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ABSTRACT

Many-core systems, ranging from small-scale many-core processors to large-scale 

high performance computing (HPC) da ta  centers, have become the main trend in 

computing system design owing to their potential to deliver higher throughput per 

watt. However, power densities and tem peratures increase following the growth in the 

performance capacity, and bring major challenges in energy efficiency, cooling costs, 

and reliability. These challenges require a joint assessment of performance, power, and 

tem perature tradeoffs as well as the design of runtime optimization techniques that 

monitor and manage the interplay among them. This thesis proposes novel modeling 

and runtime management techniques th a t evaluate and optimize the performance, 

energy, and reliability of many-core systems.

We first address the energy and therm al challenges in 3D-stacked many-core pro

cessors. 3D processors with stacked DRAM have the potential to dramatically im

prove performance owing to lower memory access latency and higher bandwidth.

vii



However, the performance increase may cause 3D systems to  exceed the power bud

gets or create thermal hot spots. In order to provide an accurate analysis and enable 

the design of efficient management policies, this thesis introduces a simulation frame

work to jointly analyze performance, power, and tem perature for 3D systems. We 

then propose a runtime optimization policy th a t maximizes the system performance 

by characterizing the application behavior and predicting the operating points that 

satisfy the power and thermal constraints. Our policy reduces the energy-delay prod

uct (EDP) by up to 61.9% compared to  existing strategies.

Performance, cooling energy, and reliability are also critical aspects in HPC data 

centers. In addition to causing reliability degradation, high tem peratures increase 

the required cooling energy. Communication cost, on the other hand, has a sig

nificant impact on system performance in HPC d a ta  centers. This thesis proposes 

a topology-aware technique th a t maximizes system reliability by selecting between 

workload clustering and balancing. Our policy improves the system reliability by 

up to 123.3% compared to existing tem perature balancing approaches. We also in

troduce a job allocation methodology to simultaneously optimize the communication 

cost and the cooling energy in a da ta  center. Our policy reduces the cooling cost 

by 40% compared to cooling-aware and performance-aware policies, while achieving 

comparable performance to performance-aware policy.
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Chapter 1 

Introduction

Energy efficiency is an increasingly im portant concern in computing system design. 

The rapid growth of data-intensive computing has led to larger demands for comput

ing facilities and higher amounts of electricity to power them. As shown in Figure 1-1, 

the energy used by data center servers and their supporting cooling infrastructures 

has doubled between 2000 and 2006, and this trend is expected to continue (U.S. 

Environmental Protection Agency, 2007). In fact, the cooling subsystems are respon

sible for close to  half of the computing energy expenses in today’s high-performance

S H tM rM tn iG lu rv

Mi h w r t  tq u ipw unt

Figure 1-1: The report from U.S. environmental protection agency 
to the Congress on server and da ta  center energy efficiency shows that 
the national energy usage of the servers and d a ta  centers in 2006 is 
more than doubled compared to the electricity consumed in 2000 (U.S. 
Environmental Protection Agency, 2007).
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Network, 10%

Servers and Storage

Power Conversion: 1 > ™
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Figure 1-2: The distributions of the energy consumption in HPC data  
centers (Rajic, 2009).

computing (HPC) clusters and d a ta  centers, as presented in Figure 1-2 (Rajic, 2009; 

Brown and Reams, 2010). The increased energy consumption in da ta  centers also has 

negative implications on system reliability, complexity, and scalability (Stavros Hari- 

zopoulos, 2009; Coskun et al., 2009b). Therefore, in computing system design area, 

it is im portant to develop advanced design techniques for energy-efficient computing.

Many-core systems have become the main trend in computing system design own

ing to their potential of providing higher energy efficiency in comparison to single-core 

computing systems (Kongetira et al., 2005). Today’s many-core systems appear in 

a number of computing domains ranging from small-scale many-core processors to 

large-scale HPC data centers. The workloads in these domains involve a large variety 

of applications, such as scientific computing, modeling, and financial applications. 

These applications differ in their performance characteristics, such as instructions 

per cycle (IPC), memory access trends, and communication intensities. Therefore, 

the workload characteristics of many-core systems are expected to  considerably vary 

within or across applications during the system ’s lifetime. For future many-core sys

tems that are expected to  run such dynamically changing workloads, novel modeling 

and management approaches are required in order to  achieve significant energy effi

ciency improvements.
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This thesis focuses on developing the modeling and runtim e management tech

niques tha t evaluate and optimize the energy efficiency and reliability of many-core 

systems. Our goal is to find solutions th a t recognize the dynamically changing work

load characteristics and understand the complex interplay among performance, en

ergy, and temperature for both single-chip 3D many-core processors and for HPC 

data  centers that consist of thousands of processors.

1.1 Problem  Statem ent

Today, performance, energy, tem perature, and reliability have become the main chal

lenges in computing system design. In many-core systems, performance is the first- 

order constraint. Although the performance of computing systems has increased 

tremendously in the last decade, the demand for higher performance is still there and 

will not disappear in the near future. Following the higher performance demand in 

many-core systems, the computing power increases and causes higher on-chip power 

densities. The increase in power densities results in higher on-chip tem peratures and 

large thermal variations, and creates therm al hot spots. The elevated peak tem

peratures and thermal variations accelerate the failure mechanisms, degrade system 

reliability, and also cause higher cooling cost (Stavros Harizopoulos, 2009; JEDEC, 

2006; Coskun et al., 2009b).

In order to address these challenges, this thesis focuses on two im portant domains 

in many-core systems that are expected to dominate the future computing system 

design trend: one domain is the many-core single-chip processor and the other is the 

HPC data center that includes thousands of processors.

For many-core single chip processors, the performance of conventional 2D pro

cessors is limited by the large latency between last-level caches and main memory. 

3D stacked design, where multiple chips are vertically connected, has emerged as a
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promising solution to overcome this performance bottleneck. Figure 1-3 provides an 

example of a 3D many-core processor with a stacked DRAM layer. TSVs are used 

to connect the on-chip DRAM layer with the logic layer in the 3D processor. Such 

3D stacked architecture enables significant improvement in system energy efficiency 

because of the high-bandwidth connections between the memory and logic layers 

provided by TSVs. At the same time, 3D design improves per-chip transistor den

sity without requiring aggressive technology scaling, enhances manufacturing yield 

by vertically stacking smaller chips in comparison to  building large single-layer chips, 

and enables heterogeneous integration of different technologies, such as logic layers, 

DRAM layers, and analog/RF layers (Black et al., 2006; Loh, 2008).

Through Silicon Vlas

micron scale
C i r c u i t  B o a r d

Figure 1-3: An illustration of a 3D many-core processor with stacked 
DRAM. TSVs are used to connect the on-chip DRAM layer with the 
logic layer.

However, using 3D stacked systems to  achieve the energy efficiency goal brings 

new challenges in architecture design, manufacturing, testing, runtime operations, 

and system reliability. Thermal challenges are among the m ajor concerns in building 

energy-efficient and reliable 3D many-core systems (Liu et al., 2005; Loi et al., 2006; 

Coskun et al., 2010). Existing tem perature management methods for 3D systems in-
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elude thermally-aware floorplanning, temperature-aware job allocation, and dynamic 

voltage-frequency scaling (DVFS) (Puttaswamy and Loh, 2007; Cong et al., 2007; 

Zhu et al., 2008). However, the energy and therm al management approaches for 3D 

systems have been mostly disjoint from detailed performance and power evaluation. 

In addition, performance evaluation for 3D systems has mainly focused on a small 

number of cores (e.g., single-core, quad-core) running single-threaded workloads (Liu 

et al., 2005; Loi et al., 2006; Loh, 2008). The comprehensive design, evaluation, and 

runtime management methodologies with a thorough consideration of performance, 

energy, and tem perature tradeoffs in 3D many-core systems are not available.

The energy efficiency and reliability challenges also exist in many-core systems 

in the HPC data  centers. As the number of cores and power density per processor 

increase, temperature and reliability are becoming significant concerns in da ta  centers 

as well. High temperatures jeopardize the reliability of the chips and significantly 

impact performance. In modern processors, tem perature and reliability challenges 

are addressed by management techniques such as clock-gating and DVFS (Hanson 

et al., 2007; Kang et al., 2010; Coskun et al., 2009a). Temperature-aware workload 

management approaches have been proposed for both single-core (Hanson et al., 2007; 

Kumar et al., 2006) and many-core processors (Teodorescu and Torrellas, 2008a; 

Winter and Albonesi, 2008; Donald and Martonosi, 2006; Coskun et al., 2009c). 

Among temperature-aware workload management policies, tem perature balancing has 

been shown to be effective at the processor level (Coskun et al., 2009c). The main 

idea behind thermally-aware workload allocation is to exploit tem perature variations 

resulting from executing jobs with different CPU usage profiles. “Hot” jobs, such 

as computation-intensive algorithms, cause the chip to run at a higher tem perature 

compared to “cool” jobs. Through intelligent scheduling of such hot and cool jobs, 

we can reduce thermal hot spots and variations. However, for large-scale many-core



systems with multiple chips or multiple servers, where some failures can be tolerated 

by the inherent redundancy of the system, the reliability impact of thermal balancing 

has not been studied.

In HPC data  centers, high tem peratures also result in a large amount of cooling 

energy consumption. It has been reported th a t nearly half of the energy in the com

puting clusters today is consumed by the cooling infrastructure (Rajic, 2009; Brown 

and Reams, 2010). It is possible to reduce the cooling cost by allowing the data  cen

ter temperatures to rise; however, component reliability constraints impose thermal 

thresholds as failure rates are exponentially dependent on the processor tem peratures 

(JEDEC, 2006). One approach to address the cooling energy challenge of HPC data 

centers is to  perform cooling-aware job allocation (Moore et al., 2005; Tang et al., 

2008; Pakbaznia and Pedram, 2009).

Another critical aspect in d a ta  center management is performance. In HPC clus

ters, highly parallel scientific, financial, or other applications run on multiple nodes 

for long durations in the range of minutes, hours or days. The threads of these appli

cations communicate with each other through communication infrastructures such as 

the message passing interface (MPI). The running time of a communication-intensive 

application is highly dependent on the location of the individual computing units 

that are communicating with each other. The communication cost of communication

intensive applications has a significant impact on system performance in HPC data 

centers (Leung et al., 2002). However, existing job allocation algorithms for HPC 

data centers address cooling efficiency and performance separately. How to jointly 

optimize the performance and cooling energy tradeoffs through job allocation in HPC 

data centers is an open question.
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1.2 T hesis C ontributions

This thesis contributes to solving the energy and tem perature challenges in 3D many- 

core processors and many-core systems in HPC d a ta  centers from both modeling and 

management aspects.

Our research addresses the performance and tem perature bottlenecks of 3D many- 

core systems by firstly providing a methodology for constructing a comprehensive 

evaluation framework with detailed modeling of performance, power and tem pera

ture. Although thermal modeling (Coskun et al., 2010) and performance (or delay) 

evaluation approaches exist, they are largely disjoint and typically include coarse

grained assumptions about one another. Our research aims at integrating detailed 

performance simulation with power and therm al evaluation models in order to enable 

realistic evaluation of real-world multi-threaded applications running on 3D many- 

core systems. To the best of our knowledge, our work is the first to jointly analyze 

performance, power, and tem perature of both DRAM and processor layers of 3D 

many-core processors through architecture-level evaluations.

Utilizing the detailed analysis enabled by our simulation framework, we are able 

to design and evaluate runtime management and optimization policies for improving 

the energy efficiency and reliability of 3D many-core systems. In order to exploit the 

performance potential of 3D processors with DRAM stacking while maintaining the 

peak power and tem perature constraints, we propose a runtim e optimization policy 

that dynamically monitors workload behavior and selects among low-power and turbo 

(high-performance) operating modes in an application-aware manner. Leveraging the 

detailed modeling and analysis of on-chip DRAM layers, we also introduce a mem

ory management policy that targets applications with spatial variations in DRAM 

accesses, and performs temperature-aware mapping of virtual memory accesses to 

physical DRAM banks.
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For many-core servers in HPC d a ta  centers, reliability has become a serious con

cern as HPC moves towards exascale. In this thesis, we use a detailed temperature- 

dependent reliability modeling approach to  dem onstrate th a t for systems with multi

ple chips, clustering jobs with higher power consumption may result in higher system 

reliability compared to aggressively balancing the tem perature. Following an analysis 

of the tradeoffs between load balancing and clustering, we propose a novel policy that 

optimizes system reliability by choosing between clustering and balancing at runtime 

according to the system topology.

At the data center level, an im portant distinguishing aspect compared to proces

sor or server-level modeling and optimization is the need to consider the data  center 

cooling cost. Following the observation th a t existing HPC job allocation algorithms 

address cooling and communication delay optimizations separately, in this thesis, we 

propose a joint optimization policy th a t reduces both  cooling power and communica

tion latency in an HPC data center.

T he specific contributions o f th is  th esis  are as follows:

•  A simulation framework for 3D systems with on-chip DRAM. Our work is the first 

to jointly analyze performance, power, and therm al characteristics at the architec

ture level for both DRAM and processor layers.

•  Runtime optimization and management of 3D systems w ith DRAM stacking. We 

propose a novel runtime optimization policy th a t maximizes the system perfor

mance by characterizing the application behavior and predicting the operating 

points that satisfy the power and therm al constraints. O ur experiments demon

strate that our policy achieves an EDP reduction of up to  61.9% for a 16-core 3D 

processor with stacked DRAM compared to a 3D system managed by a temperature- 

triggered DVFS policy.
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•  Reliability analysis of multi-chip many-core systems. Using a reliability modeling 

approach to accurately model tem perature-induced wear-out failure mechanisms 

under various system reliability configurations (i.e., topologies), we quantify the 

tradeoffs between clustering higher power jobs and thermal balancing a t various 

operating temperatures.

•  Design of a job allocation policy th a t is aware of the reliability topology to optimize 

the system reliability. We design light-weight predictors to  estim ate application 

power and chip peak tem perature during allocation. Our policy adapts to workload 

changes while respecting the thermal constraints. Experimental results show that 

our policy improves the system reliability by up to 123.3% compared to  existing 

temperature balancing approaches.

•  A job allocation technique th a t jointly optimizes the communication cost of HPC 

applications and the cooling energy in a da ta  center. We design an optimiza

tion algorithm that selects the cooling-efficient locations while allocating jobs and, 

at the same time, minimizes the distances among the communicating nodes. Our 

policy reduces the cooling power by 40% on average compared to cooling-aware and 

performance-aware policies, while achieving comparable performance to performance- 

aware policy.

The rest of the thesis starts with a discussion of the background and related work 

in Chapter 2. Chapter 3 introduces the methodology for constructing a comprehensive 

simulation framework for jointly investigating the tradeoffs among the performance, 

power, and tem perature of 3D systems. Chapter 4 discusses our research on de

veloping the optimization and management strategies for 3D stacked systems with 

on-chip DRAM using the integrated simulation framework. Chapter 5 provides the 

performance, thermal and reliability models for d a ta  centers to  evaluate the com

munication cost, cooling energy and reliability. Chapter 6 introduces our runtime
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reliability optimization for multi-chip servers and our joint optimization of cooling 

cost and communication cost of many-core systems in HPC d a ta  centers. Chapter 7 

summarizes the thesis and also discusses our future work directions and open research 

problems.
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Chapter 2

Background and Related Work

2.1 Background

Reducing energy consumption of computing systems is a challenging problem today. 

Energy spent on computing has considerably grown in the last decade. It is reported 

that the energy used by data centers and their supporting cooling infrastructures has 

doubled between 2000 and 2006 (U.S. Environmental Protection Agency, 2007). The 

computing energy consumption today surpasses 3% of total US electricity use and 

increases by 15% every year (Brown and Reams, 2010; Koomey, 2008). In addition, 

the side effects of high energy use have important global environmental consequences 

such as the emission of greenhouse gases, resulting in global warming. High en

ergy consumption also has implications for system reliability and scalability. The 

increased power densities result in elevated on-chip temperatures and large thermal 

variations, both of which degrade system reliability and increase system design com

plexity (Coskun et al., 2009b; Srinivasan et al., 2004b).

In the last decade, we have witnessed significant developments in computing hard

ware design for chip-level energy and thermal management. State-of-the-art tech

niques typically focus on turning off or slowing down under-utilized resources (e.g., 

(Hanson et al., 2007; Kang et al., 2010)). A number of techniques have been in

troduced to predict the idle time slots of cores and other resources to minimize the 

performance overhead of going in and out of low-power operating modes (Benini 

et al., 2000; Donald and Martonosi, 2006). Dynamic Voltage and Frequency Scaling
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(DVFS) is another commonly used technique (Skadron et al., 2003), and has been 

adopted in recent many-core chip design (Howard et al., 2010). Recent research has 

also proposed runtime job scheduling and dynamic power management approaches, 

such as variation-aware application scheduling and system-level power optimization 

policies (Teodorescu and Torrellas, 2008b; Isci et al., 2006b), to improve energy effi

ciency. In addition, system-level approaches, such as temperature-aware scheduling 

(Coskun et al., 2008; Coskun et al., 2009b) or energy-aware consolidation in vir

tualized environments (Dhiman et al., 2010), are able to improve energy efficiency 

considerably.

As future systems are expected to run more performance demanding workloads, 

novel design approaches are required in order to achieve significant energy efficiency 

improvements. In this thesis, we focus on developing novel energy- and temperature- 

aware runtime management and optimization techniques, which dynamically rec

ognize the hardware-software characteristics and understand the complex interplay 

among performance, energy, and temperature.

2.2 M odeling and M anagement o f 3D Many-core System s

3D stacking has emerged as an attractive design technique to improve manufacturing 

yield, transistor density per chip footprint, and performance (Black et al., 2006). 

The initial work on 3D integration includes the concept of through silicon via (TSV) 

based chip stacking and integration technology (Koyanagi et al., 1998; Topaloglu, 

2011). 3D integration technology can usually be classified as monolithic or stacking- 

based. Monolithic 3D integration builds multiple active device layers on a single 

wafer, while 3D stacking approach involves manufacturing of each layer separately 

using conventional fabrication techniques. These layers are later stacked using solder 

bumps. Thus, 3D stacking is more practical and becomes the focus in most of the
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recent 3D integration research (Golshani et al., 2010; Black et al., 2006; Liu et al., 

2005). 3D stacking process could be categorized as wafer-to-wafer, die-t.o-wafer, or 

die-to-die stacking. Wafer-to-wafer stacking maximizes the throughput and minimizes 

the manufacturing cost, while die-to-wafer or die-to-die stacking is the only option 

when die sizes are not matched. In 3D stacking, multiple layers are assembled using 

bonding technologies, such as wire, micro-bump, or TSV based bonding. Comparing 

to wire or micro-bump bonding, TSV based 3D integration has the potential to offer 

the greatest vertical interconnect density, and therefore is the most promising vertical 

integration technology (Ferri et al., 2008; Khan et al., 2011; Dong et al., 2010). 

Figure 2-1 shows the magnified images of a five-layer 3D stacked chip, which is wire- 

bonded on the side (without TSVs), and TSV fabricated by EPFL (Atienza, 2010).

One of the prominent advantages of 3D stacking is the ability to integrate het

erogeneous technologies within the same chip, such as stacking memory layers with 

the processors. Designing 3D systems with on-chip DRAM is a promising solution to 

improve memory bandwidth and reduce memory access latency (Black et al., 2006; 

Loh, 2008). Reducing the memory access overhead is especially beneficial for many-

(a) (b)

Figure 2-1: (a) 3D test vehicle and (b) TSV fabricated by EPFL 
(Atienza, 2010).
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core systems, where long off-chip memory latency has been a gating performance 

bottleneck. However, power densities and temperatures also increase following the 

performance improvement. In fact, high temperatures already bring major challenges 

because of their adverse effects on cooling costs and reliability (Puttaswamy and Loll, 

2007; Coskun et al., 2010; Srinivasan et al., 2004b).

Prior work on the modeling of 3D systems with memory stacking mostly considers 

performance, power, and thermal evaluations separately, focusing on the systems 

with a small number of cores or single-threaded workloads. For example, Liu et 

al. report that a single-core processor with 3D memory stacking increases system 

performance by 126%; however their work does not consider the power or thermal 

impact (Liu et al., 2005). Loh explores 3D-stacked memory architectures for 4-core 

processors (Loh, 2008) with a thermal analysis using HotSpot (Skadron et al., 2003). 

