
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

M O DELING A N D O PT IM IZ A T IO N OF

H IG H -PE R FO R M A N C E M A N Y -C O R E SY ST E M S FO R

E N E R G Y -E FFIC IE N T A N D R ELIA BLE C O M P U T IN G

by

JIE M E N G

B.S., University of Science and Technology of China, 2004
M.A.Sc., McMaster University, 2008

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2013

UMI Number: 3575304

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&iori Publishing

UMI 3575304
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

© 2013 by
Jie Meng
All rights reserved.

Approved by

First Reader

Second Reader

Third Reader

Fourth Reader

Fifth Reader

Ayse K. Coskun, PhD
Assistant Professor of Electrical and Computer Engineering

< /
I a ! M

Martin Herbordt, PhD
Associate Professor of Electrical and Computer Engineering

aynlosni, PhD
Assistant Professor of Electrical and Computer Engineering

Allyn E. Hubbard, PhD
Professor of Electrical and Computer Engineering
Professor of Biomedical Engineering

Arun Rodrigues, PhD
Researcher at Sandia National Laboratories

I f you cry because the sun has gone out o f your life, your tears will prevent
you from seeing the stars.

R abindranath Tagore

A cknow ledgm ents

I would like to express my gratitude to my advisor, Professor Ayse K. Coskun, for her

inspirational guidance, invaluable support, and constant encouragement throughout

my graduate school career. She has been not only a supportive advisor but also a

role model for me.

I would like to thank Professor M artin Herbordt for his guidance and valuable

feedback on my research projects as well as his helpful career advice and sugges­

tions. I also thank Professor Ajay Joshi for his advice and comments th a t led to the

publication of my first paper at Boston University.

I would like to give special thanks to Professor Allyn E. Hubbard and Professor

Ari Trachtenberg for their guidance when I was trying to find my research direction. I

would also like to thank my doctoral committee, Professor M artin Herbordt, Professor

Ajay Joshi, Professor Allyn E. Hubbard, and Dr. Arun Rodrigues for their feedback

and contributions.

I would like to express my sincerest appreciation to Dr. Arun Rodrigues and Dr.

Mingyu Hsieh for their advice and support during my internship at Sandia National

Laboratories. I would also like to thank Mr. Xin Ma and Mr. Jim Ignowski for the

summer internship opportunity at Intel Corporation, Hudson, MA.

I would like to thank my fellow lab mates, co-authors, and friends at Boston

University for their friendship and for their encouragement during the sleepless nights

of working together before paper deadlines. I am also grateful to our collaborators and

co-authors Dr. Mohamed M. Sabry, Arvind Sridhar, and Professor David Atienza at

Ecole Polytechnique Federale de Lausanne (EPFL) for their productive collaboration

and the stimulating discussions.

Finally, I would like to express my deepest gratitude to my family for their en­

couragement, understanding, and unconditional support.

The research that forms the basis of this dissertation has been partially funded

by NSF CAREER grant CNS-1149703, Sandia National Laboratories, and Design

Automation Conference A. Richard Newton G raduate Scholarship.

The contents of Chapter 3 and 4 are in part reprints of the material from the

papers, Jie Meng and Ayse Coskun, “Analysis and Runtime Management o f 3D Sys­

tems with Stacked D RAM fo r Boosting Energy Efficiency”, in Proceedings of Design

Automation and Test in Europe Conference (DATE), 2012, and Jie Meng, Katsutoshi

Kawakami, and Ayse Coskun, “Optimizing Energy Efficiency o f 3D Multicore Sys­

tems with Stacked D RAM under Power and Thermal Constraints”, in Proceedings of

Design Automation Conference (DAC), 2012.

The content of Section 4.3 is in part a reprint of the m aterial from the papers, Ayse

K. Coskun, Jie Meng, David Atienza, and Mohamed M. Sabry, “Attaining Single-

Chip, High-Performance Computing through 3D Systems with Active Cooling”, in

IEEE Micro, Special Issue on Big Chips, August, 2011, and Mohamed M. Sabry,

Arvind Sridhar, Jie Meng, Ayse K. Coskun, and David Atienza , “GreenCool: An

Energy-Efficient Liquid Cooling Design Technique fo r 3D MPSoCs via Channel Width

Modulation”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, April, 2013.

The contents of Chapter 5 and 6 are in part reprints of the m aterial from the pa­

pers, Jie Meng, Fulya Kaplan, Mingyu Hsieh, and Ayse K. Coskun, “Topology-Aware

Reliability Optimization for Multiprocessor System s”, in Proceedings of International

Conference on VLSI and System-on-Chip (VLSI-SoC), 2012, and Fulya Kaplan, Jie

Meng, and Ayse K. Coskun, “Optimizing Communication and Cooling Costs in HPC

Data Centers via Intelligent Job Allocation”, in Proceedings of International Green

Computing Conference (IGCC), 2013.

M O DELING A N D O PT IM IZ A T IO N OF

H IG H -PE R FO R M A N C E M A N Y -C O R E SY STE M S FO R

E N E R G Y -E FFIC IE N T A N D R ELIA BLE C O M P U T IN G

(Order No.)

JIE M E N G

Boston University, College of Engineering, 2013

Major Professor: Ayse K. Coskun, PhD, Assistant Professor of
Electrical and Computer Engineering

ABSTRACT

Many-core systems, ranging from small-scale many-core processors to large-scale

high performance computing (HPC) da ta centers, have become the main trend in

computing system design owing to their potential to deliver higher throughput per

watt. However, power densities and tem peratures increase following the growth in the

performance capacity, and bring major challenges in energy efficiency, cooling costs,

and reliability. These challenges require a joint assessment of performance, power, and

tem perature tradeoffs as well as the design of runtime optimization techniques that

monitor and manage the interplay among them. This thesis proposes novel modeling

and runtime management techniques th a t evaluate and optimize the performance,

energy, and reliability of many-core systems.

We first address the energy and therm al challenges in 3D-stacked many-core pro­

cessors. 3D processors with stacked DRAM have the potential to dramatically im­

prove performance owing to lower memory access latency and higher bandwidth.

vii

However, the performance increase may cause 3D systems to exceed the power bud­

gets or create thermal hot spots. In order to provide an accurate analysis and enable

the design of efficient management policies, this thesis introduces a simulation frame­

work to jointly analyze performance, power, and tem perature for 3D systems. We

then propose a runtime optimization policy th a t maximizes the system performance

by characterizing the application behavior and predicting the operating points that

satisfy the power and thermal constraints. Our policy reduces the energy-delay prod­

uct (EDP) by up to 61.9% compared to existing strategies.

Performance, cooling energy, and reliability are also critical aspects in HPC data

centers. In addition to causing reliability degradation, high tem peratures increase

the required cooling energy. Communication cost, on the other hand, has a sig­

nificant impact on system performance in HPC d a ta centers. This thesis proposes

a topology-aware technique th a t maximizes system reliability by selecting between

workload clustering and balancing. Our policy improves the system reliability by

up to 123.3% compared to existing tem perature balancing approaches. We also in­

troduce a job allocation methodology to simultaneously optimize the communication

cost and the cooling energy in a da ta center. Our policy reduces the cooling cost

by 40% compared to cooling-aware and performance-aware policies, while achieving

comparable performance to performance-aware policy.

C ontents

1 Introduction 1

1.1 Problem S ta te m e n t... 3

1.2 Thesis C o n trib u tio n s .. 6

2 Background and R elated W ork 10

2.1 B ac k g ro u n d .. 10

2.2 Modeling and Management of 3D Many-core S y s te m s 11

2.3 Energy and Reliability Management in Servers and D ata Centers . . . 14

2.4 Distinguishing Aspects from Prior W o r k ... 16

3 M odeling o f 3D M any-core S ystem s 19

3.1 Overview... 19

3.2 Methodology for Modeling 3D Many-core S y s te m s 22

3.2.1 Modeling Target 3D Systems with DRAM S ta c k in g 22

3.2.2 Modeling 3D On-chip DRAM A c ce sse s ... 25

3.2.3 Performance Simulation of 3D Many-core S y stem s..................... 30

3.2.4 Modeling the Power Consumption of 3D Many-core Systems . 31

3.2.5 Modeling the Temperature of 3D Many-core S y s te m s 33

3.3 Performance, Energy, and Temperature Evaluation of 3D Many-core

P ro cesso rs .. 35

3.3.1 Performance Evaluation of 3D Many-core S y stem s..................... 35

3.3.2 Power Evaluation of 3D Many-core S y s te m s 38

3.3.3 Temperature Analysis of 3D Many-core S y s te m s 40

ix

3.4 S u m m a r y .. 40

4 R untim e M anagem ent o f 3D M any-core S ystem s 42

4.1 Overview... 42

4.2 Runtime Management for 3D Many-core S y s te m s 44

4.3 Managing 3D Many-core Systems with Liquid Cooling 55

4.4 S u m m a r y .. 59

5 M odeling o f M any-core S ystem s in D ata C enters 61

5.1 Overview... 61

5.2 Performance and Cooling Energy Modeling in HPC D ata Centers . . 62

5.2.1 Workload and Performance M o d e l.. 63

5.2.2 Cooling Energy M o d e l .. 65

5.2.3 Temperature M o d el... 72

5.3 Reliability Modeling for Many-core Systems in HPC D ata Centers . . 73

5.3.1 Wear-out Failure M ech an ism s... 73

5.3.2 Lognormal Distributions for Lifetime R e lia b ility 74

5.3.3 System Reliability M o d e lin g .. 77

5.3.4 Topology and System Reliability Analysis 77

5.4 S u m m a r y .. 81

6 R untim e M anagem ent o f M any-core S ystem s in D a ta C enters 83

6.1 Overview... 83

6.2 Topology-Aware Reliability O p tim iza tio n .. 85

6.2.1 Experimental M ethodology.. 88

6.2.2 Evaluation R e s u l t s ... 91

6.3 Joint Performance and Cooling Cost Optimization for D ata Centers . 96

6.3.1 Performance-aware Job A llocation.. 96

6.3.2 Cooling-aware Job Allocation Policy ... 97

x

6.3.3 Joint Optimization Policy for D ata Center Job Allocation . . 99

6.3.4 Experimental R e su lts .. 102

6.4 S u m m a ry ... 110

7 C onclusion and Future R esearch D irection s 112

7.1 Conclusion... 112

7.1.1 A Simulation Framework and Runtime Optimization for Boost­

ing Energy Efficiency in 3D Many-core P ro cesso rs 112

7.1.2 Optimizing the Reliability, Performance, and Cooling Cost of

Many-core Systems in HPC D ata Centers via Workload Allocation 114

7.2 Future Research D irections... 115

7.2.1 3D Stacked Systems ' ... 115

7.2.2 HPC D ata C e n te r s ... 118

R eferences 125

C urriculum V itae 135

List o f Tables

3.1 3D system core architecture param eters.. 23

3.2 Dimensions of the blocks in the target 3D systems.................................... 25

3.3 DRAM access latency.. 29

3.4 Thermal simulation configuration in H otSpot.. 34

4.1 Regression coefficients for a target 3D system with 85°C/175W con­

straints for all the V-F settings... 47

4.2 Results of the target 3D system with static settings.................................. 49

4.3 Results of the target 3D system with our runtim e optimization policy. 49

6.1 Intel Clovertown core architecture param eters... 89

6.2 Workload characteristics... 90

6.3 Dimensions of the target system... 91

6.4 Simulation results for the single-row job allocation.................................... 103

xii

List o f Figures

1-1 The report from U.S. environmental protection agency to the Congress

on server and da ta center energy efficiency shows th a t the national en­

ergy usage of the servers and da ta centers in 2006 is more than doubled

compared to the electricity consumed in 2000 (U.S. Environmental Pro­

tection Agency, 2007).. 1

1-2 The distributions of the energy consumption in HPC data centers (Ra-

jic, 2009)... 2

1-3 An illustration of a 3D many-core processor with stacked DRAM. TSVs

are used to connect the on-chip DRAM layer with the logic layer. . . 4

2-1 (a) 3D test vehicle and (b) TSV fabricated by EPFL (Atienza, 2010). 11

3-1 An illustration of our simulation framework for jointly analyzing per­

formance, power, and tem perature tradeoffs of 3D stacked systems. . 21

3-2 An illustration of a generic 3D 16-core processor w ith 2-layer on-chip

DRAM stacking.. 22

3-3 The layout for the logic layer of target 3D system.................................... 24

3-4 An illustration of the 3D system with DRAM stacking th a t has (a)

s in g le -b u s r e g u la r memory access and (b) 4-way p a r a l l e l memory

ac c e ss .. 26

3-5 Memory request queuing delay in different memory access schemes.

Average access rates of 0.0035, 0.012, and 0.025 are obtained by sim­

ulating single-bus, 4-way parallel, and 8-way parallel access schemes,

respectively.. 28

3-6 Average memory accesses per 10ms on different DRAM ranks on 3D

system with stacked DRAM... 29

3-7 Percentage of IPS improvement for 3D systems with DRAM stacking

over 2D baselines... 36

3-8 IPS temporal behavior analysis of streamcluster running on 3D systems

with DRAM stacking versus running on 2D baseline systems................ 37

3-9 IPS temporal behavior analysis for 2D-baseline versus 3D-DRAM sys­

tems for fluidanimate.. 37

3-10 Average core power for the 3D h igh -perfo rm ance system with DRAM

stacking and the 2D baseline.. 38

3-11 Average core power for the 3D low-power system with DRAM stacking

and the 2D baseline... 39

3-12 Peak chip tem peratures for the 2D-baseline and the 3D stacked DRAM

systems... 39

4-1 IPS for PARSEC and NAS benchmarks running on 2D baseline and

the 3D system with parallel access... 44

4-2 Peak chip tem perature on the 3D system with parallel access running

at different V-F settings... 45

4-3 Total chip power on the 3D system with parallel access running at

different V-F settings.. 46

4-4 The flowchart of our runtime optimization p o l i c y 47

xiv

4-5 Performance improvement on 3D system with parallel access compared

to 3D system with regular access.. 48

4-6 3D system using our runtim e management policy in comparison to

running all benchmarks at the static V-F setting of 0.8GHz/0.98V. . 50

4-7 Temperature trace of ua on the 3D system running a t 1.4GHz/1.02V

and the V-F setting selected by our runtim e management policy. . . . 51

4-8 3D system with runtime management policy in comparison to tem perature-

triggered DVFS policy.. 51

4-9 Prediction accuracy of our runtim e management policy versus memory

access (MA) driven DVFS... 52

4-10 The DRAM layer layout for the h igh -perfo rm ance 3D system with

on-chip DRAM... 54

4-11 DRAM bank tem perature and access rate for s tr e a m c lu s te r in 3D

high-perform ance system with 128-Byte memory bus........................... 55

4-12 An illustration of 3D many-core systems with two logic layers stacking

and off-chip DRAM... 56

4-13 Peak and average tem peratures for 64-core 2D system and 3D system

with two logic layers, including the results with no thermal manage­

ment (No DTM), with temperature-aware load balancing (TALB), and

with TALB combined with DVFS (TALB+DVFS)................................... 57

4-14 Peak and average tem perature between liquid-cooled 3D systems and

the 2D air-cooled baseline, including the tem peratures results with no

thermal management (No DTM), with tem perature-aware load balanc­

ing (TALB), and with TALB combined with DVFS (TALB+DVFS),

as well as fuzzy controller combined with TALB (Fuzzy+TALB). . . . 59

5-1 Layout of the target data center.. 62

xv

5-2 Communication pattern and distance measure... 64

5-3 Cross-interference coefficient m atrix for our system.................................. 67

5-4 Exit and recirculation coefficients for our system 69

5-5 Layout of the Intel Clovertown System (Teng et al., 2009)............................ 78

5-6 System reliability for different series-parallel scenarios with Th =80°C and

per-core MTTF of 5 years at 60°C.. 79

5-7 System reliability improvement of clustering over balancing ((Rdustered —

Rbalanced) / Rbalanced) for various Tjf, AT" (T/j-Tjr,).. 80

5-8 System reliability for a processor-level parallel system with initial per-core

MTTF values of 3, 5 and 7 years.. 81

6-1 A flow chart for illustrating the GCLB reliability optimization policy for

processor-level parallel systems.. 85

6-2 An illustration of the clustering and balancing job allocations on the target

system under 75% utilization. P represents power consumption, and PI >

P2 > ... > P6... 86

6-3 System reliability with GCLB and therm al balancing allocation policies

for the target system under 75% utilization... 92

6-4 System reliability with GCLB and therm al balancing allocation policies

for the target system under 50% utilization... 92

6-5 System reliability for GCLB optimization policy compared to thermal

balancing for systems with 75% utilization, considering a thermal con­

straint of 75°C'.. 93

6-6 Temporal workload utilization for the target system................................ 94

6-7 System reliability of GCLB compared to random job allocation for

dynamically changing workload utilization... 94

xvi

6-8 Exploration of 16-core system reliability with GCLB and thermal bal­

ancing allocation policies under 75% utilization... 95

6-9 Joint optimization algorithm ... 101

6-10 Allocation scheme for the three policies... 103

6-11 Job sizes and percentage of active nodes for multiple-row allocation. . 104

6-12 Cooling power for multiple-row allocation... 105

6-13 Individual job communication costs for multiple-row allocation. . . . 105

6-14 Percentage of the active nodes and the cooling power traces for dynamic

allocation... 107

6-15 Histogram of the communication cost for the dynamic allocation ex­

periment... 109

7-1 IPC of SPEC benchmarks for increasing L2 cache size. The IPC values

are normalized with respect to using a 256KB L2 cache.......................... 117

7-2 EDP and EDAP of the 3D system with cache resource pooling and its 3D

baseline with 1MB static caches, normalized to its 2MB baseline................. 118

7-3 Percentage reduction in job communication cost using RCB-based task

mapping for the dynamic allocation scenario... 123

xvii

1

Chapter 1

Introduction

Energy efficiency is an increasingly im portant concern in computing system design.

The rapid growth of data-intensive computing has led to larger demands for comput­

ing facilities and higher amounts of electricity to power them. As shown in Figure 1-1,

the energy used by data center servers and their supporting cooling infrastructures

has doubled between 2000 and 2006, and this trend is expected to continue (U.S.

Environmental Protection Agency, 2007). In fact, the cooling subsystems are respon­

sible for close to half of the computing energy expenses in today’s high-performance

S H tM rM tn iG lu rv

Mi h w r t tq u ipw unt

Figure 1-1: The report from U.S. environmental protection agency
to the Congress on server and da ta center energy efficiency shows that
the national energy usage of the servers and d a ta centers in 2006 is
more than doubled compared to the electricity consumed in 2000 (U.S.
Environmental Protection Agency, 2007).

2

Network, 10%

Servers and Storage

Power Conversion: 1 > ™
26%

:V

-Cooling, 50%

Lighting: 3%

Figure 1-2: The distributions of the energy consumption in HPC data
centers (Rajic, 2009).

computing (HPC) clusters and d a ta centers, as presented in Figure 1-2 (Rajic, 2009;

Brown and Reams, 2010). The increased energy consumption in da ta centers also has

negative implications on system reliability, complexity, and scalability (Stavros Hari-

zopoulos, 2009; Coskun et al., 2009b). Therefore, in computing system design area,

it is im portant to develop advanced design techniques for energy-efficient computing.

Many-core systems have become the main trend in computing system design own­

ing to their potential of providing higher energy efficiency in comparison to single-core

computing systems (Kongetira et al., 2005). Today’s many-core systems appear in

a number of computing domains ranging from small-scale many-core processors to

large-scale HPC data centers. The workloads in these domains involve a large variety

of applications, such as scientific computing, modeling, and financial applications.

These applications differ in their performance characteristics, such as instructions

per cycle (IPC), memory access trends, and communication intensities. Therefore,

the workload characteristics of many-core systems are expected to considerably vary

within or across applications during the system ’s lifetime. For future many-core sys­

tems that are expected to run such dynamically changing workloads, novel modeling

and management approaches are required in order to achieve significant energy effi­

ciency improvements.

3

This thesis focuses on developing the modeling and runtim e management tech­

niques tha t evaluate and optimize the energy efficiency and reliability of many-core

systems. Our goal is to find solutions th a t recognize the dynamically changing work­

load characteristics and understand the complex interplay among performance, en­

ergy, and temperature for both single-chip 3D many-core processors and for HPC

data centers that consist of thousands of processors.

1.1 Problem Statem ent

Today, performance, energy, tem perature, and reliability have become the main chal­

lenges in computing system design. In many-core systems, performance is the first-

order constraint. Although the performance of computing systems has increased

tremendously in the last decade, the demand for higher performance is still there and

will not disappear in the near future. Following the higher performance demand in

many-core systems, the computing power increases and causes higher on-chip power

densities. The increase in power densities results in higher on-chip tem peratures and

large thermal variations, and creates therm al hot spots. The elevated peak tem­

peratures and thermal variations accelerate the failure mechanisms, degrade system

reliability, and also cause higher cooling cost (Stavros Harizopoulos, 2009; JEDEC,

2006; Coskun et al., 2009b).

In order to address these challenges, this thesis focuses on two im portant domains

in many-core systems that are expected to dominate the future computing system

design trend: one domain is the many-core single-chip processor and the other is the

HPC data center that includes thousands of processors.

For many-core single chip processors, the performance of conventional 2D pro­

cessors is limited by the large latency between last-level caches and main memory.

3D stacked design, where multiple chips are vertically connected, has emerged as a

4

promising solution to overcome this performance bottleneck. Figure 1-3 provides an

example of a 3D many-core processor with a stacked DRAM layer. TSVs are used

to connect the on-chip DRAM layer with the logic layer in the 3D processor. Such

3D stacked architecture enables significant improvement in system energy efficiency

because of the high-bandwidth connections between the memory and logic layers

provided by TSVs. At the same time, 3D design improves per-chip transistor den­

sity without requiring aggressive technology scaling, enhances manufacturing yield

by vertically stacking smaller chips in comparison to building large single-layer chips,

and enables heterogeneous integration of different technologies, such as logic layers,

DRAM layers, and analog/RF layers (Black et al., 2006; Loh, 2008).

Through Silicon Vlas

micron scale
C i r c u i t B o a r d

Figure 1-3: An illustration of a 3D many-core processor with stacked
DRAM. TSVs are used to connect the on-chip DRAM layer with the
logic layer.

However, using 3D stacked systems to achieve the energy efficiency goal brings

new challenges in architecture design, manufacturing, testing, runtime operations,

and system reliability. Thermal challenges are among the m ajor concerns in building

energy-efficient and reliable 3D many-core systems (Liu et al., 2005; Loi et al., 2006;

Coskun et al., 2010). Existing tem perature management methods for 3D systems in-

5

elude thermally-aware floorplanning, temperature-aware job allocation, and dynamic

voltage-frequency scaling (DVFS) (Puttaswamy and Loh, 2007; Cong et al., 2007;

Zhu et al., 2008). However, the energy and therm al management approaches for 3D

systems have been mostly disjoint from detailed performance and power evaluation.

In addition, performance evaluation for 3D systems has mainly focused on a small

number of cores (e.g., single-core, quad-core) running single-threaded workloads (Liu

et al., 2005; Loi et al., 2006; Loh, 2008). The comprehensive design, evaluation, and

runtime management methodologies with a thorough consideration of performance,

energy, and tem perature tradeoffs in 3D many-core systems are not available.

The energy efficiency and reliability challenges also exist in many-core systems

in the HPC data centers. As the number of cores and power density per processor

increase, temperature and reliability are becoming significant concerns in da ta centers

as well. High temperatures jeopardize the reliability of the chips and significantly

impact performance. In modern processors, tem perature and reliability challenges

are addressed by management techniques such as clock-gating and DVFS (Hanson

et al., 2007; Kang et al., 2010; Coskun et al., 2009a). Temperature-aware workload

management approaches have been proposed for both single-core (Hanson et al., 2007;

Kumar et al., 2006) and many-core processors (Teodorescu and Torrellas, 2008a;

Winter and Albonesi, 2008; Donald and Martonosi, 2006; Coskun et al., 2009c).

Among temperature-aware workload management policies, tem perature balancing has

been shown to be effective at the processor level (Coskun et al., 2009c). The main

idea behind thermally-aware workload allocation is to exploit tem perature variations

resulting from executing jobs with different CPU usage profiles. “Hot” jobs, such

as computation-intensive algorithms, cause the chip to run at a higher tem perature

compared to “cool” jobs. Through intelligent scheduling of such hot and cool jobs,

we can reduce thermal hot spots and variations. However, for large-scale many-core

systems with multiple chips or multiple servers, where some failures can be tolerated

by the inherent redundancy of the system, the reliability impact of thermal balancing

has not been studied.

In HPC data centers, high tem peratures also result in a large amount of cooling

energy consumption. It has been reported th a t nearly half of the energy in the com­

puting clusters today is consumed by the cooling infrastructure (Rajic, 2009; Brown

and Reams, 2010). It is possible to reduce the cooling cost by allowing the data cen­

ter temperatures to rise; however, component reliability constraints impose thermal

thresholds as failure rates are exponentially dependent on the processor tem peratures

(JEDEC, 2006). One approach to address the cooling energy challenge of HPC data

centers is to perform cooling-aware job allocation (Moore et al., 2005; Tang et al.,

2008; Pakbaznia and Pedram, 2009).

Another critical aspect in d a ta center management is performance. In HPC clus­

ters, highly parallel scientific, financial, or other applications run on multiple nodes

for long durations in the range of minutes, hours or days. The threads of these appli­

cations communicate with each other through communication infrastructures such as

the message passing interface (MPI). The running time of a communication-intensive

application is highly dependent on the location of the individual computing units

that are communicating with each other. The communication cost of communication­

intensive applications has a significant impact on system performance in HPC data

centers (Leung et al., 2002). However, existing job allocation algorithms for HPC

data centers address cooling efficiency and performance separately. How to jointly

optimize the performance and cooling energy tradeoffs through job allocation in HPC

data centers is an open question.

7

1.2 T hesis C ontributions

This thesis contributes to solving the energy and tem perature challenges in 3D many-

core processors and many-core systems in HPC d a ta centers from both modeling and

management aspects.

