, bending, and crossing losses; (2) electrical and

electrical-optical-electrical conversion power; and (3) thermal tuning power.

124

5.5.1 MILP-Based PNoC Floorplan Optimization

Our floorplan optimization comprehends the many-core chip and the PNoC as follows

(see Fig. 5·19). In the chip, cores are grouped together to form tiles. All commu-

nication within a tile is local (i.e., does not go through the PNoC) and electrical.

In the studies reported below, we assume a fixed bandwidth of 512 GB/s for the

PNoC (Chen et al., 2014). We also assume an 8-ary 3-stage Clos logical topology

of the PNoC. The PNoC consists of router groups, each assigned to a set of tiles

that constitute a cluster. All communication among tiles within a given cluster and

among routers in the same router group goes through electrical links. Two router

groups across clusters communicate with each other using an optical link. The con-

nection from one router group to another is called a net, which we must route legally

within the routing graph. Implicitly, the studies reported below consider monolithic

integration (Orcutt et al., 2012; Georgas et al., 2014) (as opposed to TSV-based

stacked-die integration) of the photonic components with serpentine routing of all

waveguides together (due to the cost of the trenches on the die). We assume on-chip

laser sources are placed next to the router groups on a separate layer (Chen et al.,

2014) where the link begins and ends.

Notation Used in the MILP

Table 5.1 gives parameters and notations that we use in formalizing our MILP. The

PNoC is defined by the locations of each router group in the set C, the orientations of

their corresponding clusters, and the specific waveguides used to connect the router

groups according to the topology implied by the set of nets N . As shown in Fig.

5·19, each router group is associated with a rectangular cluster of tiles around it. The

cluster can be oriented vertically or horizontally, with the router group itself at the

cluster’s geometric center. A is the set of all available edges in the routing graph,

125

where avrq (resp. ahrq) denotes a vertical edge from vertex (r, q) to (r + 1, q) (resp.

a horizontal edge from vertex (r, q) to (r, q + 1)). N is the predefined set of nets

connecting the router groups according to the logical topology of the PNoC. Each net

n has a given source cluster sn and sink cluster tn, where sn, tn ∈ C.

Formal MILP Statement

We minimize a objective function (Equation (5.10)) that is a weighted combination

of the PNoC area and power, where α and β are user-specified scaling factors.

Minimize: α · PPNoC + β · AREAPNoC (5.10)

Subject to: ∑
r∈R,q∈Q,f∈{0,1}

γ c
frq = 1, ∀c ∈ C, γ c

frq ∈ {0, 1} (5.11)

ocrq =
∑

r′∈R,q′∈Q,f∈0,1

ofr′q′(r, q)γ
c
fr′q′ , ∀c ∈ C (5.12)∑

c∈C

ocrq ≤ 1, ∀q ∈ Q, r ∈ R (5.13)

2vnrq − enhrq−1 − envr−1q − enhrq − envrq −
∑
f∈0,1

γ sn
frq −

∑
f∈0,1

γ tn
frq = 0,

∀n ∈ N, r ∈ R, q ∈ Q
(5.14)

rc =
∑

r∈R,q∈Q,f∈0,1

r · γ c
frq, qc =

∑
r∈R,q∈Q,f∈0,1

q · γ c
frq, ∀c ∈ C (5.15)

fc =
∑

r∈R,q∈Q,f∈0,1

f · γ c
frq, ∀c ∈ C (5.16)

Structural Constraints

A number of constraints enforce proper structure of the core cluster placement

and the PNoC routing. Using the 0-1 indicator variable γ c
frq, Equation (5.11) ensures

that exactly one vertex (r, q) and one orientation (horizontal or vertical) are chosen

for each router group c. Equation (5.15) captures the vertex (rc, qc) in the routing

126

c=0

c=1

c=5

c=3

c=4

c=2

c=6

c=7

avrq

avbrI1Oq

ahrqahbrI1Oqvrq

RouterEGroup Vertex TileEdge

s1 t1Row

Net
n=0

Cluster
bverticalO

baO bbO

O676=1Column
Cluster

bhorizontalO
Bend

bcO

Input
Stage

Middle
Stage

Output
Stage

EightE
routers

RouterEGroup

Figure 5·19: (a) Example of chip floorplan to illustrate our terminol-
ogy. (b) A vertex and its surrounding edges in the routing graph. (c)
3-stage Clos topology with 8 router groups per stage.

graph where the router group c is placed, and Equation (5.16) captures the orientation

fc of the cluster of router group c.

Equation (5.12) captures which tiles on a chip are occupied by which cluster. A

given ocrq indicates whether tile (r, q) is occupied by the cluster of router group c.

ofr′q′(r, q) is a pre-calculated two-dimensional array that indicates whether tile (r, q)

would be occupied by a cluster of a router group placed at (r′, q′) with orientation f .

The array has an entry of one at each location that is occupied, and zero everywhere

else. Equation (5.13) enforces the constraint that no tile on the chip can belong to

more than one cluster. This ensures legal placement of clusters. If a tile is not in

the footprint of any placed cluster (implying whitespace in the floorplan, e.g., for

components other than the cores that communicate through the PNoC), for that

tile we will have
∑

c∈C ocrq = 0. Equation (5.14) (Jafari et al., 2009) imposes flow

conservation, i.e., a well-formed path of routing graph edges for each net n from its

source sn to its sink tn. The 0-1 indicator variable vnrq captures the use of vertex (r, q)

in the routing of net n; enh/vrq is a 0-1 indicator of whether edge ah/vrq is used in the

routing of net n.

127

Equations for Area and Power

The area component of our objective function is determined by the following

constraints. Equation (5.17) uses γ c
frq to identify a binary indicator for the row (xcr)

and column (ycq) the router group c is in. There is only one γ c
frq that can be non-zero,

and there is only one value in an array of all rows and an array of columns that is

non-zero for each router group. Equations (5.18) and (5.19) indicate which rows and

columns have router groups assigned to them. Router group locations cause extra

area to be taken up in the chip, so by counting the number of rows and columns

that are occupied we can obtain a figure of merit for how much area is required for

photonic components.

xcr =
∑

q∈Q,f∈0,1

γ c
frq, ycq =

∑
r∈R,f∈0,1

γ c
frq ∀c ∈ C (5.17)

usedr =


1 if

∑
c∈C xcr ≥ 1,∀r ∈ R

0 otherwise

(5.18)

usedq =


1 if

∑
c∈C ycq ≥ 1,∀q ∈ Q

0 otherwise

(5.19)

∆H = HC ·
∑
r∈R

usedr (5.20)

∆W = WC ·
∑
q∈Q

usedq (5.21)

AREAPNoC = (H + ∆H) · (W + ∆W)−H ·W (5.22)

The power component of the objective is determined by the following constraints.

We convert Ploss (dbM) to Plaser (mW) using a piecewise-linear approximation and

128

the laser source WPE to obtain the electrical input power required to operate the

laser. Ptuning is the thermal tuning power needed to keep the ring groups at a similar

temperature. Pelectrical is the power required for EOE conversion. Pmodulator, Pdetector,

PSERDES and Pcluster values are obtained from code extracted from DSENT (Sun

et al., 2012).

PPNoC = Plaser + Ptuning + Pelectrical (5.23)

Ploss = Pprop
∑
n∈N

∑
ah/vrq∈A

dnh/vrqė
n
h/vrq + Pcross · ncross + Pbend · nbend + Pconstant (5.24)

Pelectrical = Pmodulator + Pdetector + PSERDES + Pcluster (5.25)

Thermal tuning power is proportional to the difference between the thermal impact

of a given router group (θc) and the maximum thermal impact (θmax) over all router

groups. Equation (5.26) calculates the thermal impact of each router group using

the power profile of the system, with each tile’s power level contributing a thermal

weight wr′q′(r, q) to the router group at (r, q). Given that θc is a product of two binary

variables, we must linearize it using the following technique.

θc =
∑

r∈R,q∈Q,f∈0,1,r′∈R,q′∈Q

γ c
frq · wr′q′(r, q) · pr′q′ , ∀c ∈ C (5.26)

pr′q′ =
∑
c∈C

ocr′q′ · pc, ∀r′ ∈ R, q′ ∈ Q, pc is fixed (5.27)

Ptuning = P 0
tuning

∑
c∈C

(θmax − θc) (5.28)

Accounting for Optical Bends and Crossings

We include the bends and crossings in routing solutions. The 0-1 indicator SV n
rq

(respectively, SHn
rq) captures the existence of a straight vertical (respectively, hori-

zontal) route through vertex (r, q) for net n. We derive SV n
rq and SHn

rq from enh/vrq.