Their thermal simulations use estimated power values that are not tied with detailed 

architecture-level performance analysis. Sun et al. study the architecture-level design 

of 3D stacked L2 cache, without extending the power and thermal analysis for 3D 

stacked memory (Sun et al., 2009). Wu et al. provide the power density analysis and 

power delivery consideration in a formulation of 3D processor cost model to estimate 

the impact of power delivery on manufacturing cost (Wu et al., 2010). However, they 

do not evaluate the power consumption of the memory components on the 3D chips.

The recent research on 3D system energy and thermal management includes 

design-time optimization methods and runtime management polices based on task 

scheduling and DVFS techniques. For design-time optimization methods, Cong et al. 

propose transformation techniques for 3D IC placement (Cong et al., 2007). Hung et 

al. present a thermally-aware floorplanner for 3D architectures (Hung et al., 2006). 

Healy et al. propose a microarchitectural floorplanning algorithm for 3D ICs using 

linear programming and simulated annealing (Healy et al., 2007). Their static op
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timization methods are implemented at design stage, and do not address dynamic 

changes in workload profiles.

Dynamic power management on traditional multi-core (2D) systems has been well 

studied, and a number of such techniques can be extended to 3D systems as well. Isci 

et al. present a runtime phase prediction methodology to control DVFS based on fre

quency of memory operations (Isci et al., 2006a). Cochran et al. propose a scalable 

method for determining the optimal V-F settings under power constraints (Cochran 

et al., 2011). Recently proposed dynamic energy and temperature management meth

ods for 3D systems include runtime workload scheduling, dynamic voltage-frequency 

scaling (DVFS), and temperature-aware job allocation. Zhu et al. propose a runtime 

thermal management approach using task migration and DVFS (Zhu et al., 2008). 

Zhou et al. introduce an OS-level scheduling algorithm for optimizing 3D system 

temperature using dynamic workload scheduling (Zhou et al., 2008). These methods 

that explicitly target 3D systems, however, do not perform a detailed performance 

analysis of the applications. Also, detailed performance analysis and thermal op

timization for 3D systems have been mostly disjoint so far. For example, thermal 

management policies focusing on 3D systems provide performance estimates based 

on worst-case scenarios, without providing an architecture-level evaluation (Coskun 

et al., 2010).

2.3 Energy and Reliability M anagement in Servers and D ata  
Centers

A number of approaches on reliability management focus on microarchitectural op

timization (Srinivasan et al., 2004a; Biswas et al., 2011). Recent work has also in

troduced reliability management techniques specifically targeting many-core systems. 

Hanumaiah et al. optimize the reliability of a many-core processor running tasks with
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hard deadline constraints by solving a quasi-convex optimization problem (Hanuma

iah and Vrudhula, 2011). Wang et al. maximize the lifetime of many-core systems 

while maintaining a given aggregate processor speed by applying sequential quadratic 

programming (Wang and Chen, 2010). Coskun et al. propose a simulation framework 

to evaluate the impact of management policies on processor lifetime and demonstrate 

the benefits of temperature balancing (Coskun et al., 2009c). Bose et al. integrate 

the modeling of wear-out failure mechanisms into a power-performance simulator to 

project failure rates and consequent system lifetime (Bose et al., 2010).

Several reliability management techniques consider both the wear-out. mechanisms 

and the system topology. Huang et al. (Huang et al., 2009) use the Weibull distri

bution to model aging effects. RAM P  uses Monte Carlo simulations and lognormal 

distributions to compute reliability, and a simple MIN-MAX approach to model series- 

parallel topologies (Srinivasan et al., 2005). Reliability of a computer system with 

series-parallel components can also be computed using probabilistic models that takes 

the inherent redundancy of the system into consideration (Coskun et al., 2006).

Recent research has also introduced temperature-aware job allocation policies. 

Moore et al. develop a temperature-aware workload placement algorithm through es

tablishing a prioritized list of servers for saving energy in data centers (Moore et al.,

2005). Coskun et al. design adaptive scheduling policies that leverage thermal sen

sor readings for reducing temporal and spatial temperature variations on multi-core 

processors (Coskun et al., 2008). Wang et al. propose a thermally-aware job schedul

ing algorithm for data centers to allocate workloads based on their task-t.emperat.ure 

profiles (Wang et al., 2009). However, these policies do not consider the impact, of 

system topology on system reliability during job allocation.

Performance has been the main goal of job allocation techniques in data centers 

and supercomputers. Performance-aware job allocation algorithms typically focus on
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minimizing the average number of communication hops between processors on which 

a job is running. Bhattacharya et al. propose a heuristic for job allocation in a mesh- 

connected parallel processor (Bhattacharya and Tsai, 1994). They use a look-ahead 

mechanism that looks into the queue of waiting jobs and selects free processors from 

the sub-meshes in a mesh-connected data center to allocate the jobs. Mache et al. 

present the MC allocation strategy for mesh-connected parallel computers. Their 

method yields compact allocations by containing the jobs in the smallest rectangular 

area possible (Mache et al., 1997).

Bender et al. propose an M Clxl processor-allocation algorithm, in which the first 

sub-mesh is a 1X1 shell and subsequent sub-meshes grow in square shapes until finding 

enough available nodes to allocate the upcoming job (Bender et al., 2008). However, 

existing performance-aware job allocation strategies solely target the performance 

and communication costs without considering the potential impact of job allocation 

on the power, temperature, or the cooling costs.

As thermal management and reducing the cooling costs are among the dominant 

concerns for today’s data centers, a number of thermal modeling and management 

techniques at data center level have been proposed recently. Jungsoo et al. use a linear 

formula that computes server temperatures as a function of ambient room temper

ature, thermal resistance between die and air, and server power (Kim et al., 2012). 

However, their model does not consider the effect of recirculation on temperature. 

Moore et al. carry out computational fluid dynamics (CFD) simulations to conduct 

thermal evaluation (Moore et al., 2005). However, CFD simulation is expensive and 

cannot be used for real-time data center thermal management. Heath et al. introduce 

a data center temperature emulation suite called Mercury that emulates temperat ures 

based on the data center layout, hardware, and component utilizations (Heath et al.,

2006). Despite its efficiency advantages, Mercury has not been validated for large
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data center systems. Tang et al. propose a linear model to compute data center 

temperatures and cooling energy costs, and solve an optimization problem for mini

mizing the peak node inlet temperature (MPIT) through job assignment (Tang et al., 

2008). They use both genetic algorithms and sequential quadratic programming to 

solve the problem. However, their main focus is enterprise/transactional workloads 

with independent tasks on different data center nodes, so their model does not include 

the communication latency during allocation.

2.4 D istinguishing A spects from Prior Work

Our work improves upon the state-of-the-art for the modeling and management of 

3D many-core processors and HPC data centers in the following aspects:

•  Introduces a widely applicable and generalizable methodology for accurately and 

jointly analyzing the performance, energy, and temperature characteristics of 3D 

many-core systems, while most prior research in 3D area targets a specific archi

tecture or only one of these three aspects.

•  Addresses the unique challenges for parallel applications representing future com

puting workloads running on many-core systems, instead of focusing solely on con

ventional single-threaded applications. W ith such parallel programs that push ex

isting processor designs to their limit, our work is able to drive the design and 

analysis of the new generation computing systems.

•  Delivers a set of energy and thermal management policies that are aware of the 

workload properties and the 3D architectural features governing the system perfor

mance. Such temperature-aware policies enable us to push the performance bounds 

of 3D systems dramatically compared to current chips while maintaining reliable 

and low-energy operation.
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•  Proposes a workload allocation policy to optimize the system reliability for multi

chip servers. Most temperature-aware job allocation methods make use of temper

ature balancing. Following our analysis that shows clustering may provide better 

reliability than balancing depending on the system reliability topology, we propose 

a job allocation method that selects between workload balancing and clustering 

depending on the system topology to optimize reliability for multi-chip many-core 

systems.

•  Designs a job allocation policy that optimizes both the application performance 

(in terms of the communication cost) and the cooling energy cost of HPC data 

centers under reliability constraints. Prior work has addressed performance, reli

ability, and cooling cost optimizations as separate problems. Our policy confines 

the communicating nodes of a job in close proximity, but it also selects the most 

cooling-efficient locations possible.
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Chapter 3

M odeling of 3D M any-core System s

3.1 Overview

This chapter presents our research on constructing a comprehensive simulation frame

work to address the complex interplay between performance, energy, and temperature 

of 3D systems. The goal is to achieve an accurate and thoroughgoing exploration of 

both the merits and challenges of 3D stacked systems. Our research focuses on 3D 

systems with DRAM stacking, because stacking the main memory on the chip re

duces the off-ehip memory access delays, and thus, has the potential for significantly 

increasing the system performance and energy efficiency.

3D many-core processors bring us both merits and challenges. On one hand, 3D 

systems offer promising performance improvement owing to the opportunities of het

erogeneous integration, building of large many-core chips with high yield, and shorter 

global wire lengths. On the other hand, 3D systems exacerbate the already existing 

thermal challenges because of the higher thermal resistivities for the layers away from 

the heat sink and higher power densities per chip footprint brought by the increased 

performance. Thermal hot spots and large temporal and spatial temperature vari

ations adversely affect system energy efficiency and reliability. In 3D systems with 

on-chip DRAM, the power and temperature of the DRAM layers also substantially 

increase because of the high memory access rate and the heat transfer from the logic 

layer, while high DRAM temperatures severely affect memory reliability and system 

performance (Ghosh and Lee, 2007; Liu et al., 2011).
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Prior work usually conducts disjointed simulations for the performance, power, 

and temperature of 3D many-core systems or uses coarse-grained estimations based 

on analytical models (Loi et al., 2006; Loh, 2008). The existing energy and thermal 

management policies for 3D systems have been mostly derived indirectly from detailed 

performance and power evaluations. For example, recently published management 

policies for 3D systems provide worst-case performance estimates without providing 

an architecture-level performance simulation (Coskun et al., 2010). A similar problem 

exists in the previously proposed techniques on optimizing 3D DRAM organization, 

which do not provide detailed DRAM power and thermal evaluations connected with 

detailed performance simulations of the 3D many-core systems (Loh, 2008; Ghosh 

and Lee, 2007).

Our research on constructing the simulation framework is the first to jointly an

alyze performance, power, and temperature tradeoffs for both DRAM and processor 

layers in the 3D stacked systems. It is an essential step for conducting an accurate 

investigation of 3D system energy and temperature characteristics, for optimizing the 

energy efficiency and reliability of future 3D many-core systems, and for providing 

better understanding of the benefits and limitations of 3D memory stacking.

As illustrated in Figure 3-1, our simulation framework consists of the modeling of 

target systems, performance simulation, power modeling, and temperature modeling. 

We first model the logic layer and DRAM layer of our target 3D systems, including 

abstracting the memory access and bus latencies. The system configuration parame

ters and floorplans are used as inputs for performance simulation, power model, and 

temperature model of the simulation framework. Then, we run performance simula

tions on an architecture-level full-system simulator, such as M5 (Binkert et al., 2006), 

to collect detailed performance statistics. In the M5 simulator, we model 3D systems 

with on-chip DRAM by configuring the main memory access latency and bus width
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Figure 3-1: An illustration of our simulation framework for jointly 
analyzing performance, power, and temperature tradeoffs of 3D stacked 
systems.

to mimic the high data transfer bandwidth provided by the TSVs. The performance 

results are fed into a power model, such as McPAT (Li et al., 2009), for estimating 

the core power. The McPAT results are calibrated to match the published or mea

sured power of target architectures for improving their accuracy. We also utilize a 

cache power model, such as CACTI (Thoziyoor et al., 2008), and the DRAM power 

calculator from MICRON. The power traces as then used as inputs in the thermal 

model, such as HotSpot (Skadron et al., 2003), to simulate the temperatures of both 

the logic and DRAM layers of 3D systems.

In this chapter, we introduce the methodology of modeling the target 3D many- 

core systems, performance simulation, as well as the power and thermal models. 

We present the evaluation results on the performance, power, and temperature for 

both high-perform ance and low-power 3D systems running parallel workloads by 

utilizing our integrated simulation framework.
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3.2 M ethodology for M odeling 3D Many-core System s

This section presents the modeling of 3D systems with on-chip DRAM, performance 

simulation infrastructure, power model, and thermal model that are utilized in our 

research for constructing the simulation framework as introduced in Section 3.1. Our 

modeling methodology considers performance, power, and temperature simulations 

jointly, enabling a more accurate evaluation in comparison to the modeling methods 

introduced in prior work (Coskun et al., 2010).

3.2.1 M odeling Target 3D System s w ith D R A M  Stacking

Our research targets 3D many-core systems with stacked on-chip DRAM, as they 

provide high speed and wide bandwidth for accessing main memory by utilizing the 

vertical TSVs. Figure 3-2 provides an illustration of a 16-core 3D system with DRAM 

stacking. In this 3D system, the processing cores and caches are on one layer and 

a 2-layer 3D DRAM is stacked below the logic layer. TSVs are used for vertically 

connecting the core and DRAM layers. We model our 3D stacked architectures with 

two types of cores: a high-perform ance core and a low-power core.

■■ system 
Interface + I/O

Logic layer
i Memroy 
Controllers

Figure 3-2: An illustration of a generic 3D 16-core processor with 
2-layer on-chip DRAM stacking.
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Table 3.1: 3D system core architecture parameters.

Param eter High-performance Low-power
C P U  Clock 2.1GHz 1.0 GHz
Issue out-of-order out-of-order
D ecode W idth 3-way 2-way
Reorder Buffer 84 entries 40 entries
B T B  size 2048 entries 512 entries
RAS size 24 entries 16 entries
In teger/F P  ALU 3/3 2/1
Load Queue 32 entries 16 entries
Store Queue 32 entries 12 entries
LI ICache 64KB@2ns 16KB@2ns
LI DCache 2-way 2-way

64B-block 64B-block
512KB@6ns 512KB@5ns

L2 Cache 16-way 4-way
64B-block 64B-block

The architecture for the low-power core is similar to the architecture of the cores 

used in the Intel single-chip cloud computer (SCC) (Howard et al., 2010). The 

high-perform ance system includes more aggressive core architectures, which are 

modeled based on the AMD Family lOh microarchitecture of the cores in the AMD 

Magny Cours processor. We simulate both the 2D baselines (single-layer, off-chip 

memory) and 3D systems with on-chip DRAM for the two target architectures. The 

architectural parameters for the cores and the caches are listed in Table 3.1.

For each processor, we use the same architectural configuration for the 2D baseline 

and the 3D systems (i.e., the only difference is in the latency and bandwidth to the 

DRAM). Each core on the 16-core processors has multiple-issue and out-of-order 

execution. We assume both processors are manufactured at 45nm and have a supply
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F ig u re  3-3: The layout for the logic layer of target 3D system.

voltage of 1.14V at the highest available frequency setting. The high-perform ance 

core has a larger number of integer and floating point arithmetic logic units as well 

as larger LI level instruction and data caches in comparison to the low-power core.

Figure 3-3 presents the layout of the logic layer of the high-perform ance 16-core 

3D system with stacked DRAM. Each core has private 16 KB LI instruction and data 

caches, and a private L2 cache. As shown in Figure 3-3, all the L2 caches are located 

on the same layer as the cores and connected by a shared bus. MESI cache coherence 

protocol is used for maintaining the consistency among the caches. The 2D baseline 

and the 3D systems both have on-chip memory controllers.

The dimensions for the components of the 16-core processors are listed in Ta

ble 6.3. The low-power system has a total die area of 128.7mm2 and operates at 1 

GHz, while the high-perform ance system has a total die area of 376mm2 and op

erates at 2.1GHz. We assume face-to-back, wafer-to-wafer bonding for building the 

3D systems, as wafer-to-wafer bonding allows for reliably manufacturing larger 3D 

systems approaching sizes of 20mm x 20mm with the current technology.
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Table 3.2: Dimensions of the blocks in the target 3D systems.

(a ll va lues in  m m High-] je r f . Low-power
excep t T S V s ) Length Width Length Width
Chip 20 18.8 11.7 11
Core 4.5 3.5 2.4 1.625
L2 Cache 4.5 •1.2 2.4 1.3
M em ory Controller 18.8 0.45 11.7 0.308
D R A M 20 18.8 11.5* 9*
TSV s diameter 10 pm pitch 20pm

* This system includes 2 DRAM  layers, while the high-performance 
system has a single DRAM  layer of the same memory capacity.

3.2.2 M odeling 3D On-chip D R A M  Accesses

3D systems with on-chip DRAM provide high speed and wide bandwidth for accessing 

the main memory by utilizing the vertical TSVs, while the accesses to the off-chip 

main memory in traditional 2D design are limited by slow off-chip buses.

In order to simulate the data transfer between the logic layer and the on-chip 

DRAM layer on the 3D many-core systems, we consider sin g le-b u s regular memory 

access and p a r a lle l memory access, both with a fast memory bus at 2GHz. As 

illustrated in Figure 3-4, in sin g le-b u s regular memory access, all accesses go 

through a single bus between the memory controller and DRAM. On the other hand, 

the p a r a lle l memory access scenario allows the four on-chip memory controllers to 

access the four DRAM ranks at the same time. In order to implement the p a ra lle l 

memory access on the 3D processor, we deploy 512 TSVs on each memory con

troller. These TSVs provide a 64-Byte bus width for each memory controller. In 

our experiments, we consider TSVs with a diameter of lO^im and a center-to-center 

pitch of 20pm. Thus the total TSV area only takes up less than 0.2% of the chip



(a) single-bus access (b) 4-way memory access

F ig u re  3-4: An illustration of the 3D system with DRAM stacking that 
has (a) s in g le -b u s  re g u la r  memory access and (b) 4-way p a r a l l e l  
memory access.

area overhead. The small overhead of TSVs also allows us to implement an 8-way 

p a r a l le l  memory access scenario with eight on-chip memory controllers accessing 

eight DRAM ranks at the same time.

In order to quantify the performance improvements of our target 3D systems 

versus their 2D baselines, we need to have an accurate model of the memory ac

cess latency in both cases. We model the memory access latency by examining the 

different components that contribute to the latency. For many-core systems, there 

are three main components of the memory access latency from the last-level caches 

to main memory: the propagation delay between last-level caches to the memory 

controller (LLC-to-controller delay), the data request time spent at the memory con

troller (memory controller processing latency), and the data retrieval time spent at 

the DRAM.

To model the LLC-to-memory controller delay, we assume that all the private L2 

caches are connected to the memory controllers through a shared bus. Figure 3-3 

illustrates the physical layout of the logic layer, including the shared bus. We assume 

that the global bus interconnect is routed around the chip in a serpentine fashion. For 

modeling the bus interconnect, we use energy-optimized repeater-inserted pipelined
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channels to reduce the global wire delay (Meng et a l, 2011). The wire propagation 

delay is linear with respect to the wire length, owing to the repeaters that are inserted 

to partition the wire into smaller segments. Each pipeline stage is designed using 

predictive technology model for 45nm and has a propagation delay of 183ps per mm 

(Jin et al., 2008). We estimate the average distance from an L2 cache to a memory 

controller block as 9.4mm based on the layout. Thus, the round trip LLC-to-memory 

controller latency is 4ns (rounded up).

The memory controller processing latency is strongly governed by the memory 

request queuing delay (Awasthi et al., 2010). Modern memory controllers typically 

consist of a memory request queue that buffers the pending requests waiting to get 

scheduled, and a scheduler that selects the next request to be serviced (Ipek et al., 

2008). The memory controller processing latency is dominated by the time spent by 

a memory request in the request queue waiting to get scheduled. We apply queuing 

theory to model the memory controller queuing delay, where the memory request 

queue is modeled as a M /D /N  queuing system. In the M /D /N  queuing formula, the 

queuing delay depends on two parameters: arrival rate and service rate. Arrivals are 

determined by an exponential process, service times are deterministic, and N is the 

number of memory controllers in the 3D system.

We use the average memory access rate across all the benchmarks as the arrival 

rate of the memory request queue. We estimate the service rate by considering the 

DRAM access time (Iras and tRP) and the parallel memory access in the 3D many- 

core system. For the target system, we use the row active time tPAS — 36ns and 

row precharge time tPP = 15ns as reported by MICRON’s DDR3 SDRAM. Thus, 

we model the memory request queue service rate for the 3D many-core system with 

sing le-bus access, where all accesses go through a single bus between the memory 

controller and DRAM, as 0.02 per cycle. As parallel access allows memory request
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F ig u re  3-5: Memory request queuing delay in different memory ac
cess schemes. Average access rates of 0.0035, 0.012, and 0.025 are 
obtained by simulating single-bus, 4-way parallel, and 8-way parallel 
access schemes, respectively.

access multiple DRAM banks at the same time, we assume that the service rate 

is four times and eight times of the service rate for the s in g le  bus access for the 

3D many-core system with 4-way and 8-way p a ra lle l memory access, respectively. 