Our research addresses the performance and tem perature bottlenecks of 3D many-

core systems by firstly providing a methodology for constructing a comprehensive

evaluation framework with detailed modeling of performance, power and tem pera­

ture. Although thermal modeling (Coskun et al., 2010) and performance (or delay)

evaluation approaches exist, they are largely disjoint and typically include coarse­

grained assumptions about one another. Our research aims at integrating detailed

performance simulation with power and therm al evaluation models in order to enable

realistic evaluation of real-world multi-threaded applications running on 3D many-

core systems. To the best of our knowledge, our work is the first to jointly analyze

performance, power, and tem perature of both DRAM and processor layers of 3D

many-core processors through architecture-level evaluations.

Utilizing the detailed analysis enabled by our simulation framework, we are able

to design and evaluate runtime management and optimization policies for improving

the energy efficiency and reliability of 3D many-core systems. In order to exploit the

performance potential of 3D processors with DRAM stacking while maintaining the

peak power and tem perature constraints, we propose a runtim e optimization policy

that dynamically monitors workload behavior and selects among low-power and turbo

(high-performance) operating modes in an application-aware manner. Leveraging the

detailed modeling and analysis of on-chip DRAM layers, we also introduce a mem­

ory management policy that targets applications with spatial variations in DRAM

accesses, and performs temperature-aware mapping of virtual memory accesses to

physical DRAM banks.

8

For many-core servers in HPC d a ta centers, reliability has become a serious con­

cern as HPC moves towards exascale. In this thesis, we use a detailed temperature-

dependent reliability modeling approach to dem onstrate th a t for systems with multi­

ple chips, clustering jobs with higher power consumption may result in higher system

reliability compared to aggressively balancing the tem perature. Following an analysis

of the tradeoffs between load balancing and clustering, we propose a novel policy that

optimizes system reliability by choosing between clustering and balancing at runtime

according to the system topology.

At the data center level, an im portant distinguishing aspect compared to proces­

sor or server-level modeling and optimization is the need to consider the data center

cooling cost. Following the observation th a t existing HPC job allocation algorithms

address cooling and communication delay optimizations separately, in this thesis, we

propose a joint optimization policy th a t reduces both cooling power and communica­

tion latency in an HPC data center.

T he specific contributions o f th is th esis are as follows:

• A simulation framework for 3D systems with on-chip DRAM. Our work is the first

to jointly analyze performance, power, and therm al characteristics at the architec­

ture level for both DRAM and processor layers.

• Runtime optimization and management of 3D systems w ith DRAM stacking. We

propose a novel runtime optimization policy th a t maximizes the system perfor­

mance by characterizing the application behavior and predicting the operating

points that satisfy the power and therm al constraints. O ur experiments demon­

strate that our policy achieves an EDP reduction of up to 61.9% for a 16-core 3D

processor with stacked DRAM compared to a 3D system managed by a temperature-

triggered DVFS policy.

9

• Reliability analysis of multi-chip many-core systems. Using a reliability modeling

approach to accurately model tem perature-induced wear-out failure mechanisms

under various system reliability configurations (i.e., topologies), we quantify the

tradeoffs between clustering higher power jobs and thermal balancing a t various

operating temperatures.

• Design of a job allocation policy th a t is aware of the reliability topology to optimize

the system reliability. We design light-weight predictors to estim ate application

power and chip peak tem perature during allocation. Our policy adapts to workload

changes while respecting the thermal constraints. Experimental results show that

our policy improves the system reliability by up to 123.3% compared to existing

temperature balancing approaches.

• A job allocation technique th a t jointly optimizes the communication cost of HPC

applications and the cooling energy in a da ta center. We design an optimiza­

tion algorithm that selects the cooling-efficient locations while allocating jobs and,

at the same time, minimizes the distances among the communicating nodes. Our

policy reduces the cooling power by 40% on average compared to cooling-aware and

performance-aware policies, while achieving comparable performance to performance-

aware policy.

The rest of the thesis starts with a discussion of the background and related work

in Chapter 2. Chapter 3 introduces the methodology for constructing a comprehensive

simulation framework for jointly investigating the tradeoffs among the performance,

power, and tem perature of 3D systems. Chapter 4 discusses our research on de­

veloping the optimization and management strategies for 3D stacked systems with

on-chip DRAM using the integrated simulation framework. Chapter 5 provides the

performance, thermal and reliability models for d a ta centers to evaluate the com­

munication cost, cooling energy and reliability. Chapter 6 introduces our runtime

10

reliability optimization for multi-chip servers and our joint optimization of cooling

cost and communication cost of many-core systems in HPC d a ta centers. Chapter 7

summarizes the thesis and also discusses our future work directions and open research

problems.

11

Chapter 2

Background and Related Work

2.1 Background

Reducing energy consumption of computing systems is a challenging problem today.

Energy spent on computing has considerably grown in the last decade. It is reported

that the energy used by data centers and their supporting cooling infrastructures has

doubled between 2000 and 2006 (U.S. Environmental Protection Agency, 2007). The

computing energy consumption today surpasses 3% of total US electricity use and

increases by 15% every year (Brown and Reams, 2010; Koomey, 2008). In addition,

the side effects of high energy use have important global environmental consequences

such as the emission of greenhouse gases, resulting in global warming. High en­

ergy consumption also has implications for system reliability and scalability. The

increased power densities result in elevated on-chip temperatures and large thermal

variations, both of which degrade system reliability and increase system design com­

plexity (Coskun et al., 2009b; Srinivasan et al., 2004b).

In the last decade, we have witnessed significant developments in computing hard­

ware design for chip-level energy and thermal management. State-of-the-art tech­

niques typically focus on turning off or slowing down under-utilized resources (e.g.,

(Hanson et al., 2007; Kang et al., 2010)). A number of techniques have been in­

troduced to predict the idle time slots of cores and other resources to minimize the

performance overhead of going in and out of low-power operating modes (Benini

et al., 2000; Donald and Martonosi, 2006). Dynamic Voltage and Frequency Scaling

12

(DVFS) is another commonly used technique (Skadron et al., 2003), and has been

adopted in recent many-core chip design (Howard et al., 2010). Recent research has

also proposed runtime job scheduling and dynamic power management approaches,

such as variation-aware application scheduling and system-level power optimization

policies (Teodorescu and Torrellas, 2008b; Isci et al., 2006b), to improve energy effi­

ciency. In addition, system-level approaches, such as temperature-aware scheduling

(Coskun et al., 2008; Coskun et al., 2009b) or energy-aware consolidation in vir­

tualized environments (Dhiman et al., 2010), are able to improve energy efficiency

considerably.

As future systems are expected to run more performance demanding workloads,

novel design approaches are required in order to achieve significant energy efficiency

improvements. In this thesis, we focus on developing novel energy- and temperature-

aware runtime management and optimization techniques, which dynamically rec­

ognize the hardware-software characteristics and understand the complex interplay

among performance, energy, and temperature.

2.2 M odeling and M anagement o f 3D Many-core System s

3D stacking has emerged as an attractive design technique to improve manufacturing

yield, transistor density per chip footprint, and performance (Black et al., 2006).

The initial work on 3D integration includes the concept of through silicon via (TSV)

based chip stacking and integration technology (Koyanagi et al., 1998; Topaloglu,

2011). 3D integration technology can usually be classified as monolithic or stacking-

based. Monolithic 3D integration builds multiple active device layers on a single

wafer, while 3D stacking approach involves manufacturing of each layer separately

using conventional fabrication techniques. These layers are later stacked using solder

bumps. Thus, 3D stacking is more practical and becomes the focus in most of the

13

recent 3D integration research (Golshani et al., 2010; Black et al., 2006; Liu et al.,

2005). 3D stacking process could be categorized as wafer-to-wafer, die-t.o-wafer, or

die-to-die stacking. Wafer-to-wafer stacking maximizes the throughput and minimizes

the manufacturing cost, while die-to-wafer or die-to-die stacking is the only option

when die sizes are not matched. In 3D stacking, multiple layers are assembled using

bonding technologies, such as wire, micro-bump, or TSV based bonding. Comparing

to wire or micro-bump bonding, TSV based 3D integration has the potential to offer

the greatest vertical interconnect density, and therefore is the most promising vertical

integration technology (Ferri et al., 2008; Khan et al., 2011; Dong et al., 2010).

Figure 2-1 shows the magnified images of a five-layer 3D stacked chip, which is wire-

bonded on the side (without TSVs), and TSV fabricated by EPFL (Atienza, 2010).

One of the prominent advantages of 3D stacking is the ability to integrate het­

erogeneous technologies within the same chip, such as stacking memory layers with

the processors. Designing 3D systems with on-chip DRAM is a promising solution to

improve memory bandwidth and reduce memory access latency (Black et al., 2006;

Loh, 2008). Reducing the memory access overhead is especially beneficial for many-

(a) (b)

Figure 2-1: (a) 3D test vehicle and (b) TSV fabricated by EPFL
(Atienza, 2010).

14

core systems, where long off-chip memory latency has been a gating performance

bottleneck. However, power densities and temperatures also increase following the

performance improvement. In fact, high temperatures already bring major challenges

because of their adverse effects on cooling costs and reliability (Puttaswamy and Loll,

2007; Coskun et al., 2010; Srinivasan et al., 2004b).

Prior work on the modeling of 3D systems with memory stacking mostly considers

performance, power, and thermal evaluations separately, focusing on the systems

with a small number of cores or single-threaded workloads. For example, Liu et

al. report that a single-core processor with 3D memory stacking increases system

performance by 126%; however their work does not consider the power or thermal

impact (Liu et al., 2005). Loh explores 3D-stacked memory architectures for 4-core

processors (Loh, 2008) with a thermal analysis using HotSpot (Skadron et al., 2003).

Their thermal simulations use estimated power values that are not tied with detailed

architecture-level performance analysis. Sun et al. study the architecture-level design

of 3D stacked L2 cache, without extending the power and thermal analysis for 3D

stacked memory (Sun et al., 2009). Wu et al. provide the power density analysis and

power delivery consideration in a formulation of 3D processor cost model to estimate

the impact of power delivery on manufacturing cost (Wu et al., 2010). However, they

do not evaluate the power consumption of the memory components on the 3D chips.

The recent research on 3D system energy and thermal management includes

design-time optimization methods and runtime management polices based on task

scheduling and DVFS techniques. For design-time optimization methods, Cong et al.

propose transformation techniques for 3D IC placement (Cong et al., 2007). Hung et

al. present a thermally-aware floorplanner for 3D architectures (Hung et al., 2006).

Healy et al. propose a microarchitectural floorplanning algorithm for 3D ICs using

linear programming and simulated annealing (Healy et al., 2007). Their static op­

15

timization methods are implemented at design stage, and do not address dynamic

changes in workload profiles.

Dynamic power management on traditional multi-core (2D) systems has been well

studied, and a number of such techniques can be extended to 3D systems as well. Isci

et al. present a runtime phase prediction methodology to control DVFS based on fre­

quency of memory operations (Isci et al., 2006a). Cochran et al. propose a scalable

method for determining the optimal V-F settings under power constraints (Cochran

et al., 2011). Recently proposed dynamic energy and temperature management meth­

ods for 3D systems include runtime workload scheduling, dynamic voltage-frequency

scaling (DVFS), and temperature-aware job allocation. Zhu et al. propose a runtime

thermal management approach using task migration and DVFS (Zhu et al., 2008).

Zhou et al. introduce an OS-level scheduling algorithm for optimizing 3D system

temperature using dynamic workload scheduling (Zhou et al., 2008). These methods

that explicitly target 3D systems, however, do not perform a detailed performance

analysis of the applications. Also, detailed performance analysis and thermal op­

timization for 3D systems have been mostly disjoint so far. For example, thermal

management policies focusing on 3D systems provide performance estimates based

on worst-case scenarios, without providing an architecture-level evaluation (Coskun

et al., 2010).

2.3 Energy and Reliability M anagement in Servers and D ata
Centers

A number of approaches on reliability management focus on microarchitectural op­

timization (Srinivasan et al., 2004a; Biswas et al., 2011). Recent work has also in­

troduced reliability management techniques specifically targeting many-core systems.

Hanumaiah et al. optimize the reliability of a many-core processor running tasks with

16

hard deadline constraints by solving a quasi-convex optimization problem (Hanuma­

iah and Vrudhula, 2011). Wang et al. maximize the lifetime of many-core systems

while maintaining a given aggregate processor speed by applying sequential quadratic

programming (Wang and Chen, 2010). Coskun et al. propose a simulation framework

to evaluate the impact of management policies on processor lifetime and demonstrate

the benefits of temperature balancing (Coskun et al., 2009c). Bose et al. integrate

the modeling of wear-out failure mechanisms into a power-performance simulator to

project failure rates and consequent system lifetime (Bose et al., 2010).

Several reliability management techniques consider both the wear-out. mechanisms

and the system topology. Huang et al. (Huang et al., 2009) use the Weibull distri­

bution to model aging effects. RAM P uses Monte Carlo simulations and lognormal

distributions to compute reliability, and a simple MIN-MAX approach to model series-

parallel topologies (Srinivasan et al., 2005). Reliability of a computer system with

series-parallel components can also be computed using probabilistic models that takes

the inherent redundancy of the system into consideration (Coskun et al., 2006).

Recent research has also introduced temperature-aware job allocation policies.

Moore et al. develop a temperature-aware workload placement algorithm through es­

tablishing a prioritized list of servers for saving energy in data centers (Moore et al.,

2005). Coskun et al. design adaptive scheduling policies that leverage thermal sen­

sor readings for reducing temporal and spatial temperature variations on multi-core

processors (Coskun et al., 2008). Wang et al. propose a thermally-aware job schedul­

ing algorithm for data centers to allocate workloads based on their task-t.emperat.ure

profiles (Wang et al., 2009). However, these policies do not consider the impact, of

system topology on system reliability during job allocation.

Performance has been the main goal of job allocation techniques in data centers

and supercomputers. Performance-aware job allocation algorithms typically focus on

17

minimizing the average number of communication hops between processors on which

a job is running. Bhattacharya et al. propose a heuristic for job allocation in a mesh-

connected parallel processor (Bhattacharya and Tsai, 1994). They use a look-ahead

mechanism that looks into the queue of waiting jobs and selects free processors from

the sub-meshes in a mesh-connected data center to allocate the jobs. Mache et al.

present the MC allocation strategy for mesh-connected parallel computers. Their

method yields compact allocations by containing the jobs in the smallest rectangular

area possible (Mache et al., 1997).

Bender et al. propose an M Clxl processor-allocation algorithm, in which the first

sub-mesh is a 1X1 shell and subsequent sub-meshes grow in square shapes until finding

enough available nodes to allocate the upcoming job (Bender et al., 2008). However,

existing performance-aware job allocation strategies solely target the performance

and communication costs without considering the potential impact of job allocation

on the power, temperature, or the cooling costs.

As thermal management and reducing the cooling costs are among the dominant

concerns for today’s data centers, a number of thermal modeling and management

techniques at data center level have been proposed recently. Jungsoo et al. use a linear

formula that computes server temperatures as a function of ambient room temper­

ature, thermal resistance between die and air, and server power (Kim et al., 2012).

However, their model does not consider the effect of recirculation on temperature.

Moore et al. carry out computational fluid dynamics (CFD) simulations to conduct

thermal evaluation (Moore et al., 2005). However, CFD simulation is expensive and

cannot be used for real-time data center thermal management. Heath et al. introduce

a data center temperature emulation suite called Mercury that emulates temperat ures

based on the data center layout, hardware, and component utilizations (Heath et al.,

2006). Despite its efficiency advantages, Mercury has not been validated for large

18

data center systems. Tang et al. propose a linear model to compute data center

temperatures and cooling energy costs, and solve an optimization problem for mini­

mizing the peak node inlet temperature (MPIT) through job assignment (Tang et al.,

2008). They use both genetic algorithms and sequential quadratic programming to

solve the problem. However, their main focus is enterprise/transactional workloads

with independent tasks on different data center nodes, so their model does not include

the communication latency during allocation.

2.4 D istinguishing A spects from Prior Work

Our work improves upon the state-of-the-art for the modeling and management of

3D many-core processors and HPC data centers in the following aspects:

• Introduces a widely applicable and generalizable methodology for accurately and

jointly analyzing the performance, energy, and temperature characteristics of 3D

many-core systems, while most prior research in 3D area targets a specific archi­

tecture or only one of these three aspects.

• Addresses the unique challenges for parallel applications representing future com­

puting workloads running on many-core systems, instead of focusing solely on con­

ventional single-threaded applications. W ith such parallel programs that push ex­

isting processor designs to their limit, our work is able to drive the design and

analysis of the new generation computing systems.

• Delivers a set of energy and thermal management policies that are aware of the

workload properties and the 3D architectural features governing the system perfor­

mance. Such temperature-aware policies enable us to push the performance bounds

of 3D systems dramatically compared to current chips while maintaining reliable

and low-energy operation.

19

• Proposes a workload allocation policy to optimize the system reliability for multi­

chip servers. Most temperature-aware job allocation methods make use of temper­

ature balancing. Following our analysis that shows clustering may provide better

reliability than balancing depending on the system reliability topology, we propose

a job allocation method that selects between workload balancing and clustering

depending on the system topology to optimize reliability for multi-chip many-core

systems.

• Designs a job allocation policy that optimizes both the application performance

(in terms of the communication cost) and the cooling energy cost of HPC data

centers under reliability constraints. Prior work has addressed performance, reli­

ability, and cooling cost optimizations as separate problems. Our policy confines

the communicating nodes of a job in close proximity, but it also selects the most

cooling-efficient locations possible.

20

Chapter 3

M odeling of 3D M any-core System s

3.1 Overview

This chapter presents our research on constructing a comprehensive simulation frame­

work to address the complex interplay between performance, energy, and temperature

of 3D systems. The goal is to achieve an accurate and thoroughgoing exploration of

both the merits and challenges of 3D stacked systems. Our research focuses on 3D

systems with DRAM stacking, because stacking the main memory on the chip re­

duces the off-ehip memory access delays, and thus, has the potential for significantly

increasing the system performance and energy efficiency.

3D many-core processors bring us both merits and challenges. On one hand, 3D

systems offer promising performance improvement owing to the opportunities of het­

erogeneous integration, building of large many-core chips with high yield, and shorter

global wire lengths. On the other hand, 3D systems exacerbate the already existing

thermal challenges because of the higher thermal resistivities for the layers away from

the heat sink and higher power densities per chip footprint brought by the increased

performance. Thermal hot spots and large temporal and spatial temperature vari­

ations adversely affect system energy efficiency and reliability. In 3D systems with

on-chip DRAM, the power and temperature of the DRAM layers also substantially

increase because of the high memory access rate and the heat transfer from the logic

layer, while high DRAM temperatures severely affect memory reliability and system

performance (Ghosh and Lee, 2007; Liu et al., 2011).

21

Prior work usually conducts disjointed simulations for the performance, power,

and temperature of 3D many-core systems or uses coarse-grained estimations based

on analytical models (Loi et al., 2006; Loh, 2008). The existing energy and thermal

management policies for 3D systems have been mostly derived indirectly from detailed

performance and power evaluations. For example, recently published management

policies for 3D systems provide worst-case performance estimates without providing

an architecture-level performance simulation (Coskun et al., 2010). A similar problem

exists in the previously proposed techniques on optimizing 3D DRAM organization,

which do not provide detailed DRAM power and thermal evaluations connected with

detailed performance simulations of the 3D many-core systems (Loh, 2008; Ghosh

and Lee, 2007).

Our research on constructing the simulation framework is the first to jointly an­

alyze performance, power, and temperature tradeoffs for both DRAM and processor

layers in the 3D stacked systems. It is an essential step for conducting an accurate

investigation of 3D system energy and temperature characteristics, for optimizing the

energy efficiency and reliability of future 3D many-core systems, and for providing

better understanding of the benefits and limitations of 3D memory stacking.

As illustrated in Figure 3-1, our simulation framework consists of the modeling of

target systems, performance simulation, power modeling, and temperature modeling.

We first model the logic layer and DRAM layer of our target 3D systems, including

abstracting the memory access and bus latencies. The system configuration parame­

ters and floorplans are used as inputs for performance simulation, power model, and

temperature model of the simulation framework. Then, we run performance simula­

tions on an architecture-level full-system simulator, such as M5 (Binkert et al., 2006),

to collect detailed performance statistics. In the M5 simulator, we model 3D systems

with on-chip DRAM by configuring the main memory access latency and bus width

22

Target System Model and Configuration

Performance Simulation
(M5)

lya

• Committed instructions
• Number of cycles
• Cache m toat

Power Model
uMm

Thermal Model
(Hotspot)

Dynamic power •Temperature

Figure 3-1: An illustration of our simulation framework for jointly
analyzing performance, power, and temperature tradeoffs of 3D stacked
systems.

to mimic the high data transfer bandwidth provided by the TSVs. The performance

results are fed into a power model, such as McPAT (Li et al., 2009), for estimating

the core power. The McPAT results are calibrated to match the published or mea­

sured power of target architectures for improving their accuracy. We also utilize a

cache power model, such as CACTI (Thoziyoor et al., 2008), and the DRAM power

calculator from MICRON. The power traces as then used as inputs in the thermal

model, such as HotSpot (Skadron et al., 2003), to simulate the temperatures of both

the logic and DRAM layers of 3D systems.

In this chapter, we introduce the methodology of modeling the target 3D many-

core systems, performance simulation, as well as the power and thermal models.

We present the evaluation results on the performance, power, and temperature for

both high-perform ance and low-power 3D systems running parallel workloads by

utilizing our integrated simulation framework.

23

3.2 M ethodology for M odeling 3D Many-core System s

This section presents the modeling of 3D systems with on-chip DRAM, performance

simulation infrastructure, power model, and thermal model that are utilized in our

research for constructing the simulation framework as introduced in Section 3.1. Our

modeling methodology considers performance, power, and temperature simulations

jointly, enabling a more accurate evaluation in comparison to the modeling methods

introduced in prior work (Coskun et al., 2010).

3.2.1 M odeling Target 3D System s w ith D R A M Stacking

Our research targets 3D many-core systems with stacked on-chip DRAM, as they

provide high speed and wide bandwidth for accessing main memory by utilizing the

vertical TSVs. Figure 3-2 provides an illustration of a 16-core 3D system with DRAM

stacking. In this 3D system, the processing cores and caches are on one layer and

a 2-layer 3D DRAM is stacked below the logic layer. TSVs are used for vertically

connecting the core and DRAM layers. We model our 3D stacked architectures with

two types of cores: a high-perform ance core and a low-power core.

■■ system
Interface + I/O

Logic layer
i Memroy
Controllers

Figure 3-2: An illustration of a generic 3D 16-core processor with
2-layer on-chip DRAM stacking.

24

Table 3.1: 3D system core architecture parameters.

Param eter High-performance Low-power
C P U Clock 2.1GHz 1.0 GHz
Issue out-of-order out-of-order
D ecode W idth 3-way 2-way
Reorder Buffer 84 entries 40 entries
B T B size 2048 entries 512 entries
RAS size 24 entries 16 entries
In teger/F P ALU 3/3 2/1
Load Queue 32 entries 16 entries
Store Queue 32 entries 12 entries
LI ICache 64KB@2ns 16KB@2ns
LI DCache 2-way 2-way

64B-block 64B-block
512KB@6ns 512KB@5ns

L2 Cache 16-way 4-way
64B-block 64B-block

The architecture for the low-power core is similar to the architecture of the cores

used in the Intel single-chip cloud computer (SCC) (Howard et al., 2010). The

high-perform ance system includes more aggressive core architectures, which are

modeled based on the AMD Family lOh microarchitecture of the cores in the AMD

Magny Cours processor. We simulate both the 2D baselines (single-layer, off-chip

memory) and 3D systems with on-chip DRAM for the two target architectures. The

architectural parameters for the cores and the caches are listed in Table 3.1.

For each processor, we use the same architectural configuration for the 2D baseline

and the 3D systems (i.e., the only difference is in the latency and bandwidth to the

DRAM). Each core on the 16-core processors has multiple-issue and out-of-order

execution. We assume both processors are manufactured at 45nm and have a supply

25

18.8mm
system Interface + I/O

18.8mm x 0.2mm

I K-4.5mm—H

■ Memory Controller
18.8mm x 0.45mm each

E
E l

h—4.5 mm—H

bus interconnect

F ig u re 3-3: The layout for the logic layer of target 3D system.

voltage of 1.14V at the highest available frequency setting. The high-perform ance

core has a larger number of integer and floating point arithmetic logic units as well

as larger LI level instruction and data caches in comparison to the low-power core.

Figure 3-3 presents the layout of the logic layer of the high-perform ance 16-core

3D system with stacked DRAM. Each core has private 16 KB LI instruction and data

caches, and a private L2 cache. As shown in Figure 3-3, all the L2 caches are located

on the same layer as the cores and connected by a shared bus. MESI cache coherence

protocol is used for maintaining the consistency among the caches. The 2D baseline

and the 3D systems both have on-chip memory controllers.

The dimensions for the components of the 16-core processors are listed in Ta­

ble 6.3. The low-power system has a total die area of 128.7mm2 and operates at 1

GHz, while the high-perform ance system has a total die area of 376mm2 and op­

erates at 2.1GHz. We assume face-to-back, wafer-to-wafer bonding for building the

3D systems, as wafer-to-wafer bonding allows for reliably manufacturing larger 3D

systems approaching sizes of 20mm x 20mm with the current technology.

26

Table 3.2: Dimensions of the blocks in the target 3D systems.

(a ll va lues in m m High-] je r f . Low-power
excep t T S V s) Length Width Length Width
Chip 20 18.8 11.7 11
Core 4.5 3.5 2.4 1.625
L2 Cache 4.5 •1.2 2.4 1.3
M em ory Controller 18.8 0.45 11.7 0.308
D R A M 20 18.8 11.5* 9*
TSV s diameter 10 pm pitch 20pm

* This system includes 2 DRAM layers, while the high-performance
system has a single DRAM layer of the same memory capacity.

3.2.2 M odeling 3D On-chip D R A M Accesses

3D systems with on-chip DRAM provide high speed and wide bandwidth for accessing

the main memory by utilizing the vertical TSVs, while the accesses to the off-chip

main memory in traditional 2D design are limited by slow off-chip buses.