SV n
rq ≤ envr−1q; SV

n
rq ≤ envrq; SV

n
rq ≥ envr−1q + envrq − 1, ∀n ∈ N, r ∈ R, q ∈ Q (5.29)

129

SHn
rq ≤ enhrq−1; SH

n
rq ≤ enhrq; SH

n
rq ≥ enhrq−1 + enhrq − 1, ∀n ∈ N, r ∈ R, q ∈ Q

(5.30)

To account properly for all bends in the routing solution, we define a 0-1 indicator

Brq to capture the existence of a bend at vertex (r, q), and B̂rq as a binary indicator

for a vertex used with no bends. SHrq, SVrq, and vrq respectively indicate straight

vertical routes, straight horizontal routes, and vertex used at each (r, q) coordinate,

for the superposition of all routed nets n ∈ N . Finally, we add the number of bends

across all (r, q) to obtain the total number of bends in the routing solution.

B̂rq ≤ SHrq + SVrq; B̂rq ≥ SHrq; B̂rq ≥ SVrq;

Brq + B̂rq − vrq +
∑

c∈C,f∈0,1

γ c
frq = 0, ∀r ∈ R, q ∈ Q

(5.31)

nbend =
∑

q∈Q,r∈R

Brq (5.32)

We also include all straight-straight crossings in our power loss equation, using the

same variables. The 0-1 indicator variable CRrq captures the existence of a crossing

at vertex (r, q), enabling us to obtain the total number of crossings across all (r, q).

CRrq ≥ SHrq + SVrq − 1; CRrq ≤ SHrq; CRrq ≤ SVrq

∀r ∈ R, q ∈ Q
(5.33)

ncross =
∑

q∈Q,r∈R

CRrq (5.34)

MILP Instance Complexity and Scalability

Using the notation and from the formulation given above, the complexity of an in-

stance of our MILP is as follows.

• The number of variables: 8NRQ+ 3CRQ+ 4RQ+ C + CR2Q2.

130

Input .param file
(# of cores, core parameters, max aspect ratio...)

HotSpot thermal

simulation

Generation of
HotSpot .flp for

each AR

Thermal maps
saved as impact

matrices

DSENT power

estimation

Generation of
PNoC topologies

(DSENT .cfg files)

EOEpower

values

Individual P&R ILP run in CPLEX for all combinations of AR,
topology, modulator speeds, etc.

Floorplan with best ILP result selected

Figure 5·20: The floorplan optimization flow.

• The number of constraints: 3CR2Q2 +NRQ+ 14RQ+ 5C + 1.

For a typical instance that we study in the experiments reported below, C = 8, R = 8,

Q = 8 and N = 7, implying 38152 variables and 99689 constraints. Both the number

of variables and the number constraints have terms that scale (i) linearly with the

number of router groups, and (ii) quadratically with the number of tiles (RQ). If we

assume that the number of cores per tile is fixed, then these parameters respectively

translate to (i) the number of cores, and (ii) the size of the chip. For instances of this

complexity, runtimes of ILOG CPLEX v12.5.1 (CPLEX, 2012) range from 10 seconds

to several minutes on a 2.8 GHz Xeon server.

Optimization Flow

The key details of our optimization flow and setup are as follows.

(1) Our floorplan optimizer takes as input a .param file with the following contents:

131

TILE

1 1

1 1 1 1

1 1

0.5

0.25

0.25

0.25

0.250.250.250.25

0.5

0.5

0.50.50.5

0.50.50.5

0.5 0.50.50.5

0.5

0.5

0.5

0.5

Router Group Locations

(0, 0) Σ = 8.25 Σ = 10

(NQ-1, NR-1)

(a) (b) (c) (d)

(r, q) value

(1, 1) 8.25
(1, 2) 9
(1, 3) 8.25
(2, 1) 9
(2, 2) 10

(3, 3) 8.25

Figure 5·21: Core impact matrix generation: (a) illustrative floorplan
with 16 tiles (64 cores) and nine potential router group positions; (b)
sample core impact calculation for router group (1,3); (c) sample core
impact calculation for router group (2,2); (d) a 1x9 core impact array
generated for the floorplan.

(i) CoreParams (Ncores, Wcore, Hcore, Core Power); (ii) AspectRatio (ARmin, ARmax);

and (iii) OpticalParams (loss mechanisms, waveguide dimensions and spacing, ring

dimensions and spacing, and photodetector sensitivity).

(2) Since it is not practical to run HotSpot inside a high-dimensional optimization, and

MILP approach is fundamentally incompatible with running a thermal simulation “in

the loop”, we work around this issue by pre-characterizing a core impact matrix that

captures the steady-state temperature impact of each running core on each possible

router group location. The core impact matrix contains the thermal impact in K/W

due to a 1 W core at each core location. We assume a linear superposition of core

impacts due to all cores to calculate a final temperature at each vertex. We compare

the temperature profile based on superposition with the data from HotSpot (with all

the cores active simultaneously) and confirm less than 3% error.

(3) We extract code from DSENT (Sun et al., 2012) distribution to calculate the EOE

power (modulator, detector, SERDES) and the electrical power for the NoC within

the clusters. For the link bandwidths considered in our analysis (Table 5.7), we

leverage DSENT’s capability to perform datapath power optimization by balancing

insertion loss and extinction ratio with modulator/receiver and laser power.

132

Table 5.7: Experimental configurations studied.

#cores Clos size
(chip AR,

cluster AR)

optical
datarate
(Gbps)

#waveguides

64
8-ary
(1 core/tile)

(1:1,1:2), (1:4,1:2)
8 8,16,32,64,128
4 16,32,64,128
2 32,64,128

128
8-ary
(2 core/tile)

(1:2,1:1), (1:2,1:4)
8 8,16,32,64,128
4 16,32,64,128
2 32,64,128

256

8-ary
(4 core/tile)

(1:1,1:2), (1:1,1:8)
8 8,16,32,64,128
4 16,32,64,128
2 32,64,128

16-ary
(1 core/tile)

(1:1,1:1), (1:1,1:4),
(1:4,1:1), (1:4,1:4)

8 32,64,128
4 64,128
2 128

5.5.2 Experimental Results and Discussion

Simulation Infrastructure

To test our optimization model, we use the same core architecture and technology

assumption for many-core systems as the one in Section 5.1.1. We use HotSpot’s

default configuration, but scale the heat spreader and heat sink lengths to be 2X and

4X the longest chip side length, respectively, for each floorplan. We also modify the

configuration file in DSENT to match our experiments as follows: 22 nm technology;

1 GHz operating frequency; 2, 4, 8 Gbps link data rates for all the test cases; 3-stage

8-ary Clos or 3-stage 16-ary Clos topology according to different test cases; 64, 128,

or 256 cores according to different test cases.

Design of Experiments

From above, our optimizer finds the optimal packing of clusters and routing of waveg-

uides, based on given design inputs. To validate our optimization approach over a

large design space, we use a set of configurations shown in Table 5.7. We consider

WPE values of 5% and 15%, for current and future on-chip laser sources, respectively.

Workloads are intrinsically different from each other, which leads to potential

133

(a) (b) (c) (d) (e) (f)

0.5
1
1.5
2
2.5

Figure 5·22: Six power profiles studied. Darker tiles indicate higher
power cores.

Table 5.8: Losses in PNoCs.(Joshi et al., 2009)

Loss Mechanism Loss Contribution
Splitter Through Loss 0.2 dB per split

Waveguide Propagation Loss 2 dB per cm
Waveguide Crossing Loss 0.05 dB per crossing

Ring Drop Loss 1.5 dB per wavelength per ring
Ring Insertion Loss 0.1 dB per wavelength per ring
Ring Through Loss 0.01 dB per wavelength per ring
Photodetector Loss 0.1 dB per photodetector

Merge Loss 5 dB per merge

variations in their power profiles. Especially in a many-core system, it is common to

have multi-program workloads and thus imbalanced power profiles (Lu et al., 2015;

Coskun et al., 2008). Also, the emergence of heterogeneous systems exacerbates

the imbalance within the power profiles. Thus, optimizing for known imbalances in

power profiles may work as a viable goal for many real-life systems. Our experiments

consider the power profiles in Fig. 5·22(a)-(f). We include these power profiles in our

design of experiments to demonstrate that the optimal floorplan is sensitive to the

power profile, and that designers can potentially determine the floorplan based on a

power profile of a use case or combination of use cases (average, weighted-average, or

worst-case). We assume the optical loss coefficients listed in Table 5.8.