Figure 3-5 presents the queuing delay of the memory request in the memory controller 

request queue under different memory access schemes. In Figure 3-5, different curves 

represent the queuing delay with average access rates of 0.0035, 0.012, and 0.025 

that are obtained by simulating single-bus, 4-way p a ra lle l, and 8-way p a ra lle l  

access schemes, respectively. Once the memory controller queuing delay is obtained, 

we use it to configure the memory access latency in the performance simulator for 

evaluating the performance of 3D many-core systems with DRAM stacking.

DRAM access latency consists of address decoding time, column and row active 

time, and data transfer time. Stacking DRAM layers on top of the logic layer makes 

the data transfer much faster between DRAM and cores. We use the same DRAM 

parameters for the off-chip DRAM in the 2D baseline and for the DRAM layer in 3D 

system, which is consistent with the assumptions used in earlier studies (Loh, 2008; 

Loi et al., 2006). We consider a 1GB DRAM consisting of 4 ranks, each of which
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Table 3.3: DRAM access latency.

2D-baseline design 3D system  w ith  single-bus
m emory

controller
4ns LLC-to-controller delay, 

48ns MC processing time
4ns LLC-to-controller delay, 

24ns MC processing time
m ain m emory off-chip DRAM 

tRAs — 36ns, tRp — 15ns
on-chip DRAM 

tRAs =  36ns, tup = 15ns
tota l delay 103ns 79ns

m em ory bus off-chip bus, 200MHz 
8-Byte bus width

on-chip bus, 2GHz 
64-Byte bus width

has 4 banks (a total number of 16 DRAM banks). We use the MICRON’s row active 

and row precharge time as discussed above. Table 3.3 summarizes the memory access 

times for the 2D system and 3D system with sin g le-b u s access.

Prom our simulation results for the NAS and PARSEC benchmarks as shown in 

Figure 3-6, we observe the main memory accesses are evenly distributed between the 

four ranks. Thus, we assume the memory access latency with p a r a lle l access is 

one fourth of the latency with sin g le-b u s regular access. Note that this is a

7 Memory accesses on 3D system at 2.1 GHz

canneal
fluidanimate

rank3 rank4rank2

Figure 3-6: Average memory accesses per 10ms on different DRAM 
ranks on 3D system with stacked DRAM.
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conservative assumption as the simultaneous accesses also enable faster processing at 

the memory controller because of fewer pending requests in the request queues.

3.2.3 Perform ance Sim ulation o f 3D M any-core System s

We use the M5 full-system simulator (Binkert et al., 2006) to build the performance 

simulation infrastructure. We simulate our target system with the Alpha instruction 

set architecture (ISA) as it is the most stable ISA currently supported in M5. The 

full-system mode in M5 models a DEC Tsunami system to boot an unmodified Linux 

2.6 operating system. We select parallel applications from the PARSEC benchmark 

suite (Bienia, 2011) and the NAS Parallel Benchmark (NPB) suite (Bailey et al., 

1994) as our workloads, both of which represent future multi-threaded workloads and 

have been widely used in parallel system studies.

M5 models a split-transaction bus that is configurable in both latency and band

width. The bus arbitration follows first-come-first-serve logic, and uses round-robin 

scheduling for bus accesses. We model the 3D system with on-chip DRAM in M5 by 

configuring the main memory access latency and the bus width between L2 caches 

and main memory. In this way, based on the methodology provided in Section 3.2.1 

and Section 3.2.2, the simulator mimics the high data transfer bandwidth provided 

by the TSVs. Table 6.1 and Table 6.3 summarize the architecture characteristics, 

memory access delay, and bus configurations.

We run PARSEC benchmarks in M5 with sim-large input sets and NAS with 

class B problem sets. For each NAS benchmark, we use a warm-up period of 1 

billion instructions to get past the initialization phase. For each PARSEC benchmark, 

the start of the region-of-interest (ROI, i.e., the parallel phase) is pre-defined in 

the PARSEC hooks libraries. We fast-forward the M5 simulation to the ROI and 

execute the instructions in the ROI with the detailed out-of-order CPUs for all the 

benchmarks. We collect performance statistics from M5 simulations periodically and
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use them as inputs for our power model.

We implement thread-binding in M5 for the PARSEC and NAS benchmarks to 

control thread allocation. A thread is bound on a specific core during a time interval 

and does not move among cores. The default thread-binding policy for is in-order 

assignment, which means thread i is bounded to core i (1 <  i <  16).

In the 3D system performance simulations, we execute each benchmark in the 

PARSEC and NAS benchmark suites with the detailed out-of-order CPUs for 1 sec

ond, and collect the performance statistics at every 10ms. In order to collect the 

access statistics for the 3D stacked DRAM, we distinguish between the memory ac

cesses to each DRAM bank by observing the least significant bits for the physical 

memory addresses. In this way, we track the number of memory accesses to each 

DRAM bank at every interval.

For evaluating the many-core system throughput, we use instructions retired per 

second (IPS) as our metric. This metrics is used when comparing the throughput of 

the 3D systems with on-chip DRAM against their 2D baselines as well as comparing 

the performance of the high-perform ance system and low-power system that are 

running under different operating frequencies.

3.2.4 M odeling the Power C onsum ption o f 3D M any-core System s

We use McPAT 0.7 (Li et al., 2009) to estimate the runtime dynamic power of the 

cores in our target system. McPAT computes the core power consumption by tak

ing the system configuration parameters and M5 performance statistics as inputs. 

We simulate the dynamic core power for our target 3D systems using McPAT 45nm 

technology. To improve accuracy for runtime power computations, we calibrate the 

McPAT runtime dynamic power values for the cores to match the published or mea

sured dynamic core power of the target core architectures.
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In order to calibrate the McPAT runtime dynamic core power, we firstly derive 

the average dynamic core power values from power simulation across the benchmark 

suite. Then, we compute the calibration factor, R, to translate the McPAT raw data 

to the target power scale. After that, we use R  to scale each benchmark’s dynamic 

core power consumption. A similar calibration approach has been introduced in prior 

work (Kumar et al., 2003).

Our power model can also estimate the power of systems manufactured using other 

process technologies. For example, let us assume our target system is manufactured 

at 22nm and operated at 1GHz, while using the core architecture based on the cores 

used on Intel SCC (Howard et al., 2010). Since the 48-core Intel SCC processor is 

designed using 45nm technology, we first need to scale the reported Intel core power 

to 22nm technology.

The switching power dissipated by a CMOS device is proportional to C ■ f  ■ Vd2d, 

where C  is the load capacitance, /  is the operating frequency, and Vdd is the supply 

voltage. We assume that there is negligible change in capacitance. While the Vdd 

dependency of the processor leakage power is exponential, we estimate it as a second 

order polynomial of Vm  around its nominal value since the Vdd variation is only around 

20% of default setting (Su et al., 2003).

As both our target system and the Intel chip operate at 1GHz, we estimate the 

processor power of the equivalent 22nm core using Equation (3.1), where the supply 

voltage for 22nm processor is assumed as 0.9V, and reported average core power 

and supply voltage for Intel SCC for the 45nm technology are 1.83W and 1.14V, 

respectively.

Power22nm = Power45nm ■ ( ^yd22nrn- f . (3.1)
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L2 cache power is calculated using CACTI 5.3 (Thoziyoor et al., 2008). After 

we collect the L2 cache read and write access rates from performance simulation 

results in M5, we use them to scale the read and write power values obtained from 

CACTI. For the on-chip memory controllers in both of the 3D systems, we estimate 

the memory controller power consumption as 5.9W based on the memory controller 

power reported for the Intel SCC (Howard et al., 2010). The system interface and 

I/O  power as well as the on-chip bus power are negligible with respect to the total 

chip power (Howard et al., 2010).

The DRAM power in the 3D system is calculated using MICRON’s DRAM power 

calculator, which takes the memory read and write access rates as inputs to compute 

the power for DRAM. We obtain detailed DRAM power traces for each of the DRAM 

banks sampled every 10ms interval, corresponding to the performance traces collected 

from M5.

3.2.5 M odeling the Tem perature o f 3D M any-core System s

3D systems exacerbate the existing thermal problems in 2D systems because of the 

higher thermal resistivity of the layers that are away from the heat sink. An accurate 

thermal model is necessary for evaluating the thermal behavior along with the energy 

efficiency of our target 3D systems.

We use HotSpot 5.0 (Skadron et al., 2003) for the thermal simulations. We run 

simulations for both the 2D and 3D systems using the default chip package in HotSpot 

to represent efficient packages in high-end systems. Calibrated power traces are used 

as the inputs for the thermal model. The 3D low-power system has one logic layer 

and two DRAM layers, where each DRAM layer having 8 bank components. The 3D 

high-perform ance system consists of one logic layer and one DRAM layer with 16 

bank components.
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All simulations use the HotSpot grid model for higher accuracy and are initialized 

with the steady-state temperatures. The parameters in HotSpot simulations for 2D 

and 3D architectures are listed in Table 3.4.

In order to model the thermal effect of the TSVs in 3D stacked systems, we extend 

the default HotSpot by utilizing the methodology for modeling the interlayer material 

heterogeneity introduced in prior work (Coskun et a l ,  2010).

Our HotSpot extension allows the user to model the heterogeneity in the layer by 

modifying the resistivity and capacitance for any unit on the chip. To calculate the 

thermal resistivity of the blocks with TSVs, in our temperature model, we assume 

that the TSVs are evenly spread throughout the memory controller. As we know 

the dimensions of a single Copper TSV, we can calculate the area the TSVs cover in 

the memory controller block (A rearsv) as well as the area of the memory controller 

block without TSVs. The joint parallel resistivity of Copper and thermal interface 

material (TIM) can be calculated as follows:

Table 3.4: Thermal simulation configuration in HotSpot.

Thermal Parameters
Chip thickness
Silicon therm al conductivity
Silicon specific heat
Sam pling interval
Spreader thickness
Spreader therm al conductivity

0.1mm 
100 W /mK 
1750 kJ/m 3K 
0.01s 
1mm
400 W /mK

D R A M  thickness 
D R A M  therm al conductivity  
Interface m aterial thickness 
Interface m aterial conductivity

0.05mm 
100 W /mK 
0.02mm 
4 W /mK

H eat sink thickness
H eat sink convection resistance

6.9mm
0.1K/W



where Area is the area of a memory controller block where TSVs are located at, 

Arearsv  is the area of the memory controller block with TSVs, R tim  is the thermal 

resistivity of TIM, and Rcopper is the thermal resistivity of Copper. Thus, we get the 

thermal resistivity for the memory controller block with TSVs as 0.156m K /W ,  which 

is lower than the original TIM resistivity of 0.25mA'/IV. We also model the TSVs 

going through the DRAM layer, and compute the joint thermal resistivity of silicon 

and Copper as 0.0098mA'jW . We then specify these thermal resistivity values in the 

floorplan file in HotSpot for temperature computations.

3.3 Performance, Energy, and Temperature Evaluation o f 3D  
Many-core Processors

In this section, we present the evaluation results on the performance, power, and tem

perature for both of the 16-core high-perform ance and low-power systems running 

parallel workloads. We quantify the benefits of 3D DRAM stacking compared to the 

equivalent 2D baseline systems.

3.3.1 Perform ance Evaluation of 3D M any-core System s

This subsection presents the performance results for 3D systems with on-chip DRAM. 

Figure 3-7 compares the performance of the 3D systems with on-chip DRAM against 

the 2D baselines. We use instructions retired per second (IPS) as our performance 

metric. By using 3D DRAM stacking, we achieve an average IPS improvement of 

109.7% for the high-perform ance system and 52.6% for the low-power system across 

the 9 PARSEC benchmarks, compared to the 2D systems with off-chip memory. The
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Figure 3-7: Percentage of IPS improvement for 3D systems with 
DRAM stacking over 2D baselines.

high-perform ance system has larger IPS improvements than the low-power system 

because of its more advanced core architecture.

In both of the high-perform ance and low-power systems, streamcluster and can- 

neal achieve higher IPS improvements (over 100%) compared to all the other bench

marks, as these two benchmarks are highly memory-bound and therefore benefit more 

significantly from the reduction in memory access latency. On the other hand, the 

CPU-bound benchmarks, such as blackscholes and x264, have limited performance 

improvement. These results indicate that 3D systems with on-chip DRAM have dra

matically high performance improvement for memory-bound benchmarks with high 

memory access rate.

We select two PARSEC benchmarks, fluidanimate and streamcluster, to demon

strate the temporal performance trends. In Figure 3-8, we observe that for both 2D 

and 3D architectures the IPS of streamcluster is stable during simulation time, while 

the IPS of fluidanimate changes periodically as shown in Figure 3-9. These trends 

are the same in both high-perform ance and low-power systems. Also, streamclus-

high-perf sy s  ■jjjjjjjji low -power sys
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Figure 3-8: IPS temporal behavior analysis of streamcluster running 
on 3D systems with DRAM stacking versus running on 2D baseline 
systems.

ter improves its IPS by 284% in high-perform ance system, while fluidanimate has 

67.3% higher IPS in comparison to the 2D baseline. This is because streamcluster 

has a significantly higher number of main memory accesses than fluidanimate.

The significant performance improvement for benchmarks such as streamclus-
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Figure 3-9: IPS temporal behavior analysis for 2D-baseline versus 
3D-DRAM systems for fluidanimate.
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ter suggests considerable increases in core power. In addition, temporal changes 

of IPS for some benchmarks, such as fluidanimate, demonstrate that using average 

power/temperature or coarse-grained performance estimates in the analysis of 3D 

systems cannot capture the runtime trends accurately. Dynamically changing perfor

mance patterns, resulting in higher power and temperatures, can only be observed by 

detailed architectural evaluation and periodic sampling of runtime events, which are 

integrated in our simulation approach.

3.3.2 Power Evaluation of 3D M any-core System s

We present the power evaluation results for 3D systems with DRAM stacking. Figures 

3-10 and 3-11 demonstrate the core power increase for the 3D high-performance and 

low-power systems, respectively, compared to the 2D baselines.

From the evaluation results, we observe that power consumption per core increases 

by 29.98% and 6.9% on average for the 3D high-performance and low-power sys

tems, respectively, across the benchmark set. Among all the benchmarks, canneal 

has the highest increase in core power, as it has the largest performance improve-

1 , 1 1 , , 1 , r
2D core power ■ ■  3D core power on high-perf sys

Figure 3-10: Average core power for the 3D high-performance sys
tem with DRAM stacking and the 2D baseline.
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F ig u re  3-11: Average core power for the 3D low-power system with 
DRAM stacking and the 2D baseline.

ment. The core power of fluidanimate also increases considerably, as it is already at 

a high power range and the IPS of fluidanimate has additional 67.3% increase in 3D 

high-perform ance system.

Our results demonstrate an average energy delay product (EDP) improvement 

of 51.3% for the high-perform ance system and 37.9% for the low-power system 

compared to their equivalent 2D baselines, canneal running on high-perform ance 

system has 88.5% EDP reduction, which is the largest energy efficiency improvement 

across all the benchmarks. On the other hand, the substantial increase in core power 

motivates detailed thermal analysis of both systems.

3.3.3 T e m p e ra tu re  A nalysis o f 3D M any-core S ystem s

We illustrate the thermal behavior for 3D systems in Figure 3-12 for four bench

marks from the PARSEC benchmark sets (canneal, ferret, streamcluster and vips). 

The peak chip temperatures on the 3D high-perform ance and low-power systems 

and the 2D baselines are shown in the figure. The maximum peak temperature in

crease is 18.1°C for running streamcluster in h ig h -p e rf  ormance system and 5.8°C in 

low-power system. We notice that, in comparison to ferret and vips, streamcluster



41

Peak chip temp for high-perf system Peak chip temp for low-power system

2D-temperature 3D-tempefature 2D-temperature 30-temperature

Figure 3-12: Peak chip temperatures for the 2D-baseline and the 3D 
stacked DRAM systems.

has lower core power while having higher peak chip temperature. This is because 

that streamcluster has the highest DRAM access rate across all the benchmarks. The 

high DRAM access rate results in high temperature on the stacked DRAM layer.

We observe that some of the benchmarks running on our 3D systems (e.g., vips) 

obtain a peak temperature decrease. This is a result of the relatively low memory 

access rates of vips. Low frequency of memory accesses results in low DRAM power, 

which already has lower power density compared to the logic layer. The lower power 

DRAM layer shares the heat of the hotter cores, decreasing the adjacent logic layer 

temperature for benchmarks with low frequency of memory accesses. These results 

highlight that it is important to explore the application-aware management and op

timization policies to improve the energy efficiency of 3D many-core processors while 

maintaining the power and temperature constraints.

3.4 Summary

3D integration enables stacking DRAM layers on processor cores within the same chip. 

On-chip memory has the potential to dramatically improve performance due to lower
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memory access latency and higher bandwidth. Higher core performance increases 

power density, requiring a thorough evaluation of the tradeoffs between performance 

and temperature. However, detailed performance analysis and thermal optimization 

for 3D processors have been mostly disjoint so far.

In this chapter, we have presented a comprehensive simulation framework for 3D 

many-core processors. Our simulation framework is able to capture the performance, 

energy, and temperature of 3D processors running dynamically changing workload, 

while most current simulation frameworks could only provide the average results. To 

the best of our knowledge, our work is the first to jointly analyze performance, power, 

and thermal characteristics for both DRAM and processor layers on 3D many-core 

processors.

Utilizing this simulation framework, we have evaluated the performance, power, 

and temperature characteristics of two 16-core 3D processors running parallel bench

mark suites. Our results show an average of 109.7% IPS improvement in the 3D 

processors, while the average per-core power increases by 29.98% and peak tempera

ture increases by 18.1°C, in comparison to the equivalent 2D processors.

The simulation results demonstrate that 3D processors with DRAM stacking pro

vide significant performance improvement, while brings power and temperature chal

lenges at the same time. These results motivate us to explore runtime management 

policies for achieving high performance under power and temperature constraints. In 

the next chapter, we discuss runtime management and optimization methods for 3D 

many-core processors.
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Chapter 4

Runtim e M anagement o f 3D M any-core 
System s

4.1 Overview

This chapter introduces our research on investigating and developing energy- and 

temperature-aware management policies for improving energy efficiency and relia

bility of 3D stacked architecture, with a special focus on the systems with DRAM 

stacking. Our research consists of investigating existing efficient thermal management 

techniques and developing novel energy- and thermal-aware optimization policies for 

3D many-core processors.

In Chapter 3, we have presented a simulation framework that provides a joint 

assessment of performance, energy, and temperature tradeoffs in 3D systems with 

stacked DRAM. Through the evaluation results, we have observed that the workload 

dynamics change during the lifetime of a system. Thus, it is imperative to have run

time optimization techniques that monitor and actively manage the interplay among 

performance, power, and temperature of 3D systems.

A number of static management techniques have been proposed for 3D systems to 

reduce peak chip temperature and optimize system reliability (Cong et al., 2007; Hung 

et al., 2006; Healy et al., 2007). However, they cannot be adapted to the performance 

and power variations within and across parallel workloads. In fact, there are dra

matic variations with respect to system utilization in today’s many-core computing
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systems, which requires runtime management and optimization approaches. Dynamic 

management strategies that are proposed in prior work, such as temperature-aware 

scheduling and DVFS, are effective methods for controlling temperatures on many- 

core processors (Coskun et al., 2009a). However, their power and temperature results 

are disjoint from performance simulations, which makes their evaluation results less 

convincible.

Utilizing the detailed evaluation results from our integrated simulation framework, 

we are able to analyze the existing dynamic energy and thermal management policies 

for 3D many-core-systems. Leveraging the analysis results, we develop new techniques 

that are aware of the runtime variations of workloads and system architecture-level 

configurations. In our work, we focus on energy and thermal management for parallel 

workloads running on many-core systems, as thread interactions impact performance 

more in parallel workloads than in single-threaded applications.

In this chapter, we introduce our management policies to optimize the energy 

efficiency of 3D many-core systems with on-chip DRAM stacking and present the 

evaluation results. We propose a runtime optimization policy that dynamically mon

itors workload behavior and selects operating points for adapting to varying applica

tion phases. Our policy selects among low-power and high-performance (or “turbo ”) 

execution modes from the available voltage-frequency (V-F) settings by utilizing pre

dictions from a regression-based model. Experimental results demonstrate that our 

runtime optimization policy achieves an EDP reduction of up to 61.9% compared 

to a 3D system managed by a temperature-triggered DVFS policy. We also intro

duce a memory management policy that targets applications with spatial variations 

in DRAM accesses and performs temperature-aware mapping of memory accesses to 

DRAM banks. In the end of this chapter, we discuss managing 3D many-core systems 

with liquid cooling.