In order to simulate the data transfer between the logic layer and the on-chip

DRAM layer on the 3D many-core systems, we consider sin g le-b u s regular memory

access and p a r a lle l memory access, both with a fast memory bus at 2GHz. As

illustrated in Figure 3-4, in sin g le-b u s regular memory access, all accesses go

through a single bus between the memory controller and DRAM. On the other hand,

the p a r a lle l memory access scenario allows the four on-chip memory controllers to

access the four DRAM ranks at the same time. In order to implement the p a ra lle l

memory access on the 3D processor, we deploy 512 TSVs on each memory con­

troller. These TSVs provide a 64-Byte bus width for each memory controller. In

our experiments, we consider TSVs with a diameter of lO^im and a center-to-center

pitch of 20pm. Thus the total TSV area only takes up less than 0.2% of the chip

(a) single-bus access (b) 4-way memory access

F ig u re 3-4: An illustration of the 3D system with DRAM stacking that
has (a) s in g le -b u s re g u la r memory access and (b) 4-way p a r a l l e l
memory access.

area overhead. The small overhead of TSVs also allows us to implement an 8-way

p a r a l le l memory access scenario with eight on-chip memory controllers accessing

eight DRAM ranks at the same time.

In order to quantify the performance improvements of our target 3D systems

versus their 2D baselines, we need to have an accurate model of the memory ac­

cess latency in both cases. We model the memory access latency by examining the

different components that contribute to the latency. For many-core systems, there

are three main components of the memory access latency from the last-level caches

to main memory: the propagation delay between last-level caches to the memory

controller (LLC-to-controller delay), the data request time spent at the memory con­

troller (memory controller processing latency), and the data retrieval time spent at

the DRAM.

To model the LLC-to-memory controller delay, we assume that all the private L2

caches are connected to the memory controllers through a shared bus. Figure 3-3

illustrates the physical layout of the logic layer, including the shared bus. We assume

that the global bus interconnect is routed around the chip in a serpentine fashion. For

modeling the bus interconnect, we use energy-optimized repeater-inserted pipelined

28

channels to reduce the global wire delay (Meng et a l, 2011). The wire propagation

delay is linear with respect to the wire length, owing to the repeaters that are inserted

to partition the wire into smaller segments. Each pipeline stage is designed using

predictive technology model for 45nm and has a propagation delay of 183ps per mm

(Jin et al., 2008). We estimate the average distance from an L2 cache to a memory

controller block as 9.4mm based on the layout. Thus, the round trip LLC-to-memory

controller latency is 4ns (rounded up).

The memory controller processing latency is strongly governed by the memory

request queuing delay (Awasthi et al., 2010). Modern memory controllers typically

consist of a memory request queue that buffers the pending requests waiting to get

scheduled, and a scheduler that selects the next request to be serviced (Ipek et al.,

2008). The memory controller processing latency is dominated by the time spent by

a memory request in the request queue waiting to get scheduled. We apply queuing

theory to model the memory controller queuing delay, where the memory request

queue is modeled as a M /D /N queuing system. In the M /D /N queuing formula, the

queuing delay depends on two parameters: arrival rate and service rate. Arrivals are

determined by an exponential process, service times are deterministic, and N is the

number of memory controllers in the 3D system.

We use the average memory access rate across all the benchmarks as the arrival

rate of the memory request queue. We estimate the service rate by considering the

DRAM access time (Iras and tRP) and the parallel memory access in the 3D many-

core system. For the target system, we use the row active time tPAS — 36ns and

row precharge time tPP = 15ns as reported by MICRON’s DDR3 SDRAM. Thus,

we model the memory request queue service rate for the 3D many-core system with

sing le-bus access, where all accesses go through a single bus between the memory

controller and DRAM, as 0.02 per cycle. As parallel access allows memory request

29

80
- memory access rate=0.0035

— memory access rate=0.012
- - memory access rate=0.025
* single-bus access queuing delay
□ 4-way parallel access queuing delay
o 8-way parallel access queuing delay

o J______________ |_______________I________ I_______________|_______________|_______________|_______________L

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
memory request service rate

F ig u re 3-5: Memory request queuing delay in different memory ac­
cess schemes. Average access rates of 0.0035, 0.012, and 0.025 are
obtained by simulating single-bus, 4-way parallel, and 8-way parallel
access schemes, respectively.

access multiple DRAM banks at the same time, we assume that the service rate

is four times and eight times of the service rate for the s in g le bus access for the

3D many-core system with 4-way and 8-way p a ra lle l memory access, respectively.

Figure 3-5 presents the queuing delay of the memory request in the memory controller

request queue under different memory access schemes. In Figure 3-5, different curves

represent the queuing delay with average access rates of 0.0035, 0.012, and 0.025

that are obtained by simulating single-bus, 4-way p a ra lle l, and 8-way p a ra lle l

access schemes, respectively. Once the memory controller queuing delay is obtained,

we use it to configure the memory access latency in the performance simulator for

evaluating the performance of 3D many-core systems with DRAM stacking.

DRAM access latency consists of address decoding time, column and row active

time, and data transfer time. Stacking DRAM layers on top of the logic layer makes

the data transfer much faster between DRAM and cores. We use the same DRAM

parameters for the off-chip DRAM in the 2D baseline and for the DRAM layer in 3D

system, which is consistent with the assumptions used in earlier studies (Loh, 2008;

Loi et al., 2006). We consider a 1GB DRAM consisting of 4 ranks, each of which

30

Table 3.3: DRAM access latency.

2D-baseline design 3D system w ith single-bus
m emory

controller
4ns LLC-to-controller delay,

48ns MC processing time
4ns LLC-to-controller delay,

24ns MC processing time
m ain m emory off-chip DRAM

tRAs — 36ns, tRp — 15ns
on-chip DRAM

tRAs = 36ns, tup = 15ns
tota l delay 103ns 79ns

m em ory bus off-chip bus, 200MHz
8-Byte bus width

on-chip bus, 2GHz
64-Byte bus width

has 4 banks (a total number of 16 DRAM banks). We use the MICRON’s row active

and row precharge time as discussed above. Table 3.3 summarizes the memory access

times for the 2D system and 3D system with sin g le-b u s access.

Prom our simulation results for the NAS and PARSEC benchmarks as shown in

Figure 3-6, we observe the main memory accesses are evenly distributed between the

four ranks. Thus, we assume the memory access latency with p a r a lle l access is

one fourth of the latency with sin g le-b u s regular access. Note that this is a

7 Memory accesses on 3D system at 2.1 GHz

canneal
fluidanimate

rank3 rank4rank2

Figure 3-6: Average memory accesses per 10ms on different DRAM
ranks on 3D system with stacked DRAM.

31

conservative assumption as the simultaneous accesses also enable faster processing at

the memory controller because of fewer pending requests in the request queues.

3.2.3 Perform ance Sim ulation o f 3D M any-core System s

We use the M5 full-system simulator (Binkert et al., 2006) to build the performance

simulation infrastructure. We simulate our target system with the Alpha instruction

set architecture (ISA) as it is the most stable ISA currently supported in M5. The

full-system mode in M5 models a DEC Tsunami system to boot an unmodified Linux

2.6 operating system. We select parallel applications from the PARSEC benchmark

suite (Bienia, 2011) and the NAS Parallel Benchmark (NPB) suite (Bailey et al.,

1994) as our workloads, both of which represent future multi-threaded workloads and

have been widely used in parallel system studies.

M5 models a split-transaction bus that is configurable in both latency and band­

width. The bus arbitration follows first-come-first-serve logic, and uses round-robin

scheduling for bus accesses. We model the 3D system with on-chip DRAM in M5 by

configuring the main memory access latency and the bus width between L2 caches

and main memory. In this way, based on the methodology provided in Section 3.2.1

and Section 3.2.2, the simulator mimics the high data transfer bandwidth provided

by the TSVs. Table 6.1 and Table 6.3 summarize the architecture characteristics,

memory access delay, and bus configurations.

We run PARSEC benchmarks in M5 with sim-large input sets and NAS with

class B problem sets. For each NAS benchmark, we use a warm-up period of 1

billion instructions to get past the initialization phase. For each PARSEC benchmark,

the start of the region-of-interest (ROI, i.e., the parallel phase) is pre-defined in

the PARSEC hooks libraries. We fast-forward the M5 simulation to the ROI and

execute the instructions in the ROI with the detailed out-of-order CPUs for all the

benchmarks. We collect performance statistics from M5 simulations periodically and

32

use them as inputs for our power model.

We implement thread-binding in M5 for the PARSEC and NAS benchmarks to

control thread allocation. A thread is bound on a specific core during a time interval

and does not move among cores. The default thread-binding policy for is in-order

assignment, which means thread i is bounded to core i (1 < i < 16).

In the 3D system performance simulations, we execute each benchmark in the

PARSEC and NAS benchmark suites with the detailed out-of-order CPUs for 1 sec­

ond, and collect the performance statistics at every 10ms. In order to collect the

access statistics for the 3D stacked DRAM, we distinguish between the memory ac­

cesses to each DRAM bank by observing the least significant bits for the physical

memory addresses. In this way, we track the number of memory accesses to each

DRAM bank at every interval.

For evaluating the many-core system throughput, we use instructions retired per

second (IPS) as our metric. This metrics is used when comparing the throughput of

the 3D systems with on-chip DRAM against their 2D baselines as well as comparing

the performance of the high-perform ance system and low-power system that are

running under different operating frequencies.

3.2.4 M odeling the Power C onsum ption o f 3D M any-core System s

We use McPAT 0.7 (Li et al., 2009) to estimate the runtime dynamic power of the

cores in our target system. McPAT computes the core power consumption by tak­

ing the system configuration parameters and M5 performance statistics as inputs.

We simulate the dynamic core power for our target 3D systems using McPAT 45nm

technology. To improve accuracy for runtime power computations, we calibrate the

McPAT runtime dynamic power values for the cores to match the published or mea­

sured dynamic core power of the target core architectures.

33

In order to calibrate the McPAT runtime dynamic core power, we firstly derive

the average dynamic core power values from power simulation across the benchmark

suite. Then, we compute the calibration factor, R, to translate the McPAT raw data

to the target power scale. After that, we use R to scale each benchmark’s dynamic

core power consumption. A similar calibration approach has been introduced in prior

work (Kumar et al., 2003).

Our power model can also estimate the power of systems manufactured using other

process technologies. For example, let us assume our target system is manufactured

at 22nm and operated at 1GHz, while using the core architecture based on the cores

used on Intel SCC (Howard et al., 2010). Since the 48-core Intel SCC processor is

designed using 45nm technology, we first need to scale the reported Intel core power

to 22nm technology.

The switching power dissipated by a CMOS device is proportional to C ■ f ■ Vd2d,

where C is the load capacitance, / is the operating frequency, and Vdd is the supply

voltage. We assume that there is negligible change in capacitance. While the Vdd

dependency of the processor leakage power is exponential, we estimate it as a second

order polynomial of Vm around its nominal value since the Vdd variation is only around

20% of default setting (Su et al., 2003).

As both our target system and the Intel chip operate at 1GHz, we estimate the

processor power of the equivalent 22nm core using Equation (3.1), where the supply

voltage for 22nm processor is assumed as 0.9V, and reported average core power

and supply voltage for Intel SCC for the 45nm technology are 1.83W and 1.14V,

respectively.

Power22nm = Power45nm ■ (^yd22nrn- f . (3.1)

34

L2 cache power is calculated using CACTI 5.3 (Thoziyoor et al., 2008). After

we collect the L2 cache read and write access rates from performance simulation

results in M5, we use them to scale the read and write power values obtained from

CACTI. For the on-chip memory controllers in both of the 3D systems, we estimate

the memory controller power consumption as 5.9W based on the memory controller

power reported for the Intel SCC (Howard et al., 2010). The system interface and

I/O power as well as the on-chip bus power are negligible with respect to the total

chip power (Howard et al., 2010).

The DRAM power in the 3D system is calculated using MICRON’s DRAM power

calculator, which takes the memory read and write access rates as inputs to compute

the power for DRAM. We obtain detailed DRAM power traces for each of the DRAM

banks sampled every 10ms interval, corresponding to the performance traces collected

from M5.

3.2.5 M odeling the Tem perature o f 3D M any-core System s

3D systems exacerbate the existing thermal problems in 2D systems because of the

higher thermal resistivity of the layers that are away from the heat sink. An accurate

thermal model is necessary for evaluating the thermal behavior along with the energy

efficiency of our target 3D systems.

We use HotSpot 5.0 (Skadron et al., 2003) for the thermal simulations. We run

simulations for both the 2D and 3D systems using the default chip package in HotSpot

to represent efficient packages in high-end systems. Calibrated power traces are used

as the inputs for the thermal model. The 3D low-power system has one logic layer

and two DRAM layers, where each DRAM layer having 8 bank components. The 3D

high-perform ance system consists of one logic layer and one DRAM layer with 16

bank components.

35

All simulations use the HotSpot grid model for higher accuracy and are initialized

with the steady-state temperatures. The parameters in HotSpot simulations for 2D

and 3D architectures are listed in Table 3.4.

In order to model the thermal effect of the TSVs in 3D stacked systems, we extend

the default HotSpot by utilizing the methodology for modeling the interlayer material

heterogeneity introduced in prior work (Coskun et a l , 2010).

Our HotSpot extension allows the user to model the heterogeneity in the layer by

modifying the resistivity and capacitance for any unit on the chip. To calculate the

thermal resistivity of the blocks with TSVs, in our temperature model, we assume

that the TSVs are evenly spread throughout the memory controller. As we know

the dimensions of a single Copper TSV, we can calculate the area the TSVs cover in

the memory controller block (A rearsv) as well as the area of the memory controller

block without TSVs. The joint parallel resistivity of Copper and thermal interface

material (TIM) can be calculated as follows:

Table 3.4: Thermal simulation configuration in HotSpot.

Thermal Parameters
Chip thickness
Silicon therm al conductivity
Silicon specific heat
Sam pling interval
Spreader thickness
Spreader therm al conductivity

0.1mm
100 W /mK
1750 kJ/m 3K
0.01s
1mm
400 W /mK

D R A M thickness
D R A M therm al conductivity
Interface m aterial thickness
Interface m aterial conductivity

0.05mm
100 W /mK
0.02mm
4 W /mK

H eat sink thickness
H eat sink convection resistance

6.9mm
0.1K/W

where Area is the area of a memory controller block where TSVs are located at,

Arearsv is the area of the memory controller block with TSVs, R tim is the thermal

resistivity of TIM, and Rcopper is the thermal resistivity of Copper. Thus, we get the

thermal resistivity for the memory controller block with TSVs as 0.156m K /W , which

is lower than the original TIM resistivity of 0.25mA'/IV. We also model the TSVs

going through the DRAM layer, and compute the joint thermal resistivity of silicon

and Copper as 0.0098mA'jW . We then specify these thermal resistivity values in the

floorplan file in HotSpot for temperature computations.

3.3 Performance, Energy, and Temperature Evaluation o f 3D
Many-core Processors

In this section, we present the evaluation results on the performance, power, and tem­

perature for both of the 16-core high-perform ance and low-power systems running

parallel workloads. We quantify the benefits of 3D DRAM stacking compared to the

equivalent 2D baseline systems.

3.3.1 Perform ance Evaluation of 3D M any-core System s

This subsection presents the performance results for 3D systems with on-chip DRAM.

Figure 3-7 compares the performance of the 3D systems with on-chip DRAM against

the 2D baselines. We use instructions retired per second (IPS) as our performance

metric. By using 3D DRAM stacking, we achieve an average IPS improvement of

109.7% for the high-perform ance system and 52.6% for the low-power system across

the 9 PARSEC benchmarks, compared to the 2D systems with off-chip memory. The

37

4 0 0 ------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1

"E 300-
<D
E
> 2 0 0 -
oi_
Q.

- 100 -

C/)
Q.

Figure 3-7: Percentage of IPS improvement for 3D systems with
DRAM stacking over 2D baselines.

high-perform ance system has larger IPS improvements than the low-power system

because of its more advanced core architecture.

In both of the high-perform ance and low-power systems, streamcluster and can-

neal achieve higher IPS improvements (over 100%) compared to all the other bench­

marks, as these two benchmarks are highly memory-bound and therefore benefit more

significantly from the reduction in memory access latency. On the other hand, the

CPU-bound benchmarks, such as blackscholes and x264, have limited performance

improvement. These results indicate that 3D systems with on-chip DRAM have dra­

matically high performance improvement for memory-bound benchmarks with high

memory access rate.

We select two PARSEC benchmarks, fluidanimate and streamcluster, to demon­

strate the temporal performance trends. In Figure 3-8, we observe that for both 2D

and 3D architectures the IPS of streamcluster is stable during simulation time, while

the IPS of fluidanimate changes periodically as shown in Figure 3-9. These trends

are the same in both high-perform ance and low-power systems. Also, streamclus-

high-perf sy s ■jjjjjjjji low -power sys

38

8

12

o 10 o 0)
CA

CA
c
.9 6
0
1 4c
CO 2
CL

109 streamcluster high-perf

■2D-IPS 3D-IPS

0.2 0.4 0.6 0.8
Time fseconds!

• / »

10
S ’c
O 8O °
©(0
(A
Co
o3
tS
C

x 1Q9 streamcluster low-power

■2D-IPS 3D-IPS

0.2 0.4 0.6
Time 1seconds!

0.8

Figure 3-8: IPS temporal behavior analysis of streamcluster running
on 3D systems with DRAM stacking versus running on 2D baseline
systems.

ter improves its IPS by 284% in high-perform ance system, while fluidanimate has

67.3% higher IPS in comparison to the 2D baseline. This is because streamcluster

has a significantly higher number of main memory accesses than fluidanimate.

The significant performance improvement for benchmarks such as streamclus-

1Qio fluidanimate high-perf

-o
§ 2.5
o

CAc
.2 1.5
ts3.h 1
CA 1 c

CO 0.5
a.

•2D-IPS 3D-IPS

\
f t

ii
■ ■

■f
■f
■f
Mr
«'
I

\L>

I ' l ’
1 111 1
1 1i , i
11 ii i
11 t, i
II 'i 1
II ̂ i
II S *
II V 11 1 1
1

0.2 0.4 0.6 0.8
Time (seconds!

109 fluidanimate low-power

-o
coo
©
CA

CA
Co

’■£3
o
3

v>c
CO
CL

15
2D-IPS 3D-IPS

10

5

0
0 0.2 0.4 0.6 0.8 1

Time (seconds!

Figure 3-9: IPS temporal behavior analysis for 2D-baseline versus
3D-DRAM systems for fluidanimate.

39

ter suggests considerable increases in core power. In addition, temporal changes

of IPS for some benchmarks, such as fluidanimate, demonstrate that using average

power/temperature or coarse-grained performance estimates in the analysis of 3D

systems cannot capture the runtime trends accurately. Dynamically changing perfor­

mance patterns, resulting in higher power and temperatures, can only be observed by

detailed architectural evaluation and periodic sampling of runtime events, which are

integrated in our simulation approach.

3.3.2 Power Evaluation of 3D M any-core System s

We present the power evaluation results for 3D systems with DRAM stacking. Figures

3-10 and 3-11 demonstrate the core power increase for the 3D high-performance and

low-power systems, respectively, compared to the 2D baselines.

From the evaluation results, we observe that power consumption per core increases

by 29.98% and 6.9% on average for the 3D high-performance and low-power sys­

tems, respectively, across the benchmark set. Among all the benchmarks, canneal

has the highest increase in core power, as it has the largest performance improve-

1 , 1 1 , , 1 , r
2D core power ■ ■ 3D core power on high-perf sys

Figure 3-10: Average core power for the 3D high-performance sys­
tem with DRAM stacking and the 2D baseline.

40

2.2
'tn _
s 2
£ 1.8
V.<D
I 1-6o
° - 1.4

1.2

i i i • i i t r i

12D core power 3D core power on low-power sy^

F ig u re 3-11: Average core power for the 3D low-power system with
DRAM stacking and the 2D baseline.

ment. The core power of fluidanimate also increases considerably, as it is already at

a high power range and the IPS of fluidanimate has additional 67.3% increase in 3D

high-perform ance system.

Our results demonstrate an average energy delay product (EDP) improvement

of 51.3% for the high-perform ance system and 37.9% for the low-power system

compared to their equivalent 2D baselines, canneal running on high-perform ance

system has 88.5% EDP reduction, which is the largest energy efficiency improvement

across all the benchmarks. On the other hand, the substantial increase in core power

motivates detailed thermal analysis of both systems.

3.3.3 T e m p e ra tu re A nalysis o f 3D M any-core S ystem s

We illustrate the thermal behavior for 3D systems in Figure 3-12 for four bench­

marks from the PARSEC benchmark sets (canneal, ferret, streamcluster and vips).

The peak chip temperatures on the 3D high-perform ance and low-power systems

and the 2D baselines are shown in the figure. The maximum peak temperature in­

crease is 18.1°C for running streamcluster in h ig h -p e rf ormance system and 5.8°C in

low-power system. We notice that, in comparison to ferret and vips, streamcluster

41

Peak chip temp for high-perf system Peak chip temp for low-power system

2D-temperature 3D-tempefature 2D-temperature 30-temperature

Figure 3-12: Peak chip temperatures for the 2D-baseline and the 3D
stacked DRAM systems.

has lower core power while having higher peak chip temperature. This is because

that streamcluster has the highest DRAM access rate across all the benchmarks. The

high DRAM access rate results in high temperature on the stacked DRAM layer.

We observe that some of the benchmarks running on our 3D systems (e.g., vips)

obtain a peak temperature decrease. This is a result of the relatively low memory

access rates of vips. Low frequency of memory accesses results in low DRAM power,

which already has lower power density compared to the logic layer. The lower power

DRAM layer shares the heat of the hotter cores, decreasing the adjacent logic layer

temperature for benchmarks with low frequency of memory accesses. These results

highlight that it is important to explore the application-aware management and op­

timization policies to improve the energy efficiency of 3D many-core processors while

maintaining the power and temperature constraints.

3.4 Summary

3D integration enables stacking DRAM layers on processor cores within the same chip.

On-chip memory has the potential to dramatically improve performance due to lower

42

memory access latency and higher bandwidth. Higher core performance increases

power density, requiring a thorough evaluation of the tradeoffs between performance

and temperature. However, detailed performance analysis and thermal optimization

for 3D processors have been mostly disjoint so far.

In this chapter, we have presented a comprehensive simulation framework for 3D

many-core processors. Our simulation framework is able to capture the performance,

energy, and temperature of 3D processors running dynamically changing workload,

while most current simulation frameworks could only provide the average results. To

the best of our knowledge, our work is the first to jointly analyze performance, power,

and thermal characteristics for both DRAM and processor layers on 3D many-core

processors.

Utilizing this simulation framework, we have evaluated the performance, power,

and temperature characteristics of two 16-core 3D processors running parallel bench­

mark suites. Our results show an average of 109.7% IPS improvement in the 3D

processors, while the average per-core power increases by 29.98% and peak tempera­

ture increases by 18.1°C, in comparison to the equivalent 2D processors.

The simulation results demonstrate that 3D processors with DRAM stacking pro­

vide significant performance improvement, while brings power and temperature chal­

lenges at the same time. These results motivate us to explore runtime management

policies for achieving high performance under power and temperature constraints. In

the next chapter, we discuss runtime management and optimization methods for 3D

many-core processors.

43

Chapter 4

Runtim e M anagement o f 3D M any-core
System s

4.1 Overview

This chapter introduces our research on investigating and developing energy- and

temperature-aware management policies for improving energy efficiency and relia­

bility of 3D stacked architecture, with a special focus on the systems with DRAM

stacking. Our research consists of investigating existing efficient thermal management

techniques and developing novel energy- and thermal-aware optimization policies for

3D many-core processors.

In Chapter 3, we have presented a simulation framework that provides a joint

assessment of performance, energy, and temperature tradeoffs in 3D systems with

stacked DRAM. Through the evaluation results, we have observed that the workload

dynamics change during the lifetime of a system. Thus, it is imperative to have run­

time optimization techniques that monitor and actively manage the interplay among

performance, power, and temperature of 3D systems.

A number of static management techniques have been proposed for 3D systems to

reduce peak chip temperature and optimize system reliability (Cong et al., 2007; Hung

et al., 2006; Healy et al., 2007). However, they cannot be adapted to the performance

and power variations within and across parallel workloads. In fact, there are dra­

matic variations with respect to system utilization in today’s many-core computing

44

systems, which requires runtime management and optimization approaches. Dynamic

management strategies that are proposed in prior work, such as temperature-aware

scheduling and DVFS, are effective methods for controlling temperatures on many-

core processors (Coskun et al., 2009a). However, their power and temperature results

are disjoint from performance simulations, which makes their evaluation results less

convincible.

Utilizing the detailed evaluation results from our integrated simulation framework,

we are able to analyze the existing dynamic energy and thermal management policies

for 3D many-core-systems. Leveraging the analysis results, we develop new techniques

that are aware of the runtime variations of workloads and system architecture-level

configurations. In our work, we focus on energy and thermal management for parallel

workloads running on many-core systems, as thread interactions impact performance

more in parallel workloads than in single-threaded applications.

In this chapter, we introduce our management policies to optimize the energy

efficiency of 3D many-core systems with on-chip DRAM stacking and present the

evaluation results. We propose a runtime optimization policy that dynamically mon­

itors workload behavior and selects operating points for adapting to varying applica­

tion phases. Our policy selects among low-power and high-performance (or “turbo ”)

execution modes from the available voltage-frequency (V-F) settings by utilizing pre­

dictions from a regression-based model. Experimental results demonstrate that our

runtime optimization policy achieves an EDP reduction of up to 61.9% compared

to a 3D system managed by a temperature-triggered DVFS policy. We also intro­

duce a memory management policy that targets applications with spatial variations

in DRAM accesses and performs temperature-aware mapping of memory accesses to

DRAM banks. In the end of this chapter, we discuss managing 3D many-core systems

with liquid cooling.

45

4.2 Runtim e M anagement for 3D M any-core System s

Our runtime optimization policy is motivated by the observations of running PARSEC

and NAS benchmarks on our simulation framework under different V-F settings.

Figure 4-1 displays the performance results of the 2D baseline and the target 3D

system with stacked DRAM. Figures 4-2 and 4-3 present the temperature and power

results of the target 3D system in comparison to the 2D baseline system, respectively.