134

(b)

64-core 128-core 256-core

P
ow

er
 (

W
)

Number of cores

3.5

3

2.5

1.5

0.5

0

1

2

64 128 256

8 Gbps, 32WG
8 Gbps, 64WG
8 Gbps, 128WG

(a)

Figure 5·23: Accumulated thermal weight profile and optimal floor-
plan vs. Ncores.

Results and Discussion

In all cases that we consider, the logical topology is a chain from router group c = 0 to

router group c = |C|, with |N | = |C|−1 nets. Figure 5·23 shows how the accumulated

thermal weight profile and the optimal floorplan vary with change in Ncores for a given

NoC topology, optical data rate and number of waveguides. We see that although

waveguide lengths increase with Ncores, the required thermal tuning power tends to

flatten out in larger chips due to more symmetry.

Figure 5·24 shows how the thermal weight profile and floorplan vary with the

aspect ratio (AR) of the chip. In general, a skewed chip AR leads to a larger periphery,

creating more asymmetry in the thermal weight profile as shown in Fig. 5·24(a), but

at the same time allowing for a shorter waveguide length.

Figure 5·25 shows the thermal weight profiles and floorplans for the different

power profiles described in Fig. 5·22. We note that the PNoC power varies by nearly

1.7X across the different power profiles. We also note that the optimal floorplans vary

when we change WPE from 5% to 15%. A poorer laser source efficiency tends to favor

the U-shaped floorplan. In comparison to a baseline vertical U-shaped floorplan, the

135

1:4 AR 1:1 AR

(a) (b)

6

4

2

0

P
ow

er
 (

W
)

Optical data rate

2 Gbps 4 Gbps 8 Gbps

1:4 AR

1:1 AR

1

3

5

Figure 5·24: Accumulated thermal weight profile and optimal floor-
plan vs. AR.

floorplan in Fig. 5·25(e) saves up to 15% power under the heterogeneous power profile

in Fig. 5·22(e).

From our experiments, we arrive at the following general conclusions.

• Both thermal tuning power and laser power are important sources of power

in the PNoC. Sensitivity to thermal weight profiles is especially important for

cases with better WPE.

• Larger chips present an economy of scale for the PNoC power due to the more

symmetric thermal weight profiles of larger chips.

• Skewed chip aspect ratios provide larger periphery and create asymmetry in the

thermal weight profiles.

• The maximum achievable optical data rate is always preferred.

• It is important to consider different power profiles during the design time, since

heterogeneous power profiles expose inherent weaknesses to certain router group

136

(a) (b) (c) (d) (e) (f)

WPE:
5%

WPE:
15%

Figure 5·25: Accumulated thermal weight profile on the first row, and
optimal floorplan with WPE of 5% and 15% on the second and third
row respectively for power profiles (a) - (f) in Figure 5·22.

locations. Being thermally aware of runtime management issues during floor-

plan optimization provides a key cross-layer advantage to such an optimization.

Weighting the power profiles based on duty cycle and benchmarking metrics

could provide a way to choose an optimal floorplan that is aware of the hetero-

geneous runtime power profiles.

• Allowing for power weights associated with clusters provides an additional knob

to investigate the best mix and locations for high- and low-performance clusters,

and the impact of dark silicon considerations on the optimal floorplan.

5.6 Summary

PNoC is a promising replacement for ENoC in many-core systems. Adoption of

PNoC relies on developing techniques that efficiently manage the thermal conditions

(indirectly manage the optical frequencies) of the optical devices. In this chapter, we

137

present our work on both runtime and design-time thermal management of many-core

systems with PNoC.

Our runtime thermal management technique contains a workload allocation policy

coupled with an adaptive tuning technique to align the optical frequencies of on-chip

laser sources and ring resonators. Our proposed technique can jointly compensate

for the difference in the optical frequency due to thermal and process variations,

which in turn reduces the power consumed in localized thermal tuning. This is the

first time resonant frequency matching of on-chip laser sources and ring resonators

has been investigated, and their transient impact considered with dynamic workload

allocation. We demonstrate that the proposed technique reduces the localized tuning

power from 20 W on average to below 1 W and by up to 34.57 W , and it achieves

similar benefits across systems with different PNoC logical topology and physical

layout combinations.

Our design-time thermal/power management includes strategies for on-chip laser

source placement and sharing and optimization for PNoC floorplanning. Our analysis

shows that the choice of on-chip laser source placement and sharing changes with

the choice of logical topology, physical layout and waveguide loss. Additionally, the

optimal PNoC P & R solution is sensitive to thermal weight and power profiles, optical

data rate, number of cores, and chip aspect ratios. Compared to thermally-agnostic

solutions, our technique saves up to 15% PNoC power.

138

Chapter 6

Conclusions and Future Directions

6.1 Summary of Major Contributions

3D stacking is a promising integration technology that provides more diverse and

flexible system designs for achieving dramatically improved performance and energy

efficiency, especially in multi-/many-core era. It enables integrating a larger number

of on-chip resources as well as stacking dies manufactured using different technologies

(e.g., logic with DRAM or PNoC) into a single chip. However, the potential of 3D

stacking in energy-efficient computing has not been fully exploited due to under-

utilized on-chip resources and high chip temperatures and thermal gradients. The

resource under-utilization leads to unnecessary performance drops, and the varying

thermal conditions endanger the functionality of specific on-chip components (e.g.,

silicon-photonic devices) and increase the system power consumption.

By investigating application-dependent resource needs for on-chip resources and

thermal conditions, this thesis has claimed that intelligent resource/thermal man-

agement is essential for unveiling the true efficiency potential of 3D stacking. The

proposed techniques in this thesis address the urgent needs for low-power, application-

dependent, and cross-layer resource and thermal management for 3D stacked systems.

In this thesis, we have identified workloads’ sensitivity to cache and main mem-

ory architectures. Motivated by varying cache requirements of workloads, we have

first proposed a cache resource pooling architecture (3D-CRP) for 3D homogeneous

systems, where a core is able to pool cache resources from its adjacent layers. In

139

3D-CRP, we have designed a policy to allocate workloads within the system and then

assign cache resources between adjacent layers dynamically based on the estimated

performance and power consumption of each core. Using the proposed policy, 3D-

CRP can improve system EDP by 18.8% on average compared to 3D systems with

fixed cache size.

Second, we have applied the concept of resource pooling to on-chip scratchpad

memory in 3D-MMC. We have developed a task-level resource pooling policy to avoid

local resource contention and exploiting the additional resources on other layers of-

fered by 3D stacking. For a memory intensive workload, we can achieve up to 48.9%

performance improvement. In addition, motivated by the diversity on memory ac-

cess patterns among the memory objects within each workload, we have designed a

memory-object-level memory management approach – MOCA. MOCA profiles and

classifies memory objects within each workload based on their sensitivity to mem-

ory bandwidth and access latency, and then allocates these memory objects to their

best-fitting memory modules during runtime. Compared to application-level memory

management, MOCA outperforms by 5.4% in performance and 19% in system ED2P.

Since the NoC bandwidth requirement increases along with the number of on-chip

cores, PNoC is a promising replacement for ENoC in many-core systems. However,

PNoC comes with high power overhead due to process/thermal variations and high

laser source power consumption. This thesis contributes to runtime workload alloca-

tion policies and design-time techniques to counter the thermal challenges in many-

core systems with PNoC. We have provided a detailed analysis on silicon-photonic

devices’ sensitivity to process and thermal variations and performance-power-thermal

tradeoff of on-chip laser sources. Motivated by the thermal requirements of silicon-

photonic devices, we have proposed a workload allocation policy, RingAware, to bal-

ance the temperatures among these devices. We have enhanced RingAware with the

140

awareness of both process and thermal variations and proposed FreqAlign, a work-

load allocation policy aiming at balancing the optical frequencies of on-chip silicon-

photonic devices. We have designed Adaptive Frequency Tuning (AFT) technique

to operate in conjunction with FreqAlign so as to lower the localized thermal tuning

power for many-core systems with PNoC. Combining FreqAlign and AFT , we are

able to reduce the thermal tuning power from 20 W on average to below 1 W .