45

4.2 Runtim e M anagement for 3D M any-core System s

Our runtime optimization policy is motivated by the observations of running PARSEC 

and NAS benchmarks on our simulation framework under different V-F settings. 

Figure 4-1 displays the performance results of the 2D baseline and the target 3D 

system with stacked DRAM. Figures 4-2 and 4-3 present the temperature and power 

results of the target 3D system in comparison to the 2D baseline system, respectively.

From Figure 4-1, we notice that the average IPS of the 3D system running at 

0.8GHz is sufficiently high to match the performance of the 2D baseline for most 

of the benchmarks. We also observe that applications dramatically differ in their 

performance behavior. For the memory-intensive benchmarks, such as streamcluster 

and mg, the high memory access rates result in significant performance improvements 

when running on the 3D system with stacked DRAM in comparison to 2D baseline.

However, from Figures 4-2 and 4-3, we can see that the peak temperature also con

siderably increases with the performance improvements. Thus, we run such memory-

x 1010
2D baseline vs 3D system with parallel access

F ig u re  4-1: IPS for PARSEC and NAS benchmarks running on 2D 
baseline and the 3D system with parallel access.
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Figure 4-2: Peak chip temperature on the 3D system with parallel 
access running at different V-F settings.

intensive benchmarks at the low-power mode by exploiting the performance slack. 

Figure 4-1 shows that, even at low-power mode, the memory-intensive benchmarks 

running on the 3D system still have significant performance improvements in compar

ison to running on 2D baseline. For CPU-intensive workloads, on the other hand, the 

low memory access rates result in a cooler DRAM layer that shares the temperature 

of the hotter core layer. For benchmarks such as blackscholes, we switch to the turbo 

mode with higher V-F settings for boosting the performance by taking advantage of 

the temperature slack.

The goal of our runtime optimization policy is to select operating points maximiz

ing performance while maintaining the power and temperature constrains for both 

logic and DRAM layers. In order to achieve this goal, we formulate our optimization 

method as in Equation (4.1). In Equation (4.1), (F,V)  is the set of available V-F 

settings. The objective of our optimization method is to maximize throughput (IPS) 

under power and thermal constraints. Pcap is the power budget of the target system, 

and Tthid is the peak temperature threshold to ensure reliable operation. As shown
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—  Power Budget at 175W 
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Figure 4-3: Total chip power on the 3D system with parallel access 
running at different V-F settings.

in Figure 4-2, we set TtMd at 85°C. Figure 4-3 shows three Pcap settings. Our pol

icy satisfies Tthid and Pmp at the same time. For example, at a loose Pcap of 200W, 

Tthid at 85°C dominates the optimization decisions. A more strict Pcap at 175W or 

155W requires taking peak power into account. Peak power management is an in

creasingly important feature owing to power supply limitations and potential energy 

cost reduction opportunities at large computer clusters.

maximize I P S ( f , v )  (4.1)
(i»e(F,v)

subject to pou>er(f,v) < P^p, temper atur e{ f ,v ) <  T^id-

Figure 4-4 illustrates the flow of our runtime optimization policy. We start running 

the application with the lowest V-F setting to ensure reliable operation, and collect 

the performance statistics at regular intervals of 100 million instructions. Based
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Figure 4-4: The flowchart of our runtime optimization policy.

on a model we construct offline, we predict the highest V-F setting satisfying the 

constraints using the performance statistics as inputs. We continue running the ap

plication with the predicted V-F setting. This process is repeated at every interval.

We choose instructions per cycle (IPC) and memory access per instruction (MA) 

to construct a regression-based model for selecting the V-F settings. This is because 

IPC is a good indicator of the power of the logic layer and MA is a good indicator 

of the power of the DRAM layer. Power densities on both layers affect chip peak 

temperature on the 3D system. Our V-F prediction model is in the form of V — F  =  

Co *f" c y M A  +  cr IP C  -t- c yM A * IP C .

Table 4.1: Regression coefficients for a target 3D system with
85°C/175W constraints for all the V-F settings.

V-F setting Co Cl c2 C3
2 .lG H z/l.lV 3.68 -147.95 -0.059 0.19
1.7GHz/1.06 V 3.74 -141.77 -0.071 0.23
1.4GHz/1.02V 3.76 -145.71 -0.075 0.36
l.IGHz/l.OV 3.80 -147.08 -0.087 0.41
0.8GHz/0.98V 3.87 -152.01 -0.072 0.58
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We train the regression model with power and performance statistics from sim

ulations across all benchmarks. Note that we need to use different coefficients in 

the model depending on the current V-F setting, as MA and IPC vary with the V- 

F setting. As an example of the V-F prediction for a 3D system with 85°C/175W 

constraints, we list the coefficients of the regression-based model for all the V-F set

tings in Table 4.1. The regression model provides accurate prediction as shown in 

Figure 4-9, and can be refined at runtime if needed. The overhead of the runtime 

prediction is negligible, since computing a simple equation at every interval has very 

low computational cost.

We evaluate our runtime optimization policy on 3D systems with parallel access, 

and compare our optimization policy against using static V-F settings, a temperature- 

triggered DVFS policy, and a DVFS policy guided by memory accesses.

The performance improvement of the 3D system with parallel on-chip DRAM 

access running at 2.1GHz and 0.8GHz is demonstrated in Figure 4-5. We show that

3D system with parallel access versus with regular access
3 D -2 .1 G H z
3D-0.8GHZ

JS f* *  A  *  *  *  *  ^

Figure 4-5: Performance improvement on 3D system with parallel 
access compared to 3D system with regular access.
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Table 4.2: Results of the target 3D system with static settings.
Policy Static V /F  settings (G H z / V )

0 .8 /0 .9 8 1 .1 /1 .0 1 .4 /1 .02 1 .7 /1 .06 2 .1 /1 .1

Peak P  ( W) 154.72 161.53 193.37 236.79 279.25
Peak T (°C) 78.10 79.46 85.85 94.65 103.39
EDP** (J-s) 246.42 167.63 135.18 132.19 119.82

IPnS*** 10.63 12.86 15.73 16.93 18.93

* EDP per lObillion instructions
** IPnS stands for instructions per nanosecond
★ Average across all benchmarks

enabling parallel access to the 3D DRAM layer improves IPS by up to 86.9% compared 

to using regular access, s tre a m c lu s te r  and mg show higher IPS improvements than 

the other benchmarks, since they have higher memory access rates and thus benefit 

more from reduced average memory access time.

We compare the performance and energy efficiency for 3D systems running our 

runtime optimization policy and using static V-F settings. The results are shown in 

Table 4.3 and Table 4.2. We notice that the peak temperatures go over the thermal

Table 4.3: Results of the target 3D system with our runtime opti
mization policy.

Policy R untim e optim ization
85°C /155W 85°C /175W 85°<7/200W

Peak P  (W ) 154.85 168.63 189.62
Peak T (° C ) 77.97 80.81 83.32
EDP** (J-s) 185.67 145.11 130.03

IPnS*** 14.47 15.68 16.02

* EDP per lObillion instructions
** IPnS stands for instructions per nanosecond
★ Average across all benchmarks
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EDP-Reduction

^ 6 0

F ig u re  4-6: 3D system using our runtime management policy in 
comparison to running all benchmarks at the static V-F setting of 
0.8GHz/0.98V.

constraint of 85°C for applications running on the 3D systems with frequency settings 

higher than 1.1 GHz.'

W ith a loose power constraint of 200W, we compare our policy with the static 

V-F setting at l.lGH z/l.OV which maintains temperature below 85°C for all the 

benchmarks. Our policy achieves an average IPS improvement of 24.6% and EDP 

reduction of 22.4% across all the benchmarks. W ith strict constraints of 85°C/155W, 

our runtime policy improve the IPS of 3D system by 60.6% in comparison to static 

V-F setting at 0.8GHz/0.98V, as demonstrated in Figure 4-6.

We present the runtime V-F selection process of our optimization policy in Fig

ure 4-7. For ua, 1.4GHz/1.02V is the reliable static operating point, maintaining 

the temperature below 85°C. However, the phase change of ua creates a temperature 

slack periodically. Our policy takes advantage of the temperature slack and switches 

to 1.7GHz during periods of low temperature.

We demonstrate the advantage of our runtime optimization policy over apply-
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Figure 4-7: Temperature trace of ua on the 3D system running at 
1.4GHz/1.02V and the V-F setting selected by our runtime manage
ment policy.

ing temperature-triggered DVFS in Figure 4-8. Temperature-triggered DVFS is a 

well-known policy for thermal management on 2D systems (Skadron et al., 2003; 

Coskun et al., 2009c). It tracks chip peak temperature and selects the operating 

point based on temperature sensor readings. For safe operation while maintain

ing system performance, we choose two temperature thresholds as 80°C and 70°C.

IPS-lmprovement 
EDP-Reduction

® 40

/ / / / / 6° eV ^ \p

Figure 4-8: 3D system with runtime management policy in comparison 
to temperature-triggered DVFS policy.
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Figure 4-9: Prediction accuracy of our runtime management policy 
versus memory access (MA) driven DVFS.

Temperature-triggered DVFS reduces/increases the V-F setting when temperature

goes above/below 80°C/70°C.

Our policy improves EDP by up to 61.9% and IPS by 32.2% on average across all 

the benchmarks in comparison to the temperature-triggered DVFS policy. The perfor-

triggered DVFS policy. This is because they have low temperature while running at 

2 .lG H z/l.lV . The benchmarks that have high temperatures when running on 3D 

systems with stacked DRAM, such as streamcluster, show larger performance im

provement using our runtime policy. Our policy selects the highest V-F settings to 

operate at safe temperatures, while temperature-triggered DVFS may oscillate around 

the high temperature threshold.

We also compare our optimization policy against memory access driven DVFS, 

in which V-F selections are mainly guided by the memory access rate (Isci et al., 

2006b). For implementing memory access driven DVFS, we construct a regression- 

based model for selecting V-F setting with only MA. We show the V-F prediction for 

3D system with 85°/ 175W constraints in Figure 4-9. By only using MA, three out of

mance of blackscholes and is does not differ between our policy and the temperature-
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twelve benchmarks end up with different V-F settings than the optimal ones; while 

the predictions are all accurate using both IPC and MA as in our policy. The bench

marks that are predicted incorrectly using only MA are blackscholes, is, and mg. 

blackscholes has low MA but high IPC, is  has both low MA and low IPC, and mg 

has high MA and relatively higher IPC than the other memory-bound benchmarks. 

Our policy provides accurate prediction as we take the power and temperature con

straints on both logic and DRAM layers into account on 3D systems with stacked 

DRAM, where both high IPC and memory access rate could result in high chip power 

and peak temperature.

In addition to developing the runtime optimization policy to exploit the perfor

mance potential of 3D many-core systems with DRAM stacking, we also investigate 

management approaches to control the temperature of DRAM layer. DRAM perfor

mance is severely affected from high temperatures due to the impact of temperature 

on DRAM refresh rates. In fact, prior research has shown that temperature sensitiv

ity often becomes more critical for memory layers than for logic layers (Ghosh and 

Lee, 2007; Liu et al., 2011).

In order to reduce the temperature and thermal variation on both the logic layer 

and the DRAM layer of the 3D systems, we propose a memory address management 

policy. The motivation of implementing this method is base on two facts. One is 

that high memory access rate of a DRAM bank is generally raising up high power, 

and the temperature of a DRAM bank is the result of the power on both itself and 

its neighbors. The other is that the temperature of a DRAM bank is dependent on 

its location on the 3D DRAM layers, the banks that are located on the center of 

the DRAM layers generally have higher temperatures than the banks that are on the 

corners of the 3D DRAM layers. Therefore, the main idea of the memory address 

management policy is to map more frequently accessed memory address ranges to
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F igu re  4-10: The DRAM layer layout for the high-perform ance 3D 
system with on-chip DRAM.

physical banks with lower temperatures.

Our policy targets memory-intensive applications with high spatial variations in 

their access rates across different DRAM banks. Figure 4-11 illustrates the peak 

temperatures and the number of accesses per cycle across the 16 DRAM banks while 

running s tre a m c lu s te r  on the 3D high-perform ance system with 128-Byte memory 

bus. The location of each bank is shown in Figure 4-10. Banks 6, 7, 10, 11, which are 

located on the center of the DRAM layer have higher temperatures than banks 1, 4, 

13, 16, which are on the corners. The variations in DRAM bank access rates indicate 

differences in power consumption across the DRAM banks. In Figure 4-11, the most 

accessed DRAM bank 9 and least accessed bank 3 have average power consumption 

of 5.1W and 1.9W, respectively.

Based on this analysis, our memory management policy maps more frequently 

accessed memory address ranges, such as the address range for bank 9 in the de

fault mapping, to physical banks with lower temperatures (e.g., bank 1). The mem

ory address mapping is implemented by the OS when virtual memory addresses are
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F ig u re  4-11: DRAM bank temperature and access rate for
s tre a m c lu s te r  in 3D high-perform ance system with 128-Byte mem
ory bus.

translated into physical addresses. The specific memory mapping strategy matching 

the virtual memory address ranges to physical locations can be determined based on 

average case analysis statically. This approach has no additional cost compared to 

existing memory mapping mechanisms. The mapping policy can also be updated if 

average case workload dynamics change significantly. Simulation results show that 

our policy reduces DRAM peak temperature by \A °C  and the thermal variations by 

2°C  for s tre a m c lu s te r  running on the 3D high-perform ance system with 128-Byte 

memory bus in comparison to the worst-case allocation, where the banks receiving 

higher number of accesses are located in the center of the DRAM layer.

4.3 M anaging 3D Many-core System s w ith Liquid Cooling

Many-core systems provide a lot of hardware parallelism and potential performance 

increase. However, as recent chip sizes for many-core systems reach 300mm2 to 

400mm2 and more, they are prone to larger process variations, lower yield, and higher 

on-chip wire delay and power consumption.
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core + L2s
TSV

core + L2s

Figure 4-12: An illustration of 3D many-core systems with two logic 
layers stacking and off-chip DRAM.

3D many-core system with logic layer stacking is a promising solution to design 

large many-core chips as it improves manufacturing yield because of smaller chip 

area, and reduces wire length and capacitance. However, as the number of cores and 

number of logic layers in 3D many-core systems increase, system temperature easily 

goes out of feasible ranges, even by applying the thermal management policies for 3D 

many-core systems that we have proposed in Section 4.2. Liquid cooling has a higher 

efficiency of removing heat compared to conventional heat sinks, thus are introduced 

to address the thermal challenges in 3D many-core systems. In this section, we discuss 

the modeling and management of 3D many-core systems.

We use the simulation framework that introduced in Chapter 3 for the modeling 

of 3D many-core systems with logic stacking. We assume our target 3D many-core 

system as a 64-core processor that is manufactured at 45nm. As illustrated in Fig

ure 4-12, the target 3D many-core system has two vertically stacked logic layers and 

off-chip DRAM. We assume that the floorplans of the two logic layers are identical, 

each layer has 32 core, and each core has a private L2 cache. The core and cache 

architectural parameters are the same as for the target 2D many-core system, which
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Figure 4-13: Peak and average temperatures for 64-core 2D system 
and 3D system with two logic layers, including the results with no ther
mal management (No DTM), with temperature-aware load balancing 
(TALB), and with TALB combined with DVFS (TALB+DVFS).

are shown in Table 3.1.

Figure 4-13 presents the peak and average temperatures for 64-core 2D system 

and target 3D many-core system with two logic layers. In the simulation framework, 

we assume negligible difference in core performance between 2D and 3D systems 

when they are running the same applications, because the already low cache access 

times are not strongly affected by vertical stacking. We notice that temperature 

increases significantly due to vertically stacking two logic layers. The peak temper

ature with no thermal management of the target 3D many-core system increases by 

around 30°C in comparison to the peak temperature with no thermal management 

of 64-core 2D system. We compare the results of peak and average temperatures for 

the 2D and 3D many-core systems with no thermal management (No DTM), with 

temperature-aware load balancing (TALB), and with TALB combined with DVFS 

(TALB+DVFS), respectively. TALB allocates jobs to cores with the objective of 

balancing chip temperature (Coskun et al., 2010).

The comparison results show that TALB reduces the peak temperature below
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the critical value of 85°C, and TALB+DVFS reduces the temperature further. This 

observation demonstrates the significance of thermal management for 3D many-core 

systems with logic layer stacking. However, when we build the same system into a 3D 

system with four logic layers stacking, each logic layer consisting of 16 cores, the peak 

and average temperatures exceed 100°C and 90°C even with TALB+DVFS, which 

makes the design of 3D many-core systems unfeasible (Coskun et al., 2011). Therefore, 

for high-performance 3D architectures, applying scheduling, DVFS, or other existing 

techniques cannot mitigate the temperature challenges effectively without hurting the 

system performance. We need to consider more efficient heat removing techniques, 

such as liquid cooling, to address the thermal challenges in 3D many-core systems.

Liquid cooling has been proposed as a promising solution to address the pressing 

thermal challenge of 3D many-core systems due to the logic stacking, as it has a 

higher efficiency of removing heat compared to conventional heat sinks and fans. A 

prototype 3D system with built-in microchannels has been manufactured by IBM 

Zurich and EPFL (Brunschwiler et al., 2009; Coskun et al., 2011). The modeling 

of 3D many-core system temperature with liquid cooling model already exits and is 

implemented in HotSpot (Skadron et al., 2003; Coskun et al., 2010). However, liquid 

cooled 3D many-core systems bring new challenges in cooling control and require 

efficient integration with chip-level thermal management techniques.

We have looked into managing the 3D many-core big chips with microchannel 

cooling (Coskun et al., 2011). Figure 4-14 compares maximum and average temper

ature between liquid-cooled 3D systems and the 2D air-cooled baseline. We observe 

that liquid cooling dramatically reduces temperatures for the 3D many-core systems 

with multiple logic layers, which makes stacking more logic layers possible. From 

the simulation results, we can see that the temperature are within the safe margins 

for both the 2-tier and 4-tier 3D systems with liquid cooling. We use Fuzzy+TALB
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Figure 4-14: Peak and average temperature between liquid-cooled 
3D systems and the 2D air-cooled baseline, including the temperatures 
results with no thermal management (No DTM), with temperature- 
aware load balancing (TALB), and with TALB combined with DVFS 
(TALB+DVFS), as well as fuzzy controller combined with TALB 
(Fuzzy+TALB).

to prevent over cooling and reduce the cooling energy by adjusting the flow rate to 

match the cooling need of the system (Sabry et al., 2010). We observe that TALB, 

Fuzzy control, and DVFS all contribute to the reliable operations on liquid-cooled 3D 

many-core systems by reducing the peak and average temperatures.

4.4 Summary

In this chapter, we have discussed the management and optimization policies to ad

dress the energy efficiency and thermal challenges for 3D many-core systems. We have 

proposed a runtime optimization policy that dynamically monitors workload behavior 

and selects operating points for adapting to varying application phases. Our policy 

selects among low-power and high-performance execution modes from available V-F 

settings by utilizing predictions from a regression-based model. The simulation results 

show that our runtime optimization policy achieves an EDP reduction of up to 61.9% 

compared to a 3D system managed by a temperature-triggered DVFS policy. We have
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also introduced a memory management policy that targets applications with spatial 

variations in DRAM accesses and performs temperature-aware mapping of memory 

accesses to DRAM banks. In order to further reduce the temperature of 3D many-core 

systems, we have also discussed the management of 3D systems with liquid cooling. 

In the following chapters, we will present the modeling and management approaches 

for large-scale many-core systems in HPC data centers.



Chapter 5

M odeling of M any-core System s in D ata  
Centers

.>

5.1 Overview

As the number of cores and power density per processor increase, performance, cool

ing energy cost, and reliability are becoming critical concerns in many-core systems 

in HPC data centers. Different from the performance of many-core single-chip pro

cessors, the system performance of data centers running communication-intensive 

applications is significantly impacted by the communication cost between different 

processing nodes. High temperatures in data centers not only cause reliability degra

dation, but also increase the required cooling energy of HPC clusters. Therefore, it is 

important to have detailed modeling approaches to evaluate the communication cost, 

cooling energy, and reliability of many-core systems in HPC data centers.

In this chapter, we provide a performance model to evaluate the communication 

cost of HPC data centers running highly parallel workloads. We also present a ther

mal model to evaluate the inlet temperature and cooling energy cost of HPC data 

centers. In order to quantify the system-level reliability, we introduce a detailed reli

ability modeling approach to accurately model temperature-induced wear-out failure 

mechanisms under various system topologies. In the next chapter, we will propose 

management strategies for HPC data centers based on the evaluation results by uti

lizing these modeling approaches.
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5.2 Performance and Cooling Energy M odeling in H PC D ata  
Centers

In this section, we introduce the performance and cooling energy model using a small 

size data center with two rows of industry standard racks as an example. The layout 

of the target data center is shown in Figure 5-1. In this layout, the rack inlets where 

the cool air is supplied face the outer aisles and form cold aisles at the sides. The 

rack outlets, where the hot air exits, face each other and form a hot aisle in between 

the two rows.