From Figure 4-1, we notice that the average IPS of the 3D system running at

0.8GHz is sufficiently high to match the performance of the 2D baseline for most

of the benchmarks. We also observe that applications dramatically differ in their

performance behavior. For the memory-intensive benchmarks, such as streamcluster

and mg, the high memory access rates result in significant performance improvements

when running on the 3D system with stacked DRAM in comparison to 2D baseline.

However, from Figures 4-2 and 4-3, we can see that the peak temperature also con­

siderably increases with the performance improvements. Thus, we run such memory-

x 1010
2D baseline vs 3D system with parallel access

F ig u re 4-1: IPS for PARSEC and NAS benchmarks running on 2D
baseline and the 3D system with parallel access.

46

3D-2.1GHZ
3D-1.7GHZ
3D-1.4GHZ
3D-1.1GHZ
3D-0.8GHZ

☆ 2D-2.1GHZ

“ - Temperature Threshold at 8JrC

100

m 90

cm 6 °

Figure 4-2: Peak chip temperature on the 3D system with parallel
access running at different V-F settings.

intensive benchmarks at the low-power mode by exploiting the performance slack.

Figure 4-1 shows that, even at low-power mode, the memory-intensive benchmarks

running on the 3D system still have significant performance improvements in compar­

ison to running on 2D baseline. For CPU-intensive workloads, on the other hand, the

low memory access rates result in a cooler DRAM layer that shares the temperature

of the hotter core layer. For benchmarks such as blackscholes, we switch to the turbo

mode with higher V-F settings for boosting the performance by taking advantage of

the temperature slack.

The goal of our runtime optimization policy is to select operating points maximiz­

ing performance while maintaining the power and temperature constrains for both

logic and DRAM layers. In order to achieve this goal, we formulate our optimization

method as in Equation (4.1). In Equation (4.1), (F,V) is the set of available V-F

settings. The objective of our optimization method is to maximize throughput (IPS)

under power and thermal constraints. Pcap is the power budget of the target system,

and Tthid is the peak temperature threshold to ensure reliable operation. As shown

47

Total chip power for 2D baseline and 3D System with stacked DRAM

— Power Budget at 200W
— Power Budget at 175W
• Power Budget at 155W

Figure 4-3: Total chip power on the 3D system with parallel access
running at different V-F settings.

in Figure 4-2, we set TtMd at 85°C. Figure 4-3 shows three Pcap settings. Our pol­

icy satisfies Tthid and Pmp at the same time. For example, at a loose Pcap of 200W,

Tthid at 85°C dominates the optimization decisions. A more strict Pcap at 175W or

155W requires taking peak power into account. Peak power management is an in­

creasingly important feature owing to power supply limitations and potential energy

cost reduction opportunities at large computer clusters.

maximize I P S (f , v) (4.1)
(i»e(F,v)

subject to pou>er(f,v) < P^p, temper atur e{ f ,v) < T^id-

Figure 4-4 illustrates the flow of our runtime optimization policy. We start running

the application with the lowest V-F setting to ensure reliable operation, and collect

the performance statistics at regular intervals of 100 million instructions. Based

48

Start execution with
the lowest V-F setting

3
Collect performance statistics-

at every sampling interval
_h/ jj—fnurA 'r a r i

Predict V-F setting under
power and thermal constraints

JTT_ j

If

End of execution Refine
regression model

Figure 4-4: The flowchart of our runtime optimization policy.

on a model we construct offline, we predict the highest V-F setting satisfying the

constraints using the performance statistics as inputs. We continue running the ap­

plication with the predicted V-F setting. This process is repeated at every interval.

We choose instructions per cycle (IPC) and memory access per instruction (MA)

to construct a regression-based model for selecting the V-F settings. This is because

IPC is a good indicator of the power of the logic layer and MA is a good indicator

of the power of the DRAM layer. Power densities on both layers affect chip peak

temperature on the 3D system. Our V-F prediction model is in the form of V — F =

Co *f" c y M A + cr IP C -t- c yM A * IP C .

Table 4.1: Regression coefficients for a target 3D system with
85°C/175W constraints for all the V-F settings.

V-F setting Co Cl c2 C3
2 .lG H z/l.lV 3.68 -147.95 -0.059 0.19
1.7GHz/1.06 V 3.74 -141.77 -0.071 0.23
1.4GHz/1.02V 3.76 -145.71 -0.075 0.36
l.IGHz/l.OV 3.80 -147.08 -0.087 0.41
0.8GHz/0.98V 3.87 -152.01 -0.072 0.58

49

We train the regression model with power and performance statistics from sim­

ulations across all benchmarks. Note that we need to use different coefficients in

the model depending on the current V-F setting, as MA and IPC vary with the V-

F setting. As an example of the V-F prediction for a 3D system with 85°C/175W

constraints, we list the coefficients of the regression-based model for all the V-F set­

tings in Table 4.1. The regression model provides accurate prediction as shown in

Figure 4-9, and can be refined at runtime if needed. The overhead of the runtime

prediction is negligible, since computing a simple equation at every interval has very

low computational cost.

We evaluate our runtime optimization policy on 3D systems with parallel access,

and compare our optimization policy against using static V-F settings, a temperature-

triggered DVFS policy, and a DVFS policy guided by memory accesses.

The performance improvement of the 3D system with parallel on-chip DRAM

access running at 2.1GHz and 0.8GHz is demonstrated in Figure 4-5. We show that

3D system with parallel access versus with regular access
3 D -2 .1 G H z
3D-0.8GHZ

JS f* * A * * * * ^

Figure 4-5: Performance improvement on 3D system with parallel
access compared to 3D system with regular access.

50

Table 4.2: Results of the target 3D system with static settings.
Policy Static V /F settings (G H z / V)

0 .8 /0 .9 8 1 .1 /1 .0 1 .4 /1 .02 1 .7 /1 .06 2 .1 /1 .1

Peak P (W) 154.72 161.53 193.37 236.79 279.25
Peak T (°C) 78.10 79.46 85.85 94.65 103.39
EDP** (J-s) 246.42 167.63 135.18 132.19 119.82

IPnS*** 10.63 12.86 15.73 16.93 18.93

* EDP per lObillion instructions
** IPnS stands for instructions per nanosecond
★ Average across all benchmarks

enabling parallel access to the 3D DRAM layer improves IPS by up to 86.9% compared

to using regular access, s tre a m c lu s te r and mg show higher IPS improvements than

the other benchmarks, since they have higher memory access rates and thus benefit

more from reduced average memory access time.

We compare the performance and energy efficiency for 3D systems running our

runtime optimization policy and using static V-F settings. The results are shown in

Table 4.3 and Table 4.2. We notice that the peak temperatures go over the thermal

Table 4.3: Results of the target 3D system with our runtime opti­
mization policy.

Policy R untim e optim ization
85°C /155W 85°C /175W 85°<7/200W

Peak P (W) 154.85 168.63 189.62
Peak T (° C) 77.97 80.81 83.32
EDP** (J-s) 185.67 145.11 130.03

IPnS*** 14.47 15.68 16.02

* EDP per lObillion instructions
** IPnS stands for instructions per nanosecond
★ Average across all benchmarks

51

80 Runtime managment policy vs static VF setting
IPS-lmprovement
EDP-Reduction

^ 6 0

F ig u re 4-6: 3D system using our runtime management policy in
comparison to running all benchmarks at the static V-F setting of
0.8GHz/0.98V.

constraint of 85°C for applications running on the 3D systems with frequency settings

higher than 1.1 GHz.'

W ith a loose power constraint of 200W, we compare our policy with the static

V-F setting at l.lGH z/l.OV which maintains temperature below 85°C for all the

benchmarks. Our policy achieves an average IPS improvement of 24.6% and EDP

reduction of 22.4% across all the benchmarks. W ith strict constraints of 85°C/155W,

our runtime policy improve the IPS of 3D system by 60.6% in comparison to static

V-F setting at 0.8GHz/0.98V, as demonstrated in Figure 4-6.

We present the runtime V-F selection process of our optimization policy in Fig­

ure 4-7. For ua, 1.4GHz/1.02V is the reliable static operating point, maintaining

the temperature below 85°C. However, the phase change of ua creates a temperature

slack periodically. Our policy takes advantage of the temperature slack and switches

to 1.7GHz during periods of low temperature.

We demonstrate the advantage of our runtime optimization policy over apply-

52

1.7GHz

1.4GHz 1

1.1GHz

 Temperature traces a V-F selectior77

0 15050 100 200 300250 350 400
Time(ms)

Figure 4-7: Temperature trace of ua on the 3D system running at
1.4GHz/1.02V and the V-F setting selected by our runtime manage­
ment policy.

ing temperature-triggered DVFS in Figure 4-8. Temperature-triggered DVFS is a

well-known policy for thermal management on 2D systems (Skadron et al., 2003;

Coskun et al., 2009c). It tracks chip peak temperature and selects the operating

point based on temperature sensor readings. For safe operation while maintain­

ing system performance, we choose two temperature thresholds as 80°C and 70°C.

IPS-lmprovement
EDP-Reduction

® 40

/ / / / / 6° eV ^ \p

Figure 4-8: 3D system with runtime management policy in comparison
to temperature-triggered DVFS policy.

53

2.1GHz

1.1GHz

1.7GHz

1.4GHz

■ with only MA Q with both MA and IPC ★ static best V-F settinc' '
0.8G

Figure 4-9: Prediction accuracy of our runtime management policy
versus memory access (MA) driven DVFS.

Temperature-triggered DVFS reduces/increases the V-F setting when temperature

goes above/below 80°C/70°C.

Our policy improves EDP by up to 61.9% and IPS by 32.2% on average across all

the benchmarks in comparison to the temperature-triggered DVFS policy. The perfor-

triggered DVFS policy. This is because they have low temperature while running at

2 .lG H z/l.lV . The benchmarks that have high temperatures when running on 3D

systems with stacked DRAM, such as streamcluster, show larger performance im­

provement using our runtime policy. Our policy selects the highest V-F settings to

operate at safe temperatures, while temperature-triggered DVFS may oscillate around

the high temperature threshold.

We also compare our optimization policy against memory access driven DVFS,

in which V-F selections are mainly guided by the memory access rate (Isci et al.,

2006b). For implementing memory access driven DVFS, we construct a regression-

based model for selecting V-F setting with only MA. We show the V-F prediction for

3D system with 85°/ 175W constraints in Figure 4-9. By only using MA, three out of

mance of blackscholes and is does not differ between our policy and the temperature-

54

twelve benchmarks end up with different V-F settings than the optimal ones; while

the predictions are all accurate using both IPC and MA as in our policy. The bench­

marks that are predicted incorrectly using only MA are blackscholes, is, and mg.

blackscholes has low MA but high IPC, is has both low MA and low IPC, and mg

has high MA and relatively higher IPC than the other memory-bound benchmarks.

Our policy provides accurate prediction as we take the power and temperature con­

straints on both logic and DRAM layers into account on 3D systems with stacked

DRAM, where both high IPC and memory access rate could result in high chip power

and peak temperature.

In addition to developing the runtime optimization policy to exploit the perfor­

mance potential of 3D many-core systems with DRAM stacking, we also investigate

management approaches to control the temperature of DRAM layer. DRAM perfor­

mance is severely affected from high temperatures due to the impact of temperature

on DRAM refresh rates. In fact, prior research has shown that temperature sensitiv­

ity often becomes more critical for memory layers than for logic layers (Ghosh and

Lee, 2007; Liu et al., 2011).

In order to reduce the temperature and thermal variation on both the logic layer

and the DRAM layer of the 3D systems, we propose a memory address management

policy. The motivation of implementing this method is base on two facts. One is

that high memory access rate of a DRAM bank is generally raising up high power,

and the temperature of a DRAM bank is the result of the power on both itself and

its neighbors. The other is that the temperature of a DRAM bank is dependent on

its location on the 3D DRAM layers, the banks that are located on the center of

the DRAM layers generally have higher temperatures than the banks that are on the

corners of the 3D DRAM layers. Therefore, the main idea of the memory address

management policy is to map more frequently accessed memory address ranges to

55

M RANK!

RANK2

RANK3

RANK4

F igu re 4-10: The DRAM layer layout for the high-perform ance 3D
system with on-chip DRAM.

physical banks with lower temperatures.

Our policy targets memory-intensive applications with high spatial variations in

their access rates across different DRAM banks. Figure 4-11 illustrates the peak

temperatures and the number of accesses per cycle across the 16 DRAM banks while

running s tre a m c lu s te r on the 3D high-perform ance system with 128-Byte memory

bus. The location of each bank is shown in Figure 4-10. Banks 6, 7, 10, 11, which are

located on the center of the DRAM layer have higher temperatures than banks 1, 4,

13, 16, which are on the corners. The variations in DRAM bank access rates indicate

differences in power consumption across the DRAM banks. In Figure 4-11, the most

accessed DRAM bank 9 and least accessed bank 3 have average power consumption

of 5.1W and 1.9W, respectively.

Based on this analysis, our memory management policy maps more frequently

accessed memory address ranges, such as the address range for bank 9 in the de­

fault mapping, to physical banks with lower temperatures (e.g., bank 1). The mem­

ory address mapping is implemented by the OS when virtual memory addresses are

56

- 3

95

0 90
a>
13
os 85V.d>Q.

1 80

75

i > i i i i i » i * * i 1 i i ’i 1 r

■ ■ Peak Temperature & DRAM access rate
V°

®o
7 ?

©a
<nc « D (D
§

3 5<
cc
Q

1

F ig u re 4-11: DRAM bank temperature and access rate for
s tre a m c lu s te r in 3D high-perform ance system with 128-Byte mem­
ory bus.

translated into physical addresses. The specific memory mapping strategy matching

the virtual memory address ranges to physical locations can be determined based on

average case analysis statically. This approach has no additional cost compared to

existing memory mapping mechanisms. The mapping policy can also be updated if

average case workload dynamics change significantly. Simulation results show that

our policy reduces DRAM peak temperature by \A °C and the thermal variations by

2°C for s tre a m c lu s te r running on the 3D high-perform ance system with 128-Byte

memory bus in comparison to the worst-case allocation, where the banks receiving

higher number of accesses are located in the center of the DRAM layer.

4.3 M anaging 3D Many-core System s w ith Liquid Cooling

Many-core systems provide a lot of hardware parallelism and potential performance

increase. However, as recent chip sizes for many-core systems reach 300mm2 to

400mm2 and more, they are prone to larger process variations, lower yield, and higher

on-chip wire delay and power consumption.

57

core + L2s
TSV

core + L2s

Figure 4-12: An illustration of 3D many-core systems with two logic
layers stacking and off-chip DRAM.

3D many-core system with logic layer stacking is a promising solution to design

large many-core chips as it improves manufacturing yield because of smaller chip

area, and reduces wire length and capacitance. However, as the number of cores and

number of logic layers in 3D many-core systems increase, system temperature easily

goes out of feasible ranges, even by applying the thermal management policies for 3D

many-core systems that we have proposed in Section 4.2. Liquid cooling has a higher

efficiency of removing heat compared to conventional heat sinks, thus are introduced

to address the thermal challenges in 3D many-core systems. In this section, we discuss

the modeling and management of 3D many-core systems.

We use the simulation framework that introduced in Chapter 3 for the modeling

of 3D many-core systems with logic stacking. We assume our target 3D many-core

system as a 64-core processor that is manufactured at 45nm. As illustrated in Fig­

ure 4-12, the target 3D many-core system has two vertically stacked logic layers and

off-chip DRAM. We assume that the floorplans of the two logic layers are identical,

each layer has 32 core, and each core has a private L2 cache. The core and cache

architectural parameters are the same as for the target 2D many-core system, which

58

iM ax T (*C)

iA v g T (‘C)

No DTM TALB TALB+DVFS No DTM TALB TALB+DVFS

1 2D, air-cooled 2 -tie r 3D, air-cooled |

Figure 4-13: Peak and average temperatures for 64-core 2D system
and 3D system with two logic layers, including the results with no ther­
mal management (No DTM), with temperature-aware load balancing
(TALB), and with TALB combined with DVFS (TALB+DVFS).

are shown in Table 3.1.

Figure 4-13 presents the peak and average temperatures for 64-core 2D system

and target 3D many-core system with two logic layers. In the simulation framework,

we assume negligible difference in core performance between 2D and 3D systems

when they are running the same applications, because the already low cache access

times are not strongly affected by vertical stacking. We notice that temperature

increases significantly due to vertically stacking two logic layers. The peak temper­

ature with no thermal management of the target 3D many-core system increases by

around 30°C in comparison to the peak temperature with no thermal management

of 64-core 2D system. We compare the results of peak and average temperatures for

the 2D and 3D many-core systems with no thermal management (No DTM), with

temperature-aware load balancing (TALB), and with TALB combined with DVFS

(TALB+DVFS), respectively. TALB allocates jobs to cores with the objective of

balancing chip temperature (Coskun et al., 2010).

The comparison results show that TALB reduces the peak temperature below

59

the critical value of 85°C, and TALB+DVFS reduces the temperature further. This

observation demonstrates the significance of thermal management for 3D many-core

systems with logic layer stacking. However, when we build the same system into a 3D

system with four logic layers stacking, each logic layer consisting of 16 cores, the peak

and average temperatures exceed 100°C and 90°C even with TALB+DVFS, which

makes the design of 3D many-core systems unfeasible (Coskun et al., 2011). Therefore,

for high-performance 3D architectures, applying scheduling, DVFS, or other existing

techniques cannot mitigate the temperature challenges effectively without hurting the

system performance. We need to consider more efficient heat removing techniques,

such as liquid cooling, to address the thermal challenges in 3D many-core systems.

Liquid cooling has been proposed as a promising solution to address the pressing

thermal challenge of 3D many-core systems due to the logic stacking, as it has a

higher efficiency of removing heat compared to conventional heat sinks and fans. A

prototype 3D system with built-in microchannels has been manufactured by IBM

Zurich and EPFL (Brunschwiler et al., 2009; Coskun et al., 2011). The modeling

of 3D many-core system temperature with liquid cooling model already exits and is

implemented in HotSpot (Skadron et al., 2003; Coskun et al., 2010). However, liquid

cooled 3D many-core systems bring new challenges in cooling control and require

efficient integration with chip-level thermal management techniques.

We have looked into managing the 3D many-core big chips with microchannel

cooling (Coskun et al., 2011). Figure 4-14 compares maximum and average temper­

ature between liquid-cooled 3D systems and the 2D air-cooled baseline. We observe

that liquid cooling dramatically reduces temperatures for the 3D many-core systems

with multiple logic layers, which makes stacking more logic layers possible. From

the simulation results, we can see that the temperature are within the safe margins

for both the 2-tier and 4-tier 3D systems with liquid cooling. We use Fuzzy+TALB

20
No DTM TALB TALB+OVFS No DTM TALB FuzzytTALB

2D, air-cooled 2-tier 3D, liquid cooled

No DTM TALB Fuzzy*TALfi

4-tier 3D, liquid-cooled

Figure 4-14: Peak and average temperature between liquid-cooled
3D systems and the 2D air-cooled baseline, including the temperatures
results with no thermal management (No DTM), with temperature-
aware load balancing (TALB), and with TALB combined with DVFS
(TALB+DVFS), as well as fuzzy controller combined with TALB
(Fuzzy+TALB).

to prevent over cooling and reduce the cooling energy by adjusting the flow rate to

match the cooling need of the system (Sabry et al., 2010). We observe that TALB,

Fuzzy control, and DVFS all contribute to the reliable operations on liquid-cooled 3D

many-core systems by reducing the peak and average temperatures.

4.4 Summary

In this chapter, we have discussed the management and optimization policies to ad­

dress the energy efficiency and thermal challenges for 3D many-core systems. We have

proposed a runtime optimization policy that dynamically monitors workload behavior

and selects operating points for adapting to varying application phases. Our policy

selects among low-power and high-performance execution modes from available V-F

settings by utilizing predictions from a regression-based model. The simulation results

show that our runtime optimization policy achieves an EDP reduction of up to 61.9%

compared to a 3D system managed by a temperature-triggered DVFS policy. We have

61

also introduced a memory management policy that targets applications with spatial

variations in DRAM accesses and performs temperature-aware mapping of memory

accesses to DRAM banks. In order to further reduce the temperature of 3D many-core

systems, we have also discussed the management of 3D systems with liquid cooling.

In the following chapters, we will present the modeling and management approaches

for large-scale many-core systems in HPC data centers.

Chapter 5

M odeling of M any-core System s in D ata
Centers

.>

5.1 Overview

As the number of cores and power density per processor increase, performance, cool­

ing energy cost, and reliability are becoming critical concerns in many-core systems

in HPC data centers. Different from the performance of many-core single-chip pro­

cessors, the system performance of data centers running communication-intensive

applications is significantly impacted by the communication cost between different

processing nodes. High temperatures in data centers not only cause reliability degra­

dation, but also increase the required cooling energy of HPC clusters. Therefore, it is

important to have detailed modeling approaches to evaluate the communication cost,

cooling energy, and reliability of many-core systems in HPC data centers.

In this chapter, we provide a performance model to evaluate the communication

cost of HPC data centers running highly parallel workloads. We also present a ther­

mal model to evaluate the inlet temperature and cooling energy cost of HPC data

centers. In order to quantify the system-level reliability, we introduce a detailed reli­

ability modeling approach to accurately model temperature-induced wear-out failure

mechanisms under various system topologies. In the next chapter, we will propose

management strategies for HPC data centers based on the evaluation results by uti­

lizing these modeling approaches.

63

5.2 Performance and Cooling Energy M odeling in H PC D ata
Centers

In this section, we introduce the performance and cooling energy model using a small

size data center with two rows of industry standard racks as an example. The layout

of the target data center is shown in Figure 5-1. In this layout, the rack inlets where

the cool air is supplied face the outer aisles and form cold aisles at the sides. The

rack outlets, where the hot air exits, face each other and form a hot aisle in between

the two rows.

In our target data center, each row is composed of 5 racks and each rack has 4

computing nodes. We assume that each node includes 10 servers and each server has

2 processors. This layout corresponds to a total of 800 processors across the two

rows of the data center. The proposed data center layout has been widely used in

Figure 5-1: Layout of the target data center.

64

prior work and is representative of today’s data center configurations (Sansottera and

Cremonesi, 2011).

5.2.1 Workload and Perform ance M odel

The typical workloads in HPC data centers are communication-intensive parallel ap­

plications that use high-level message passing interfaces such as MPI. For such work­

loads, the communication overhead inherent in the data center is one of the major

performance bottlenecks (Mache et al., 1997). In order to model communication

costs due to message passing, we target mesh-connected HPC data centers and su­

percomputing systems. Mesh-connected networks for message passing are widely used

in many experimental and commercial distributed memory parallel computers, such

as IBM BlueGene/L and Cplant, a commodity-based supercomputer developed at

Sandia National Laboratories (Brightwell et al., 2000).

We specify our workloads as jobs that require a number of nodes in the data

centers. The performance metric for our evaluation is the average pairwise LI distance

(Manhattan distance) across all the communicating nodes of a job running on the

mesh-connected parallel system (Bender et al., 2008). We employ Ll distance as our

metric as it has been demonstrated to correlate with application running time (Leung

et al., 2002). We define the communication cost of a job as the average Ll distance

across all the nodes running the job, and formulate it as in Equation (5.1).

CCjob = j j 5 3 [wx{s,t) + wy(s,t)\ (5.1)
(s,t)e(S,T)

where C C means the communication cost of a job. N is the job size. In this thesis,

we assume N > 1 for all the jobs. We define the job size as the number of nodes a

job requires, (s, t) represents the pair of source and destination nodes of a message

65

1..... ...
V«----- ... ,

WJs,t)j •
(a) All-to-all pattern (b) Distance metrics

Figure 5-2: Communication pattern and distance measure.

and (S', T) is the set of all the source and destination node pairs for all the messages.

wx(s, t) and wy(s, t) represent the distance between s to t along the x-axis and y-axis,

respectively. An illustration of the Ll distance between source and destination nodes

is shown in Figure 5-2(b). The division of the summation of the Ll distances by N

provides the normalization of the communication cost with respect to job size.

In this thesis, we assume all-to-all communication pattern for our workloads. All-

to-all is a common communication pattern in HPC routines such as Fast-Fourier-

Transform, which is part of several applications including molecular dynamics, quan­

tum chemistry, and digital signal processing (Kumar et al., 2008). In all-to-all pattern,

each processor communicates with all the other processors running the same job, as

shown in Figure 5-2(a). In order to reflect the difference between communication cost

within data center rows and between data center rows, we set the one-hop distance

within a data center row as 1 and the distance between nodes of different, rows as

10. The reason for the larger distance among rows is that nodes placed at different

rows communicate through a larger number of switches and longer interconnects on

the communication path (Belden, 2007). Thus, this effect should be included in the

communication latency calculation.

66

We quantify the effect of job communication cost on the job running time by

assuming that the application spends a certain percentage of time on communication,

denoted as C% (Crovella et al., 1992). In order to calculate the job running time, we

use the minimum CCjob that can be accomplished for a given job size as the baseline

for a job’s communication cost. For example, for a job of size 4, the minimum

achievable communication cost is 4 using Equation (5.1). We then define the ratio of

the current CCj0b to the best case CCjob as the latency factor, Lj. We calculate the

actual job runtime by scaling the communication portion of the runtime by Lj.

5.2.2 Cooling Energy M odel

The cooling energy consumed by a data center is dependent on the layout of the data

center infrastructure. In this thesis, we use a typical data center layout validated

by prior work (Ead et al., 2008), as shown in Figure 5-1. In this layout, racks and

perforated vent tiles are placed on a raised floor. Cold air enters the room from

the floor tiles, goes into the rack inlets from the sides, and gets hotter as it moves

through the racks. Hot air exits from the back of the racks into the center aisle and

the exhaust air exists the room from the ceiling to be cooled again. This set-up is

called hot aisle / cold aisle arrangement which avoids mixing cold supply air with

exhaust air (Rad et al., 2008).