Design-time solutions such as P & R of silicon-photonic links affect PNoC power

substantially. At the design level, we have explored silicon-photonic devices floor-

planning techniques to reduce the PNoC power consumption. We have proposed

placement and sharing schemes of on-chip laser sources to reduce total laser source

power consumption. We have also designed a MILP-based PNoC floorplan opti-

mizer to generate optimized P & R solutions for silicon-photonic devices under given

power profiles. The proposed optimizer saves up to 15% PNoC power compared to

thermally-agnostic floorplanning solutions.

In summary, the proposed techniques in this thesis significantly improve the energy

efficiency of 3D multi-/many-core systems using application-dependent, cross-layer

resource and thermal management. Based on our results, we believe that cumula-

tively, proposed methods in this thesis for cache, memory, NoC, and overall system

management can improve system energy efficiency by several times, compared to

the state-of-the-art. The investigations conducted in this thesis provide insights and

points to open challenges for future research as well.

6.2 Future Research Directions

6.2.1 Heterogeneous Memory Architecture in 3D Systems

We have demonstrated the benefits of heterogeneous memory systems on performance

and energy efficiency using MOCA, however, there are many interesting open research

141

challenges. First, integrating heterogeneous memory architecture into 3D stacking

architecture involves several design-time decisions. For example, with the limited

area, the question of what type of memory to stack on top of a logic die arises. There

are several choices: (1) stacking memory modules with low access latency or high

bandwidth, and (2) stacking memory modules with low power consumption. Option

(1) can provide even better memory access time due to the shortened path between

memory and processor, but the high power consumption of such memory modules

may increase the on-chip temperature in return. Option (2) helps with the on-chip

thermal conditions but does not provide benefits for memory-intensive workloads.

There needs to be a thorough and detailed investigation regarding the impact of

different options on the performance and energy efficiency to make the best choice.

Second, the runtime data placement in 3D systems with stacked DRAM also plays

an important role in performance and energy efficiency. For example, for a 3D multi-

core system with stacked memory, if the data placement is centralized to a single

DRAM bank, the access rate of this DRAM bank increases, which in turn raises

its power consumption. As a result, the temperatures of this DRAM bank and the

core (or other logic component) beneath it also increase, which might hit the system

temperature threshold, cause throttling, and decrease the system performance (Meng

and Coskun, 2012). If a 3D system has both on-chip memory and off-chip memory,

there is more flexibility in data placement and on-chip thermal management, which

could potentially provide better performance with lower on-chip temperature.

Another important challenge is to integrate cache heterogeneity together with

main memory heterogeneity. We have showed that cache heterogeneity and memory

heterogeneity can both bring benefits to performance and energy efficiency, however,

there could be even more improvement if they are combined and jointly configured

when running a workload.

142

6.2.2 Thermal/Power Management for PNoC with On-chip Laser Sources

and 2.5D Integration

So far, our investigation and work on many-core systems with PNoC are based on

either monolithic integration (in a single layer) or 3D stacking. For a many-core

system, the high power density and the resultant thermal violation may prevent the

system from being fully utilized. 2.5D integration is a promising technology that

enables integrating a heterogeneous set of chiplets onto a silicon interposer, which

alleviate the thermal issues. 2.5D integration provides extra wiring resources in the

interposer, which can be leveraged to provide higher bandwidth connectivity among

the chiplets and improve performance. This integration technology also adds extra

spacing among the chiplets, which can provide more thermal headroom and alleviate

the on-chip thermal challenges. This allows for more aggressive on-chip resource

utilization and claims the potential performance from dark silicon. However, there is

an urgent need for techniques to intelligently organize the chiplets and place them on

the interposer for temperature advantages at the lowest cost.

We have investigated the impact of chiplets organization on the on-chip thermal

conditions. We partition the 256-core system shown in Fig. 5·1 into 16 chiplets,

organize these chiplets in a 4×4 matrix on an interposer, and adjust the spacing among

the chiplets to see the corresponding impact on chip thermal map. Figure 6·1 shows

the thermal map of the tested system for an example benchmark (cholesky) running

with 256 threads at 1 GHz. In single chip case (without using 2.5D integration), the

peak temperature is 124 oC, which is not feasible in real systems due to the violation

of the typical temperature threshold (85 oC). After applying 2.5D integration, as

we increase the spacing between adjacent chiplets from 2 mm to 10 mm, the peak

on-chip temperature decreases from 105 oC to 85 oC, where the system can achieve

maximum possible performance.

143

Figure 6·1: Thermal maps of single chip case and 16-chiplet case with
different spacings.

One other benefit of 2.5D integration is the ability of integrating heterogeneous

chiplets on a single interposer. For example, laser sources can be integrated into

a single chiplet and connected to the other logic chiplets through the interposer.

There could also be specialized chiplets for caches or memories. In such cases, the

floorplanning of chiplets becomes extremely important due to its impact on chip

power profiles. A good P&R solution could help reduce the PNoC power consumption

greatly and provide more thermal headrooms for potential performance improvement.

References

Abellan, J. L., Coskun, A. K., Gu, A., Jin, W., Joshi, A., Kahng, A. B., Klamkin,
J., Morales, C., Recchio, J., Srinivas, V., and Zhang, T. (2016). Adaptive tuning
of photonic devices in a photonic NoC through dynamic workload allocation. To
appear in IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems.

Agarwal, N., Nellans, D., Stephenson, M., O’Connor, M., and Keckler, S. W. (2015).
Page placement strategies for GPUs within heterogeneous memory systems. In
Proceedings of International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 607–618.

Albonesi, D. H. (1999). Selective cache ways: On-demand cache resource allocation.
In Proceedings of International Symposium on Microarchitecture, pages 248–259.

Baehr-Jones, T., Ding, R., Ayazi, A., Pinguet, T., Streshinsky, M., Harris, N., Li,
J., He, L., Gould, M., Zhang, Y., Lim, A., Liow, T.-Y., Teo, S. H.-G., Lo, G.-Q.,
and Hochberg, M. (2012). A 25 Gb/s silicon photonics platform. arXiv preprint
arXiv:1203.0767.

Batten, C., Joshi, A., Stojanovć, V., and Asanović, K. (2013). Designing chip-
level nanophotonic interconnection networks. In Integrated Optical Interconnect
Architectures for Embedded Systems, pages 81–135. Springer New York.

Beanato, G., Giovannini, P., Cevrero, A., Athanasopoulos, P., Zervas, M., Temiz,
Y., and Leblebici, Y. (2012). Design and testing strategies for modular 3-D-
multiprocessor systems using die-level through silicon via technology. IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems, 2(2):295 –306.

Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The PARSEC benchmark suite:
Characterization and Architectural Implications. In Proceedings of International
Conference on Parallel Architectures and Compilation Techniques, pages 72–81.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness,
J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish,
N., Hill, M. D., and Wood, D. A. (2011). The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7.

144

145

Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh, G. H., Mc-
Cauley, D., Morrow, P., Nelson, D. W., Pantuso, D., Reed, P., Rupley, J., Shankar,
S., Shen, J., and Webb, C. (2006). Die stacking (3D) microarchitecture. In
Proceedings of International Symposium on Microarchitecture, pages 469–479.

Bogdan, P., Marculescu, R., Jain, S., and Gavila, R. (2012). An optimal control
approach to power management for multi-voltage and frequency islands multipro-
cessor platforms under highly variable workloads. In Proceedings of IEEE/ACM
International Symposium on Networks on Chip, pages 35–42.

Campbell, D., Bader, D., Brandt, S., Cook, D., Gokhale, M., Hornung, R., Keasler,
J., LeBlanc, P., Marin, G., Mulvaney, B., Richards, M., Vetter, J., and I.Walker
(2012). Ubiquitous High Performance Computing: Challenge problems specifica-
tion. Technical Report HR0011-10-C-0145, Georgia Institute of Technology.

Carlson, T., Heirman, W., and Eeckhout, L. (2011). Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulations. In Proceedings
of International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12.