In our target data center, each row is composed of 5 racks and each rack has 4 

computing nodes. We assume that each node includes 10 servers and each server has 

2 processors. This layout corresponds to a total of 800 processors across the two 

rows of the data center. The proposed data center layout has been widely used in

Figure 5-1: Layout of the target data center.
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prior work and is representative of today’s data center configurations (Sansottera and 

Cremonesi, 2011).

5.2.1 Workload and Perform ance M odel

The typical workloads in HPC data centers are communication-intensive parallel ap

plications that use high-level message passing interfaces such as MPI. For such work

loads, the communication overhead inherent in the data center is one of the major 

performance bottlenecks (Mache et al., 1997). In order to model communication 

costs due to message passing, we target mesh-connected HPC data centers and su

percomputing systems. Mesh-connected networks for message passing are widely used 

in many experimental and commercial distributed memory parallel computers, such 

as IBM BlueGene/L and Cplant, a commodity-based supercomputer developed at 

Sandia National Laboratories (Brightwell et al., 2000).

We specify our workloads as jobs that require a number of nodes in the data 

centers. The performance metric for our evaluation is the average pairwise LI distance 

(Manhattan distance) across all the communicating nodes of a job running on the 

mesh-connected parallel system (Bender et al., 2008). We employ Ll distance as our 

metric as it has been demonstrated to correlate with application running time (Leung 

et al., 2002). We define the communication cost of a job as the average Ll distance 

across all the nodes running the job, and formulate it as in Equation (5.1).

CCjob = j j  5 3  [wx{s,t) + wy(s,t)\ (5.1)
(s,t)e(S,T)

where C C means the communication cost of a job. N  is the job size. In this thesis, 

we assume N  > 1 for all the jobs. We define the job size as the number of nodes a 

job requires, (s, t) represents the pair of source and destination nodes of a message
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Figure 5-2: Communication pattern and distance measure.

and (S', T) is the set of all the source and destination node pairs for all the messages. 

wx(s, t ) and wy(s, t) represent the distance between s to t  along the x-axis and y-axis, 

respectively. An illustration of the Ll distance between source and destination nodes 

is shown in Figure 5-2(b). The division of the summation of the Ll distances by N  

provides the normalization of the communication cost with respect to job size.

In this thesis, we assume all-to-all communication pattern for our workloads. All- 

to-all is a common communication pattern in HPC routines such as Fast-Fourier- 

Transform, which is part of several applications including molecular dynamics, quan

tum chemistry, and digital signal processing (Kumar et al., 2008). In all-to-all pattern, 

each processor communicates with all the other processors running the same job, as 

shown in Figure 5-2(a). In order to reflect the difference between communication cost 

within data center rows and between data center rows, we set the one-hop distance 

within a data center row as 1 and the distance between nodes of different, rows as 

10. The reason for the larger distance among rows is that nodes placed at different 

rows communicate through a larger number of switches and longer interconnects on 

the communication path (Belden, 2007). Thus, this effect should be included in the 

communication latency calculation.
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We quantify the effect of job communication cost on the job running time by 

assuming that the application spends a certain percentage of time on communication, 

denoted as C% (Crovella et al., 1992). In order to calculate the job running time, we 

use the minimum CCjob that can be accomplished for a given job size as the baseline 

for a job’s communication cost. For example, for a job of size 4, the minimum 

achievable communication cost is 4 using Equation (5.1). We then define the ratio of 

the current CCj0b to the best case CCjob as the latency factor, Lj. We calculate the 

actual job runtime by scaling the communication portion of the runtime by Lj.

5.2.2 Cooling Energy M odel

The cooling energy consumed by a data center is dependent on the layout of the data 

center infrastructure. In this thesis, we use a typical data center layout validated 

by prior work (Ead et al., 2008), as shown in Figure 5-1. In this layout, racks and 

perforated vent tiles are placed on a raised floor. Cold air enters the room from 

the floor tiles, goes into the rack inlets from the sides, and gets hotter as it moves 

through the racks. Hot air exits from the back of the racks into the center aisle and 

the exhaust air exists the room from the ceiling to be cooled again. This set-up is 

called hot aisle /  cold aisle arrangement which avoids mixing cold supply air with 

exhaust air (Rad et al., 2008).

In order to evaluate the energy consumption of a data center and develop man

agement policies, we need a fast and accurate data center thermal model. We use the 

model proposed and validated by Tang et al (Tang et al., 2006). Their model combines 

a linear, low complexity heat recirculation model with a linear power model. The pro

posed model is more practical than the most of other existing models as it requires 

a set of computational fluid dynamics (CFD) simulations only once to characterize 

the data center. After we obtain the measured data center specific parameters, the 

vector of inlet temperatures, Tjn , for all the nodes are computed using the following
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linear equation:

Tin = T9up + D P  (5.2)

D = [ ( K -  AtK ) - 1 -  K - 1] (5.3)

where Tsup means the CRAC unit supply temperature vector. D is the heat distribu

tion matrix and P is the node power vector. K is the thermodynamic constant matrix

and A is the heat cross-interference coefficient matrix representing the recirculation 

phenomena. The thermodynamic constant matrix K is calculated as:

K  =  diag(Ki) (5.4)

Ki = pfiCp (5.5)

where p=1.19 Kg/m 3 is the density of air. 0 <  i < N , where N  is the total number 

of computing nodes in the data center. /*=().2454 m3/s  is the flow rate of node i. 

We assume the flow rate is fixed for all data center nodes, and cp=1005 J/KgK is the 

specific heat of air (Tang et al., 2008).

The heat cross-interference coefficient matrix A represents the fraction of output 

heat from each node that is recirculated to the inlet of other nodes. It is an N  x N  

matrix for a system with N  nodes. In matrix A, each term ai3 represents the fraction 

of heat at node i recirculating back into node j .  It has been shown that elements of 

matrix A mostly depend on the data center layout rather than the power consumption 

of the nodes or the supply temperature (Sansottera and Cremonesi, 2011). Therefore, 

this matrix is obtained once for a data center. The matrix A for the proposed data 

layout has been calculated through CFD simulations in prior work (Tang et al., 2006). 

If one has input ambient sensors mounted already, the matrix A can be obtained using
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F ig u re  5-3: Cross-interference coefficient matrix for our system.

sensor measurements instead of CFD simulations and following the same procedure 

in (Tang et al., 2006).

We construct the cross-interference coefficient matrix for the proposed data center 

using the coefficients given in (Sansottera and Cremonesi, 2011). In order to obtain 

the coefficients, we extract the coefficient value corresponding to each data point from 

the colormap plot in (Sansottera and Cremonesi, 2011). We use Matlab to implement 

the extraction. In Matlab, we first map RGB values to indexes, which preserve the 

relationship between coefficients relative to each other. We then perform calibration 

by scaling the matrix according to the given temperature graph in (Sansottera and 

Cremonesi, 2011). Figure 5-3 shows the cross-interference coefficient matrix A for the 

40-node system in a 3-D plot. For a data center with different layout and heat flow
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characteristics, matrix A differs. The equations to calculate the inlet temperatures 

are independent of the data center layout. Thus, the cooling energy model applies to 

data centers in general.

In order to develop efficient management policies for reducing data center cooling 

energy consumption, we need to consider the specific thermal behavior of the given 

data center and take the differences in recirculation coefficient and exit coefficient of

En
 ̂a,ij is called the recirculation 

coefficient (RC) of node j  and is a measure of the total recirculation effect of that, 

node (Tang et al., 2006). On the other hand, for a node i, the value of (1 —  ̂ai})

is called the exit coefficient (EC) of node i  EC is a measure of the heat at node i s 

outlet returning back to the cooling system without recirculating back to other nodes. 

EC and RC for our system are given in Figure 5-4. As presented in Figure 5-4(a), 

the nodes at the bottom of the racks and at the ends of the aisles have lower EC 

values, which means that they contribute more to the recirculation effect. Moreover, 

according to Figure 5-4(b), the nodes at the top and at the ends of the aisle have 

higher RC values, which means that they are affected or victimized more by the 

recirculated heat. The asymmetry between EC and RC values of right and left end 

of the aisles is due to asymmetries in the heat flow within the data center.

In addition to the data center layout, the processing powers of the data cen

ter nodes and the allocation of jobs also play important roles in the cooling energy 

consumption in the data center. These power values are used in Equation (5.2) to 

calculate the inlet temperatures resulting from different allocation schemes. We per

form node-level allocation in this thesis, which is a reasonable hierarchical level for 

HPC data centers. Once a job is assigned to a node of multiple servers, server and 

core level workload allocation will follow. Assume a given task of size n, which corre

sponds to the total number of nodes a task requires, Xi is an integer variable showing
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whether node i is assigned a job or not and it is either 1 or 0, respectively. Power 

consumption of node i can be expressed with a linear model as follows:

Pi = Pidle "t" X{Putil (5-6)

where Pidie is the node idle power and Puta is the power consumed by a node when 

running a task. We assume fixed node power when running a task is valid for HPC 

data centers. This is because that, even though there are fluctuations in the power, 

it is ignorable in comparison to the total power. We use 1000W for Pi(ue and 2500W 

for Putii. For a data center node that is processing a job, the total processing power is 

3500W. These numbers are in line with the server power values given in (Sansottera 

and Cremonesi, 2011).

We adjust the total node power according to the actual runtime and percentage 

of time spent in communication. During communication intensive phase, power con

sumption will be lower due to the time spent waiting for messages. We assume 2 

different power levels, 3500W for computation phase and 2700W during communica

tion phase. These numbers are in line with the values in (Lively et al., 2011). We 

set the total power of a node as the weighted sum of the computation power and 

communication power. Communication level (C%) or the power levels corresponding 

to computation/communication phases depend on the workload and power charac

teristics of the system. The modeling of communication level provides us the ability 

to evaluate our optimization policy that is applicable to systems with different power 

and communication levels.

After we obtain the node inlet temperatures using Equation (5.2), we need a 

cooling power model to measure the power consumed by the cooling unit at various 

temperatures. This power depends on the efficiency of the CRAC unit. One of the 

most common metrics used for CRAC unit efficiency is the coefficient of performance
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(CoP). CoP is defined as the ratio of the heat removed from the system to the energy 

spent on cooling and has the following formula:

CoP  =  A  (5.7)
* A C

where Pc is the total computing power (sum of the values in P vector) and PAC is the 

cooling power. CoP increases with higher CRAC supply temperature (Tsup). In this 

work, we use the CRAC unit CoP model given by (Moore et al., 2005) as follows:

CoP( Tsup) = 0.0068 Tsup2 + 0.0008 Tsup + 0.458 (5.8)

where Tsup is in Celsius. The upper limit on how much we can increase supply 

temperature (Tsup) depends on the difference between redline temperature {Tred), 

which is the highest allowed temperature at the node inlets, and maximum node inlet 

temperature (Tinmax). In other words, we can use this temperature slack to increase 

the supply temperature and operate at higher CRAC efficiency without violating the 

temperature constraints. A new supply temperature is found by adding this difference 

to Tsup and cooling cost is calculated as follows:

Tsupf — Tsup + Trai — T{nmax (5.9)

PaC =  C oP (Tsupt) (5' 10)

The proposed thermal model provides fast results as it does not require time-

consuming CFD simulations and it is able to capture the effect of recirculation, which

has a significant contribution in high temperatures. The accuracy of the thermal 

model has been verified in prior work by comparison with CFD simulation results 

(Tang et al., 2006).
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5.2.3 Tem perature M odel

As described in Section 5.2.2, the inlet temperatures of data center nodes are sufficient 

for computing the cooling cost. In order to evaluate the reliability of many-core 

systems in HPC data centers, it is necessary to calculate the junction temperature of 

processors. We calculate the junction temperature in two steps using a linear model. 

The first step is to calculate the heat sink temperature as in Equation (5.11).

T h S = T n s ,r e f  +  (T in  ~  T in ,re f)  ' S F  (5.11)

where T h s  is the heat sink temperature, T h s ,re f is the reference heat sink temperature, 

T in is the node inlet temperature and T in,ref  is the reference inlet temperature.

Ths  corresponds to the typical heat sink temperature at reference inlet temper

ature T in,rej- For example, we take T in,ref  as the supply temperature T sup =  15°C 

and Ths,ref = 45°C. This means that when the inlet temperature is 15°C, we observe 

45° C on the heat sink.

S F  is a scaling factor determining the effect of T in deviation from T in,ref  on the 

heat sink temperature. For example, S F  =  0 corresponds to the case for which, heat 

sink temperature stays constant with changing inlet temperature. We take S F  as 0.6 

as suggested in prior work (Walsh et al., 2010).

In the second step, we calculate the server junction temperature 7} as follows:

Tj = THS + P x R j a  (5.12)

where T h s  is the heat sink temperature as described in Equation (5.11). It is also 

called ambient temperature for junction temperature calculation. P is the processor 

power. We assume server power value of 350W which includes the total power for two 

processors, memory, interconnects etc. In order to calculate the junction temperature



74

of a single processor, we use 120W for processor active power. R j a is the junction to 

ambient thermal resistance and is typically 0.1 °C/W  for a high quality heat sink. 

In the next section, we introduce the reliability model of many-core systems in HPC 

data centers which takes the junction temperature of processors as inputs.

5.3 Reliability M odeling for Many-core System s in H PC D ata  
Centers

In this section, we introduce a detailed reliability modeling approach to accurately 

model temperature-induced wear-out failure mechanisms for many-core systems with 

various system topologies. We also present the analysis results of the reliability of a 

real-life multi-chip many-core system by utilizing the reliability modeling approach.

5.3.1 W ear-out Failure M echanism s

In our reliability model, we consider three major intrinsic wear-out failure mecha

nisms for processors: Electromigration (EM), Time Dependent Dielectric Breakdown 

(TDDB), and Negative Bias Temperature Instability (NBTI).

EM  occurs in Al and Cu interconnects due to the momenta exchange between 

current-carrying electrons and host metal atoms. T D D B  is a wear-out mechanism of 

the gate dielectric. Failure occurs when a conductive path is formed through the gate 

oxide to substrate due to electron tunneling current. N B T I has become a critical 

reliability concern in advanced CMOS technology. NBTI typically occurs when the 

PMOS transistor is negatively biased, which results in the positive charges in the gate 

oxide. The positive charges cause an increase in threshold voltage and can lead to the 

wear-out failures (Srinivasan et al., 2005; JEDEC, 2006; Alam et al., 2007). In our 

reliability model, we do not consider thermal cycling failure mechanisms since thermal 

cycles of 140°C  magnitude are required to cause damage to the silicon substrate and 

interconnects (Srinivasan et al., 2003). In our experiments, we observe the maximum
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temperature cycling amplitude as less than 40°C. Moreover, we focus on the silicon- 

level wear-out failure, while the effect of thermal cycling is mostly seen in the package 

and die interface.

The failure rates for these three failure mechanisms can be expressed in the fol

lowing general form:

A =  A0 x e ^ 1 (5.13)

where k is the Boltzmann’s constant which equals to 8.62 x 105. T  is the temperature, 

and A0 is a material-dependent constant.

Ea is the activation energy for the failure mechanism. For Al alloys, we have 

EaEM =  0.7el/ (JEDEC, 2006). For TDDB, we set the activation energy as EaTDDB =  

Q.75eV (JEDEC, 2006). The activation energy for NBTI is represented as EaNBTI x 

1/n, where n  is the measured time exponent. We use EaNBTI =  {).\be.V and n = 0.25, 

which give the product of 0.6eV (JEDEC, 2006; Alam et al., 2007).

In order to determine the constants for \%M, A°DDB, and X°NBTJ, we assume the 

contributions of EM, TDDB, and NBTI are similar to each other at a base temper

ature. We calibrate the constants in each failure rate equation to satisfy a per-core 

mean time to failure (MTTF of 5 years at 60°C  (Ferreira et al., 2011).

5.3.2 Lognormal D istributions for Lifetim e R eliability

The reliability models in some of the prior work assume all failure mechanisms have an 

exponential distribution (Coskun et al., 2009c; Srinivasan et al., 2004a; Coskun et al., 

2006). The exponential distribution indicates a constant failure rate throughout the 

processor’s lifetime. However, in practice, the wear-out failure mechanisms typically 

have a low failure rate at the beginning of the lifetime and the rate grows with the 

age of the components.
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Recent work has shown that lognormal distribution constitutes a more accurate 

model of wear-out failure mechanisms compared to exponential distribution (Srini

vasan et al., 2005; Xiang et al., 2010). The lognormal distribution provides the ability 

to model the dependence of the failure mechanisms on time. The probability density 

function for lognormal distribution is given in Equation (5.14).

f ( t )  =  — (5. 14)

where n  and a are the mean and the standard deviation of the underlying normal 

distribution, respectively. Reliability at time t can be computed by integrating f(t.) 

from 0 to t. In our reliability model, we use a = 0.5 based on experimental data from 

prior work (Srinivasan et al., 2005).

We calculate the reliability of each wear-out failure mechanism using lognormal 

distribution to obtain the reliability of a processor at a certain time. However, since 

there is no closed-form solution for the integration of f ( t ) ,  it is difficult to find an 

explicit solution for the failure rate or reliability.

In order to address this issue, we consider Monte Carlo simulations to calculate 

the processor reliability. We make use of Monte Carlo simulations to combine the 

effects of the individual failure mechanisms and find the reliability of a single core. 

By utilizing Monte Carlo simulations, we first generate a normally-distributed ran

dom number, rnorrnai, with mean 0 and standard deviation of 1. rnormai is obtained 

using two independent uniformly distributed random numbers r\ and r2, as shown 

in Equation (5.15). We then generate a scaled normally-distributed random num

ber rsnarmal with mean ft and standard deviation of a from the normally-distributed 

random number as in Equation (5.16).
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r normal =  sin{2irr{) y J - 2  In (r2) (5.15)

Tsnormal =  ft “I- 1"ncrrmal& (5.16)

After the scaled normal random number is obtained, a random lognormal distri

bution number r iognorma/ representing a random lifetime for each failure mechanism 

can then be generated from the scaled normal random number as in Equation (5.17).

<r, , — orsnormal (£ 11 lognormal — c \ ° ' 1 ■ /

The mean of the normal distribution rsnarmai {ft) and the mean of the lognormal 

distribution riog1wrmai (MTTF) are related to each other as in Equation (5.18).

2
V = In ( M T T F )  (5.18)

To compute the reliability of a processor which is composed of the lognormally 

distributed failure mechanisms, we generate riognormai distributions (i.e., random life

times) for each failure mechanism. We compute r io9norma! by calculating the MTTF 

values using Equation (5.13) for each failure mechanism and n  using Equation (5.18). 

We conduct the experiment for 106 iterations to generate random lifetimes for failure 

mechanisms. At each iteration, the lifetime of the processor is set to the minimum of 

the generated numbers. MTTF of the processor is then calculated by averaging the 

minimums across all the iterations.

In order to convert the MTTF value to reliability, we generate the cumulative 

distribution function (CDF) of lognormal distribution. The reliability over time t, for 

the lognormal distribution is then determined by Equation (5.19), where F(t)  is the
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CDF of lognormal distribution at time t.

R(t) = 1 -  F(t)  (5.19)

5.3.3 System  R eliability M odeling

The modeling of system reliability in most of the prior work only considers series 

system topology (Srinivasan et al., 2004a; Xiang et al., 2010). In a many-core system 

with series topology, the first failure on any unit on the chip causes the entire processor 

to fail. However, in real-life computing systems, we may have different levels of series- 

parallel topologies.

n

Series: R system{t) = J J# i(* )  5̂'20^
i=0

n

P a ra lle l: R system{t) =  1 -  J J (1  -  Ri{t)) (5.21)
i=0

In a series system of n  components, the system fails if any of its components fails.

On the other hand, a parallel system with n components fails if all of its compo

nents fails. Assuming failure rates are statistically independent, the overall system 

reliability of a many-core system containing n cores with series topology can be com

puted as in Equation (5.20), while the overall system reliability of a many-core system 

containing n cores with parallel topology can be computed as in Equation (5.21).

5.3.4 Topology and System  R eliability Analysis

In order to explore the effects of system topology on reliability, we consider an eight- 

core system that has two processors as our target architecture. The layout of the
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target system is illustrated in Figure 5-5 which is based on Intel Clovertown system. 