In order to evaluate the energy consumption of a data center and develop man­

agement policies, we need a fast and accurate data center thermal model. We use the

model proposed and validated by Tang et al (Tang et al., 2006). Their model combines

a linear, low complexity heat recirculation model with a linear power model. The pro­

posed model is more practical than the most of other existing models as it requires

a set of computational fluid dynamics (CFD) simulations only once to characterize

the data center. After we obtain the measured data center specific parameters, the

vector of inlet temperatures, Tjn , for all the nodes are computed using the following

67

linear equation:

Tin = T9up + D P (5.2)

D = [(K - AtK) - 1 - K - 1] (5.3)

where Tsup means the CRAC unit supply temperature vector. D is the heat distribu­

tion matrix and P is the node power vector. K is the thermodynamic constant matrix

and A is the heat cross-interference coefficient matrix representing the recirculation

phenomena. The thermodynamic constant matrix K is calculated as:

K = diag(Ki) (5.4)

Ki = pfiCp (5.5)

where p=1.19 Kg/m 3 is the density of air. 0 < i < N , where N is the total number

of computing nodes in the data center. /*=().2454 m3/s is the flow rate of node i.

We assume the flow rate is fixed for all data center nodes, and cp=1005 J/KgK is the

specific heat of air (Tang et al., 2008).

The heat cross-interference coefficient matrix A represents the fraction of output

heat from each node that is recirculated to the inlet of other nodes. It is an N x N

matrix for a system with N nodes. In matrix A, each term ai3 represents the fraction

of heat at node i recirculating back into node j . It has been shown that elements of

matrix A mostly depend on the data center layout rather than the power consumption

of the nodes or the supply temperature (Sansottera and Cremonesi, 2011). Therefore,

this matrix is obtained once for a data center. The matrix A for the proposed data

layout has been calculated through CFD simulations in prior work (Tang et al., 2006).

If one has input ambient sensors mounted already, the matrix A can be obtained using

68

0.15-s

Node Numbers 25

Node Numbers

F ig u re 5-3: Cross-interference coefficient matrix for our system.

sensor measurements instead of CFD simulations and following the same procedure

in (Tang et al., 2006).

We construct the cross-interference coefficient matrix for the proposed data center

using the coefficients given in (Sansottera and Cremonesi, 2011). In order to obtain

the coefficients, we extract the coefficient value corresponding to each data point from

the colormap plot in (Sansottera and Cremonesi, 2011). We use Matlab to implement

the extraction. In Matlab, we first map RGB values to indexes, which preserve the

relationship between coefficients relative to each other. We then perform calibration

by scaling the matrix according to the given temperature graph in (Sansottera and

Cremonesi, 2011). Figure 5-3 shows the cross-interference coefficient matrix A for the

40-node system in a 3-D plot. For a data center with different layout and heat flow

69

characteristics, matrix A differs. The equations to calculate the inlet temperatures

are independent of the data center layout. Thus, the cooling energy model applies to

data centers in general.

In order to develop efficient management policies for reducing data center cooling

energy consumption, we need to consider the specific thermal behavior of the given

data center and take the differences in recirculation coefficient and exit coefficient of

En
 ̂a,ij is called the recirculation

coefficient (RC) of node j and is a measure of the total recirculation effect of that,

node (Tang et al., 2006). On the other hand, for a node i, the value of (1 — ̂ai})

is called the exit coefficient (EC) of node i EC is a measure of the heat at node i s

outlet returning back to the cooling system without recirculating back to other nodes.

EC and RC for our system are given in Figure 5-4. As presented in Figure 5-4(a),

the nodes at the bottom of the racks and at the ends of the aisles have lower EC

values, which means that they contribute more to the recirculation effect. Moreover,

according to Figure 5-4(b), the nodes at the top and at the ends of the aisle have

higher RC values, which means that they are affected or victimized more by the

recirculated heat. The asymmetry between EC and RC values of right and left end

of the aisles is due to asymmetries in the heat flow within the data center.

In addition to the data center layout, the processing powers of the data cen­

ter nodes and the allocation of jobs also play important roles in the cooling energy

consumption in the data center. These power values are used in Equation (5.2) to

calculate the inlet temperatures resulting from different allocation schemes. We per­

form node-level allocation in this thesis, which is a reasonable hierarchical level for

HPC data centers. Once a job is assigned to a node of multiple servers, server and

core level workload allocation will follow. Assume a given task of size n, which corre­

sponds to the total number of nodes a task requires, Xi is an integer variable showing

Ex
it

C
oe

ffi
ci

en
ts

70

Racks Row 1
Bottom

(a) Exit Coefficients

&

Racks
Bottom

(b) Recirculation Coefficients

Row 1

F ig u re 5-4: Exit and recirculation coefficients for our system.

Bottom

Row 2

Bottom

Row 2

71

whether node i is assigned a job or not and it is either 1 or 0, respectively. Power

consumption of node i can be expressed with a linear model as follows:

Pi = Pidle "t" X{Putil (5-6)

where Pidie is the node idle power and Puta is the power consumed by a node when

running a task. We assume fixed node power when running a task is valid for HPC

data centers. This is because that, even though there are fluctuations in the power,

it is ignorable in comparison to the total power. We use 1000W for Pi(ue and 2500W

for Putii. For a data center node that is processing a job, the total processing power is

3500W. These numbers are in line with the server power values given in (Sansottera

and Cremonesi, 2011).

We adjust the total node power according to the actual runtime and percentage

of time spent in communication. During communication intensive phase, power con­

sumption will be lower due to the time spent waiting for messages. We assume 2

different power levels, 3500W for computation phase and 2700W during communica­

tion phase. These numbers are in line with the values in (Lively et al., 2011). We

set the total power of a node as the weighted sum of the computation power and

communication power. Communication level (C%) or the power levels corresponding

to computation/communication phases depend on the workload and power charac­

teristics of the system. The modeling of communication level provides us the ability

to evaluate our optimization policy that is applicable to systems with different power

and communication levels.

After we obtain the node inlet temperatures using Equation (5.2), we need a

cooling power model to measure the power consumed by the cooling unit at various

temperatures. This power depends on the efficiency of the CRAC unit. One of the

most common metrics used for CRAC unit efficiency is the coefficient of performance

72

(CoP). CoP is defined as the ratio of the heat removed from the system to the energy

spent on cooling and has the following formula:

CoP = A (5.7)
* A C

where Pc is the total computing power (sum of the values in P vector) and PAC is the

cooling power. CoP increases with higher CRAC supply temperature (Tsup). In this

work, we use the CRAC unit CoP model given by (Moore et al., 2005) as follows:

CoP(Tsup) = 0.0068 Tsup2 + 0.0008 Tsup + 0.458 (5.8)

where Tsup is in Celsius. The upper limit on how much we can increase supply

temperature (Tsup) depends on the difference between redline temperature {Tred),

which is the highest allowed temperature at the node inlets, and maximum node inlet

temperature (Tinmax). In other words, we can use this temperature slack to increase

the supply temperature and operate at higher CRAC efficiency without violating the

temperature constraints. A new supply temperature is found by adding this difference

to Tsup and cooling cost is calculated as follows:

Tsupf — Tsup + Trai — T{nmax (5.9)

PaC = C oP (Tsupt) (5' 10)

The proposed thermal model provides fast results as it does not require time-

consuming CFD simulations and it is able to capture the effect of recirculation, which

has a significant contribution in high temperatures. The accuracy of the thermal

model has been verified in prior work by comparison with CFD simulation results

(Tang et al., 2006).

73

5.2.3 Tem perature M odel

As described in Section 5.2.2, the inlet temperatures of data center nodes are sufficient

for computing the cooling cost. In order to evaluate the reliability of many-core

systems in HPC data centers, it is necessary to calculate the junction temperature of

processors. We calculate the junction temperature in two steps using a linear model.

The first step is to calculate the heat sink temperature as in Equation (5.11).

T h S = T n s ,r e f + (T in ~ T in ,re f) ' S F (5.11)

where T h s is the heat sink temperature, T h s ,re f is the reference heat sink temperature,

T in is the node inlet temperature and T in,ref is the reference inlet temperature.

Ths corresponds to the typical heat sink temperature at reference inlet temper­

ature T in,rej- For example, we take T in,ref as the supply temperature T sup = 15°C

and Ths,ref = 45°C. This means that when the inlet temperature is 15°C, we observe

45° C on the heat sink.

S F is a scaling factor determining the effect of T in deviation from T in,ref on the

heat sink temperature. For example, S F = 0 corresponds to the case for which, heat

sink temperature stays constant with changing inlet temperature. We take S F as 0.6

as suggested in prior work (Walsh et al., 2010).

In the second step, we calculate the server junction temperature 7} as follows:

Tj = THS + P x R j a (5.12)

where T h s is the heat sink temperature as described in Equation (5.11). It is also

called ambient temperature for junction temperature calculation. P is the processor

power. We assume server power value of 350W which includes the total power for two

processors, memory, interconnects etc. In order to calculate the junction temperature

74

of a single processor, we use 120W for processor active power. R j a is the junction to

ambient thermal resistance and is typically 0.1 °C/W for a high quality heat sink.

In the next section, we introduce the reliability model of many-core systems in HPC

data centers which takes the junction temperature of processors as inputs.

5.3 Reliability M odeling for Many-core System s in H PC D ata
Centers

In this section, we introduce a detailed reliability modeling approach to accurately

model temperature-induced wear-out failure mechanisms for many-core systems with

various system topologies. We also present the analysis results of the reliability of a

real-life multi-chip many-core system by utilizing the reliability modeling approach.

5.3.1 W ear-out Failure M echanism s

In our reliability model, we consider three major intrinsic wear-out failure mecha­

nisms for processors: Electromigration (EM), Time Dependent Dielectric Breakdown

(TDDB), and Negative Bias Temperature Instability (NBTI).

EM occurs in Al and Cu interconnects due to the momenta exchange between

current-carrying electrons and host metal atoms. T D D B is a wear-out mechanism of

the gate dielectric. Failure occurs when a conductive path is formed through the gate

oxide to substrate due to electron tunneling current. N B T I has become a critical

reliability concern in advanced CMOS technology. NBTI typically occurs when the

PMOS transistor is negatively biased, which results in the positive charges in the gate

oxide. The positive charges cause an increase in threshold voltage and can lead to the

wear-out failures (Srinivasan et al., 2005; JEDEC, 2006; Alam et al., 2007). In our

reliability model, we do not consider thermal cycling failure mechanisms since thermal

cycles of 140°C magnitude are required to cause damage to the silicon substrate and

interconnects (Srinivasan et al., 2003). In our experiments, we observe the maximum

75

temperature cycling amplitude as less than 40°C. Moreover, we focus on the silicon-

level wear-out failure, while the effect of thermal cycling is mostly seen in the package

and die interface.

The failure rates for these three failure mechanisms can be expressed in the fol­

lowing general form:

A = A0 x e ^ 1 (5.13)

where k is the Boltzmann’s constant which equals to 8.62 x 105. T is the temperature,

and A0 is a material-dependent constant.

Ea is the activation energy for the failure mechanism. For Al alloys, we have

EaEM = 0.7el/ (JEDEC, 2006). For TDDB, we set the activation energy as EaTDDB =

Q.75eV (JEDEC, 2006). The activation energy for NBTI is represented as EaNBTI x

1/n, where n is the measured time exponent. We use EaNBTI = {).\be.V and n = 0.25,

which give the product of 0.6eV (JEDEC, 2006; Alam et al., 2007).

In order to determine the constants for \%M, A°DDB, and X°NBTJ, we assume the

contributions of EM, TDDB, and NBTI are similar to each other at a base temper­

ature. We calibrate the constants in each failure rate equation to satisfy a per-core

mean time to failure (MTTF of 5 years at 60°C (Ferreira et al., 2011).

5.3.2 Lognormal D istributions for Lifetim e R eliability

The reliability models in some of the prior work assume all failure mechanisms have an

exponential distribution (Coskun et al., 2009c; Srinivasan et al., 2004a; Coskun et al.,

2006). The exponential distribution indicates a constant failure rate throughout the

processor’s lifetime. However, in practice, the wear-out failure mechanisms typically

have a low failure rate at the beginning of the lifetime and the rate grows with the

age of the components.

76

Recent work has shown that lognormal distribution constitutes a more accurate

model of wear-out failure mechanisms compared to exponential distribution (Srini­

vasan et al., 2005; Xiang et al., 2010). The lognormal distribution provides the ability

to model the dependence of the failure mechanisms on time. The probability density

function for lognormal distribution is given in Equation (5.14).

f (t) = — (5. 14)

where n and a are the mean and the standard deviation of the underlying normal

distribution, respectively. Reliability at time t can be computed by integrating f(t.)

from 0 to t. In our reliability model, we use a = 0.5 based on experimental data from

prior work (Srinivasan et al., 2005).

We calculate the reliability of each wear-out failure mechanism using lognormal

distribution to obtain the reliability of a processor at a certain time. However, since

there is no closed-form solution for the integration of f (t) , it is difficult to find an

explicit solution for the failure rate or reliability.

In order to address this issue, we consider Monte Carlo simulations to calculate

the processor reliability. We make use of Monte Carlo simulations to combine the

effects of the individual failure mechanisms and find the reliability of a single core.

By utilizing Monte Carlo simulations, we first generate a normally-distributed ran­

dom number, rnorrnai, with mean 0 and standard deviation of 1. rnormai is obtained

using two independent uniformly distributed random numbers r\ and r2, as shown

in Equation (5.15). We then generate a scaled normally-distributed random num­

ber rsnarmal with mean ft and standard deviation of a from the normally-distributed

random number as in Equation (5.16).

77

r normal = sin{2irr{) y J - 2 In (r2) (5.15)

Tsnormal = ft “I- 1"ncrrmal& (5.16)

After the scaled normal random number is obtained, a random lognormal distri­

bution number r iognorma/ representing a random lifetime for each failure mechanism

can then be generated from the scaled normal random number as in Equation (5.17).

<r, , — orsnormal (£ 11 lognormal — c \ ° ' 1 ■ /

The mean of the normal distribution rsnarmai {ft) and the mean of the lognormal

distribution riog1wrmai (MTTF) are related to each other as in Equation (5.18).

2
V = In (M T T F) (5.18)

To compute the reliability of a processor which is composed of the lognormally

distributed failure mechanisms, we generate riognormai distributions (i.e., random life­

times) for each failure mechanism. We compute r io9norma! by calculating the MTTF

values using Equation (5.13) for each failure mechanism and n using Equation (5.18).

We conduct the experiment for 106 iterations to generate random lifetimes for failure

mechanisms. At each iteration, the lifetime of the processor is set to the minimum of

the generated numbers. MTTF of the processor is then calculated by averaging the

minimums across all the iterations.

In order to convert the MTTF value to reliability, we generate the cumulative

distribution function (CDF) of lognormal distribution. The reliability over time t, for

the lognormal distribution is then determined by Equation (5.19), where F(t) is the

78

CDF of lognormal distribution at time t.

R(t) = 1 - F(t) (5.19)

5.3.3 System R eliability M odeling

The modeling of system reliability in most of the prior work only considers series

system topology (Srinivasan et al., 2004a; Xiang et al., 2010). In a many-core system

with series topology, the first failure on any unit on the chip causes the entire processor

to fail. However, in real-life computing systems, we may have different levels of series-

parallel topologies.

n

Series: R system{t) = J J# i(*) 5̂'20^
i=0

n

P a ra lle l: R system{t) = 1 - J J (1 - Ri{t)) (5.21)
i=0

In a series system of n components, the system fails if any of its components fails.

On the other hand, a parallel system with n components fails if all of its compo­

nents fails. Assuming failure rates are statistically independent, the overall system

reliability of a many-core system containing n cores with series topology can be com­

puted as in Equation (5.20), while the overall system reliability of a many-core system

containing n cores with parallel topology can be computed as in Equation (5.21).

5.3.4 Topology and System R eliability Analysis

In order to explore the effects of system topology on reliability, we consider an eight-

core system that has two processors as our target architecture. The layout of the

79

target system is illustrated in Figure 5-5 which is based on Intel Clovertown system.

Each processor in our target system has four cores in two separate sockets. The two

sockets are located on two chips which are put together in a single package.

For the target system, we investigate its system reliability with four topologies:

(a) All series — all 8 cores connected in series; (b) Processor-level parallel — cores

in series within each processor, parallel across processors; (c) Chip-level parallel —

cores in series within each chip, parallel across chips; and (d) All parallel — all 8

cores in parallel.

Among the four scenarios, the system with all-parallel topology incurs higher

design cost as additional hardware is needed to detect runtime core failures and

initiate the recovery process for continued execution. The OS should also be equipped

to safely reconfigure the system on failure. The additional design cost would be

reduced for the system with chip-level parallel topology, because the parallelism is

only at the chip-level. Processor-level parallelism, as in the system with processor-

level parallel topology, can be implemented in today’s clusters through using sockets

that allow replacement of failed processors or using multiple server nodes.

For each scenario, we evaluate the system reliability with two different workload

allocation strategies: thermal balancing and clustering. In thermal balancing work

System Bus

Figure 5-5: Layout of the Intel Clovertown System (Teng et al., 2009).

80

allocation, high-power loads are distributed across the chip (Coskun et al., 2009c;

Mulas et al., 2008). In clustering workload allocation, power-hungry loads are allo­

cated on neighboring cores. In each scenario, cores are assigned high (Th) or low (TL)

temperatures.

We demonstrate the system reliability of clustered and balanced modes for each

topology in Figure 5-6. In clustered mode, cores 0, 1, 2 and 3 have TH and cores 4,

5, 6 and 7 have TB. In balanced mode, cores 0, 2, 4 and 6 have Th and the rest of

the cores have Th. However, in balanced mode, heat transfer between adjacent cores

should be taken into account; thus, we assign TB, the average of TB and Ti, to all

cores. This approximation has a few degrees error compared to detailed temperature

simulations, but is sufficient to demonstrate the trends. We compute the system

reliability using the reliability model described in Section 5.3. The core MTTF of 5

years at 60°C corresponds to a reliability value of 0.94.

■clustered
■balanced j 0.8

0.6 |

(a) All series (b) Processor-level parallel

H=80 L=40 H=80 L=50 H=80L=60 H=80 L=70 H=80 L=40 H=80 L=50 H=80 L=60 H=80 L=70

(c) Chip-level parallel (d) All parallel

Figure 5-6: System reliability for different series-parallel scenarios with
T h = 80°C and per-core MTTF of 5 years at 60°C.

81

In our experiments, high temperature Th is set as 80°C and low temperature Tl is

swept from 40°C to 70°C. Clustering degrades system reliability for all series scenario

due to higher core temperatures. However, clustering improves reliability significantly

for processor-level parallel system and moderately for chip-level parallel system. For

processor-level parallel case, clustering provides system reliability of 0.999 and 0.995

for T i values of 40°C and 50°C, respectively. For T i of 60°C, it increases the system

reliability from 0.2 to 0.8. Maximum increase in reliability (from 0.073 to 0.429) is

seen at TL of 65°C, which corresponds to 4.85X improvement.

We observe that, as the level of parallelism increases, system reliability for both

clustered and balanced modes gets higher. Therefore, for chip-level parallel case,

clustering is advantageous only at higher TL values; while for all parallel case, it

provides almost no improvement. In the rest of our analysis, we focus on processor-

level parallel systems due to its ease of real-life implementation compared to other

parallelism scenarios.

Figure 5-7 characterizes the relative reliability improvement of clustering compared

to thermal balancing for the processor-level parallel system. We see that reliability

10* ..

Tu=90°C

T =85 °C
Tu=80°C. - 2 "

Tu=75°C
T. .=70 °C

T =65 °C
Tu=60 °C

205 10 15 25 30 35 4540 50
A T

Figure 5-7: System reliability improvement of clustering over balancing
((7?clustered ~ ^balanced)/ Rbalanced) f°r various T h , A T (T//-T/,).

82

improvement starts becoming more noticeable for Th values over 75°C. The relative

improvement of 1 corresponds to doubling the reliability. As A T increases, reliability

improvement first reaches a peak value and then drops. This is because for a fixed

Th value, increasing AT corresponds to lowering Tg, which eventually lowers Tg.

Therefore, the system reliability for balanced mode increases, lowering the advantage

of clustered mode.

Figure 5-8 compares the system reliability of clustering and balancing for initial

per-core MTTF values of 3, 5 and 7 years at 60°C. As the MTTF value increases,

reliability difference between clustering and balancing becomes smaller. This is ex­

pected since for example, going from MTTF of 5 years to 7 years, reliability of a core

at 60°C increases from 0.9433 to 0.988. For the MTTF of 5 years, at TH of 75°C,

clustering improves reliability by 100%, while at 80°C the improvement is 4.85X. At

lower MTTF values such as 3, clustering alone is not sufficient to achieve acceptable

reliability levels, as the core reliability at 60°C drops to 0.712. In such cases, other

reliability optimization techniques should be applied as well.

^ clu stered TH=80, AT=15

0.8 ^balanced TH=80, AT=15

= glclustered Tu=75, AT=15
S3 M
.9? 0.6 Hbalanced T,=75, AT=15
t t \ ■ “

0.2

° H=80 L=65 H=75 L=60
MTTF=3

H=80 L=65 H=75 L=60
MTTF=5

H=80 L=65 H=75 L=60
MTTF=7

F ig u r e 5-8: System reliability for a processor-level parallel system with
initial per-core MTTF values of 3, 5 and 7 years.

83

5.4 Summary

This chapter presents the performance model, cooling energy model, and system-

level reliability model for many-core systems in HPC data centers. In comparison

to in many-core single-chip processors, high temperatures in data centers not only

cause reliability degradation, but also increase the cooling energy consumption. On

the other hand, the communication cost of applications has a significant impact on

system performance.

In order to evaluate the communication cost of communication-intensive workloads

running in HPC data centers, we have presented a performance model for mesh-

connected parallel systems. We also have introduced a thermal model to evaluate the

inlet temperature and cooling energy cost of HPC data centers.

To quantify system reliability, we have used a detailed reliability modeling ap­

proach to accurately model temperature-induced wear-out failure mechanisms under

various system topologies. Utilizing the system-level reliability model, we have ana­

lyzed the reliability of a real-life multi-chip many-core system. Our analysis quantifies

the tradeoffs between clustering higher power jobs and thermal balancing at various

operating temperatures. We have shown that clustering can improve system relia­

bility by up to 4.85X for systems with a processor-level parallel topology and 80° C

peak temperature.

In the next chapter, we propose a topology-aware reliability optimization policy

that leverages the analysis from our system-level reliability model. Utilizing the

evaluation results from our performance and cooling energy model, we also propose

a job allocation methodology to jointly optimize the communication cost of HPC

applications and the cooling energy in a data center.

84

Chapter 6

Runtim e M anagem ent of M any-core
System s in D ata Centers

6.1 Overview

As high performance computing moves towards exascale, performance, cooling cost

and reliability have become serious concerns of many-core systems in HPC data cen­

ters. In addition to the modeling techniques as we discussed in Chapter 5, it is highly

desirable to have dynamic management strategies that can effectively optimize per­

formance, cooling energy, and system-level reliability of many-core systems in HPC

data centers.

In the previous chapter, we have shown that clustering provides considerable re­

liability improvements in processor-level parallel and chip-level parallel systems com­

pared to thermal balancing. Motivated by this analysis, we propose a topology-aware

reliability optimization policy, Globally Clustering Locally Balancing (GCLB), where

global refers to decisions across parallel nodes, and local refers to allocation decisions

among a set of series nodes. We focus on the processor-level parallel scenario, as it is

commonly employed in real-life multi-chip many-core systems.

Our topology-aware job allocation policy targets systems with medium to high

utilization (e.g., as in high-performance computing clusters). We design low-cost

predictors to estimate application power and chip peak temperature during allocation.

Our policy adapts to workload changes while respecting thermal constraints. We

85

provide an experimental validation using a large set of workload mixes representing

different utilization levels and CPU usage profiles. Our policy improves the system

reliability by up to 123.3% compared to temperature balancing policies. We also

demonstrate the scalability of the proposed policy to larger systems.

In addition to reliability, performance and cooling costs are also critical aspects

in data center management. Nearly half of the energy in the computing clusters

today is consumed by the cooling infrastructure. It is possible to reduce the cooling

cost by allowing the data center temperatures to rise; however, component reliability

constraints impose thermal thresholds as failure rates are exponentially dependent

on the processor temperatures. Data center performance is limited by highly parallel

scientific, financial, or other applications that run on multiple nodes for long durations

in the range of minutes, hours or days. The threads of these applications communicate

with each other through communication infrastructures such as the message passing

interface (MPI). The running time of a communication-intensive application is highly

dependent on the location of the individual computing units that are communicating

with each other.

We observe that existing algorithms for job allocation in HPC data centers ad­

dress cooling efficiency and performance separately. How to optimize the performance

and cooling energy tradeoffs achieved by these policies is currently an open question.

In this chapter, we also propose a policy that reduces both cooling power and com­

munication latency in an HPC data center. Experimental results demonstrate that

cooling-aware policies alone do not minimize overall energy if the job allocation results

in large communication overheads. Our joint optimization policy minimizes cooling

cost along with the communication time, providing better performance-energy trade­

offs in HPC data centers.

86

6.2 Topology-Aware Reliability Optimization

The main idea of the Globally Clustering Locally Balancing (GCLB) algorithm is

globally clustering high-power applications among parallel many-core processors and

performing thermal balancing locally within a processor. This is because clustering

across parallel nodes improves reliability; whereas for a set of series components, bal­

ancing results in higher reliability. We present a flow chart illustrating the GCLB

optimization policy as in Figure 6*1. The GCLB policy periodically polls the per­

formance counters and predicts the power consumption of each application using the

performance counter data. We assign the jobs to cores according to their predicted

power following the GCLB algorithm.

As shown in Figure 6-1, we check new job arrivals at every 10ms, which is the

the typical scheduler tick in today’s operating systems. We select a larger interval for

GCLB, i.e., 50ms, to limit the performance impact of the policy. At 10ms intervals, we

make intermediate heuristic decisions for job allocation. At 50ms intervals, the policy

re-arranges the load across the processors if needed by migrating applications. Prior

work has reported that cold-start overhead dominates the migration cost for SPEC

If thermal constraint is considered

Piedfct Tm fln each proccMor

Adgmtcflmfcrfag on tbe processors

Globally duster high
power jobs together and
low power Jobs together

Collect performance statistics and
estimate power consnmption for each job

Locally allocate jobs to cores
following thermal balancing

(eg,fcrjobswaiPl>f2>P3>N
on a 4-core psocesmr)

Figure 6-1: A flow chart for illustrating the G CLB reliability optimization
policy for processor-level parallel systems.