Carlson, T., Heirman, W., Eeckhout, L., and Hur, I. (2012). Benchmark native
execution. http://snipersim.org/documents/gainestown-native.html.

Chatterjee, N., Shevgoor, M., Balasubramonian, R., Davis, A., Fang, Z., Illikkal, R.,
and Iyer, R. (2012). Leveraging heterogeneity in DRAM main memories to accel-
erate critical word access. In Proceedings of IEEE/ACM International Symposium
on Microarchitecture, pages 13–24.

Chen, C., Zhang, T., Contu, P., Klamkin, J., Coskun, A. K., and Joshi, A. (2014).
Sharing and placement of on-chip laser sources in silicon-photonic nocs. In Pro-
ceedings of International Symposium on Networks-on-Chip, pages 88–95.

Chen, X., Mohamed, M., Li, Z., Shang, L., and Mickelson, A. R. (2013). Process
variation in silicon photonic devices. Applied optics, 52(31):7638–7647.

Chiou, D., Devadas, S., Rudolph, L., and Ang, B. S. (2000). Dynamic cache parti-
tioning via columnization. In TechReport, Massachusetts Institute of Technology.

Cianchetti, M. J., Kerekes, J. C., and Albonesi, D. H. (2009). Phastlane: a rapid
transit optical routing network. ACM SIGARCH Computer Architecture News,
37(3):441–450.

Coldren, L. A., Corzine, S. W., and Mashanovitch, M. L. (2012). Diode lasers and
photonic integrated circuits, volume 218. John Wiley & Sons.

146

Constantinou, T., Sazeides, Y., Michaud, P., Fetis, D., and Seznec, A. (2005). Per-
formance implications of single thread migration on a chip multi-core. ACM
SIGARCH Computer Architecture News, 33(4):80–91.

Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., and Hughes, B. (2009).
Blade computing with the AMD opteron processor. http://www.hotchips.org/

wp-content/uploads/hc_archives/hc21/2_mon/HC21.24.100.ServerSystemsI-

Epub/HC21.24.110.Conway-AMD-Magny-Cours.pdf.

Coskun, A., Gu, A., Jin, W., Joshi, A., Kahng, A., Klamkin, J., Ma, Y., Recchio, J.,
Srinivas, V., and Zhang, T. (2016). Cross-layer floorplan optimization for silicon
photonic NoCs in many-core systems. In Proceedings of Design, Automation and
Test in Europe Conference and Exhibition, pages 1309–1314.

Coskun, A. K., Ayala, J. L., Atienza, D., Rosing, T. S., and Leblebici, Y. (2009a).
Dynamic thermal management in 3D multicore architectures. In Proceedings of
Design, Automation and Test in Europe Conference and Exhibition, pages 1410–
1415.

Coskun, A. K., Rosing, T. v., Whisnant, K. A., and Gross, K. C. (2008). Static and
dynamic temperature-aware scheduling for multiprocessor SoCs. IEEE Transac-
tions on Very Large Scale Integration Systems, 16(9):1127–1140.

Coskun, A. K., Strong, R., Tullsen, D. M., and Rosing, T. S. (2009b). Evaluating the
impact of job scheduling and power management on processor lifetime for chip mul-
tiprocessors. In SIGMETRICS/Performance – Joint Conference on Measurement
and Modeling of Computer Systems, pages 169–180.

CPLEX (2012). IBM ILOG CPLEX. www.ilog.com/products/cplex/.

Das, R., Ausavarungnirun, R., Mutlu, O., Kumar, A., and Azimi, M. (2012). Applica-
tion-to-core mapping policies to reduce memory interference in multi-core systems.
In Proceedings of International Conference on Parallel Architectures and Compila-
tion Techniques, pages 455–456.

Demir, Y. and Hardavellas, N. (2015). Parka: Thermally insulated nanophotonic
interconnects. In Proceedings of the International Symposium on Networks-on-
Chip, pages 1:1–1:8.

DeRose, C., Watts, M., Trotter, D., Luck, D., Nielson, G., and Young, R. (2010).
Silicon microring modulator with integrated heater and temperature sensor for
thermal control. In Proceedings of Conference on Lasers and Electro-Optics and
Quantum Electronics and Laser Science, pages 1–2.

147

Dighe, S., Vangal, S. R., Aseron, P., Kumar, S., Jacob, T., Bowman, K. A., Howard,
J., Tschanz, J., Erraguntla, V., Borkar, N., De, V. K., and Borkar, S. (2011).
Within-die variation-aware dynamic-voltage-frequency-scaling with optimal core al-
location and thread hopping for the 80-core teraflops processor. IEEE Journal of
Solid-State Circuits, 46(1):184–193.

Ding, D., Yu, B., and Pan, D. (2012). Glow: A global router for low-power thermal-
reliable interconnect synthesis using photonic wavelength multiplexing. In Pro-
ceedings of Asia and South Pacific Design Automation Conference, pages 621–626.

Djordjevic, S. S., Shang, K., Guan, B., Cheung, S. T. S., Liao, L., Basak, J., Liu, H.-
F., and Yoo, S. J. B. (2013). CMOS-compatible, athermal silicon ring modulators
clad with titanium dioxide. Optics Express, 21(12):13958–13968.

Dong, P., Shafiiha, R., Liao, S., Liang, H., Feng, N.-N., Feng, D., Li, G., Zheng,
X., Krishnamoorthy, A. V., and Asghari, M. (2010a). Wavelength-tunable silicon
microring modulator. Optics Express, 18(11):10941–10946.

Dong, X., Xie, Y., Muralimanohar, N., and Jouppi, N. P. (2010b). Simple but ef-
fective heterogeneous main memory with on-chip memory controller support. In
Proceedings of ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–11.

Dulloor, S. R., Roy, A., Zhao, Z., Sundaram, N., Satish, N., Sankaran, R., Jackson,
J., and Schwan, K. (2016). Data tiering in heterogeneous memory systems. In
Proceedings of European Conference on Computer Systems, pages 15:1–15:16.

Fick, D., Dreslinski, R. G., Giridhar, B., Kim, G., Seo, S., Fojtik, M., Satpathy,
S., Lee, Y., Kim, D., Liu, N., Wieckowski, M., Chen, G., Sylvester, D., Blaauw,
D., and Mudge, T. (2012). Centip3De: A 3930DMIPS/W configurable near-
threshold 3D stacked system with 64 ARM cortex-M3 cores. In Proceedings of
IEEE International Solid-State Circuits Conference, pages 190–192.

Garrou, P., Bower, C., and Ramm, P. (2008). Handbook of 3D Integration: Tech-
nology and Applications of 3D Integrated Circuits. Number 2. John Wiley &
Sons.

Georgas, M., Moss, B., Sun, C., Shainline, J., Orcutt, J., Wade, M., Chen, Y.-H.,
Nammari, K., Leu, J., Srinivasan, A., Ram, R., Popovic, M., and Stojanovic, V.
(2014). A monolithically-integrated optical transmitter and receiver in a zero-
change 45nm SOI process. In Proceedings of Symposium on VLSI Circuits Digest
of Technical Papers, pages 1–2.

Gomaa, M., Powell, M. D., and Vijaykumar, T. N. (2004). Heat-and-run: Leverag-
ing SMT and CMP to manage power density through the operating system. In

148

Proceedings of International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 260–270.

Guha, B., Kyotoku, B. B. C., and Lipson, M. (2010). CMOS-compatible athermal
silicon microring resonators. Optics Express, 18(4):3487–3493.

Hameed, F., Faruque, M. A., and Henkel, J. (2011). Dynamic thermal management
in 3D multi-core architecture through run-time adaptation. In Proceedings of
Design, Automation and Test in Europe Conference and Exhibition, pages 1–6.

Hamerly, G., Perelman, E., Lau, J., and Calder, B. (2005). Simpoint 3.0: Faster and
more flexible program phase analysis. Journal of Instruction Level Parallelism,
7(4):1–28.

Heck, M. and Bowers, J. (2014). Energy efficient and energy proportional optical
interconnects for multi-core processors: Driving the need for on-chip sources. IEEE
Journal of Selected Topics in Quantum Electronics, 20(4):1–12.