Each processor in our target system has four cores in two separate sockets. The two 

sockets are located on two chips which are put together in a single package.

For the target system, we investigate its system reliability with four topologies: 

(a) All series — all 8 cores connected in series; (b) Processor-level parallel — cores 

in series within each processor, parallel across processors; (c) Chip-level parallel — 

cores in series within each chip, parallel across chips; and (d) All parallel — all 8 

cores in parallel.

Among the four scenarios, the system with all-parallel topology incurs higher 

design cost as additional hardware is needed to detect runtime core failures and 

initiate the recovery process for continued execution. The OS should also be equipped 

to safely reconfigure the system on failure. The additional design cost would be 

reduced for the system with chip-level parallel topology, because the parallelism is 

only at the chip-level. Processor-level parallelism, as in the system with processor- 

level parallel topology, can be implemented in today’s clusters through using sockets 

that allow replacement of failed processors or using multiple server nodes.

For each scenario, we evaluate the system reliability with two different workload 

allocation strategies: thermal balancing and clustering. In thermal balancing work

System Bus

Figure 5-5: Layout of the Intel Clovertown System (Teng et al., 2009).
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allocation, high-power loads are distributed across the chip (Coskun et al., 2009c; 

Mulas et al., 2008). In clustering workload allocation, power-hungry loads are allo

cated on neighboring cores. In each scenario, cores are assigned high (Th ) or low (TL) 

temperatures.

We demonstrate the system reliability of clustered and balanced modes for each 

topology in Figure 5-6. In clustered mode, cores 0, 1, 2 and 3 have TH and cores 4, 

5, 6 and 7 have TB. In balanced mode, cores 0, 2, 4 and 6 have Th and the rest of 

the cores have Th. However, in balanced mode, heat transfer between adjacent cores 

should be taken into account; thus, we assign TB, the average of TB and Ti,  to all 

cores. This approximation has a few degrees error compared to detailed temperature 

simulations, but is sufficient to demonstrate the trends. We compute the system 

reliability using the reliability model described in Section 5.3. The core MTTF of 5 

years at 60°C corresponds to a reliability value of 0.94.

■clustered 
■balanced j 0.8

0.6 |

(a) All series (b) Processor-level parallel

H=80 L=40 H=80 L=50 H=80L=60 H=80 L=70 H=80 L=40 H=80 L=50 H=80 L=60 H=80 L=70

(c) Chip-level parallel (d) All parallel

Figure 5-6: System reliability for different series-parallel scenarios with 
T h = 80°C and per-core MTTF of 5 years at 60°C.
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In our experiments, high temperature Th is set as 80°C and low temperature Tl is 

swept from 40°C to 70°C. Clustering degrades system reliability for all series scenario 

due to higher core temperatures. However, clustering improves reliability significantly 

for processor-level parallel system and moderately for chip-level parallel system. For 

processor-level parallel case, clustering provides system reliability of 0.999 and 0.995 

for T i  values of 40°C and 50°C, respectively. For T i  of 60°C, it increases the system 

reliability from 0.2 to 0.8. Maximum increase in reliability (from 0.073 to 0.429) is 

seen at TL of 65°C, which corresponds to 4.85X improvement.

We observe that, as the level of parallelism increases, system reliability for both 

clustered and balanced modes gets higher. Therefore, for chip-level parallel case, 

clustering is advantageous only at higher TL values; while for all parallel case, it 

provides almost no improvement. In the rest of our analysis, we focus on processor- 

level parallel systems due to its ease of real-life implementation compared to other 

parallelism scenarios.

Figure 5-7 characterizes the relative reliability improvement of clustering compared 

to thermal balancing for the processor-level parallel system. We see that reliability

10* ..................................................................................................................................................................................................................................

Tu=90°C

T =85 °C
Tu=80°C. - 2 "

Tu=75°C
T. .=70 °C

T =65 °C
Tu=60 °C

205 10 15 25 30 35 4540 50
A T

Figure 5-7: System reliability improvement of clustering over balancing
((7?clustered ~  ^balanced)/ Rbalanced) f°r various T h  , A T  (T//-T/,).
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improvement starts becoming more noticeable for Th values over 75°C. The relative 

improvement of 1 corresponds to doubling the reliability. As A T  increases, reliability 

improvement first reaches a peak value and then drops. This is because for a fixed 

Th value, increasing AT corresponds to lowering Tg, which eventually lowers Tg. 

Therefore, the system reliability for balanced mode increases, lowering the advantage 

of clustered mode.

Figure 5-8 compares the system reliability of clustering and balancing for initial 

per-core MTTF values of 3, 5 and 7 years at 60°C. As the MTTF value increases, 

reliability difference between clustering and balancing becomes smaller. This is ex

pected since for example, going from MTTF of 5 years to 7 years, reliability of a core 

at 60°C increases from 0.9433 to 0.988. For the MTTF of 5 years, at TH of 75°C, 

clustering improves reliability by 100%, while at 80°C the improvement is 4.85X. At 

lower MTTF values such as 3, clustering alone is not sufficient to achieve acceptable 

reliability levels, as the core reliability at 60°C drops to 0.712. In such cases, other 

reliability optimization techniques should be applied as well.

^ clu stered  TH=80, AT=15 

0.8 ^balanced TH=80, AT=15 

=  glclustered Tu=75, AT=15
S3 M
.9? 0.6 Hbalanced T,=75, AT=15
t t \  ■  “

0.2

°  H=80 L=65 H=75 L=60 
MTTF=3

H=80 L=65 H=75 L=60 
MTTF=5

H=80 L=65 H=75 L=60 
MTTF=7

F ig u r e  5-8: System reliability for a processor-level parallel system with 
initial per-core MTTF values of 3, 5 and 7 years.
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5.4 Summary

This chapter presents the performance model, cooling energy model, and system- 

level reliability model for many-core systems in HPC data centers. In comparison 

to in many-core single-chip processors, high temperatures in data centers not only 

cause reliability degradation, but also increase the cooling energy consumption. On 

the other hand, the communication cost of applications has a significant impact on 

system performance.

In order to evaluate the communication cost of communication-intensive workloads 

running in HPC data centers, we have presented a performance model for mesh- 

connected parallel systems. We also have introduced a thermal model to evaluate the 

inlet temperature and cooling energy cost of HPC data centers.

To quantify system reliability, we have used a detailed reliability modeling ap

proach to accurately model temperature-induced wear-out failure mechanisms under 

various system topologies. Utilizing the system-level reliability model, we have ana

lyzed the reliability of a real-life multi-chip many-core system. Our analysis quantifies 

the tradeoffs between clustering higher power jobs and thermal balancing at various 

operating temperatures. We have shown that clustering can improve system relia

bility by up to 4.85X for systems with a processor-level parallel topology and 80° C 

peak temperature.

In the next chapter, we propose a topology-aware reliability optimization policy 

that leverages the analysis from our system-level reliability model. Utilizing the 

evaluation results from our performance and cooling energy model, we also propose 

a job allocation methodology to jointly optimize the communication cost of HPC 

applications and the cooling energy in a data center.
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Chapter 6

Runtim e M anagem ent of M any-core 
System s in D ata Centers

6.1 Overview

As high performance computing moves towards exascale, performance, cooling cost 

and reliability have become serious concerns of many-core systems in HPC data cen

ters. In addition to the modeling techniques as we discussed in Chapter 5, it is highly 

desirable to have dynamic management strategies that can effectively optimize per

formance, cooling energy, and system-level reliability of many-core systems in HPC 

data centers.

In the previous chapter, we have shown that clustering provides considerable re

liability improvements in processor-level parallel and chip-level parallel systems com

pared to thermal balancing. Motivated by this analysis, we propose a topology-aware 

reliability optimization policy, Globally Clustering Locally Balancing (GCLB), where 

global refers to decisions across parallel nodes, and local refers to allocation decisions 

among a set of series nodes. We focus on the processor-level parallel scenario, as it is 

commonly employed in real-life multi-chip many-core systems.

Our topology-aware job allocation policy targets systems with medium to high 

utilization (e.g., as in high-performance computing clusters). We design low-cost 

predictors to estimate application power and chip peak temperature during allocation. 

Our policy adapts to workload changes while respecting thermal constraints. We
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provide an experimental validation using a large set of workload mixes representing 

different utilization levels and CPU usage profiles. Our policy improves the system 

reliability by up to 123.3% compared to temperature balancing policies. We also 

demonstrate the scalability of the proposed policy to larger systems.

In addition to reliability, performance and cooling costs are also critical aspects 

in data center management. Nearly half of the energy in the computing clusters 

today is consumed by the cooling infrastructure. It is possible to reduce the cooling 

cost by allowing the data center temperatures to rise; however, component reliability 

constraints impose thermal thresholds as failure rates are exponentially dependent 

on the processor temperatures. Data center performance is limited by highly parallel 

scientific, financial, or other applications that run on multiple nodes for long durations 

in the range of minutes, hours or days. The threads of these applications communicate 

with each other through communication infrastructures such as the message passing 

interface (MPI). The running time of a communication-intensive application is highly 

dependent on the location of the individual computing units that are communicating 

with each other.

We observe that existing algorithms for job allocation in HPC data centers ad

dress cooling efficiency and performance separately. How to optimize the performance 

and cooling energy tradeoffs achieved by these policies is currently an open question. 

In this chapter, we also propose a policy that reduces both cooling power and com

munication latency in an HPC data center. Experimental results demonstrate that 

cooling-aware policies alone do not minimize overall energy if the job allocation results 

in large communication overheads. Our joint optimization policy minimizes cooling 

cost along with the communication time, providing better performance-energy trade

offs in HPC data centers.
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6.2 Topology-Aware Reliability Optimization

The main idea of the Globally Clustering Locally Balancing (GCLB)  algorithm is 

globally clustering high-power applications among parallel many-core processors and 

performing thermal balancing locally within a processor. This is because clustering 

across parallel nodes improves reliability; whereas for a set of series components, bal

ancing results in higher reliability. We present a flow chart illustrating the GCLB 

optimization policy as in Figure 6*1. The GCLB policy periodically polls the per

formance counters and predicts the power consumption of each application using the 

performance counter data. We assign the jobs to cores according to their predicted 

power following the GCLB algorithm.

As shown in Figure 6-1, we check new job arrivals at every 10ms, which is the 

the typical scheduler tick in today’s operating systems. We select a larger interval for 

GCLB, i.e., 50ms, to limit the performance impact of the policy. At 10ms intervals, we 

make intermediate heuristic decisions for job allocation. At 50ms intervals, the policy 

re-arranges the load across the processors if needed by migrating applications. Prior 

work has reported that cold-start overhead dominates the migration cost for SPEC

If thermal constraint is considered

Piedfct Tm  fln each proccMor

Adgmtcflmfcrfag on tbe processors

Globally duster high 
power jobs together and 
low power Jobs together

Collect performance statistics and 
estimate power consnmption for each job

Locally allocate jobs to cores 
following thermal balancing

(eg,fcrjobswaiPl>f2>P3>N 
on a 4-core psocesmr)

Figure 6-1: A flow chart for illustrating the G CLB  reliability optimization 
policy for processor-level parallel systems.
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benchmarks, and the total migration overhead is less than 1ms (Coskun et ah, 2009c). 

Assuming a similar overhead in our system, an interval of 50ms causes maximum 2% 

performance cost.

We assign newly arriving jobs to the idle cores on the system at every 10ms. In 

order to cluster higher power loads, we first assign new jobs to processors with a higher 

average power. If there is a thermal constraint, we predict the maximum processor 

temperature for the processor running the new job. If the maximum temperature 

is exceeded, we assign the new job to the processor with the next highest average 

power. At every 50ms, we apply the GCLB policy as follows: assuming the system 

has m  cores, I parallel processors, and there are n jobs to be allocated (we assume 

n  <  m), we first estimate the power consumption for each job on the system. Then, 

we sort the power values for all the jobs. We group the sorted jobs into I groups: jobs 

with the highest power values are assigned to the first processor, the group with the 

second largest power values in the queue are assigned to the second processor, etc., 

until all the jobs are allocated.

After the jobs are clustered across parallel processors, within each processor, we 

locally balance the temperature across the series cores. The balancing method is based 

on thermal balancing policies in prior work (Coskun et al., 2009c), where high power 

jobs are assigned to expected cool locations on the chip, such as corner or side cores. 

Cooler jobs run in the central area, which is generally hotter. Figure 6-2 demonstrates

Clustering

Balancing

Figure 6-2: An illustration of the clustering and balancing job allocations 
on the target system under 75% utilization. P  represents power consump
tion, and P I > P2 > ... > P 6.
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the global clustering and balancing policies. Thermal balancing is applied to each 

processor locally.

In order to estimate the power consumption of each job, we collect performance 

statistics. We track instructions per cycle (IPC), number of floating point instruc

tions, and number of integer instructions, as these metrics are strongly correlated with 

power consumption (Li and John, 2003). We collect the performance data using a 

simulator in our evaluation, while in a real system the statistics are collected through 

performance counters. We build a linear equation of the three performance counters 

using regression, and predict power consumption based on the equation. Experiments 

with 17 SPEC benchmarks show 4% prediction error using this method. Performance 

impact of power prediction is negligible, since computing a simple equation has very 

low computational cost.

Runtime temperature prediction techniques have been proposed in recently work 

(Ayoub and Rosing, 2009). In our optimization strategy, we choose a simple tem

perature prediction method using a linear model as we solely want to estimate the 

maximum temperature on a processor. For inputs to the predictor, we use power esti

mates for each core and absolute power differences between adjacent cores to take the 

heat sharing and core locations into account. We collect 100 sets of simulation results 

from the SPEC 2006 workloads, and validate the predictor against HotSpot simula

tions. Our peak temperature prediction results in maximum 8% error in comparison 

to HotSpot simulation results, with less than 2°C error for most cases. For example, 

for processor 0 in Figure 5-5, we choose P0, P I , P 2 , P3, JP0 — P l |,  |P 1 — P 2 |, and 

|P2 — P3| as the inputs to a linear regression fit. The reason for these choices is that 

the peak core temperature on a many-core processor does not only depend on the 

power consumption of the cores, but also depends on the power differential of the 

adjacent cores.
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GCLB algorithm can work with temperature constraints using the thermal pre

dictor. This is important as clustering high-power workloads may result in high peak 

temperatures on a processor. In addition to critical thermal thresholds determined 

by the manufacturer, thermal constraints could be imposed by user-defined target 

per-core MTTF values or by cooling optimization policies.

During allocation, if the thermal constraints are not satisfied, we adjust job allo

cation by swapping the hottest jobs across processors and locally balance temperature 

after swapping. This process is repeated (a job moved once is not moved again) until 

the thermal constraint is met. In our algorithm, we assume we can always find a 

schedule that meets thermal constraints, which is a reasonable assumption for most 

commercial systems.

It is also possible to integrate the proposed GCLB policy with DVFS policies. 

Integration with DVFS can provide energy savings as well as fine tuning of the op

erating conditions to meet temperature or performance constraints. Hybrid policies 

integrating various DVFS and job allocation strategies have been designed in prior 

work (Coskun et al., 2009c). While cooling is mostly designed with large safety mar

gins in commercial systems, energy-efficient cooling methods are likely to leverage 

temperature constraints lower than the absolute critical levels.

6.2.1 Experim ental M ethodology

We model the target system for evaluating the system reliability based on the core 

microarchitecture of Intel Clovertown. In order to evaluate the performance of our 

target system, we use M5 (Binkert et ah, 2006) to build the performance simulation 

infrastructure. We use the system-call emulation mode in M5 with X86 instruction 

set architecture (ISA). We fast-forward each benchmark for 1 billion instructions 

and then execute with the detailed out-of-order CPUs for 100 million instructions to 

collect the detailed performance statistics.
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Table 6.1: Intel Clovertown core architecture parameters.

Technology 
C P U  Clock 
Issue W idth  
Functional U nits

Physical Regs 
RAS /  ROB size 
Load /S to re  Queue

65 nm 
2.66 GHz 
4-way out-of-order 
3/2 In t/F P  ALU 
1/1 In t/F P  Mult 
128 Int, 128 FP 
16 /96 entries 
32 /  20 entries

LI I/D C ache  
L2 Cache(s)

32 KB, 8-way, 64B-block 
4 MB, 16-way, 64B-block

The architectural parameters for cores and caches of our target system are listed 

in Table 6.1. These parameters are used for the target system configuration in our 

architecture level performance and power simulations.

In order to compose our workloads, we select 17 applications from the SPEC 

2006 benchmark suite. Among the 17 SPEC benchmarks, 10 applications are integer 

(INT) benchmarks (astar, bzip2, gcc, gobmk, h264ref, hmmer, libquantum, mcf, om- 

netpp, specrandJnt) and 7 applications are floating point (FP) benchmarks (bwaves, 

cactus ADM, dealll, GemsFDTD, Ibm, namd, specrandjp).

We further classify these benchmarks according to their performance and memory 

boundedness. They are named INT-Hmem, INT-Lmem, INT-HIPC, INT-LIPC, FP- 

Hmem, FP-Lmem, FP-HIPC, FP-LIPC, and Mixed, where Hmern or Lmem  means 

workloads with high or low memory access rates, HIPC  or LIPC  means workloads with 

high or low IPC. The workload is classified based on the instructions per nano-second 

(IPnS) and memory accesses per second (MemAcc) form the performance simulation. 

This classification is because that IPC is a common performance metric for many-core 

processors and MemAcc is a metric for illustrating the behavior of memory bounded
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Table 6.2: Workload characteristics.

Workload Benchmarks

INT-Hmem-1

FP-Hmem-1

INT-LIPC-1

FP-LIPC-1

INT-Hmem-2

FP-Hmem-2

INT-LIPC-2

FP-LIPC-2

mcf, mcf, bzip2 , mcf

lbm, bwaves, lbm, lbm

mcf, astar, mcf, bzip2 
*

lbm, bwaves, lbm, cactusADM 

bzip2 , hmmer, mcf, libquantum 

lbm, bwaves, namd, cactusADM 

mcf, gcc, bzips, libquantum 

lbm, cactusADM, bwaves, lbm

Mixed_l

Mixed_2

mcf, omnetpp, lbm, dealll

gcc, gobmk, GemsFDTD, cactusADM

INT-Lmem-1

FP-Lmem-1

INT-HIPC-1

FP-HIPC-1

INT-Lmem-2

FP-Lmem-2

INT-HIPC-2

FP-HIPC-2

astar, specrandJnt, h264ref, specrandJnt 

specrand_fp, dealll, namd, specrandJp 

specrandJnt, omnetpp, omnetpp, h264ref 

specrandJp, dealll, dealll, namd 

specrandJnt, specrandJnt, astar, specrandJnt 

specrandJp, specrandJp, dealll, specrandJp 

omnetpp, specrandJnt, omnetpp, omnetpp 

dealll, dealll, dealll, specrandJp

benchmarks. Table 6.2 presents the classifications of our workloads.

We use McPAT 0.7 (Li et al., 2009) for 65nm process to obtain the runtime 

dynamic power of the cores. We set Vd(i to 1.1V and operating frequency to 2.66GHz. 

The L2 cache (4 MB) power is calculated using Cacti 5.3 (Thoziyoor et al., 2008) as 

5.06W. We calibrate the McPAT runtime dynamic core power using the published 

power for Intel Xeon Processor X5355. At 343K, we assume the leakage power for 

the cores is 35% of the total core power. We also model the temperature impact on 

leakage power using an exponential formula (Srinivasan et al., 2004a).
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Table 6.3: Dimensions of the target system.

D i m e n s i o n s Length Width Area

Chip 

Core 

L2 Cache

19.07mm 

4mm 

6 m m

15mm 

9mm 

8 m m

286mm2

36mm2

36mm2

We run HotSpot 5.0 (Skadron et al., 2003) for thermal simulations. We set the 

chip and package parameters using the default configuration in HotSpot to represent 

efficient packages in high-end systems. All thermal simulations use the HotSpot' grid 

model for higher accuracy and are initialized with the steady-state temperatures. 

The chip and core areas are obtained from the published data for Intel Clovertown 

systems. The L2 cache area is estimated by using Cacti 5.3 (Thoziyoor et al., 2008). 

The detailed dimension for each component that we used in the HotSpot simulations 

are listed in Table 6.3.

6.2.2 Evaluation R esults

We evaluate GCLB on the target Intel Clovertown system for three different workload 

utilization scenarios: high utilization, medium utilization, and low utilization, and 

use 75%, 50%, 25% workload utilizations as examples to represent each scenario, 

respectively. Figure 6-2 compares the clustering and balancing allocation policies at 

75% utilization. System reliability of the clustering and balancing policies for all 

the workloads running on the target system with 75% workload utilization is shown 

in Figure 6-3. We observe that the proposed GCLB policy provides up to 123.3% 

improvement in system reliability compared to the thermal balancing policy.