87

benchmarks, and the total migration overhead is less than 1ms (Coskun et ah, 2009c).

Assuming a similar overhead in our system, an interval of 50ms causes maximum 2%

performance cost.

We assign newly arriving jobs to the idle cores on the system at every 10ms. In

order to cluster higher power loads, we first assign new jobs to processors with a higher

average power. If there is a thermal constraint, we predict the maximum processor

temperature for the processor running the new job. If the maximum temperature

is exceeded, we assign the new job to the processor with the next highest average

power. At every 50ms, we apply the GCLB policy as follows: assuming the system

has m cores, I parallel processors, and there are n jobs to be allocated (we assume

n < m), we first estimate the power consumption for each job on the system. Then,

we sort the power values for all the jobs. We group the sorted jobs into I groups: jobs

with the highest power values are assigned to the first processor, the group with the

second largest power values in the queue are assigned to the second processor, etc.,

until all the jobs are allocated.

After the jobs are clustered across parallel processors, within each processor, we

locally balance the temperature across the series cores. The balancing method is based

on thermal balancing policies in prior work (Coskun et al., 2009c), where high power

jobs are assigned to expected cool locations on the chip, such as corner or side cores.

Cooler jobs run in the central area, which is generally hotter. Figure 6-2 demonstrates

Clustering

Balancing

Figure 6-2: An illustration of the clustering and balancing job allocations
on the target system under 75% utilization. P represents power consump­
tion, and P I > P2 > ... > P 6.

88

the global clustering and balancing policies. Thermal balancing is applied to each

processor locally.

In order to estimate the power consumption of each job, we collect performance

statistics. We track instructions per cycle (IPC), number of floating point instruc­

tions, and number of integer instructions, as these metrics are strongly correlated with

power consumption (Li and John, 2003). We collect the performance data using a

simulator in our evaluation, while in a real system the statistics are collected through

performance counters. We build a linear equation of the three performance counters

using regression, and predict power consumption based on the equation. Experiments

with 17 SPEC benchmarks show 4% prediction error using this method. Performance

impact of power prediction is negligible, since computing a simple equation has very

low computational cost.

Runtime temperature prediction techniques have been proposed in recently work

(Ayoub and Rosing, 2009). In our optimization strategy, we choose a simple tem­

perature prediction method using a linear model as we solely want to estimate the

maximum temperature on a processor. For inputs to the predictor, we use power esti­

mates for each core and absolute power differences between adjacent cores to take the

heat sharing and core locations into account. We collect 100 sets of simulation results

from the SPEC 2006 workloads, and validate the predictor against HotSpot simula­

tions. Our peak temperature prediction results in maximum 8% error in comparison

to HotSpot simulation results, with less than 2°C error for most cases. For example,

for processor 0 in Figure 5-5, we choose P0, P I , P 2 , P3, JP0 — P l |, |P 1 — P 2 |, and

|P2 — P3| as the inputs to a linear regression fit. The reason for these choices is that

the peak core temperature on a many-core processor does not only depend on the

power consumption of the cores, but also depends on the power differential of the

adjacent cores.

89

GCLB algorithm can work with temperature constraints using the thermal pre­

dictor. This is important as clustering high-power workloads may result in high peak

temperatures on a processor. In addition to critical thermal thresholds determined

by the manufacturer, thermal constraints could be imposed by user-defined target

per-core MTTF values or by cooling optimization policies.

During allocation, if the thermal constraints are not satisfied, we adjust job allo­

cation by swapping the hottest jobs across processors and locally balance temperature

after swapping. This process is repeated (a job moved once is not moved again) until

the thermal constraint is met. In our algorithm, we assume we can always find a

schedule that meets thermal constraints, which is a reasonable assumption for most

commercial systems.

It is also possible to integrate the proposed GCLB policy with DVFS policies.

Integration with DVFS can provide energy savings as well as fine tuning of the op­

erating conditions to meet temperature or performance constraints. Hybrid policies

integrating various DVFS and job allocation strategies have been designed in prior

work (Coskun et al., 2009c). While cooling is mostly designed with large safety mar­

gins in commercial systems, energy-efficient cooling methods are likely to leverage

temperature constraints lower than the absolute critical levels.

6.2.1 Experim ental M ethodology

We model the target system for evaluating the system reliability based on the core

microarchitecture of Intel Clovertown. In order to evaluate the performance of our

target system, we use M5 (Binkert et ah, 2006) to build the performance simulation

infrastructure. We use the system-call emulation mode in M5 with X86 instruction

set architecture (ISA). We fast-forward each benchmark for 1 billion instructions

and then execute with the detailed out-of-order CPUs for 100 million instructions to

collect the detailed performance statistics.

90

Table 6.1: Intel Clovertown core architecture parameters.

Technology
C P U Clock
Issue W idth
Functional U nits

Physical Regs
RAS / ROB size
Load /S to re Queue

65 nm
2.66 GHz
4-way out-of-order
3/2 In t/F P ALU
1/1 In t/F P Mult
128 Int, 128 FP
16 /96 entries
32 / 20 entries

LI I/D C ache
L2 Cache(s)

32 KB, 8-way, 64B-block
4 MB, 16-way, 64B-block

The architectural parameters for cores and caches of our target system are listed

in Table 6.1. These parameters are used for the target system configuration in our

architecture level performance and power simulations.

In order to compose our workloads, we select 17 applications from the SPEC

2006 benchmark suite. Among the 17 SPEC benchmarks, 10 applications are integer

(INT) benchmarks (astar, bzip2, gcc, gobmk, h264ref, hmmer, libquantum, mcf, om-

netpp, specrandJnt) and 7 applications are floating point (FP) benchmarks (bwaves,

cactus ADM, dealll, GemsFDTD, Ibm, namd, specrandjp).

We further classify these benchmarks according to their performance and memory

boundedness. They are named INT-Hmem, INT-Lmem, INT-HIPC, INT-LIPC, FP-

Hmem, FP-Lmem, FP-HIPC, FP-LIPC, and Mixed, where Hmern or Lmem means

workloads with high or low memory access rates, HIPC or LIPC means workloads with

high or low IPC. The workload is classified based on the instructions per nano-second

(IPnS) and memory accesses per second (MemAcc) form the performance simulation.

This classification is because that IPC is a common performance metric for many-core

processors and MemAcc is a metric for illustrating the behavior of memory bounded

91

Table 6.2: Workload characteristics.

Workload Benchmarks

INT-Hmem-1

FP-Hmem-1

INT-LIPC-1

FP-LIPC-1

INT-Hmem-2

FP-Hmem-2

INT-LIPC-2

FP-LIPC-2

mcf, mcf, bzip2 , mcf

lbm, bwaves, lbm, lbm

mcf, astar, mcf, bzip2
*

lbm, bwaves, lbm, cactusADM

bzip2 , hmmer, mcf, libquantum

lbm, bwaves, namd, cactusADM

mcf, gcc, bzips, libquantum

lbm, cactusADM, bwaves, lbm

Mixed_l

Mixed_2

mcf, omnetpp, lbm, dealll

gcc, gobmk, GemsFDTD, cactusADM

INT-Lmem-1

FP-Lmem-1

INT-HIPC-1

FP-HIPC-1

INT-Lmem-2

FP-Lmem-2

INT-HIPC-2

FP-HIPC-2

astar, specrandJnt, h264ref, specrandJnt

specrand_fp, dealll, namd, specrandJp

specrandJnt, omnetpp, omnetpp, h264ref

specrandJp, dealll, dealll, namd

specrandJnt, specrandJnt, astar, specrandJnt

specrandJp, specrandJp, dealll, specrandJp

omnetpp, specrandJnt, omnetpp, omnetpp

dealll, dealll, dealll, specrandJp

benchmarks. Table 6.2 presents the classifications of our workloads.

We use McPAT 0.7 (Li et al., 2009) for 65nm process to obtain the runtime

dynamic power of the cores. We set Vd(i to 1.1V and operating frequency to 2.66GHz.

The L2 cache (4 MB) power is calculated using Cacti 5.3 (Thoziyoor et al., 2008) as

5.06W. We calibrate the McPAT runtime dynamic core power using the published

power for Intel Xeon Processor X5355. At 343K, we assume the leakage power for

the cores is 35% of the total core power. We also model the temperature impact on

leakage power using an exponential formula (Srinivasan et al., 2004a).

92

Table 6.3: Dimensions of the target system.

D i m e n s i o n s Length Width Area

Chip

Core

L2 Cache

19.07mm

4mm

6 m m

15mm

9mm

8 m m

286mm2

36mm2

36mm2

We run HotSpot 5.0 (Skadron et al., 2003) for thermal simulations. We set the

chip and package parameters using the default configuration in HotSpot to represent

efficient packages in high-end systems. All thermal simulations use the HotSpot' grid

model for higher accuracy and are initialized with the steady-state temperatures.

The chip and core areas are obtained from the published data for Intel Clovertown

systems. The L2 cache area is estimated by using Cacti 5.3 (Thoziyoor et al., 2008).

The detailed dimension for each component that we used in the HotSpot simulations

are listed in Table 6.3.

6.2.2 Evaluation R esults

We evaluate GCLB on the target Intel Clovertown system for three different workload

utilization scenarios: high utilization, medium utilization, and low utilization, and

use 75%, 50%, 25% workload utilizations as examples to represent each scenario,

respectively. Figure 6-2 compares the clustering and balancing allocation policies at

75% utilization. System reliability of the clustering and balancing policies for all

the workloads running on the target system with 75% workload utilization is shown

in Figure 6-3. We observe that the proposed GCLB policy provides up to 123.3%

improvement in system reliability compared to the thermal balancing policy.

Among all the workloads, the H IP C and Lm em applications have higher system

reliability improvement. This is because the H IP C and Lm em applications have

higher power densities causing higher temperatures. Local thermal balancing has

93

■ clustering ■ balancing

£ 0-8
1 0.6 j
l iO .4 i

■ M ■ ■

Figure 6-3: System reliability with GCLB and thermal balancing al­
location policies for the target system under 75% utilization.

up to 27.2% reliability improvement compared to not balancing allocation within a

processor. As local balancing always outperforms locally imbalanced scenarios, we do

not report results for locally imbalanced cases in the rest of the results.

The system reliability for the clustering and balancing allocation policies on the

target system with 50% workload utilization is presented in Figure 6-4. This medium

utilization level is representative of the workload utilization in data centers. The

■ clustering ■ balancing

7 0.85
ce

* 0-95

0.8

1

Figure 6-4: System reliability with GCLB and thermal balancing al­
location policies for the target system under 50% utilization.

94

job allocations for the 50% workload utilization is similar to the illustration shown

in Figure 6-2, while the P5 and P 6 change to idle cores. We see that with 50%

workload utilization, we achieve up to 14.3% improvement in the system reliability in

comparison to thermal balancing policy. We also conduct the same analysis on the

target system with 25% workload utilization. The low workload utilization scenario

happens when data centers run fewer jobs (e.g., at night). In this case, clustering and

balancing achieve similar reliability.

From our experimental results, we observe that when GCLB is applied with­

out considering thermal constraints, peak temperature at 75% utilization is between

63.8°C and 76.33°C'. Figure 6-5 illustrates the system reliability with GCLB opti­

mization policy compared to the thermal balancing policy at 75% utilization, using

a thermal constraint of 75°C. We notice that the reliability improvement of GCLB

decreases for some workloads, such as F P .H IP C . This is because GCLB moves

some of the higher power jobs to lower power processors to meet the constraint, and

becomes more similar to balancing.

We also explore the GCLB policy for dynamically changing workloads. We gen-

■ Clustering ■ Balancing

F ig u re 6-5: System reliability for GCLB optimization policy compared
to thermal balancing for systems with 75% utilization, considering a
thermal constraint of 75°C.

95

■ System Workload Utilization
100%

c 80% -

•S 60%

3 20% '

Ai ift A A A A i A A A A A

0%

r - t ' H < N (N m m ^ ' 4 - ! r > t n u) v D r - « r < » o o o o c n c r >
Time (ms)

Figure 6-6: Temporal workload utilization for the target system.

erate a random workload utilization scheme which changes every 10ms with a total

system is illustrated in Figure 6 -6 . The average workload utilization is 68%. The

jobs running on the system are randomly selected among the 17 SPEC benchmarks.

Figure 6-7 shows that allocating jobs according to GCLB policy improves reliabil­

ity by 27.3% on average compared to random workload allocation. Figure 6-7 also

■ random job allocation ■ apply GCLB policy every 50ms * apply GCLB policy every 10ms

simulation time of one second. The temporal workload utilization for the target

2 C l

r
100 200 300 400 500 600 700 800 900 1000

Time (ms)

Figure 6-7: System reliability of GCLB compared to random job al­
location for dynamically changing workload utilization.

96

■ Clustering ■ Balancing

F ig u re 6 -8 : Exploration of 16-core system reliability with GCLB and
thermal balancing allocation policies under 75% utilization.

shows that, if the GCLB optimization policy is applied every 10ms without consider­

ing thread migration overhead, the average system reliability improvement is 32.9%.

However, as discussed in Section 6.2, migrating threads every 10ms would cost up

to 10% system performance overhead. Our reliability optimization policy achieves

comparable reliability improvement with less than 2% performance cost.

In order to evaluate the scalability of the GCLB optimization policy, we extend

our analysis to a 16-core system with 4 parallel processors and 4 cores (in series) on

each processor. System reliability for the 16-core system running GCLB compared to

thermal balancing is presented in Figure 6 -8 . We observe that GCLB policy provides

system reliability of close to 1 for all the benchmarks, and improves reliability by up

to 101.7% in comparison to thermal balancing. This is because scaling to a higher

number of processors provides increased parallelism and higher degree of freedom

for more efficient task scheduling. For example, for the 16-core system with 75%

utilization, using “clustering” assigns all the “idle” cores in one processor, which

increases system reliability.

97

6.3 Joint Performance and Cooling Cost Optim ization for
D ata Centers

In this section, we introduce a job allocation methodology to jointly optimize the

communication cost of HPC applications and the cooling energy in a data center. We

first formulate and solve the cooling energy optimization and communication cost op­

timization problems individually. For cooling cost minimization, we use the Minimize

Peak Inlet Temperature (MPIT) algorithm (Tang et al., 2008); for communication

cost minimization, we deploy the MC1X1 algorithm (Bender et al., 2008). We then

propose a job allocation algorithm, which takes both cooling efficiency and communi­

cation latency into consideration. We also discuss how reliability constraints can be

included in the job allocation optimization.

6.3.1 Performance-aware Job A llocation

The objective of performance-aware (i.e., communication cost-aware) job allocation

is to assign a job to a set of available nodes on a target system such that the average

number of communication hops between the nodes is minimized. The target system in

this thesis is a mesh-connected HPC cluster, as discussed in Section 5.2. We formulate

the performance-aware job allocation problem in Equation (6.1).

minimize C C j o b (X job)
Xjob

AT (6.1)
subject to Xi = n Xi € {0 , 1}

i= 1

where 7V=40 is the number of total nodes within the data center and n is the

total number of nodes required by a job. X j^ is a vector described as Xjob =

{ x i ,x 2, ...,xjv}, where Xi (i = l , . . . , i V) represents whether node i is assigned the

current job or not. It shows the selected nodes to allocate the current job, so n of

98

its elements are 1 and the rest is 0 . CCjob represents the communication cost of a

where n is the number of nodes a job requires and (x,, Xj) (i , j = 1, . . . , m) stands

for a pair of source and destination nodes that a message is passing through.

We use the MC1X1 algorithm (Bender et al., 2008) to minimize the communication

cost, as it aims at minimizing the pairwise LI distance across the communication

nodes and provides acceptable results for all-to-all communication pattern. It is

also easily adaptable to the systems that do not require user information about the

request processors in a particular shape, such as the Cplant system at Sandia National

Laboratory (Leung et al., 2002).

The MC1X1 allocation algorithm tries to confine the allocated jobs into the small­

est possible area. A rectangular-shaped area, in which all the assigned nodes are

ideally confined, is called a shell. The node located at the center of the shell is called

the shell center. For an incoming job, MC1X1 traverses the data center layout and

finds shells of different centers and sizes among the available (idle) nodes. During

this traversal, MC1X1 records a score for each node, where the score is the size of the

smallest possible shell centered at that node. The decision of which node to select

as a shell center depends on its score. A lower score indicates a smaller shell area,

leading to a more compact allocation with lower communication cost.

job running on the target system as introduced in Section 5.2.1. Based on Equation

(5.1), CCjobiXjob) can be formulated as:

C C job (X j ob)

99

6.3.2 Cooling-aware Job A llocation Policy

The optimization of cooling energy cost is achieved when the maximum inlet tem­

perature {Tin} in the data center is minimized (Tang et al., 2008). Therefore, a

cooling-aware allocation policy assigns jobs to nodes so that the resulting rnax{Tm}

will be minimum. We use the algorithm named Minimize Peak Inlet Temperature

(MPIT) algorithm that is proposed in prior work (Tang et al., 2008). We formulate

the optimization problem of allocating a job to an idle data center with minimal

cooling energy as follows:

minimize m ax{Tin(X dcenter)}
X d c e n t e r

n (6.3)
subject to E — Tldcenter £ {0.1}

i = l

where Adcenter is a vector described as X dcenter = (x j , x 2, £ / v } , where r , (i —

1 , . . . , N) represents whether node i is assigned any job or not. Vector Xdcenter shows

all of the busy nodes in the data center corresponding to currently and previously

allocated jobs. ndcenter is the sum of the sizes of all jobs running on the data center.

Rest of the parameters are defined the same as in Equation (6.1). Tin represents the

inlet temperature of a system which is defined in Equation (6.4).

Tin{Xdcenter) = TaUp D • Pidle “6 T) • Xdcenter ' Putil (6-4)

where Tsup is the CRAC unit supply temperature, D is heat distribution matrix.

Pidie and Putu are the idle and dynamic power for the nodes. Note that, in order to

allocate a second job to a busy data center, we use additional constraints to represent

the currently busy nodes. For example, if nodes 1, 2 and 3 are busy at the time of

allocation, we add the constraints Xi=l , x2= l , £3=1 to solve the problem.

As described in Section 5.2.2, cooling cost is highly dependent on the CRAC supply

100

temperature Tsup. If we can increase Tsup as much as possible without causing the

nodes to exceed the redline temperature, we can save power. Therefore, the maximum

allowed Tsup increase is limited by the maximum inlet temperature max{Tm}.

We implement the optimization problem in Matlab. The fminimax function in

Matlab returns a real number solution xreal. We use the discretization algorithm

suggested in (Tang et al., 2008) to convert it to the nearest integer solution x ini

which obeys the constraints. This algorithm was shown in (Tang et al., 2008) to

give the highest power savings among various other approaches. x reai is the optimum

solution to the defined linear programming problem and x int is an integer solution

close to the optimum. For various allocations, we compare the max{Tin} of both real

and integer solutions and they are the same to the second decimal point.

6.3.3 Joint O ptim ization Policy for D ata Center Job A llocation

Cooling-aware and performance-aware policies optimize cooling power and commu­

nication latency independently, which means that the resulting allocations may not

be successful when both objectives are considered simultaneously. Cooling-aware job

allocation is mostly affected by the layout of the data center as the recirculation effect

changes depending on the location of the active nodes. In most cases, cooling-aware

policy allocates jobs to the nodes located far from each other. For example, for a job

of size 4, cooling-efficient allocation distributes the job equally among the data center

rows in order to minimize the peak inlet temperature. This causes very high com­

munication latency for cooling-aware policy. On the other hand, performance-aware

MC1X1 policy confines the nodes of each allocated job into the smallest possible

shell. It follows a regular pattern to allocate the jobs in the data center and ar­

bitrarily breaks ties. It does not care about whether an allocation results in high

temperature as long as the allocated nodes are within the smallest shell possible,

potentially causing inefficient cooling.

101

In order to jointly optimize the cooling energy cost and communication cost of

applications running in an HPC data center, we design a heuristic algorithm combin­

ing both cooling-aware and performance-aware policies. Our algorithm first considers

cooling-aware job allocation solution, and then uses the resulting nodes as candidates

for shell centers to apply the performance-aware job allocation policy. Then, we break

the ties of possible performance-aware job allocations by selecting the allocation with

minimal peak inlet temperature.

Our algorithm first checks which nodes the cooling-aware policy would allocate

the job to when a job arrives. These nodes are called as possible shell centers. Then,

we feed the locations of these possible shell centers to the MC1X1 algorithm to mini­

mize communication cost. We modify the MC1X1 algorithm to make it open a shell

centered at a given input node (possible shell center) accordingly. In MC1X 1, opening

a shell centered at a node refers to finding the smallest square-shaped area to include

all nodes of a job. Starting from the smallest shell (1 square unit), the number of

available nodes in the shell are checked. If the size of the job is larger than the

available nodes, shell is expanded.

Our algorithm examines whether there are multiple allocation options within the

shell area when the available node count is met. For example, assume that we have

a shell with 9 nodes, 3 of whom are busy, and we will assign a job of size 4 to the

rest. In this case, we choose the 4 nodes with minimum communication cost possible.

The resulting selection is the possible allocation corresponding to that possible shell

center. For each possible shell center, revised MC1X1 algorithm gives an allocation

vector, possible-X-dcenter. Among those vectors, we select the most cooling efficient

one (i.e., resulting in smallest peak inlet temperature). For example, assume that for

a job i of size 3, cooling-aware policy assigns the job to nodes 1, 4, and 5. We open

shells centered at those nodes and select the one with the smallest inlet temperature.

102

while(job queue ~= em pty)
do
n= jobsize (jobno)
[possible_sc]=MPIT(n, X_dcenter, P)
for i € {all possible_sc}

possible_X_dcenter(i)=MClXl_revised(possible_sc(i), X_dcenter)
temp(i)=find_max_Tin (possible_X_dcenter(i))
possible_XJob(i)= possible_X_dcenter{i) - X_dcenter
CCJob(i)=find_CC_job(possible_XJob(i))

end
sort (temp)
forj€{min(tem p)}

selected=find(possible_X_dcenter with min(CCJob(j)))
end
X_dcenter=selected
update (P)
record (Tin_max, CCJob, P_ac)
jobno++
end

F igu re 6-9: Joint optimization algorithm.

For the cases where two or more allocations result in the same inlet temperature but

different communication costs, we find and choose the job allocation that results in

the smallest communication cost.

The flow of the joint optimization algorithm is illustrated in Figure 6-9. MPIT

and MClXl_revised are the cooling-aware and revised performance-aware algorithms,

respectively. X.dcenter and P are the vectors holding the current busy nodes informa­

tion and the power values. Possible.sc is the possible shell center and CC.job stands

for the job communication cost. Possible.X.dcenter is the vector of busy nodes that

will result from the possible allocation. Possible.X.job vector shows which nodes will

103

be assigned to the job. Note that the joint policy is scalable to larger data centers.

The only parameters to change for a different data center are the cross-interference

coefficient matrix and the power values for the nodes.

We also consider our policy with reliability constraint. If the user or the admin­

istrator wants to add a minimum MTTF constraint to the joint policy, we check

what the resulting MTTF value for each processor would be before every allocation

decision. To compute these MTTF estimates, we first compute the resulting inlet

temperatures for that allocation using Equation (5.2). Next we compute junction

temperatures as described in Section 5.2.3. Finally, we compute processor MTTF as

explained in Section 5.3. If the current allocation is expected to result in an MTTF

value lower than the given threshold for any processor, we stall the allocation and

wait for some of the existing jobs to finish.

6.3.4 Experim ental R esults

In this section, we present the experimental results for the three different allocation

strategies: cooling-aware, performance-aware and our joint optimization technique.

We first demonstrate the job allocation decision of each strategy on a single row of

the data center. We then experiment with multiple-row allocation for our target

data center with 40 nodes. We also compare our joint allocation policy against the

cooling-aware and performance-aware policies under dynamically changing workload.

Single-row Job A llocation

In the single-row job allocation test case, we assume four jobs to be allocated sequen­

tially. The jobs have sizes of 4,5,6 and 3 nodes, respectively. Figure 6-10 illustrates

how each policy assigns the jobs to the nodes. Red and blue colors respectively rep­

resent busy and free nodes. The numbers in the circles show which jobs are running

on the nodes. Cooling-aware policy assigns jobs to the nodes located at the right side

104

Cooling Aware Performance Aware Joint

• • • • •

Figure 6-10: Allocation scheme for the three policies.

of the data center and avoids the nodes that are high recirculation contributors. This

result is in parallel with previous the characteristics of our data center as shown in

Figure 5-4.

Communication-aware policy, on the other hand, tries to confine the allocated

nodes to the smallest area possible. Therefore, the resulting allocation for each job

is more compact. Our joint allocation policy finds the cooling-efficient areas and

assigns the jobs to the nodes as close to each other as possible without causing notable

temperature increases. Joint policy does not always result in the same minimum inlet

temperature as the cooling-aware policy, but follows closely.

Table 6.4 shows the percentage of active nodes, maximum inlet temperatures

(■m axT) in °C, individual job communication cost (CC), and cooling power (P) in

Table 6.4: Simulation results for the single-row job allocation.

Policy Perf-aware Cooling-aware Joint-opt

Job U til CC m a x T P CC m a x T P CC m a x T P
J o b l 20% 4.0 25.0 9.4 4.0 19.9 6.3 4.0 19.9 6.3
Job2 45% 6.4 25.1 13.4 9.6 20.5 9.4 8.0 20.3 9.2
Job3 75% 8.3 32.1 35.8 13.3 23.3 15.6 14.7 23.3 15.6
Job4 90% 2.7 32.1 40.4 5.3 28.1 27.0 2.7 28.5 28.0

105

kW for all the three allocation schemes. As we can see in Table 6.4, performance-

aware policy gives the lowest job communication cost (CC) for each job; however,

it reaches the high inlet temperatures very fast. Cooling-aware policy keeps the

temperatures low, but results in very high communication latency for all the jobs. As

expected, our joint policy’s performance is in between the two policies.