Homayoun, H., Kontorinis, V., Shayan, A., Lin, T.-W., and Tullsen, D. M. (2012).
Dynamically heterogeneous cores through 3D resource pooling. In Proceedings
of International Symposium on High Performance Computer Architecture, pages
1–12.

Howard, J., Dighe, S., Vangal, S., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V.,
Konow, M., Riepen, M., Gries, M., Droege, G., Lund-Larsen, T., Steibl, S., Borkar,
S., De, V., and Van Der Wijngaart, R. (2011). A 48-core IA-32 processor in 45 nm
CMOS using on-die message-passing and DVFS for performance and power scaling.
IEEE Journal of Solid-State Circuits, 46(1):173–183.

Hu, S., Corzine, S., Law, K.-K., Young, D., Gossard, A., Coldren, L., and Merz, J.
(1994a). Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs
quantum-well ridge waveguide lasers. Journal of Applied Physics, 76(8):4479–4487.

Hu, S., Young, D., Corzine, S., Gossard, A., and Coldren, L. (1994b). High-
efficiency and low-threshold InGaAs/AlGaAs quantum-well lasers. Journal of
Applied Physics, 76(6):3932–3934.

Ipek, E., Kirman, M., Kirman, N., and Martinez, J. F. (2007). Core fusion: Ac-
commodating software diversity in chip multiprocessors. In Proceedings of Inter-
national Symposium on Computer Architecture, pages 186–197.

Jafari, R., Ghasemzadeh, H., Dabiri, F., Nahapetian, A., and Sarrafzadeh, M. (2009).
An efficient placement and routing technique for fault-tolerant distributed embed-
ded computing. ACM Transactions on Embedded Computing Systems, 8(4):28.

149

Joshi, A., Batten, C., Kwon, Y., Beamer, S., Shamim, I., Asanovic, K., and Sto-
janovic, V. (2009). Silicon-photonic Clos networks for global on-chip communi-
cation. In Proceedings of International Symposium on Networks-on-Chip, pages
124–133.

Jung, J., Kang, K., and Kyung, C.-M. (2011). Design and management of 3D-stacked
NUCA cache for chip multiprocessors. In Proceedings of ACM/IEEE Great Lakes
Symposium on VLSI, pages 91–96.

Kamruzzaman, M., Swanson, S., and Tullsen, D. M. (2011). Inter-core prefetching
for multicore processors using migrating helper threads. In Proceedings of In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 393–404.

Kim, D. H., Athikulwongse, K., Healy, M. B., Hossain, M. M., Jung, M., Khorosh,
I., Kumar, G., Lee, Y.-J., Lewis, D. L., Lin, T.-W., Liu, C., Panth, S., Pathak, M.,
Ouellette, B., Ren, M., Shen, G., Song, T., Woo, D. H., Zhao, X., Kim, J., Choi, H.,
Loh, G. H., Lee, H.-H. S., and Lim, S. K. (2012). 3D-MAPS: 3D massively parallel
processor with stacked memory. In Proceedings of IEEE International Solid-State
Circuits Conference, pages 188–190.

Kimoto, T., Shinagawa, T., Mukaihara, T., Nasu, H., Tamura, S., Numura, T., and
Kasukawa, A. (2003). Highly reliable 40-mW 25-GHz× 20-ch thermally tunable
DFB laser module, integrated with wavelength monitor. Furutaka Review, 24:1–5.

Kirman, N., Kirman, M., Dokania, R., Martinez, J., Apsel, A., Watkins, M., and
Albonesi, D. (2006). Leveraging optical technology in future bus-based chip mul-
tiprocessors. In Proceedings of IEEE/ACM International Symposium on Microar-
chitecture, pages 492–503.

Kumar, R., Zyuban, V., and Tullsen, D. M. (2005). Interconnections in multi-core
architectures: Understanding mechanisms, overheads and scaling. In Proceedings
of International Symposium on Computer Architecture, pages 408–419.

Larson, M., Bhardwaj, A., Xiong, W., Feng, Y., dong Huang, X., Petrov, K., Moewe,
M., Ji, H., Semakov, A., Lv, C., Kutty, S., Patwardhan, A., Liu, N., Li, Z., Bao, Y.,
Shen, Z., Bajwa, S., Zhou, F., and Koh, P.-C. (2015). Narrow linewidth sampled-
grating distributed Bragg reflector laser with enhanced side-mode suppression. In
Proceedings of Optical Fiber Communication Conference, page M2D.1.

Lee, M., Gupta, V., and Schwan, K. (2013). Software-controlled transparent man-
agement of heterogeneous memory resources in virtualized systems. In Proceedings
of ACM SIGPLAN Workshop on Memory Systems Performance and Correctness,
pages 5:1–5:6.

150

Li, H., Fourmigue, A., Beux, S. L., Letartre, X., O’Connor, I., and Nicolescu, G.
(2015a). Thermal aware design method for VCSEL-based on-chip optical intercon-
nect. In Proceedings of Design, Automation Test in Europe Conference Exhibition,
pages 1120–1125.

Li, S., Ahn, J.-H., Strong, R., Brockman, J., Tullsen, D., and Jouppi, N. (2009).
McPAT: An integrated power, area, and timing modeling framework for multi-
core and manycore architectures. In Proceedings of International Symposium on
Microarchitecture, pages 469–480.

Li, Z., Qouneh, A., Joshi, M., Zhang, W., Fu, X., and Li, T. (2015b). Aurora:
A cross-layer solution for thermally resilient photonic network-on-chip. IEEE
Transactions on Very Large Scale Integration Systems, 23(1):170–183.

Loh, G. H. (2008). 3D-stacked memory architectures for multi-core processors. In
Proceedings of International Symposium on Computer Architecture, pages 453–464.

Loh, G. H. (2009). Extending the effectiveness of 3D-stacked DRAM caches with
an adaptive multi-queue policy. In Proceedings of International Symposium on
Microarchitecture, pages 201–212.

Lourdudoss, S. (2012). Heteroepitaxy and selective area heteroepitaxy for silicon
photonics. Current Opinion in Solid State and Materials Science, 16(2):91–99.

Lu, S. J., Tessier, R., and Burleson, W. (2015). Reinforcement learning for thermal-
aware many-core task allocation. In Proceedings of ACM Great Lakes Symposium
on VLSI, pages 379–384.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V. J., and Hazelwood, K. (2005). Pin: Building customized program
analysis tools with dynamic instrumentation. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 190–200.

Manipatruni, S., Dokania, R. K., Schmidt, B., Sherwood-Droz, N., Poitras, C. B.,
Apsel, A. B., and Lipson, M. (2008). Wide temperature range operation of
micrometer-scale silicon electro-optic modulators. Optical Letter, 33(19):2185–
2187.

Meng, J. and Coskun, A. K. (2012). Analysis and runtime management of 3D systems
with stacked DRAM for boosting energy efficiency. In Proceedings of Design,
Automation and Test in Europe Conference and Exhibition, pages 611–616.

Meng, J., Kawakami, K., and Coskun, A. (2012). Optimizing energy efficiency of
3-D multicore systems with stacked DRAM under power and thermal constraints.
In Proceedings of Design Automation Conference, pages 648–655.

151

Meng, J., Zhang, T., and Coskun, A. K. (2013). Dynamic cache pooling for improving
energy efficiency in 3D stacked multicore processors. In Proceedings of IFIP/IEEE
International Conference on Very Large Scale Integration, pages 210–215.

Meswani, M. R., Blagodurov, S., Roberts, D., Slice, J., Ignatowski, M., and Loh, G. H.
(2015). Heterogeneous memory architectures: A HW/SW approach for mixing die-
stacked and off-package memories. In Proceedings of International Symposium on
High Performance Computer Architecture, pages 126–136.

MICRON (2011). DDR3 SDRAM power calculator. https://www.micron.com/prod-
ucts/dram/ddr3-sdram.

MICRON (2013). LPDDR2 SDRAM power calculator. http://www.micron.com/pro-
ducts/dram/lpdram.

MICRON (2016). RLDRAM3 power calculator. http://www.micron.com/products/-
dram/rldram-memory.

Mohamed, M., Li, Z., Chen, X., Shang, L., Mickelson, A., Vachharajani, M., and Sun,
Y. (2010). Power-efficient variation-aware photonic on-chip network management.
In Proceedings of International Symposium on Low-Power Electronics and Design,
pages 31–36.