Among all the workloads, the H IP C  and Lm em  applications have higher system 

reliability improvement. This is because the H IP C  and Lm em  applications have 

higher power densities causing higher temperatures. Local thermal balancing has
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Figure 6-3: System reliability with GCLB and thermal balancing al
location policies for the target system under 75% utilization.

up to 27.2% reliability improvement compared to not balancing allocation within a 

processor. As local balancing always outperforms locally imbalanced scenarios, we do 

not report results for locally imbalanced cases in the rest of the results.

The system reliability for the clustering and balancing allocation policies on the 

target system with 50% workload utilization is presented in Figure 6-4. This medium 

utilization level is representative of the workload utilization in data centers. The

■ clustering ■ balancing

7  0.85 
ce

*  0-95

0.8

1

Figure 6-4: System reliability with GCLB and thermal balancing al
location policies for the target system under 50% utilization.
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job allocations for the 50% workload utilization is similar to the illustration shown 

in Figure 6-2, while the P5 and P 6 change to idle cores. We see that with 50% 

workload utilization, we achieve up to 14.3% improvement in the system reliability in 

comparison to thermal balancing policy. We also conduct the same analysis on the 

target system with 25% workload utilization. The low workload utilization scenario 

happens when data centers run fewer jobs (e.g., at night). In this case, clustering and 

balancing achieve similar reliability.

From our experimental results, we observe that when GCLB is applied with

out considering thermal constraints, peak temperature at 75% utilization is between 

63.8°C and 76.33°C'. Figure 6-5 illustrates the system reliability with GCLB opti

mization policy compared to the thermal balancing policy at 75% utilization, using 

a thermal constraint of 75°C. We notice that the reliability improvement of GCLB 

decreases for some workloads, such as F P .H IP C . This is because GCLB moves 

some of the higher power jobs to lower power processors to meet the constraint, and 

becomes more similar to balancing.

We also explore the GCLB policy for dynamically changing workloads. We gen-

■ Clustering ■ Balancing

F ig u re  6-5: System reliability for GCLB optimization policy compared 
to thermal balancing for systems with 75% utilization, considering a 
thermal constraint of 75°C.
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Figure 6-6: Temporal workload utilization for the target system.

erate a random workload utilization scheme which changes every 10ms with a total

system is illustrated in Figure 6 -6 . The average workload utilization is 68%. The 

jobs running on the system are randomly selected among the 17 SPEC benchmarks. 

Figure 6-7 shows that allocating jobs according to GCLB policy improves reliabil

ity by 27.3% on average compared to random workload allocation. Figure 6-7 also

■ random job allocation ■ apply GCLB policy every 50ms * apply GCLB policy every 10ms

simulation time of one second. The temporal workload utilization for the target

2 C l

r
100 200 300 400 500 600 700 800 900 1000

Time (ms)

Figure 6-7: System reliability of GCLB compared to random job al
location for dynamically changing workload utilization.
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F ig u re  6 -8 : Exploration of 16-core system reliability with GCLB and 
thermal balancing allocation policies under 75% utilization.

shows that, if the GCLB optimization policy is applied every 10ms without consider

ing thread migration overhead, the average system reliability improvement is 32.9%. 

However, as discussed in Section 6.2, migrating threads every 10ms would cost up 

to 10% system performance overhead. Our reliability optimization policy achieves 

comparable reliability improvement with less than 2% performance cost.

In order to evaluate the scalability of the GCLB optimization policy, we extend 

our analysis to a 16-core system with 4 parallel processors and 4 cores (in series) on 

each processor. System reliability for the 16-core system running GCLB compared to 

thermal balancing is presented in Figure 6 -8 . We observe that GCLB policy provides 

system reliability of close to 1 for all the benchmarks, and improves reliability by up 

to 101.7% in comparison to thermal balancing. This is because scaling to a higher 

number of processors provides increased parallelism and higher degree of freedom 

for more efficient task scheduling. For example, for the 16-core system with 75% 

utilization, using “clustering” assigns all the “idle” cores in one processor, which 

increases system reliability.



97

6.3 Joint Performance and Cooling Cost Optim ization for 
D ata Centers

In this section, we introduce a job allocation methodology to jointly optimize the 

communication cost of HPC applications and the cooling energy in a data center. We 

first formulate and solve the cooling energy optimization and communication cost op

timization problems individually. For cooling cost minimization, we use the Minimize 

Peak Inlet Temperature (MPIT) algorithm (Tang et al., 2008); for communication 

cost minimization, we deploy the MC1X1 algorithm (Bender et al., 2008). We then 

propose a job allocation algorithm, which takes both cooling efficiency and communi

cation latency into consideration. We also discuss how reliability constraints can be 

included in the job allocation optimization.

6.3.1 Performance-aware Job A llocation

The objective of performance-aware (i.e., communication cost-aware) job allocation 

is to assign a job to a set of available nodes on a target system such that the average 

number of communication hops between the nodes is minimized. The target system in 

this thesis is a mesh-connected HPC cluster, as discussed in Section 5.2. We formulate 

the performance-aware job allocation problem in Equation (6.1).

minimize C C j o b ( X job) 
Xjob

AT (6.1)
subject to Xi = n Xi € {0 , 1}

i=  1

where 7V=40 is the number of total nodes within the data center and n is the 

total number of nodes required by a job. X j^  is a vector described as Xjob = 

{ x i ,x 2, ...,xjv}, where Xi (i =  l , . . . , i V)  represents whether node i is assigned the 

current job or not. It shows the selected nodes to allocate the current job, so n of
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its elements are 1 and the rest is 0 . CCjob represents the communication cost of a

where n is the number of nodes a job requires and (x,, Xj) ( i , j  =  1, . . . ,  m) stands 

for a pair of source and destination nodes that a message is passing through.

We use the MC1X1 algorithm (Bender et al., 2008) to minimize the communication 

cost, as it aims at minimizing the pairwise LI distance across the communication 

nodes and provides acceptable results for all-to-all communication pattern. It is 

also easily adaptable to the systems that do not require user information about the 

request processors in a particular shape, such as the Cplant system at Sandia National 

Laboratory (Leung et al., 2002).

The MC1X1 allocation algorithm tries to confine the allocated jobs into the small

est possible area. A rectangular-shaped area, in which all the assigned nodes are 

ideally confined, is called a shell. The node located at the center of the shell is called 

the shell center. For an incoming job, MC1X1 traverses the data center layout and 

finds shells of different centers and sizes among the available (idle) nodes. During 

this traversal, MC1X1 records a score for each node, where the score is the size of the 

smallest possible shell centered at that node. The decision of which node to select 

as a shell center depends on its score. A lower score indicates a smaller shell area, 

leading to a more compact allocation with lower communication cost.

job running on the target system as introduced in Section 5.2.1. Based on Equation 

(5.1), CCjobiXjob) can be formulated as:

C C job  ( X j  ob )
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6.3.2 Cooling-aware Job A llocation Policy

The optimization of cooling energy cost is achieved when the maximum inlet tem

perature {Tin} in the data center is minimized (Tang et al., 2008). Therefore, a 

cooling-aware allocation policy assigns jobs to nodes so that the resulting rnax{Tm} 

will be minimum. We use the algorithm named Minimize Peak Inlet Temperature 

(MPIT) algorithm that is proposed in prior work (Tang et al., 2008). We formulate 

the optimization problem of allocating a job to an idle data center with minimal 

cooling energy as follows:

minimize m ax{Tin(X dcenter)}
X d c e n t e r

n  (6.3)
subject to E  — Tldcenter £ {0.1}

i = l

where Adcenter is a vector described as X dcenter =  ( x j , x 2, £ / v } ,  where r , (i — 

1 , . . . ,  N )  represents whether node i is assigned any job or not. Vector Xdcenter shows

all of the busy nodes in the data center corresponding to currently and previously

allocated jobs. ndcenter is the sum of the sizes of all jobs running on the data center. 

Rest of the parameters are defined the same as in Equation (6.1). Tin represents the 

inlet temperature of a system which is defined in Equation (6.4).

Tin{Xdcenter) =  TaUp D  • Pidle “6 T) • Xdcenter ' Putil (6-4)

where Tsup is the CRAC unit supply temperature, D  is heat distribution matrix. 

Pidie and Putu are the idle and dynamic power for the nodes. Note that, in order to 

allocate a second job to a busy data center, we use additional constraints to represent 

the currently busy nodes. For example, if nodes 1, 2 and 3 are busy at the time of 

allocation, we add the constraints Xi=l ,  x2= l ,  £3=1  to solve the problem.

As described in Section 5.2.2, cooling cost is highly dependent on the CRAC supply
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temperature Tsup. If we can increase Tsup as much as possible without causing the 

nodes to exceed the redline temperature, we can save power. Therefore, the maximum 

allowed Tsup increase is limited by the maximum inlet temperature max{Tm}.

We implement the optimization problem in Matlab. The fminimax function in 

Matlab returns a real number solution xreal. We use the discretization algorithm 

suggested in (Tang et al., 2008) to convert it to the nearest integer solution x ini 

which obeys the constraints. This algorithm was shown in (Tang et al., 2008) to 

give the highest power savings among various other approaches. x reai is the optimum 

solution to the defined linear programming problem and x int is an integer solution 

close to the optimum. For various allocations, we compare the max{Tin} of both real 

and integer solutions and they are the same to the second decimal point.

6.3.3 Joint O ptim ization Policy for D ata Center Job A llocation

Cooling-aware and performance-aware policies optimize cooling power and commu

nication latency independently, which means that the resulting allocations may not 

be successful when both objectives are considered simultaneously. Cooling-aware job 

allocation is mostly affected by the layout of the data center as the recirculation effect 

changes depending on the location of the active nodes. In most cases, cooling-aware 

policy allocates jobs to the nodes located far from each other. For example, for a job 

of size 4, cooling-efficient allocation distributes the job equally among the data center 

rows in order to minimize the peak inlet temperature. This causes very high com

munication latency for cooling-aware policy. On the other hand, performance-aware 

MC1X1 policy confines the nodes of each allocated job into the smallest possible 

shell. It follows a regular pattern to allocate the jobs in the data center and ar

bitrarily breaks ties. It does not care about whether an allocation results in high 

temperature as long as the allocated nodes are within the smallest shell possible, 

potentially causing inefficient cooling.
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In order to jointly optimize the cooling energy cost and communication cost of 

applications running in an HPC data center, we design a heuristic algorithm combin

ing both cooling-aware and performance-aware policies. Our algorithm first considers 

cooling-aware job allocation solution, and then uses the resulting nodes as candidates 

for shell centers to apply the performance-aware job allocation policy. Then, we break 

the ties of possible performance-aware job allocations by selecting the allocation with 

minimal peak inlet temperature.

Our algorithm first checks which nodes the cooling-aware policy would allocate 

the job to when a job arrives. These nodes are called as possible shell centers. Then, 

we feed the locations of these possible shell centers to the MC1X1 algorithm to mini

mize communication cost. We modify the MC1X1 algorithm to make it open a shell 

centered at a given input node (possible shell center) accordingly. In MC1X 1, opening 

a shell centered at a node refers to finding the smallest square-shaped area to include 

all nodes of a job. Starting from the smallest shell (1 square unit), the number of 

available nodes in the shell are checked. If the size of the job is larger than the 

available nodes, shell is expanded.

Our algorithm examines whether there are multiple allocation options within the 

shell area when the available node count is met. For example, assume that we have 

a shell with 9 nodes, 3 of whom are busy, and we will assign a job of size 4 to the 

rest. In this case, we choose the 4 nodes with minimum communication cost possible. 

The resulting selection is the possible allocation corresponding to that possible shell 

center. For each possible shell center, revised MC1X1 algorithm gives an allocation 

vector, possible-X-dcenter. Among those vectors, we select the most cooling efficient 

one (i.e., resulting in smallest peak inlet temperature). For example, assume that for 

a job i of size 3, cooling-aware policy assigns the job to nodes 1, 4, and 5. We open 

shells centered at those nodes and select the one with the smallest inlet temperature.
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while(job queue  ~= em pty)
do
n= jobsize (jobno) 
[possible_sc]=MPIT(n, X_dcenter, P) 
for i € {all possible_sc}

possible_X_dcenter(i)=MClXl_revised(possible_sc(i), X_dcenter) 
temp(i)=find_max_Tin (possible_X_dcenter(i)) 
possible_XJob(i)= possible_X_dcenter{i) - X_dcenter 
CCJob(i)=find_CC_job(possible_XJob(i))

end
sort (temp) 
forj€{min(tem p)}

selected=find(possible_X_dcenter with min(CCJob(j)))
end
X_dcenter=selected 
update (P) 
record (Tin_max, CCJob, P_ac)
jobno++
end

F igu re  6-9: Joint optimization algorithm.

For the cases where two or more allocations result in the same inlet temperature but 

different communication costs, we find and choose the job allocation that results in 

the smallest communication cost.

The flow of the joint optimization algorithm is illustrated in Figure 6-9. MPIT 

and MClXl_revised are the cooling-aware and revised performance-aware algorithms, 

respectively. X.dcenter and P  are the vectors holding the current busy nodes informa

tion and the power values. Possible.sc is the possible shell center and CC.job stands 

for the job communication cost. Possible.X.dcenter is the vector of busy nodes that 

will result from the possible allocation. Possible.X.job vector shows which nodes will
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be assigned to the job. Note that the joint policy is scalable to larger data centers. 

The only parameters to change for a different data center are the cross-interference 

coefficient matrix and the power values for the nodes.

We also consider our policy with reliability constraint. If the user or the admin

istrator wants to add a minimum MTTF constraint to the joint policy, we check 

what the resulting MTTF value for each processor would be before every allocation 

decision. To compute these MTTF estimates, we first compute the resulting inlet 

temperatures for that allocation using Equation (5.2). Next we compute junction 

temperatures as described in Section 5.2.3. Finally, we compute processor MTTF as 

explained in Section 5.3. If the current allocation is expected to result in an MTTF 

value lower than the given threshold for any processor, we stall the allocation and 

wait for some of the existing jobs to finish.

6.3.4 Experim ental R esults

In this section, we present the experimental results for the three different allocation 

strategies: cooling-aware, performance-aware and our joint optimization technique. 

We first demonstrate the job allocation decision of each strategy on a single row of 

the data center. We then experiment with multiple-row allocation for our target 

data center with 40 nodes. We also compare our joint allocation policy against the 

cooling-aware and performance-aware policies under dynamically changing workload.

Single-row Job A llocation

In the single-row job allocation test case, we assume four jobs to be allocated sequen

tially. The jobs have sizes of 4,5,6 and 3 nodes, respectively. Figure 6-10 illustrates 

how each policy assigns the jobs to the nodes. Red and blue colors respectively rep

resent busy and free nodes. The numbers in the circles show which jobs are running 

on the nodes. Cooling-aware policy assigns jobs to the nodes located at the right side
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Figure 6-10: Allocation scheme for the three policies.

of the data center and avoids the nodes that are high recirculation contributors. This 

result is in parallel with previous the characteristics of our data center as shown in 

Figure 5-4.

Communication-aware policy, on the other hand, tries to confine the allocated 

nodes to the smallest area possible. Therefore, the resulting allocation for each job 

is more compact. Our joint allocation policy finds the cooling-efficient areas and 

assigns the jobs to the nodes as close to each other as possible without causing notable 

temperature increases. Joint policy does not always result in the same minimum inlet 

temperature as the cooling-aware policy, but follows closely.

Table 6.4 shows the percentage of active nodes, maximum inlet temperatures 

(■m axT ) in °C, individual job communication cost (CC), and cooling power (P) in

Table 6.4: Simulation results for the single-row job allocation.

Policy Perf-aware Cooling-aware Joint-opt

Job U til CC m a x T P CC m a x T P CC m a x T P
J o b l 20% 4.0 25.0 9.4 4.0 19.9 6.3 4.0 19.9 6.3
Job2 45% 6.4 25.1 13.4 9.6 20.5 9.4 8.0 20.3 9.2
Job3 75% 8.3 32.1 35.8 13.3 23.3 15.6 14.7 23.3 15.6
Job4 90% 2.7 32.1 40.4 5.3 28.1 27.0 2.7 28.5 28.0



105

kW  for all the three allocation schemes. As we can see in Table 6.4, performance- 

aware policy gives the lowest job communication cost (CC) for each job; however, 

it reaches the high inlet temperatures very fast. Cooling-aware policy keeps the 

temperatures low, but results in very high communication latency for all the jobs. As 

expected, our joint policy’s performance is in between the two policies.

M ultiple-row Job A llocation

In order to evaluate the job allocations across the multiple rows of the data center, 

we use a job sequence that is similar to the sequence in the previous experiment. 

Figure 6-11 shows the percentage of the active nodes and the size of each job in 

terms of number of nodes required. Figure 6-12 shows the cooling power over time 

for the three allocation policies. Joint policy follows the cooling-aware policy closely 

and all policies converge at the 100% utilization point. However, performance-aware 

allocation reaches high cooling power values much faster than the joint policy.
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Figure 6-11: Job sizes and percentage of active nodes for multiple-row 
allocation.
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F ig u re  6-12: Cooling power for multiple-row allocation.

In Figure 6-13, we present the communication cost of each job and observe that 

cooling-aware assignment results in high communication cost. The reason is that the 

cooling-aware assignment distributes the jobs across different rows to minimize inlet
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F ig u re  6-13: Individual job communication costs for multiple-row al
location.
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temperature. As a result, communication cost is significantly affected by the distance 

between the communicating nodes. Joint policy resolves this issue by sacrificing some 

cooling efficiency. It assigns the job within a row in the most cooling-efficient way 

possible, and alternates the rows as more jobs arrive. However, if the number of 

available nodes in a row is not sufficient to service an incoming job, joint allocation 

also results in high communication cost. An example is seen for jobs 8 and 9 in 

Figure 6-13, where the jobs are allocated across the two rows.

We observe that our joint policy reduces the average cooling power by 30.8% 

compared to the performance-aware policy while increasing the power by only 0.5% 

compared to the cooling-aware policy. On the other hand, in comparison to the 

cooling-aware policy resulting in 2.45times larger average communication cost com

pared to the performance-aware policy, our joint policy causes only 0.69times larger 

cost. This is expected as our joint policy sacrifices some performance for improving 

cooling efficiency, and vice versa. Note that our results for the single and multiple-row 

allocation do not consider the change in application execution time as the commu

nication cost changes. In other words, larger communication costs may change the 

power-performance characteristics of jobs, hence, also affect the cooling power. Next, 

we investigate such interactions between performance and cooling power in detail.

D ynam ic Jo b  A llocation

We investigate a dynamically changing workload scenario and compare our joint pol

icy with the baseline policies. We generate a job queue with arrival time following an 

exponential distribution, which has been widely used in data center workload models 

(Hacker and Mahadik, 2011). We use an arrival rate of 15jobs/hour. In this exper

iment, we update the data center status as some of the jobs finish executing. We 

adjust the power and runtime of the jobs according to the communication latency 

to have a  realistic model. The allocation is based on a first-come-first-serve policy.
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When there are no available nodes, we wait for other jobs to finish. We simulate a 

total time of 4hours and use the last 3hours of the simulation in which 41jobs arrive. 

We record the maximum inlet temperature at each time step and cooling cost for each
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F ig u re  6-14: Percentage of the active nodes and the cooling power 
traces for dynamic allocation.
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job. At each time step, the current available node list, power values of active nodes 

and the finishing time of the jobs are updated according to the model in Section 5.2.2. 

We set the communication level for all the applications, C%, as 20%.

The percentage of active nodes over time and the cooling power for all three 

allocation policies are illustrated in Figure 6-14. An important observation is that, in 

the dynamic case, the active node percentage is higher for the cooling-aware policy. 

This is because cooling-aware allocation results in high communication latency, which 

means that C% part of the application is running slower and thus results in longer 

runtime. Therefore, not only the nodes dissipate power for longer time, but also the 

next job is allocated in a less efficient way due to more limited allocation freedom.

On the other hand, joint optimization policy manages to overcome this problem 

by following a pattern similar to the M ClXl algorithm. For example, during the 

time between the black dashed lines (70-90minutes), cooling-aware case has almost 

100% of its nodes active, while for performance-aware and joint allocation cases, a job 

finishes after 75minutes and some nodes are freed. This performance effect, translates 

into changes in the cooling cost, as shown in the bottom plot in Figure 6-14. Cooling 

power for our joint policy closely follows the cooling-aware policy from time 0 to 

80minutes. However, when cooling-aware policy starts losing its efficiency because of 

the performance overheads, joint policy starts following the performance-aware policy 

(see Figure 6-14). These results show that for a data center running HPC applications 

with intensive communication, even a cooling-aware policy may result in inefficient 

cooling if it does not take into account the communication latency.