M ultiple-row Job A llocation

In order to evaluate the job allocations across the multiple rows of the data center,

we use a job sequence that is similar to the sequence in the previous experiment.

Figure 6-11 shows the percentage of the active nodes and the size of each job in

terms of number of nodes required. Figure 6-12 shows the cooling power over time

for the three allocation policies. Joint policy follows the cooling-aware policy closely

and all policies converge at the 100% utilization point. However, performance-aware

allocation reaches high cooling power values much faster than the joint policy.

Job Size - ^ P e r c e n t Utilization
--- > 1 0 o S

1 2 3 4 5 6 7
Job Number

8 9

loo 3!•(M

80 u<
60

*#-0
01

40 00ro
+*

20 c
0)
u

0 l-
0)
CL

Figure 6-11: Job sizes and percentage of active nodes for multiple-row
allocation.

106

I Cooling Aware HU Performance Aware ■iJoint Percentage of Active Nodes (Right Axis)

— 350
| 300
T 250
0)
S 200 o
O- 150 60
£ 100
§ 50
U 0

4 5 6
Job Number

8

100 *

20

at
*o

80 z
o>

60 i

40 i
W60
(0

F ig u re 6-12: Cooling power for multiple-row allocation.

In Figure 6-13, we present the communication cost of each job and observe that

cooling-aware assignment results in high communication cost. The reason is that the

cooling-aware assignment distributes the jobs across different rows to minimize inlet

Cooling A w are ■ P erfo rm ance A w are ■ Jo in t

S 50
| g 4 0

1 1 3 0
| •£ 20
.2 3
TJ £ 10

- J o
3 4 5 6 7 8

Job Number

F ig u re 6-13: Individual job communication costs for multiple-row al­
location.

107

temperature. As a result, communication cost is significantly affected by the distance

between the communicating nodes. Joint policy resolves this issue by sacrificing some

cooling efficiency. It assigns the job within a row in the most cooling-efficient way

possible, and alternates the rows as more jobs arrive. However, if the number of

available nodes in a row is not sufficient to service an incoming job, joint allocation

also results in high communication cost. An example is seen for jobs 8 and 9 in

Figure 6-13, where the jobs are allocated across the two rows.

We observe that our joint policy reduces the average cooling power by 30.8%

compared to the performance-aware policy while increasing the power by only 0.5%

compared to the cooling-aware policy. On the other hand, in comparison to the

cooling-aware policy resulting in 2.45times larger average communication cost com­

pared to the performance-aware policy, our joint policy causes only 0.69times larger

cost. This is expected as our joint policy sacrifices some performance for improving

cooling efficiency, and vice versa. Note that our results for the single and multiple-row

allocation do not consider the change in application execution time as the commu­

nication cost changes. In other words, larger communication costs may change the

power-performance characteristics of jobs, hence, also affect the cooling power. Next,

we investigate such interactions between performance and cooling power in detail.

D ynam ic Jo b A llocation

We investigate a dynamically changing workload scenario and compare our joint pol­

icy with the baseline policies. We generate a job queue with arrival time following an

exponential distribution, which has been widely used in data center workload models

(Hacker and Mahadik, 2011). We use an arrival rate of 15jobs/hour. In this exper­

iment, we update the data center status as some of the jobs finish executing. We

adjust the power and runtime of the jobs according to the communication latency

to have a realistic model. The allocation is based on a first-come-first-serve policy.

108

When there are no available nodes, we wait for other jobs to finish. We simulate a

total time of 4hours and use the last 3hours of the simulation in which 41jobs arrive.

We record the maximum inlet temperature at each time step and cooling cost for each

-"-Cooling A w are — Perfo rm ance Aw are - —Joint

100tfi<u
TJ
Oz
a)>
5

40

cv
£

0 30 60 90 120 180150

300

250

5 150Q»
M
.£ 100

0 30 60 90 120 150 180
Time (minutes)

F ig u re 6-14: Percentage of the active nodes and the cooling power
traces for dynamic allocation.

109

job. At each time step, the current available node list, power values of active nodes

and the finishing time of the jobs are updated according to the model in Section 5.2.2.

We set the communication level for all the applications, C%, as 20%.

The percentage of active nodes over time and the cooling power for all three

allocation policies are illustrated in Figure 6-14. An important observation is that, in

the dynamic case, the active node percentage is higher for the cooling-aware policy.

This is because cooling-aware allocation results in high communication latency, which

means that C% part of the application is running slower and thus results in longer

runtime. Therefore, not only the nodes dissipate power for longer time, but also the

next job is allocated in a less efficient way due to more limited allocation freedom.

On the other hand, joint optimization policy manages to overcome this problem

by following a pattern similar to the M ClXl algorithm. For example, during the

time between the black dashed lines (70-90minutes), cooling-aware case has almost

100% of its nodes active, while for performance-aware and joint allocation cases, a job

finishes after 75minutes and some nodes are freed. This performance effect, translates

into changes in the cooling cost, as shown in the bottom plot in Figure 6-14. Cooling

power for our joint policy closely follows the cooling-aware policy from time 0 to

80minutes. However, when cooling-aware policy starts losing its efficiency because of

the performance overheads, joint policy starts following the performance-aware policy

(see Figure 6-14). These results show that for a data center running HPC applications

with intensive communication, even a cooling-aware policy may result in inefficient

cooling if it does not take into account the communication latency.

The average cooling power for the 3-hour period is 53.1kW for the cooling-aware

policy while it is 53.3kW and 32.2kW for performance-aware and joint policies, re­

spectively. This corresponds to close to 40% cooling power savings in comparison to

both cooling-aware and performance-aware policies. We also evaluate the energy con-

110

-fife - . ' -.-L..-^
BCooling Aware) jBPerformance Aware

Communication Cost of Individual Jobs

F ig u re 6-15: Histogram of the communication cost for the dynamic
allocation experiment.

sumption of the data center for different allocation schemes and observe 170.7kWh,

163.3kWh, 98.4kWh for cooling-aware, performance-aware and joint allocation poli­

cies, respectively.

The comparison of the communication costs for the performance-aware, cooling-

aware, and joint job allocation policy is presented in Figure 6-15. It shows that

the frequency of the occurrence of communication costs for the total number of jobs

allocated. For the performance-aware policy, data points are confined to the lower

communication cost area, while for cooling-aware policy it is distributed across the

spectrum. For the performance-aware policy, all the jobs have communication costs

lower than 30, while 97.6% of the jobs have CC < 30 for the joint policy.

We conduct the same experiments with a higher communication level per appli­

cation of C = 30%. We observe the average cooling power as 74.2kW, 50.8kW and

32.1kW, while the corresponding energy consumptions are 238.96kWh, 154.96kWh,

98.3kWh for cooling-aware, performance-aware and joint allocation schemes, respec­

I l l

tively. This corresponds to 56.7% cooling power saving compared to the cooling-aware

policy and 36.8% compared to the performance-aware policy.

In order to include reliability awareness during job allocation, we set a minimum

MTTF constraint of4 years and achieve an average cooling power of 20kW without

total runtime change. Even though the allocation stalls in order to meet the MTTF

constraint (i.e., waits for other jobs to finish so that temperatures decrease), total

runtime of the job set is not affected under the given job arrival rate. When we

increase the arrival rate to 25jobs/hour and compare the results with and without

reliability constraint, we observe a 63% increase in the total runtime. Note that

our runtime job allocation policy has low overhead. We measure the time spent on

running the allocation algorithm for each job for the dynamic queue of 41 jobs and

observe that the time each job allocation decision takes is less than lsecond in our

Matlab-based implementation.

6.4 Summary

Performance, cooling cost and reliability have become serious concerns of many-core

systems in HPC data centers as high performance computing moves towards exascale.

In addition to causing reliability degradation, high temperatures increase the required

cooling energy. Communication cost, on the other hand, has a significant impact on

system performance in HPC data centers.

In this chapter, we propose a topology-aware workload allocation policy that max­

imizes system reliability by selecting between workload clustering and balancing ap­

proaches. Our policy improves the system reliability by up to 123.3% compared to ex­

isting temperature balancing policies. We also introduce a job allocation methodology

to jointly optimize the communication cost and cooling energy in a data center while

considering reliability constraints. Experimental results demonstrate that cooling-

112

aware policies alone do not minimize overall energy if the job allocation results in

large communication overheads. Our joint optimization policy minimizes cooling cost

along with the communication time, providing better performance-energy tradeoffs

in HPC data centers. Experimental results demonstrate that our joint optimization

policy reduces the cooling cost by 40% compared to cooling-aware and performance-

aware policies, while achieving comparable performance to performance-aware policy.

113

Chapter 7

Conclusion and Future Research
Directions

7.1 Conclusion

Many-core systems, ranging from small-scale processors to large-scale high perfor­

mance computing (HPC) data centers, have become the main trend for computing

system design. The energy-efficient and reliable design of many-core high performance

computing systems has been an active research area in the last decade. In compari­

son to single-core systems, many-core systems provide higher energy efficiency owing

to their potential to deliver higher throughput per watt. However, power densities

and temperatures increase following the performance improvement and bring major

challenges in power delivery, cooling costs, and reliability. This thesis has addressed

the energy and reliability challenges in both single-chip 3D many-core processors and

many-core systems in HPC data centers.

7.1.1 A Sim ulation Framework and R untim e O ptim ization for B oosting
Energy Efficiency in 3D M any-core Processors

In this thesis, we have presented our research on the modeling and runtime man­

agement for 3D many-core processors. Conventional 2D many-core systems have not

been able to reach their peak performance capacity due to the memory latency and

bandwidth restrictions. 3D many-core systems with on-chip stacked memory have

the potential to dramatically improve performance owing to lower memory access

114

latency and higher bandwidth, thus have the ability to significantly boost system en­

ergy efficiency. However, the performance increase may cause 3D many-core systems

to exceed the power budgets, create thermal hot spots, increase cooling costs, and

degrade reliability. This thesis contributes to addressing these challenges from two

aspects: modeling and management.

A comprehensive modeling framework of 3D many-core systems is essential to

provide efficient management policies and accurate analysis. We have introduced

a methodology for constructing a simulation framework to address the complex in­

terplay between performance, energy, and temperature in 3D systems. Our work is

the first to jointly analyze performance, power, and thermal characteristics for both

DRAM and processor layers. We have then utilized this simulation framework to de­

sign and evaluate runtime optimization and management policies for achieving high

performance under power and temperature constraints.

We have proposed several management and optimization policies for improving

the energy efficiency and reliability of 3D many-core systems with on-chip DRAM.

Leveraging the detailed modeling and analysis of on-chip DRAM layers, we have intro­

duced a memory management policy that targets applications with spatial variations

in DRAM accesses and performs temperature-aware mapping of memory accesses to

DRAM banks. In order to further exploit the performance potential of 3D systems

while maintaining the peak power and temperature constraints, we have proposed a

runtime optimization policy that dynamically monitors workload behavior and selects

among low-power and turbo operating modes accordingly.

We have demonstrated that our policies provide up to 88.5% reduction in energy

delay product (EDP) for a 16-core 3D system with stacked DRAM compared to

equivalent 2D systems, while also delivering an average performance improvement of

36.1% in comparison to a statically optimized 3D system. Our runtime optimization

115

policy also achieves an EDP reduction of up to 61.9% compared to a 3D system

managed by a temperature-triggered DVFS policy.

7.1.2 O ptim izing the Reliability, Performance, and Cooling Cost o f M any-
core System s in H PC D ata Centers via W orkload A llocation

Performance, cooling energy, and reliability are also critical aspects in HPC data

centers. In comparison to single-chip processors, high temperatures increase the re­

quired cooling energy in data centers and cause system-level reliability degradation.

Also, communication cost of parallel applications has a significant impact on system

performance in HPC data centers. In this thesis, we have addressed the energy and

reliability challenges of many-core systems in HPC data centers from both modeling

and management aspects.

Motivated by the analysis results of the reliability of a real-life multi-chip many-

core system using a detailed reliability modeling approach, we have proposed a

topology-aware workload allocation policy to dynamically optimize the reliability of

multi-chip many-core systems in HPC data centers. We have evaluated our policy

with simulations of real-world scenarios and demonstrated that our policy improves

the reliability of multi-chip systems by up to 123.3% compared to thermal balanc­

ing. We have also studied the scalability of the policy. For a system with 16 cores,

our policy improves system reliability by up to 101.7% compared to existing thermal

balancing policies.

In order to jointly address the cooling energy and communication cost challenges

in data centers, we have proposed a joint job allocation policy to optimize both

cooling power and communication latency in HPC data centers. Our policy first uses

the cooling-aware optimization algorithm to find the most cooling-efficient nodes to

allocate a job and then applies the modified MC1X1 algorithm to allocate the job on

cooling-efficient nodes while keeping the average LI distance at a minimum. We have

116

showed that for static allocation, our joint policy reduces the average cooling power

by 30.8% compared to the performance-aware policy while it increases the power

by only 0.5% compared to the cooling-aware policy. We have demonstrated that for

dynamically changing workloads, solely using a cooling-aware policy does not give the

minimum cooling power due to the resulting high communication latency. We have

validated our joint policy under dynamically changing workloads and observed that,

for HPC applications with a communication-to-computation ratio of 20%, our policy

decreases the cooling power by 40% in comparison to cooling-aware and performance-

aware policies.

7.2 Future Research Directions

7.2.1 3D Stacked System s

Many open research problems exist in the design and management of 3D stacked

systems, such as identifying killer applications for 3D processor, cost-aware 3D IC

design, advanced techniques for 3D manufacturing, and modeling and validation for

3D system with liquid cooling.

One future direction in our research on 3D many-core processors is to explore

the flexible heterogeneity of 3D stacked processors with cache resource pooling. 3D

stacked processors, owing to the short communication latency achieved by vertically

stacking and connecting poolable resources using TSVs, enable efficient resource pool­

ing among different layers.

In many-core processors, resource pooling allows the share and management of

architectural components among different cores. W ith well designed management

policies, resource pooling has the potential to exploit the flexible heterogeneity in a

many-core processor to the maximum extent. In the conventional 2D processors,

however, the efficiency of resource pooling is limited by the large latency of accessing

117

remote shared resources in the horizontal direction. Such limitation causes resource

pooling in 2D not scalable to a large number of cores.

Most of the prior work on many-core 3D processors exploits the performance or

energy efficiency benefits of 3D processors by considering fixed, homogeneous compu­

tational and memory resources (Black et al., 2006; Loh, 2008; Coskun et al., 2009a).

However, the fixed resources are not able to satisfy applications with varying resource

requirements, such as different memory uses. The flexible heterogeneity provided by

resource pooling can address this challenge by including cores with different archi­

tectural resources in a single chip (Ipek et al., 2007; Ponomarev et al., 2006), and

thus brings substantial benefits in reducing the energy consumption and cost in 3D

stacked many-core processors.

A recent technique proposes pooling performance-critical microarchitectural re­

sources such as register files in a 3D processor (Homayoun et al., 2012). Their work,

however, does not address the memory requirements of applications. Considering the

significance of the memory requirement in determining application performance in 3D

many-core processors, we believe that the pooling of memory resources can provide

additional heterogeneity of resources among the cores in a low-cost way and bring

substantial energy efficiency improvements.

Cache resource pooling has the potential to further improve system energy ef­

ficiency due to the fact that different workloads require different amounts of cache

resources to achieve their highest performance. Figure 7-1 shows the instructions

per cycle (IPC) of the SPEC benchmarks when running on systems with various L2

cache sizes (from 512KB to 2MB). Among all the workloads, soplex has the largest

throughput improvement at larger L2 cache sizes. We call such benchmarks cache-

hungry workloads. On the other hand, benchmarks such as libquantum barely have

any performance improvement at larger L2 cache size. This observation motivates

118

1512KB 1024KB 1280KB 12048KB!

x* » y / / v / / /
F ig u re 7-1: IPC of SPEC benchmarks for increasing L2 cache size.
The IPC values are normalized with respect to using a 256KB L2 cache.

us to pool the cache resources in the adjacent layers in 3D stacked processors. By

allocating the cache-hungry jobs in adjacent layers in the 3D processor with less

cache-hungry jobs, we allow them to share a pool of cache resources thus provide the

ability to improve the system energy efficiency.

As the first step to exploit resource pooling in 3D many-core processors, we im­

plement the cache resource pooling on a four-layer 3D system, which has one core on

each layer with a private L2 cache. The core on each layer is able to share the cache

resources on its adjacent layers.

The preliminary results that compare the energy-delay product (EDP) and energy-

delay-area product (EDAP) of the 3D systems with and without cache resource pool­

ing are shown in Figure 7-2. We use two baseline 3D systems with 1MB and 2MB

static cache resources, respectively, to compare their energy efficiency with the 3D

system with cache resource pooling.

Figure 7-2 (a) presents the energy efficiency benefits of the 3D cache resource

pooling for the 4-core system. We see that for all the workloads, 3D cache resource

pooling provides lower EDP in comparison to the 1MB baseline. For all-cache-hungry

workload, 2MB baseline provides the best EDP because of the larger cache size. Our

results show that 3D cache resource pooling reduces EDP by up to 36.9% and 39.2%

compared to 1MB and 2MB baselines, respectively.

119

111MB baseline ■ C R P ! I 11MB baseline H C R P

non low med high all
Workload cache-hungnness

non low med high all
Workload cache-hungriness

(a) Normalized EDP (b) Normalized EDAP

Figure 7-2: EDP and EDAP of the 3D system with cache resource pooling
and its 3D baseline with 1MB static caches, normalized to its 2MB baseline.

Due to the fact that the die costs are proportional to the fourth power of the area

(Rabaey et al., 2003), we consider area as a very important metric for evaluating

the 3D systems. We use EDAP as a metric to evaluate the energy area efficiency (Li

et ah, 2009). As shown in Figure 7-2 (b), 3D cache resource pooling outperforms both

baseline systems for all workload sets, reducing EDAP by up to 57.2% compared to

the 2MB baseline.

Prom the preliminary results, we can see that 3D stacked processors with cache

resource pooling have the potential to provide us higher energy efficiency by exploiting

the flexible heterogeneity on the vertical dimension. In our future research, we will

further explore such flexible heterogeneity on 3D many-core systems by providing more

advanced management policies.

7.2.2 H PC D ata Centers

HPC data centers face new challenges in performance, energy, reliability, and scalabil­

ity. The interplays among these challenges are quite complex. Performance increase

results in high temperature and high processing power; as a result, the scalability of

data centers is limited by their power and cooling capacity. It is possible to reduce

120

the cooling energy by allowing the data center temperatures to rise; however, the

reliability constraints for computer components impose thermal thresholds as failure

rates are exponentially dependent on the processor temperatures. How to concur­

rently analyze and jointly optimize the performance, energy, and reliability of HPC

data centers is still an open problem.

In order to address these challenges, our future research directions on HPC data

centers include developing simulation framework to provide design guidelines for HPC

data centers, formulating and solving the joint optimization problem to reduce the

communication cost of HPC applications and the cooling energy in a data center, and

leveraging the communication patterns of HPC applications to further improve the

performance through task mapping.

Sim ulation Approaches

Addressing the challenges of HPC data centers requires design guidelines from simu­

lation approaches. It is impractical to explore the vast design space of data centers

without a detailed system-level simulation framework. Existing simulators mostly

address the performance and energy of HPC data centers separately, or are not able

to scale to large-scale systems. So far, there is no simulation approach that is able to

conduct concurrent evaluation of performance, energy, and reliability for large-scale

HPC data centers running distributed-memory applications.

The Structural Simulation Toolkit (SST) is developed by Sandia National Lab­

oratories to evaluate the performance of large-scale parallel computer architectures.

It allows us to configure data centers with different network topologies, estimate the

performance of processing and network components, and evaluate the communication

cost between different nodes of data centers. However, the current SST simulation

framework does not model the power, energy, and reliability for HPC data centers. It

is highly desirable to integrate the data center thermal, energy, and reliability models

121

into the SST simulation framework.

In Chapter 5, we have discussed the power and cooling energy model for HPC

data centers, and the reliability model for multi-chip many-core servers. In our future

work, we plan to scale the reliability model to larger-scale data center level and also

integrate the implementation of power, cooling energy, and reliability models into

SST framework.

Formalization of Joint O ptim ization Problem

In Chapter 6, we have presented a heuristic algorithm which jointly optimizes the

communication cost of HPC applications and the cooling energy in data centers. In

order to provide the ability of optimizing the overall costs for users of data centers

who have different preferences to performance or cooling energy saving, we need a for­

malization of the joint optimization job allocation problem with adjustable weighting

factors to communication cost and cooling energy cost.

Taking the formalization of the joint optimization problem as one of our future

work directions, we propose a formulation with this joint goal as shown in Equa­

tion (7.1):

m i n i m i z e C X ■ @ O S t c o m v n , [X j o b } $ ‘ C ' O S t c o o l i . ^ j o b)

Xjob (7.1)
subject to E x X j0f, = n

where X J0b = {xi ,X2 , •••, £/v} is a vector that represents the job allocation decision.

N is the number of total nodes within the data center and Xi (i = 1 , . . . , N) are the

integer variables denoting whether a node is busy or idle. E is a 1 x iV vector with all

elements set to 1, n is the total number of nodes required by a job. The optimization

problem is subject to the linear constraint E x Xjd, = n, which means the job requires

n nodes in the data center.

122

and the cooling cost of the data center, respectively, a and /3 are the corresponding

weighting factors for the communication cost and the cooling cost, a and (3 can be

adjusted to adapt to optimization requirements in different data centers. A larger

ratio of a//3 indicates that reducing the communication cost is more significant com­

pared to decreasing the cooling cost. For example, when a = 1 and /3 = 0, the joint

optimization problem is converted to the job allocation problem that only considers

the communication cost. If a = 0 and 8 = 1, the job allocation problem solely

considers the cooling cost.

The cooling energy cost model of the data center is based on the linear thermal

model as introduced in Chapter 5. The communication cost of each job arriving at

the cluster can be expressed as in Equation (7.2):

C o s t ^ X , *) = X * (7-2)
n

where H is an N x N matrix, whose elements represent the communication delay

between each pair of nodes within the data center. Thus, Equation (7.2) calculates

the total communication cost among all the nodes that are assigned to the current

job. The total cost is then normalized to the job size, n. The communication cost

matrix H is determined by the data center’s network topologies. By utilizing data

center level simulation framework (e.g., SST), we are able to generate the H matrix

for various data center network topologies.

By integrating the formulations of the communication cost and the cooling energy

cost into the formulation of our joint optimization problem in Equation (7.1), we

obtain the Equation (7.3). As the constants in the goal function do not affect the

optimization decisions, we simplify the equation and only use the quadratic part of

the communication cost function and the linear part of the cooling cost function while

123

computing the total cost.

oc 3
minimize - • X job ■ H • X j^ + — • (D • Putii ■ X job)

* * - j ob Tt U 3^
subject to E x X j = n

As shown in Equation (7.3), we express the joint optimization problem as a binary

quadratic programming (BQP) problem, which is a combinatorial optimization prob­

lem. BQP is an NP-hard problem; however, in practice, it can be efficiently solved

using well-known discrete optimization techniques such as the branch and bound al­

gorithm (Trinh et al., 2012). The joint optimization problem is solvable using the

TOMLAB/CPLEX solver, which provides a Matlab interface to solve complex opti­

mization problems, such as BQP problem.

Task M apping

Performance is the first-order constraint in data center design and management. To­

day’s HPC data centers run highly parallel applications, such as scientific and financial

computing applications, which typically require a large set of computing nodes for

achieving high performance. Most prior work on job allocation assumes all-to-all

communication patterns for HPC applications. In order to further reduce the com­

munication delay of HPC applications, we leverage the communication patterns of

each application.

For this reason, one of our future research directions on HPC data centers is to

improve the performance of data centers by optimizing task mapping with consid­

eration of HPC applications with different communication patterns. Task mapping

with consideration of application communication patterns becomes more important

as the number of nodes in data centers grows significantly. Mapping the task onto the

allocated nodes in a data center by utilizing the extracted communication patterns

124

25

1
U

20

15

O
U 10
AO

5
Job Number

Time

Figure 7-3: Percentage reduction in job communication cost using
RCB-based task mapping for the dynamic allocation scenario.

from HPC applications brings us more flexibility in reducing communication cost.

We present the benefits of tasking mapping with considerations of communication

pattern using the preliminary results shown in Figure 7-3, where we compare the

communication cost resulting from the RCB task mapping algorithm (Hoefler and

Snir, 2011) against the communication cost resulting from the in-order task mapping

algorithm. In RCB algorithm, the logical communication pattern of an application is

represented using a weighted graph and the physical data center nodes with a certain

network topology is presented using a separate graph. RCB algorithm determines the

task mapping by recursively splitting both graphs into equal halves using minimum

weighted edge-cuts. In-order task mapping algorithm, which allocates the tasks of a

job starting from the top left of the data center, traverses the assigned nodes from

left to right and from top to bottom.

Figure 7-3 shows the reduction in the job communication cost using RCB-based

task mapping in comparison to the baseline in-order policy for a dynamic job queue

125

with 40 jobs. We observe that, on average across all the jobs, using RCB task map­

ping policy with consideration of communication patterns achieves 4.3% reduction in

communication cost in comparison to using the baseline in-order policy.

These preliminary results demonstrate that tasking mapping with considerations

of communication pattern could bring us considerable performance improvements for

HPC applications running in data centers. In our future research, we will further

explore the benefits of tasking mapping by integrating tasking mapping into our joint

optimization algorithm to reduce communication cost and cooling energy cost for

data centers at the same time.

References

Alam, M. A., Kufluoglu, H., Varghese, D., and Mahapatra, S. (2007). A compre­
hensive model for PMOS NBTI degradation: recent progress. Microelectronics
Reliability, 47(6):853-862.

Atienza, D. (2010). Thermal-aware design for 3D multi-processor. Flash inform,a-
tique EPFL, Special Issue on High-Performance Computing, (10):34-37.

Awasthi, M. et al. (2010). Handling the problems and opportunities posed by
multiple on-chip memory controllers. In International Conference on Parallel Ar­
chitectures and Compilation Techniques (PACT), pages 319-330.