Moss, B., Sun, C., Georgas, M., Shainline, J., Orcutt, J., Leu, J., Wade, M., Chen,
Y.-H., Nammari, K., Wang, X., Li, H., Ram, R., Popovic, M., and Stojanovic, V.
(2013). A 1.23pJ/b 2.5Gb/s monolithically integrated optical carrier-injection ring
modulator and all-digital driver circuit in commercial 45nm SOI. In Proceedings of
IEEE International Solid-State Circuits Conference, pages 126–127.

Mutlu, O., Kim, H., and Patt, Y. N. (2006). Efficient runahead execution: Power-
efficient memory latency tolerance. IEEE Micro, 26(1):10–20.

Nitta, C., Farrens, M., and Akella, V. (2011). Addressing system-level trimming is-
sues in on-chip nanophotonic networks. In Proceedings of International Symposium
on High Performance Computer Architecture, pages 122–131.

Noia, B. and Chakrabarty, K. (2014). Design-for-Test and Test Optimization Tech-
niques for TSV-based 3D Stacked ICs, 1st edition. Springer International Publish-
ing.

Oracle (2011). SPARC T4 processor data sheet. http://www.oracle.com/us/

products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-

processor-ds-497205.pdf.

152

Orcutt, J. S., Moss, B., Sun, C., Leu, J., Georgas, M., Shainline, J., Zgraggen, E., Li,
H., Sun, J., Weaver, M., Urošević, S., Popović, M., Ram, R. J., and Stojanović, V.
(2012). Open foundry platform for high-performance electronic-photonic integra-
tion. Optical Express, 20(11):12222–12232.

Owens, J. D., Dally, W. J., Ho, R., Jayasimha, D. J., Keckler, S. W., and Peh, L.-S.
(2007). Research challenges for on-chip interconnection networks. IEEE Micro,
27(5):96–108.

Pan, Y., Kumar, P., Kim, J., Memik, G., Zhang, Y., and Choudhary, A. (2009).
Firefly: Illuminating future Network-on-Chip with nanophotonics. In Proceedings
of International Symposium on Computer Architecture, pages 429–440.

Pavlidis, V. and Friedman, E. (2007). 3-D topologies for Networks-on-Chip. IEEE
Transactions on Very Large Scale Integration Systems, 15(10):1081–1090.

Pavlidis, V., Savidis, I., and Friedman, E. (2008). Clock distribution networks for
3-D integrated circuits. In Proceedings of Custom Integrated Circuits Conference,
pages 651 –654.

Pavlovic, M., Puzovic, N., and Ramirez, A. (2013). Data placement in HPC architec-
tures with heterogeneous off-chip memory. In Proceedings of IEEE International
Conference on Computer Design, pages 193–200.

Peón-quirós, M., Bartzas, A., Mamagkakis, S., Catthoor, F., Mend́ıas, J. M., and
Soudris, D. (2015). Placement of linked dynamic data structures over heteroge-
neous memories in embedded systems. ACM Transactions on Embedded Computer
System, 14(2):37:1–37:30.

Phadke, S. and Narayanasamy, S. (2011). MLP aware heterogeneous memory sys-
tem. In Proceedings of Design, Automation and Test in Europe Conference and
Exhibition, pages 1–6.

Ponomarev, D., Kucuk, G., and Ghose, K. (2006). Dynamic resizing of superscalar
datapath components for energy efficiency. IEEE Transactions on Computers,
55(2):199–213.

Qureshi, M. K. and Patt, Y. N. (2006). Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In
Proceedings of International Symposium on Microarchitecture, pages 423–432.

Rabaey, J. M., Chandrakasan, A., and Nikolic., B. (2003). Digital Integrated Circuits:
A Design Perspective, 2nd edition.

Ramini, L., Bertozzi, D., and Carloni, L. (2012). Engineering a bandwidth-scalable
optical layer for a 3D multi-core processor with awareness of layout constraints. In
Proceedings of International Symposium on Networks-on-Chip, pages 185–192.

153

Rupp, K. (2015). 40 years of microprocessor trend data. https://www.karlrupp.

net/2015/06/40-years-of-microprocessor-trend-data/.

Shacham, A., Bergman, K., and Carloni, L. P. (2007). On the design of a photonic
Network-on-Chip. In Proceedings of International Symposium on Networks-on-
Chip, pages 53–64.

Shen, D., Liu, X., and Lin, F. X. (2016). Characterizing emerging heterogeneous
memory. In Proceedings of ACM SIGPLAN International Symposium on Memory
Management, pages 13–23.

Skadron, K., Stan, M. R., Huang, W., Velusamy, S., Sankaranarayanan, K., and
Tarjan, D. (2003). Temperature-aware microarchitecture. In Proceedings of Inter-
national Symposium on Computer Architecture, pages 2–13.

Snavely, A. and Tullsen, D. M. (2000). Symbiotic jobscheduling for a simultaneous
multithreaded processor. In Proceedings of International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 234–244.

Song, B., Contu, P., Stagarescu, C., Pinna, S., Abolghasem, P., Ristic, S., Bickel, N.,
Bowker, J., Behfar, A., and Klamkin, J. (2015). 3D integrated hybrid silicon laser.
In Proceedings of European Conference on Optical Communication, pages 1–3.

Su, H., Liu, F., Devgan, A., Acar, E., and Nassif, S. (2003). Full chip leakage-
estimation considering power supply and temperature variations. In Proceedings
of International Symposium on Low Power Electronics and Design, pages 78–83.

Sun, C., Chen, C.-H. O., Kurian, G., Wei, L., Miller, J., Agarwal, A., Peh, L.-
S., and Stojanovic, V. (2012). DSENT - a tool connecting emerging photonics
with electronics for opto-electronic networks-on-chip modeling. In Proceedings of
International Symposium on Network on Chip, pages 201–210.

Sun, F., Cevrero, A., Athanasopoulos, P., and Leblebici, Y. (2010). Design and
feasibility of multi-Gb/s quasi-serial vertical interconnects based on TSVs for 3D
ICs. In Proceedings of IEEE/IFIP International Conference on VLSI and System-
on-Chip, pages 149–154.

Sun, G., Dong, X., Xie, Y., Li, J., and Chen, Y. (2009). A novel architecture of the
3D stacked MRAM L2 cache for CMPs. In Proceedings of International Symposium
on High Performance Computer Architecture, pages 239–249.

Thoziyoor, S., Muralimanohar, N., Ahn, J. H., and Jouppi, N. P. (2008). CACTI
5.1. Technical Report HPL-2008-20, HP Labs.

Tran, L., Kurdahi, F. J., Eltawil, A. M., and Homayoun, H. (2013). Heterogeneous
memory management for 3D-DRAM and external DRAM with QoS. In Proceedings
of Asia and South Pacific Design Automation Conference, pages 663–668.

154

Van Craeynest, K., Akram, S., Heirman, W., Jaleel, A., and Eeckhout, L. (2013).
Fairness-aware scheduling on single-ISA heterogeneous multi-cores. In Proceedings
of International Conference on Parallel Architectures and Compilation Techniques,
pages 177–188.

Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., and Emer, J. (2012).
Scheduling heterogeneous multi-cores through performance impact estimation (PIE).
In Proceedings of International Symposium on Computer Architecture, pages 213–
224.

Vantrease, D., Schreiber, R., Monchiero, M., McLaren, M., Jouppi, N., Fiorentino,
M., Davis, A., Binkert, N., Beausoleil, R., and Ahn, J. (2008). Corona: System
implications of emerging nanophotonic technology. In Proceedings of International
Symposium on Computer Architecture, pages 153–164.

Varadarajan, K., Nandy, S., Sharda, V., Bharadwaj, A., Iyer, R., Makineni, S., and
Newell, D. (2006). Molecular caches: A caching structure for dynamic creation of
application-specific heterogeneous cache regions. In Proceedings of International
Symposium on Microarchitecture, pages 433–442.

Wang, T., Liu, H., Lee, A., Pozzi, F., and Seeds, A. (2011). 1.3-µm InAs/GaAs
Quantum-dot lasers monolithically grown on Si substrates. Optics Express, 19(12):
11381–11386.

Wong, H. (2012). A comparison of intel’s 32nm and 22nm core i5 CPUs: Power, volt-
age, temperature, and frequency. http://blog.stuffedcow.net/2012/10/intel32nm-
22nm-core-i5-comparison/.