The average cooling power for the 3-hour period is 53.1kW for the cooling-aware 

policy while it is 53.3kW and 32.2kW for performance-aware and joint policies, re

spectively. This corresponds to close to 40% cooling power savings in comparison to 

both cooling-aware and performance-aware policies. We also evaluate the energy con-
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sumption of the data center for different allocation schemes and observe 170.7kWh, 

163.3kWh, 98.4kWh for cooling-aware, performance-aware and joint allocation poli

cies, respectively.

The comparison of the communication costs for the performance-aware, cooling- 

aware, and joint job allocation policy is presented in Figure 6-15. It shows that 

the frequency of the occurrence of communication costs for the total number of jobs 

allocated. For the performance-aware policy, data points are confined to the lower 

communication cost area, while for cooling-aware policy it is distributed across the 

spectrum. For the performance-aware policy, all the jobs have communication costs 

lower than 30, while 97.6% of the jobs have CC  < 30 for the joint policy.

We conduct the same experiments with a higher communication level per appli

cation of C  =  30%. We observe the average cooling power as 74.2kW, 50.8kW and 

32.1kW, while the corresponding energy consumptions are 238.96kWh, 154.96kWh, 

98.3kWh for cooling-aware, performance-aware and joint allocation schemes, respec
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tively. This corresponds to 56.7% cooling power saving compared to the cooling-aware 

policy and 36.8% compared to the performance-aware policy.

In order to include reliability awareness during job allocation, we set a minimum 

MTTF constraint of4 years and achieve an average cooling power of 20kW without 

total runtime change. Even though the allocation stalls in order to meet the MTTF 

constraint (i.e., waits for other jobs to finish so that temperatures decrease), total 

runtime of the job set is not affected under the given job arrival rate. When we 

increase the arrival rate to 25jobs/hour and compare the results with and without 

reliability constraint, we observe a 63% increase in the total runtime. Note that 

our runtime job allocation policy has low overhead. We measure the time spent on 

running the allocation algorithm for each job for the dynamic queue of 41 jobs and 

observe that the time each job allocation decision takes is less than lsecond in our 

Matlab-based implementation.

6.4 Summary

Performance, cooling cost and reliability have become serious concerns of many-core 

systems in HPC data centers as high performance computing moves towards exascale. 

In addition to causing reliability degradation, high temperatures increase the required 

cooling energy. Communication cost, on the other hand, has a significant impact on 

system performance in HPC data centers.

In this chapter, we propose a topology-aware workload allocation policy that max

imizes system reliability by selecting between workload clustering and balancing ap

proaches. Our policy improves the system reliability by up to 123.3% compared to ex

isting temperature balancing policies. We also introduce a job allocation methodology 

to jointly optimize the communication cost and cooling energy in a data center while 

considering reliability constraints. Experimental results demonstrate that cooling-
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aware policies alone do not minimize overall energy if the job allocation results in 

large communication overheads. Our joint optimization policy minimizes cooling cost 

along with the communication time, providing better performance-energy tradeoffs 

in HPC data centers. Experimental results demonstrate that our joint optimization 

policy reduces the cooling cost by 40% compared to cooling-aware and performance- 

aware policies, while achieving comparable performance to performance-aware policy.
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Chapter 7

Conclusion and Future Research  
Directions

7.1 Conclusion

Many-core systems, ranging from small-scale processors to large-scale high perfor

mance computing (HPC) data centers, have become the main trend for computing 

system design. The energy-efficient and reliable design of many-core high performance 

computing systems has been an active research area in the last decade. In compari

son to single-core systems, many-core systems provide higher energy efficiency owing 

to their potential to deliver higher throughput per watt. However, power densities 

and temperatures increase following the performance improvement and bring major 

challenges in power delivery, cooling costs, and reliability. This thesis has addressed 

the energy and reliability challenges in both single-chip 3D many-core processors and 

many-core systems in HPC data centers.

7.1.1 A Sim ulation Framework and R untim e O ptim ization for B oosting  
Energy Efficiency in 3D M any-core Processors

In this thesis, we have presented our research on the modeling and runtime man

agement for 3D many-core processors. Conventional 2D many-core systems have not 

been able to reach their peak performance capacity due to the memory latency and 

bandwidth restrictions. 3D many-core systems with on-chip stacked memory have 

the potential to dramatically improve performance owing to lower memory access
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latency and higher bandwidth, thus have the ability to significantly boost system en

ergy efficiency. However, the performance increase may cause 3D many-core systems 

to exceed the power budgets, create thermal hot spots, increase cooling costs, and 

degrade reliability. This thesis contributes to addressing these challenges from two 

aspects: modeling and management.

A comprehensive modeling framework of 3D many-core systems is essential to 

provide efficient management policies and accurate analysis. We have introduced 

a methodology for constructing a simulation framework to address the complex in

terplay between performance, energy, and temperature in 3D systems. Our work is 

the first to jointly analyze performance, power, and thermal characteristics for both 

DRAM and processor layers. We have then utilized this simulation framework to de

sign and evaluate runtime optimization and management policies for achieving high 

performance under power and temperature constraints.

We have proposed several management and optimization policies for improving 

the energy efficiency and reliability of 3D many-core systems with on-chip DRAM. 

Leveraging the detailed modeling and analysis of on-chip DRAM layers, we have intro

duced a memory management policy that targets applications with spatial variations 

in DRAM accesses and performs temperature-aware mapping of memory accesses to 

DRAM banks. In order to further exploit the performance potential of 3D systems 

while maintaining the peak power and temperature constraints, we have proposed a 

runtime optimization policy that dynamically monitors workload behavior and selects 

among low-power and turbo operating modes accordingly.

We have demonstrated that our policies provide up to 88.5% reduction in energy 

delay product (EDP) for a 16-core 3D system with stacked DRAM compared to 

equivalent 2D systems, while also delivering an average performance improvement of 

36.1% in comparison to a statically optimized 3D system. Our runtime optimization
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policy also achieves an EDP reduction of up to 61.9% compared to a 3D system 

managed by a temperature-triggered DVFS policy.

7.1.2 O ptim izing the Reliability, Performance, and Cooling Cost o f M any- 
core System s in H PC  D ata Centers via W orkload A llocation

Performance, cooling energy, and reliability are also critical aspects in HPC data 

centers. In comparison to single-chip processors, high temperatures increase the re

quired cooling energy in data centers and cause system-level reliability degradation. 

Also, communication cost of parallel applications has a significant impact on system 

performance in HPC data centers. In this thesis, we have addressed the energy and 

reliability challenges of many-core systems in HPC data centers from both modeling 

and management aspects.

Motivated by the analysis results of the reliability of a real-life multi-chip many- 

core system using a detailed reliability modeling approach, we have proposed a 

topology-aware workload allocation policy to dynamically optimize the reliability of 

multi-chip many-core systems in HPC data centers. We have evaluated our policy 

with simulations of real-world scenarios and demonstrated that our policy improves 

the reliability of multi-chip systems by up to 123.3% compared to thermal balanc

ing. We have also studied the scalability of the policy. For a system with 16 cores, 

our policy improves system reliability by up to 101.7% compared to existing thermal 

balancing policies.

In order to jointly address the cooling energy and communication cost challenges 

in data centers, we have proposed a joint job allocation policy to optimize both 

cooling power and communication latency in HPC data centers. Our policy first uses 

the cooling-aware optimization algorithm to find the most cooling-efficient nodes to 

allocate a job and then applies the modified MC1X1 algorithm to allocate the job on 

cooling-efficient nodes while keeping the average LI distance at a minimum. We have
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showed that for static allocation, our joint policy reduces the average cooling power 

by 30.8% compared to the performance-aware policy while it increases the power 

by only 0.5% compared to the cooling-aware policy. We have demonstrated that for 

dynamically changing workloads, solely using a cooling-aware policy does not give the 

minimum cooling power due to the resulting high communication latency. We have 

validated our joint policy under dynamically changing workloads and observed that, 

for HPC applications with a communication-to-computation ratio of 20%, our policy 

decreases the cooling power by 40% in comparison to cooling-aware and performance- 

aware policies.

7.2 Future Research Directions 

7.2.1 3D Stacked System s

Many open research problems exist in the design and management of 3D stacked 

systems, such as identifying killer applications for 3D processor, cost-aware 3D IC 

design, advanced techniques for 3D manufacturing, and modeling and validation for 

3D system with liquid cooling.

One future direction in our research on 3D many-core processors is to explore 

the flexible heterogeneity of 3D stacked processors with cache resource pooling. 3D 

stacked processors, owing to the short communication latency achieved by vertically 

stacking and connecting poolable resources using TSVs, enable efficient resource pool

ing among different layers.

In many-core processors, resource pooling allows the share and management of 

architectural components among different cores. W ith well designed management 

policies, resource pooling has the potential to exploit the flexible heterogeneity in a 

many-core processor to the maximum extent. In the conventional 2D processors, 

however, the efficiency of resource pooling is limited by the large latency of accessing
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remote shared resources in the horizontal direction. Such limitation causes resource 

pooling in 2D not scalable to a large number of cores.

Most of the prior work on many-core 3D processors exploits the performance or 

energy efficiency benefits of 3D processors by considering fixed, homogeneous compu

tational and memory resources (Black et al., 2006; Loh, 2008; Coskun et al., 2009a). 

However, the fixed resources are not able to satisfy applications with varying resource 

requirements, such as different memory uses. The flexible heterogeneity provided by 

resource pooling can address this challenge by including cores with different archi

tectural resources in a single chip (Ipek et al., 2007; Ponomarev et al., 2006), and 

thus brings substantial benefits in reducing the energy consumption and cost in 3D 

stacked many-core processors.

A recent technique proposes pooling performance-critical microarchitectural re

sources such as register files in a 3D processor (Homayoun et al., 2012). Their work, 

however, does not address the memory requirements of applications. Considering the 

significance of the memory requirement in determining application performance in 3D 

many-core processors, we believe that the pooling of memory resources can provide 

additional heterogeneity of resources among the cores in a low-cost way and bring 

substantial energy efficiency improvements.

Cache resource pooling has the potential to further improve system energy ef

ficiency due to the fact that different workloads require different amounts of cache 

resources to achieve their highest performance. Figure 7-1 shows the instructions 

per cycle (IPC) of the SPEC benchmarks when running on systems with various L2 

cache sizes (from 512KB to 2MB). Among all the workloads, soplex has the largest 

throughput improvement at larger L2 cache sizes. We call such benchmarks cache- 

hungry workloads. On the other hand, benchmarks such as libquantum  barely have 

any performance improvement at larger L2 cache size. This observation motivates
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F ig u re  7-1: IPC of SPEC benchmarks for increasing L2 cache size. 
The IPC values are normalized with respect to using a 256KB L2 cache.

us to pool the cache resources in the adjacent layers in 3D stacked processors. By 

allocating the cache-hungry jobs in adjacent layers in the 3D processor with less 

cache-hungry jobs, we allow them to share a pool of cache resources thus provide the 

ability to improve the system energy efficiency.

As the first step to exploit resource pooling in 3D many-core processors, we im

plement the cache resource pooling on a four-layer 3D system, which has one core on 

each layer with a private L2 cache. The core on each layer is able to share the cache 

resources on its adjacent layers.

The preliminary results that compare the energy-delay product (EDP) and energy- 

delay-area product (EDAP) of the 3D systems with and without cache resource pool

ing are shown in Figure 7-2. We use two baseline 3D systems with 1MB and 2MB 

static cache resources, respectively, to compare their energy efficiency with the 3D 

system with cache resource pooling.

Figure 7-2 (a) presents the energy efficiency benefits of the 3D cache resource 

pooling for the 4-core system. We see that for all the workloads, 3D cache resource 

pooling provides lower EDP in comparison to the 1MB baseline. For all-cache-hungry 

workload, 2MB baseline provides the best EDP because of the larger cache size. Our 

results show that 3D cache resource pooling reduces EDP by up to 36.9% and 39.2% 

compared to 1MB and 2MB baselines, respectively.
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Figure 7-2: EDP and EDAP of the 3D system with cache resource pooling 
and its 3D baseline with 1MB static caches, normalized to its 2MB baseline.

Due to the fact that the die costs are proportional to the fourth power of the area 

(Rabaey et al., 2003), we consider area as a very important metric for evaluating 

the 3D systems. We use EDAP as a metric to evaluate the energy area efficiency (Li 

et ah, 2009). As shown in Figure 7-2 (b), 3D cache resource pooling outperforms both 

baseline systems for all workload sets, reducing EDAP by up to 57.2% compared to 

the 2MB baseline.

Prom the preliminary results, we can see that 3D stacked processors with cache 

resource pooling have the potential to provide us higher energy efficiency by exploiting 

the flexible heterogeneity on the vertical dimension. In our future research, we will 

further explore such flexible heterogeneity on 3D many-core systems by providing more 

advanced management policies.

7.2.2 H PC  D ata Centers

HPC data centers face new challenges in performance, energy, reliability, and scalabil

ity. The interplays among these challenges are quite complex. Performance increase 

results in high temperature and high processing power; as a result, the scalability of 

data centers is limited by their power and cooling capacity. It is possible to reduce
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the cooling energy by allowing the data center temperatures to rise; however, the 

reliability constraints for computer components impose thermal thresholds as failure 

rates are exponentially dependent on the processor temperatures. How to concur

rently analyze and jointly optimize the performance, energy, and reliability of HPC 

data centers is still an open problem.

In order to address these challenges, our future research directions on HPC data 

centers include developing simulation framework to provide design guidelines for HPC 

data centers, formulating and solving the joint optimization problem to reduce the 

communication cost of HPC applications and the cooling energy in a data center, and 

leveraging the communication patterns of HPC applications to further improve the 

performance through task mapping.

Sim ulation Approaches

Addressing the challenges of HPC data centers requires design guidelines from simu

lation approaches. It is impractical to explore the vast design space of data centers 

without a detailed system-level simulation framework. Existing simulators mostly 

address the performance and energy of HPC data centers separately, or are not able 

to scale to large-scale systems. So far, there is no simulation approach that is able to 

conduct concurrent evaluation of performance, energy, and reliability for large-scale 

HPC data centers running distributed-memory applications.

The Structural Simulation Toolkit (SST) is developed by Sandia National Lab

oratories to evaluate the performance of large-scale parallel computer architectures. 

It allows us to configure data centers with different network topologies, estimate the 

performance of processing and network components, and evaluate the communication 

cost between different nodes of data centers. However, the current SST simulation 

framework does not model the power, energy, and reliability for HPC data centers. It 

is highly desirable to integrate the data center thermal, energy, and reliability models
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into the SST simulation framework.

In Chapter 5, we have discussed the power and cooling energy model for HPC 

data centers, and the reliability model for multi-chip many-core servers. In our future 

work, we plan to scale the reliability model to larger-scale data center level and also 

integrate the implementation of power, cooling energy, and reliability models into 

SST framework.

Formalization of Joint O ptim ization Problem

In Chapter 6, we have presented a heuristic algorithm which jointly optimizes the 

communication cost of HPC applications and the cooling energy in data centers. In 

order to provide the ability of optimizing the overall costs for users of data centers 

who have different preferences to performance or cooling energy saving, we need a for

malization of the joint optimization job allocation problem with adjustable weighting 

factors to communication cost and cooling energy cost.

Taking the formalization of the joint optimization problem as one of our future 

work directions, we propose a formulation with this joint goal as shown in Equa

tion (7.1):

m i n i m i z e  C X  ■ @ O S t c o m v n , [ X j o b }  $  ‘ C ' O S t c o o l i . ^ j o b )

Xjob (7.1)
subject to E x  X j0f, =  n

where X J0b =  {xi ,X2 , •••, £/v} is a vector that represents the job allocation decision. 

N  is the number of total nodes within the data center and Xi (i =  1 , . . . ,  N)  are the 

integer variables denoting whether a node is busy or idle. E  is a 1 x iV vector with all 

elements set to 1, n  is the total number of nodes required by a job. The optimization 

problem is subject to the linear constraint E  x Xjd, =  n, which means the job requires 

n nodes in the data center.
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and the cooling cost of the data center, respectively, a  and /3 are the corresponding 

weighting factors for the communication cost and the cooling cost, a  and (3 can be 

adjusted to adapt to optimization requirements in different data centers. A larger 

ratio of a//3 indicates that reducing the communication cost is more significant com

pared to decreasing the cooling cost. For example, when a = 1 and /3 =  0, the joint 

optimization problem is converted to the job allocation problem that only considers 

the communication cost. If a = 0 and 8 = 1, the job allocation problem solely 

considers the cooling cost.

The cooling energy cost model of the data center is based on the linear thermal 

model as introduced in Chapter 5. The communication cost of each job arriving at 

the cluster can be expressed as in Equation (7.2):

C o s t ^ X , * )  =  X *  (7-2)
n

where H  is an N  x N  matrix, whose elements represent the communication delay 

between each pair of nodes within the data center. Thus, Equation (7.2) calculates 

the total communication cost among all the nodes that are assigned to the current 

job. The total cost is then normalized to the job size, n. The communication cost 

matrix H  is determined by the data center’s network topologies. By utilizing data 

center level simulation framework (e.g., SST), we are able to generate the H  matrix 

for various data center network topologies.

By integrating the formulations of the communication cost and the cooling energy 

cost into the formulation of our joint optimization problem in Equation (7.1), we 

obtain the Equation (7.3). As the constants in the goal function do not affect the 

optimization decisions, we simplify the equation and only use the quadratic part of 

the communication cost function and the linear part of the cooling cost function while
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computing the total cost.

oc 3
minimize -  • X job ■ H  • X j^  +  — • (D  • Putii ■ X job)

* * - j ob Tt U 3^
subject to E x  X j =  n

As shown in Equation (7.3), we express the joint optimization problem as a binary 

quadratic programming (BQP) problem, which is a combinatorial optimization prob

lem. BQP is an NP-hard problem; however, in practice, it can be efficiently solved 

using well-known discrete optimization techniques such as the branch and bound al

gorithm (Trinh et al., 2012). The joint optimization problem is solvable using the 

TOMLAB/CPLEX solver, which provides a Matlab interface to solve complex opti

mization problems, such as BQP problem.

Task M apping

Performance is the first-order constraint in data center design and management. To

day’s HPC data centers run highly parallel applications, such as scientific and financial 

computing applications, which typically require a large set of computing nodes for 

achieving high performance. Most prior work on job allocation assumes all-to-all 

communication patterns for HPC applications. In order to further reduce the com

munication delay of HPC applications, we leverage the communication patterns of 

each application.

For this reason, one of our future research directions on HPC data centers is to 

improve the performance of data centers by optimizing task mapping with consid

eration of HPC applications with different communication patterns. Task mapping 

with consideration of application communication patterns becomes more important 

as the number of nodes in data centers grows significantly. Mapping the task onto the 

allocated nodes in a data center by utilizing the extracted communication patterns
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Figure 7-3: Percentage reduction in job communication cost using 
RCB-based task mapping for the dynamic allocation scenario.

from HPC applications brings us more flexibility in reducing communication cost.

We present the benefits of tasking mapping with considerations of communication 

pattern using the preliminary results shown in Figure 7-3, where we compare the 

communication cost resulting from the RCB task mapping algorithm (Hoefler and 

Snir, 2011) against the communication cost resulting from the in-order task mapping 

algorithm. In RCB algorithm, the logical communication pattern of an application is 

represented using a weighted graph and the physical data center nodes with a certain 

network topology is presented using a separate graph. RCB algorithm determines the 

task mapping by recursively splitting both graphs into equal halves using minimum 

weighted edge-cuts. In-order task mapping algorithm, which allocates the tasks of a 

job starting from the top left of the data center, traverses the assigned nodes from 

left to right and from top to bottom.

Figure 7-3 shows the reduction in the job communication cost using RCB-based 

task mapping in comparison to the baseline in-order policy for a dynamic job queue
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with 40 jobs. We observe that, on average across all the jobs, using RCB task map

ping policy with consideration of communication patterns achieves 4.3% reduction in 

communication cost in comparison to using the baseline in-order policy.

These preliminary results demonstrate that tasking mapping with considerations 

of communication pattern could bring us considerable performance improvements for 

HPC applications running in data centers. In our future research, we will further 

explore the benefits of tasking mapping by integrating tasking mapping into our joint 

optimization algorithm to reduce communication cost and cooling energy cost for 

data centers at the same time.
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