Ayoub, R. Z. and Rosing, T. S. (2009). Predict and act: dynamic thermal man­
agement for multi-core processors. In International Symposium, on Low Power
Electronics and Design (ISLPED), pages 99-104.

Bailey, D. et al. (1994). The NAS parallel benchmarks. Technical Report RNR-94-
007.

Belden (2007). Data center design guidelines, h ttp ://w w w .belden .com /pdfs/
te c h b u ll /d a ta c e n te rg u id e .pdf.

Bender, M. A., Bunde, D. P., Demaine, E. D., Fekete, S. P., Leung, V. J., Mei-
jer, H., and Phillips, C. A. (2008). Communication-aware processor allocation
for supercomputers: finding point sets of small average distance. Algorithm,ica,
50(2):279-298.

Benini, L., Bogliolo, A., and De Micheli, G. (2000). A survey of design techniques
for system-level dynamic power management. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(3):299-316.

Bhattachaxya, S. and Tsai, W. (1994). Lookahead processor allocation in mesh-
connected massively parallel multicomputer. In International Parallel Processing
Symposium, pages 868-875.

Bienia, C. (2011). Benchmarking Modem Multiprocessors. PhD thesis, Princeton
University.

126

http://www.belden.com/pdfs/

127

Binkert, N. L., Dreslinski, R. G., Hsu, L. R., Lim, K. T., Saidi, A. G., and Reinhardt,
S. K. (2006). The M5 simulator: Modeling networked systems. IEEE Micro,
26(4):52-60.

Biswas, S. et al. (2011). Fighting fire with fire: modeling the datacenter-scale
effects of targeted superlattiee thermal management. In International symposium,
on Computer Architecture (ISCA), pages 331-340.

Black, B. et al. (2006). Die stacking (3D) microarchitecture. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 469-479.

Bose, P. et al. (2010). Power-efficient, reliable microprocessor architectures: mod­
eling and design methods. In Great lakes symposium on VLSI (GLSVLSI), pages
299-304.

Brightwell, R., Fisk, L. A., Greenberg, D. S., Hudson, T., Levenhagen, M., MacCabe,
A. B., and Riesen, R. (2000). Massively parallel computing using commodity
components. Parallel Computing, 26(2-3):243-266.

Brown, D. J. and Reams, C. (2010). Toward energy-efficient computing. Communi­
cations of the ACM, 53(3):50-58.

Brunschwiler, T., Paredes, S., Drechsler, U., Michel, B., Cesar, W., Toral, G., Temiz,
Y., and Leblebici, Y. (2009). Validation of the porous-medium approach to model
interlayer-cooled 3D-chip stacks. In IEEE International Conference on 3D System,
Integration (3DIC), pages 1-10.

Cochran, R., Hankendi, C., Coskun, A. K., and Reda, S. (2011). Identifying the
optimal energy-efcient operating points of parallel workloads. In IEEE/ACM In­
ternational Conference on Computer-Aided Design (ICCAD), pages 608-615.

Cong, J., Luo, G., Wei, J., and Zhang, Y. (2007). Thermal-aware 3D IC placement
via transformation. In Asia and South Pacific Design Automation Conference
(ASP-DAC'), pages 780-785.

Coskun, A., Meng, J., Atienza, D., and Sabry, M. (2011). Attaining single-chip, high-
performance computing through 3D systems with active cooling. IEEE Micro,
31(4):63-75.

Coskun, A. K., Atienza, D., Rosing, T. S., Brunschwiler, T., and Michel, B. (2010).
Energy-efficient variable-flow liquid cooling in 3D stacked architectures. In Con­
ference on Design, Automation and Test in Europe (DATE), pages 111 116.

Coskun, A. K., Ayala, J. L., Atienza, D., Rosing, T. S., and Leblebici, Y. (2009a).
Dynamic thermal management in 3D multicore architectures. In Conference on
Design, Automation and Test in Europe (DATE), pages 1410-1415.

128

Coskun, A. K., Rosing, T. S., and Gross, K. C. (2009b). Utilizing predictors for
efficient thermal management in multiprocessor SoCs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(10):1503-1516.

Coskun, A. K., Rosing, T. S., Mihic, K., Leblebici, Y., and Micheli, G. D. (2006).
Analysis and optimization of mpsoc reliability. Journal of Low Power Electronics
(JOLPE), 2(l):56-69.

Coskun, A. K., Rosing, T. S., Whisnant, K. A., and Gross, K. C. (2008). Static
and dynamic temperature-aware scheduling for multiprocessor socs. IEEE Trans­
actions on Very Large Scale Integration (VLSI) Systems, 16(9):1127-1140.

Coskun, A. K., Strong, R., Tullsen, D. M., and Rosing, T. S. (2009c). Evaluating
the impact of job scheduling and power management on processor lifetime for chip
multiprocessors. In International Joint Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), pages 169-180.

Crovella, M., Bianchini, R., Leblanc, T., Markatos, E., and Wisniewski, R. (1992).
Using communication-to-computation ratio in parallel program design and perfor­
mance prediction. In IEEE Symposium on Parallel and Distributed Processing
(IPDPS), pages 238-245.

Dhiman, G., Marchetti, G., and Rosing, T. S. (2010). vGreen: A system for energy-
efficient management of virtual machines. ACM Transactions on Design Automa­
tion of Electronic Systems, 16(1): 1—27.

Donald, J. and Martonosi, M. (2006). Techniques for multicore thermal management:
Classification and new exploration. In International Symposium on Computer
Architecture (ISCA), pages 78-88.

Dong, X., Zhao, J., and Xie, Y. (2010). Fabrication cost analysis and cost-aware
design space exploration for 3-D ICs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(12):1959-1972.

Ferreira, K. et al. (2011). Evaluating the viability of process replication reliability for
exascale systems. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1-12.

Ferri, C., Reda, S., and Bahar, R. I. (2008). Parametric yield management for 3D ICs.
ACM Journal on Emerging Technologies in Computing Systems, 4(19):1023-1030.

Ghosh, M. and Lee, H. S. (2007). Smart refresh: An enhanced memory con­
troller design for reducing energy in conventional and 3D die-stacked DRAMs. In
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 134—
145.

129

Golshani, N., Derakhshandeh, J., Ishihara, R., Beenakker, C., Robertson, M., and
Morrison, T. (2010). Monolithic 3D integration of SRAM and image sensor using
two layers of single grain silicon. In IEEE International 3D Systems Integration
Conference (3DIC), pages 1-4.

Hacker, T. J. and Mahadik, K. (2011). Flexible resource allocation for reliable virtual
cluster computing systems. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1-12.

Hanson, H. et al. (2007). Thermal response to dvfs: Analysis with an intel pentium
m. In International Symposium on Low Power Electronics and Design (ISLPED),
pages 219-224.

Hanumaiah, V. and Vrudhula, S. (2011). Reliability-aware thermal management for
hard real-time applications on multi-core processors. In Conference on Design,
Automation and Test in Europe (DATE), pages 1-6.

Healy, M. et al. (2007). Multiobjective microarchitectural floor-planning for 2-D and
3-D ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 26(1):38—52.

Heath, T. et al. (2006). Mercury and freon: temperature emulation and manage­
ment for server systems. In International conference on Architectural support for
programming languages and operating systems (ASPLOS), pages 106-116.

Hoefler, T. and Snir, M. (2011). Generic topology mapping strategies for large-
scale parallel architectures. In Proceedings o f the International Conference on
Supercomputing, pages 75-84.

Homayoun, H., Kontorinis, V., Shayan, A., Lin, T., and Tullsen, D. (2012). Dynam­
ically heterogeneous cores through 3D resource pooling. In IEEE Intematiojial
Symposium on High Performance Computer Architecture (HPCA), pages 1-12.

Howard, J. et al. (2010). A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS. In IEEE International Solid-State Circuits Conference (ISSCC),
pages 108-109.

Huang, L., Yuan, F., and Xu, Q. (2009). Lifetime reliability-aware task allocation
and scheduling for MPSoC platforms. In Conference on Design, Automation and
Test in Europe (DATE), pages 51-56.

Hung, W. et al. (2006). Interconnect and thermal-aware floorplanning for 3D micro­
processors. In International Symposium on Quality Electronic Design (ISQED),
pages 98-104.

130

Ipek, E. et al. (2008). Self-optimizing memory controllers: A reinforcement learning
approach. In International Symposium on Computer Architecture (ISC A), pages
39-50.

Ipek, E., Kirman, M., Kirman, N., and Martinez, J. F. (2007). Core fusion: accom­
modating software diversity in chip multiprocessors. In International symposium,
on Computer Architecture (ISCA), pages 186-197.

Isci, C., Contreras, G., and Martonosi, M. (2006a). Live, runtime phase monitoring
and prediction on real systems with application to dynamic power management. In
IEEE/AC M International Symposium on Microarchitecture (MICRO), pages 359
370.

Isci, C. et al. (2006b). An analysis of efficient multi-core global power manage­
ment policies: Maximizing performance for a given power budget. In IEEE/AC M
International Symposium on Microarchitecture (MICRO), pages 347 -358.

JEDEC (2006). Failure mechanisms and models for semiconductor devices, Technical
report, h ttp ://w w w .jed ec .o rg .

Jin, Y., Yum, K. H., and Kim, E. J. (2008). Adaptive data compression for high-
performance low-power on-chip networks. In IEEE/ACM International Symposium-
on Microarchitecture (MICRO), pages 354-363.

Kang, K., Kim, J., Yoo, S., and Kyung, C. (2010). Temperature-aware inte­
grated DVFS and power gating for executing tasks with runtime distribution.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
29(9):1381-1394.

Khan, N. H., Alam, S. M., and Hassoun, S. (2011). Power delivery design for 3D
ICs using different through-silicon via (TSV) technologies. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 19(4) :647-658.

Kim, J., Ruggiero, M., and Atienza, D. (2012). Free cooling-aware dynamic power
management for green datacenters. In International Conference on High Perfor­
mance Computing and Simulation (HPCS), pages 140 -146.

Kongetira, P., Aingaran, K., and Olukotun, K. (2005). Niagara: a 32-way multi­
threaded spare processor. IEEE Micro, 25(2):21 29.

Koomey, J. G. (2008). Toward energy-efficient computing. Environmental Research
Letters, 3(034008).

Koyanagi, M., Kurino, H., Lee, K. W., Sakuma, K., Miyakawa, N., and Itani, H.
(1998). Future system-on-silicon LSI chips. IEEE Micro, 18(4):17-22.

http://www.jedec.org

131

Kumar, A. et al. (2006). HybDTM: a coordinated hardware-software approach for
dynamic thermal management. In ACM /IEEE Design Automation Conference
(DAC), pages 548-553.

Kumar, R., Farkas, K. I., Jouppi, N. R , Ranganathan, R , and Tullsen, D. M.
(2003). Single-ISA heterogeneous multi-core architectures: the potential for pro­
cessor power reduction. In IEEE/ACM International Symposium on Microarchi­
tecture (MICRO), pages 81-92.

Kumar, S., Sabharwal, Y., Garg, R., and Heidelberger, R (2008). Optimization
of all-to-all communication on the Blue Gene/L supercomputer. In International
Conference on Parallel Processing, pages 320-329.

Leung, V., Arkin, E., Bender, M., Bunde, D., Johnston, J., Lai, A., Mitchell, J.,
Phillips, C., and Seiden, S. (2002). Processor allocation on Cplant: achieving
general processor locality using one-dimensional allocation strategies. In IEEE
International Conference on Distributed Computing Systems (ICDCS), pages 296
304.

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P.
(2009). McPAT: An integrated power, area, and timing modeling framework for
multicore and manycore architectures. In IEEE/AC M International Symposium,
on Microarchitecture (MICRO), pages 469-480.

Li, T. and John, L. K. (2003). Run-time modeling and estimation of operating
system power consumption. In International Joint Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), pages 160-171.

Liu, C. C., Ganusov, I., Burtscher, M., and Tiwari, S. (2005). Bridging the processor-
memory performance gap with 3D IC technology. IEEE Design Test of Computers,
22(6):556-564.

Liu, S., Leung, B., Neckar, A., Memik, S. O., Memik, G., and Hardavellas, N. (2011).
Hardware/software techniques for DRAM thermal management. In IEEE Inter­
national Symposium on High Performance Computer Architecture (HPCA), pages
515-525.

Lively, C. et al. (2011). Energy and performance characteristics of different paral­
lel implementations of scientific applications on multicore systems. International
Journal of High Performance Computing Applications, 25(3):342-350.

Loh, G. H. (2008). 3D-stacked memory architectures for multi-core processors. In
International Symposium on Computer Architecture (ISCA), pages 453-464.

132

Loi, G. L., Agrawal, B., Srivastava, N., Lin, S.-C., Sherwood, T., and Banerjee,
K. (2006). A thermally-aware performance analysis of vertically integrated (3-
D) processor-memory hierarchy. In ACM /IEEE Design Automation Conference
(DAC), pages 991“996.

Mache, J., Lo, V., and Windisch, K. (1997). Minimizing message-passing contention
in fragmentation-free processor allocation. In International Conference on Parallel
and Distributed Computing Systems (ICPADS), pages 120-124.

Meng, J., Chen, C., Coskun, A. K., and Joshi, A. (2011). Run-time energy manage­
ment of manycore systems through reconfigurable interconnects. In ACM /IEEE
Great Lakes Symposium on VLSI (GLSVLSI), pages 43-48.

Moore, J., Chase, J., Ranganathan, P., and Sharma, R. (2005). Making scheduling
’’cool” : temperature-aware workload placement in data centers. In Proceedings of
the USENIX Annual Technical Conference, pages 5-15.

Mulas, F. et al. (2008). Thermal balancing policy for streaming computing on
multiprocessor architectures. In Conference on Design, Automation and Test in
Europe (DATE), pages 734-739.

Pakbaznia, E. and Pedram, M. (2009). Minimizing data center cooling and server
power costs. In International Symposium on Low Power Electronics and Design
(ISLPED), pages 145-150.

Ponomarev, D., Kucuk, G., and Ghose, K. (2006). Dynamic resizing of superscalar
datapath components for energy efficiency. IEEE Transactions on Computers,
55(2):199-213.

Puttaswamy, K. and Loh, G. H. (2007). Thermal herding: microarchitecture tech­
niques for controlling hotspots in high-performance 3D-integrated processors. In
IEEE International Symposium on High-Performance Computer Architecture, pages
193-204.

Rabaey, J., Chandrakasan, A., and Nikolic., B. (2003). Digital Integrated Circuits:
A Design Perspective, 2nd edition.

Rad, P., Karki, K., and Webb, T. (2008). High-efficiency cooling through computa­
tional fluid dynamics. Dell Power Solutions.

Rajic, J. (2009). Evolving toward the green data center, h t t p : / / h t t p : / / s t a c k ,
n i l . s i .

Sabry, M., Coskun, A., and Atienza, D. (2010). Fuzzy control for enforcing energy ef­
ficiency in high-performance 3D systems. In IEEE/AC M International Conference
on Computer-Aided Design (ICCAD), pages 642-648.

http://http://stack

133

Sansottera, A. and Cremonesi, P. (2011). Cooling-aware workload placement with
performance constraints. Performance Evaluation, 68(11): 1232—1246.

Skadron, K., Stan, M. R., Huang, W., Velusamy, S., Sankaranarayanan, K., and
Tarjan, D. (2003). Temperature-aware microarchitecture. In International Sym­
posium on Computer Architecture (ISCA), pages 2-13.

Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. (2004a). The case for life­
time reliability-aware microprocessors. In International Symposium on Computer
Architecture (ISCA), pages 276-287.

Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. (2004b). The impact of tech­
nology scaling on lifetime reliability. In International Conference on Dependable
Systems and Networks (DSN), pages 177-186.

Srinivasan, J. et al. (2003). Ramp: A model for reliability aware microprocessor
design. Technical Report IBM-RC23048 (W0312-122).

Srinivasan, J. et al. (2005). Exploiting structural duplication for lifetime reliability
enhancement. In International symposium on Computer Architecture (ISCA),
pages 520-531.

Stavros Harizopoulos, Mehul A. Shah, J. M. P. R. (2009). Energy efficiency: The
new holy grail of data management systems research. In Biennial Conference on
Innovative Data Systems Research (CIDR), pages 1-8.

Su, H., Liu, F., Devgan, A., Acar, E., and Nassif, S. (2003). Full chip leakage
estimation considering power supply and temperature variations. In International
Symposium on Low Power Electronics and Design (ISLPED), pages 78-83.

Sun, G., Dong, X., Xie, Y., Li, J., and Chen, Y. (2009). A novel architecture of
the 3D stacked MRAM L2 cache for CMPs. In IEEE International Symposium, on
High-Performance Computer Architecture (HPCA), pages 239-249.

Tang, Q., Gupta, S. K. S., and Varsamopoulos, G. (2008). Energy-efficient thermal-
aware task scheduling for homogeneous high-performance computing data centers:
a cyber-physical approach. IEEE Transactions on Parallel and Distributed Sys­
tems, 19(11): 1458-1472.

Tang, Q., Mukherjee, T., Gupta, S., and Cayton, P. (2006). Sensor-based fast ther­
mal evaluation model for energy efficient high-performance datacenters. In Inter­
national Conference on Intelligent Sensing and Information Processing (ICISIP),
pages 203 208.

134

Teng, Q., Sweeney, P. F., and Duesterwald, E. (2009). Understanding the cost
of thread migration for multi-threaded java applications running on a multicore
platform. In IEEE International Symposium, on Performance Analysis o f System,s
and Software, pages 123-132.

Teodorescu, R. and Torrellas, J. (2008a). Variation-aware application scheduling and
power management for chip multiprocessors. ACM SIGARCH Computer Archi­
tecture News, 36(3):363-374.

Teodorescu, R. and Torrellas, J. (2008b). Variation-aware application scheduling
and power management for chip multiprocessors. In International Symposium, on
Computer Architecture (ISCA), pages 363-374.

Thoziyoor, S., Muralimanohar, N., Ahn, J. H., and Jouppi, N. P. (2008). CACTI
5.1. Technical report, HP Laboratories, Palo Alto.

Topaloglu, R. (2011). Applications driving 3D integration and corresponding manu­
facturing challenges. In ACM /IEEE Design Automation Conference (DAC), pages
220-223.

TYinh, H., Fan, Q., Gabbur, P., and Pankanti, S. (2012). Hand tracking by binary
quadratic programming and its application to retail activity recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1902-
1909.

U.S. Environmental Protection Agency (2007). EPA report to congress on server and
data center energy efficiency, h ttp : //www. energystar. gov.

Walsh, E. et al. (2010). From chip to cooling tower data center modeling: Part II
influence of chip temperature control philosophy. In IEEE Intersociety Conference
on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm),
pages 1-7.

Wang, L. et al. (2009). Towards thermal aware workload scheduling in a data center.
In I-SPAN, pages 116-122.

Wang, S. and Chen, J.-J. (2010). Thermal-aware lifetime reliability in multicore
systems. In International Symposium on Quality Electronic Design (ISQED),
pages 399-405.

Winter, J. and Albonesi, D. (2008). Scheduling algorithms for unpredictably hetero­
geneous cmp architectures. In International Conference on Dependable Systems
and Networks (DSN) with FTCS and DCC, pages 42-51.

Wu, X. et al. (2010). Cost-driven 3D integration with interconnect layers. In
ACM /IEEE Design Automation Conference (DAC), pages 150-155.

135

Xiang, Y. et al. (2010). System-level reliability modeling for MPSoCs. In Inter­
national Conference on Hardware/Software Codesign and System Synthesis, pages
297-306.

Zhou, X. et al. (2008). Thermal management for 3D processors via task scheduling.
In International Conference on Parallel Processing (ICPP), pages 115-122.

Zhu, C. et al. (2008). Three-dimensional chip-multiprocessor run-time thermal
management. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(8):1479-1492.

CURRICULUM VITAE

Jie M eng

Education

P h .D ., Boston University, 09 /2013
Electrical and Computer Engineering Department
Advisor: Professor Ayse K. Coskun
Dissertation Title: “Modeling and Optimization of High-Performance Many-core Sys­
tems for Energy-Efficient and Reliable Computing”
GPA: 3.96/4.00

M .A .S., M cM aster University, 07 /2008
Electrical and Computer Engineering Department
Advisor: Professor John W. Bandler
Thesis Title: “Microwave Circuit Optimization Exploiting Tuning Space Mapping”
GPA: 4.00/4.00

B .S ., U niversity o f Science and Technology o f China, 07 /2004
Electrical Engineering and Information Science Department
GPA: 3.72/4.00

Professional Experience

Intel Corporation, 04 /2012 to 08 /2012
Graduate Intern, Supervisor: Xin (Max) Ma
Conducted design and validation for on-chip power regulator and thermal sensors on
Intel server microprocessors.

Sandia N ational Laboratories, 05 /2011 to 08/2011
Research Intern, Supervisor-. Dr. Arun Rodrigues
Developed performance, power, and reliability simulation tools and management tech­
niques for high-performance computing systems.

137

Sem iconductor M anufacturing International Corporation (SM IC)
Software Engineer & System Administrator, 07/2004 to 08/2006
Worked on designing and maintaining Unix-based computer-integrated manufactur­
ing (CIM) systems for semiconductor device fabrication.

Research Experience

Perform ance and Energy-Aware C om puting Laboratory

Research Assistant at Boston University, 01/2010 to present
Conducted research on performance, energy, and temperature modeling and energy
efficiency optimization of high-performance computing systems and 3D-stacked pro­
cessors.

Networking and Inform ation System Laboratory

Research Assistant at Boston University, 05/2009 to 12/2009
Implemented a T C P /IP based networking data synchronization agent interface for
network communication.

Sim ulation O ptim ization System s Research Laboratory

Research Assistant at McMaster University, 09/2006 to 07/2008
Developed the Tuning Space Mapping optimization method for improving the accu­
racy and computational efficiency of RF/Microwave circuit design.

Honors & Awards

• Best Paper on High Performance Extreme Computing Conference, Sep. 2012.
• DAC A. Richard Newton Graduate Scholarship Award, June 2011.
• Google scholarship for Google 2010 GRAD CS Forum, January 2010.
• Outstanding Graduate Teaching Fellow, BU, School of Eng., June 2009.
• Best Graduate Teaching Fellow of the Year, BU, ECE Dept., May 2009.
• Graduate Research Fellowship of McMaster University, 2006 to 2008.
• Best Project Annual Award for CIM, SMIC, 2005.

i

138

Refereed Journal Publications

1. M. Sabry, A. Sridhar, J . M eng, A. Coskun, D. Atienza. “GreenCool: an
Energy-efficient Liquid Cooling Design Technique for 3D MPSoCs via Chan­
nel Width Modulation” . In IEEE Transactions on Computer-Aided, Design of
Integrated Circuits and Systems, vol.32 no.4, pp.524-537, 2013.

2. A. Coskun, J . M eng, D. Atienza, M. Sabry. “Attaining Single-Chip, High-
Performance Computing through 3D Systems with Active Cooling” . In IEEE
Micro, Special Issue on Big chips, pp.63-73, August 2011.

3. S. Koziel, J . M eng, J. Bandler, M. Bakr, and Q. Cheng. “Accelerated Mi­
crowave Design Optimization with Tuning Space Mapping Method” . In IEEE
Trans, on Microw. Theory Techn., vol.57 no.2, pp.383-393, 2009.

Refereed Conference Publications

1. J . M eng, Tiansheng Zhang, A. Coskun. “Dynamic Cache Pooling for Im­
proving Energy Efficiency in 3D Stacked Multicore Processors” . To appear in
Proceedings of IEEE Conf. on VLSI and System-on-Chip (VLSI-SoC) , October
2013.

2. F. Kaplan, J . M eng, A. Coskun. “Optimizing Communication and Cooling
Costs in HPC Data Centers via Intelligent Job Allocation” . To appear in Pro­
ceedings of IEEE Intl. Green Comp. Conf. (IGCC'), June 2013.

3. J . M eng, F. Kaplan, M. Hsieh, A. Coskun. “Topology-aware Reliability Opti­
mization for Multiprocessor Systems” . In Proceedings o f IEEE Conf. on VLSI
and System-on-Chip (VLSI-SoC), pp.243-248, October 2012.

4. J . M eng, K. Kawakami, A. Coskun. “Optimizing Energy Efficiency of 3D Mul­
ticore Systems with Stacked DRAM under Power and Thermal Constraints” . In
Proceedings of Design Automation Conference (DAC), pp.648-655, June 20.25.

5. Mingyu Hsieh, J ie M eng, Michael Levenhagen, Kevin Pedretti, Ayse K. Coskun.
“SST + gem5 = A Scalable Simulation Infrastructure for High Performance
Computing”. In Proceedings of International IC ST Conference on Simulation
Tools and Techniques, pp.648-655, May 2012.

6. J . M eng, A. Coskun. “Analysis and Runtime Management of 3D Systems
with Stacked DRAM for Boosting Energy Efficiency” . In Proceedings of Design
Automation and Test in Europe (DATE), pp.611-616, May 2012.

139

7. J. Meng, D. Rossell, A. Coskun. “3D Systems with On-Chip DRAM for En­
abling Low-Power High-Performance Computing” . In IEEE High Performance
Extreme Computing Conference (HPEC), September 2011.

8. J. M eng, D. Rossell, A. Coskun. “Exploring Performance, Power, and Tem­
perature Characteristics of 3D Systems with On-Chip DRAM”. In Proceedings
of IEEE Intl. Green Comp. Conf. (IGCC), pp. 1-6, July 2011.

9. Chao Chen, J ie M eng, Ayse K. Coskun, Ajay Joshi. “Express Virtual Chan­
nels with Taps (EVC-T): A Flow Control Technique for Network-on-Chip (NoC)
in Manycore Systems” . In Proceedings of Hot Interconnects (HOTI), pp.1-10,
August 2011.

10. J . M eng, C. Chen, A. Coskun, A. Joshi. “Run-time Energy Management of
Manycore Systems through Reconfigurable Interconnects” . In Proceedings of
ACM Great Lakes Symposium on VLSI, pp.43-48, May 2011.

11. J. M eng, S. Koziel, J. Bandler, M. Bakr, and Q. Cheng. “Tuning Space
Mapping: a Novel Technique for Engineering Design Optimization” . In IEEE
International Microwave Symposium Digest, pp.991-996, June 2008.