Woo, S., Ohara, M., Torrie, E., Singh, J., and Gupta, A. (1995). The SPLASH-2
programs: characterization and methodological considerations. In Proceedings of
International Symposium on Computer Architecture, pages 24–36.

Zhang, T., Abellán, J. L., Joshi, A., and Coskun, A. K. (2014). Thermal management
of manycore systems with silicon-photonic networks. In Proceedings of Design,
Automation and Test in Europe Conference and Exhibition, pages 307:1–307:6.

Zhang, T., Aga, S., Narayanasamy, S., and Coskun, A. K. (2017). MOCA: memory
object classification and allocation in heterogeneous memory systems. In review.

Zhang, T., Cevrero, A., Beanato, G., Athanasopoulos, P., Coskun, A. K., and Leblebici,
Y. (2013). 3D-MMC: A modular 3D multi-core architecture with efficient resource
pooling. In Proceedings of Design, Automation and Test in Europe Conference and
Exhibition, pages 1241–1246.

155

Zhang, T., Meng, J., and Coskun, A. K. (2015). Dynamic cache pooling in 3D
multicore processors. ACM Journal on Emerging Technologies in Computing,
12(2):14:1–14:21.

Zhao, X., Minz, J., and Lim, S.-K. (2011). Low-power and reliable clock network
design for through-silicon via (TSV) based 3D ICs. IEEE Transactions on Com-
ponents, Packaging and Manufacturing Technology, 1(2):247–259.

Zhou, X., Xu, Y., Du, Y., Zhang, Y., and Yang, J. (2008). Thermal management for
3D processors via task scheduling. In Proceedings of International Conference on
Parallel Processing, pages 115–122.

Zhu, C., Gu, Z., Shang, L., Dick, R. P., and Joseph, R. (2008). Three-dimensional
chip-multiprocessor run-time thermal management. IEEE Transactions on Compu-
ter-Aided Design of Integrated Circuits and Systems, 27(8).

Zortman, W. A., Trotter, D. C., and Watts, M. R. (2010). Silicon photonics manu-
facturing. Optics Express, 18(23):23598–23607.

CURRICULUM VITAE

Tiansheng Zhang

Education

Ph.D., Boston University, 01/2017
Electrical and Computer Engineering Department
Advisor: Professor Ayse K. Coskun
Dissertation Title: “Resource and Thermal Management in 3D Stacked Multi-/Many-
core Systems”

B.S., Harbin Institute of Technology, 07/2010
Department of Microelectronics

Professional Experience

Oracle Corporation, Santa Clara, CA, U.S., 06/2016 to 09/2016
Software Engineering Intern, Supervisor: Darrin Johnson
Compression algorithm improvement for SPARC M7 processors.

MediaTek Inc., Woburn, MA, U.S., 06/2015 to 09/2015
Software Engineering Intern, Supervisor: Dr. Yuan Lin & Dr. Henry Cox
Cross-architecture performance prediction of scalar code on embedded systems.

Research Experience

Performance & Energy-Aware Computing Lab, Boston University, Boston,
MA, U.S., 09/2011 to 01/2017
Research Assistant, Advisor: Prof. Ayse K. Coskun
Power and performance simulation and optimization of 3D-stacked multi-/many-core
systems; Thermally-aware run-time management of manycore systems with silicon-
photonic networks-on-chip.

Microelectronic Systems Lab, EPFL, Switzerland, 05/2012 to 09/2012
Research Intern, Supervisor: Prof. Yusuf Leblebici
Simulation, debugging and testing of a 3D-stacked prototype chip.

157

Advanced SoC Research Center, HIT, China, 05/2008 to 07/2011
Undergraduate Research Assistant, Advisor: Prof. Jinxiang Wang
Design of a solution with high performance and low area-cost for fault-tolerant routing
in 2D-Mesh NoCs.

Teaching Experience

EC440: Introduction to Operating Systems, Spring 2012

EC413: Computer Organization, Fall 2011

Book Chapters

1. Tiansheng Zhang, Jonathan Klamkin, Ajay Joshi, and Ayse K. Coskun.
“Thermal Management of Silicon Photonic NoCs in Many-core Systems”. To
appear in Optical Interconnect for Computing Systems, 2017.

2. Tiansheng Zhang, Fulya Kaplan, and Ayse K. Coskun. “Thermal Modeling
and Management in 3D Stacked Systems”. In Physical Design for 3D Integrated
Circuits. Editors: Aida Todri-Sanial, and Chuan Seng Tan. CRC Press, (ISBN:
978-1-498-71036-7), pp. 229-244, 2015.

Refereed Journal Publications

1. Jose L. Abellan, Ayse K. Coskun, Anjun Gu, Warren Jin, Ajay Joshi, Andrew B.
Kahng, Jonathan Klamkin, Cristian Morales, John Recchio, Vaishnav Srinivas,
and Tiansheng Zhang. “Adaptive Tuning of Photonic Devices in a Photonic
NoC Through Dynamic Workload Allocation”. To appear in IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems (TCAD).

2. Tiansheng Zhang, Jie Meng, and Ayse K. Coskun. “Dynamic Cache Pooling
in 3D Multicore Processors”. In ACM Journal on Emerging Technologies in
Computing Systems (JETC), Volumn 12 Issue 2, August 2015.

Refereed Conference Publications

1. Ayse K. Coskun, Ajay Joshi, Andrew B. Kahng, Yenai Ma, Saiful Mojumder,
and Tiansheng Zhang. “TACO: Thermally-Aware Chiplet Organization for
2.5D Integrated Manycore Systems”. In review.

158

2. Tiansheng Zhang, Shaizeen Aga, Satish Narayanasamy, and Ayse K. Coskun.
“MOCA: Memory Object Classification and Allocation in Heterogeneous Mem-
ory Systems”. In review.

3. Ayse K. Coskun, Anjun Gu, Warren Jin, Ajay Joshi, Andrew B. Kahng, Jonathan
Klamkin, Yenai Ma, John Recchio, Vaishnav Srinivas, and Tiansheng Zhang.
“Cross-layer Floorplan Optimization for Silicon Photonic NoCs In Many-core
Systems”. In Proc. Design, Automation and Test in Europe (DATE), pp. 1309-
1314, March 2016.

4. Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun, and Martin Her-
bordt. “An Investigation of Unified Memory Access Performance in CUDA”.
In Proc. IEEE High Performance Extreme Computing Conference (HPEC), pp.
1-6, September 2014.

5. Chao Chen, Tiansheng Zhang, Pietro Contu, Jonathan Klamkin, Ayse K.
Coskun, and Ajay Joshi. “Sharing and Placement of On-chip Laser Sources in
Silicon-Photonic NoCs”. In Proc. International Symposium on Networks-on-
Chip (NOCS), pp. 88-95, September 2014.

6. Tiansheng Zhang, Jose Abellan, Ajay Joshi, and Ayse K. Coskun. “Thermal
Management of Manycore Systems with Silicon-Photonic Networks”. In Proc.
Design, Automation and Test in Europe (DATE), pp. 1-6, March 2014.

7. Jie Meng, Tiansheng Zhang, and Ayse K. Coskun. “Dynamic Cache Pool-
ing for Improving Energy Efficiency in 3D Stacked Multicore Processors”. In
Proc. the IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pp. 210-215, October 2013.

8. Tiansheng Zhang, Alessandro Cevrero, Giulia Beanato, Panagiotis Athana-
sopoulos, Ayse K. Coskun, and Yusuf Leblebici. “3D-MMC: A Modular 3D
Multi-Core Architecture with Efficient Resource Pooling”. In Proc. Design,
Automation and Test in Europe (DATE), pp. 1241-1246, March 2013.

9. Jinxiang Wang, Fangfa Fu, Tiansheng Zhang, Yuping Chen. “A Small-
Granularity Solution in 2D-Mesh Network-on-Chip”. In Proc. IEEE Interna-
tional Conference on Solid-State and Integrated Circuit Technology (ICSICT),
pp. 382-384, November 2010.

Refereed Workshop Publications

1. Tiansheng Zhang, and Ayse K. Coskun. “Resource Management Design in
3D-Stacked Multicore Systems for Improving Energy Efficiency”. In Proceedings
of Boston Area Architecture Workshop (BARC), Januarary 2015.

