
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

ADAPTIVE RUNTIME TECHNIQUES FOR

POWER AND RESOURCE MANAGEMENT ON

MULTI-CORE SYSTEMS

by

CAN HANKENDI

B.S., Sabanci University, 2008
M.Sc., University of Southern California, 2010

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2015

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 3732832

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

ProQuest Number: 3732832

c© 2015 by
Can Hankendi
All rights reserved.

Approved by

First Reader

Ayse K. Coskun, Ph.D
Associate Professor of Electrical and Computer Engineering

Second Reader

Martin Herbordt, Ph.D
Professor of Electrical and Computer Engineering

Third Reader

Ajay Joshi, Ph.D
Assistant Professor of Electrical and Computer Engineering

Fourth Reader

Sherief Reda, Ph.D
Associate Professor of School of Engineering, Brown University

Two roads diverged in a wood, and I–
I took the one less traveled by,
And that has made all the difference.

Robert Frost

Acknowledgments

First, I would like to thank my advisor, Professor Ayse K. Coskun, for her support

and encouragement during my Ph.D studies.

I would like to thank Professor Martin Herbordt for his valuable feedback and

guidance that contributed to the first two publications of my graduate student career.

I thank Professor Ajay Joshi for his advice and comments during my studies at Boston

University. I would like to also thank Professor Sherief Reda for the experience I

gained throughout our collaboration, which led to three publications.

I would also like to thank Manish Arora and Dr. Wei Huang for the summer

internship opportunity at Advanced Micro Devices, Inc. (AMD) .

I would like to thank my fellow lab mates, co-authors, and friends at Boston

University for their friendship and for their encouragement. I would like to send my

special thanks to Onur Sahin and Ata Turk for proof-reading the thesis.

I would like to thank my dearest friends, Nuri K., Elliot S., Dave Robert J. I

would not be able to overcome the constant stress and pressure without their help

and support.

Finally, I would like to give special thanks to my family for their unconditional

support.

The research that forms the basis of this dissertation has been partially funded by

VMware, Inc., BU College of Engineering Dean’s Catalyst Award and Massachusetts

Green High-Performance Computing Center (MGHPCC) seed funds.

The content of Chapter 3 is in part a reprint of the material from the papers,

Can Hankendi and Ayse Coskun, “Reducing the Energy Cost of Computing Through

Efficient Co-scheduling of Parallel Workloads”, in Proceedings of Design Automation

and Test in Europe Conference (DATE), 2012.

The contents of Chapter 4 are in part reprints of the material from the papers Can

v

Hankendi and Ayse Coskun, “Reducing the Energy Cost of Computing through Effi-

cient Co-scheduling of Parallel Workloads”, in Proceedings Design Automation and

Test in Europe (DATE), 2012, Can Hankendi and Ayse Coskun, “Energy-efficient

Server Consolidation for Multi-threaded Applications in the Cloud”, in Proceedings

International Green Computing Conference (IGCC), 2013, and, Can Hankendi and

Ayse Coskun, “Autonomous Resource Sharing For Multi-threaded Workloads In Vir-

tualized Servers”, in VMware Technical Journal, Volume III, 2013.

The contents of Chapter 5 are in part reprints of the material from the papers,

Ryan Cochran, Can Hankendi, Ayse Coskun and Sherief Reda, “Pack & Cap: Adap-

tive DVFS and Thread Packing Under Power Caps”, in International Symposium on

Microarchitecture (MICRO), 2011, Can Hankendi, Sherief Reda and Ayse Kivilcim

Coskun , “vCap: Adaptive Power Capping for Virtualized Servers”, in IEEE Interna-

tional Symposium on Low Power Electronics and Design (ISLPED), 2013, and Can

Hankendi, Henry Hoffmann, Ayse Coskun, “Adapt&Cap: Coordinating System and

Application-level Adaptation for Power Constrained Systems”, in IEEE Design&Test

Magazine, 2015.

vi

ADAPTIVE RUNTIME TECHNIQUES FOR

POWER AND RESOURCE MANAGEMENT ON

MULTI-CORE SYSTEMS

CAN HANKENDI

Boston University, College of Engineering, 2015

Major Professor: Ayse K. Coskun, PhD, Associate Professor of
Electrical and Computer Engineering

ABSTRACT

Energy-related costs are among the major contributors to the total cost of ownership

of data centers and high-performance computing (HPC) clusters. As a result, future

data centers must be energy-efficient to meet the continuously increasing computa-

tional demand. Constraining the power consumption of the servers is a widely used

approach for managing energy costs and complying with power delivery limitations.

In tandem, virtualization has become a common practice, as virtualization reduces

hardware and power requirements by enabling consolidation of multiple applications

on to a smaller set of physical resources. However, administration and management of

data center resources have become more complex due to the growing number of virtu-

alized servers installed in data centers. Therefore, designing autonomous and adap-

tive energy efficiency approaches is crucial to achieve sustainable and cost-efficient

operation in data centers.

vii

Many modern data centers running enterprise workloads successfully implement

energy efficiency approaches today. However, the nature of multi-threaded applica-

tions, which are becoming more common in all computing domains, brings additional

design and management challenges. Tackling these challenges requires a deeper un-

derstanding of the interactions between the applications and the underlying hard-

ware nodes. Although cluster-level management techniques bring significant benefits,

node-level techniques provide more visibility into application characteristics, which

can then be used to further improve the overall energy efficiency of the data centers.

This thesis proposes adaptive runtime power and resource management techniques

on multi-core systems. It demonstrates that taking the multi-threaded workload

characteristics into account during management significantly improves the energy

efficiency of the server nodes, which are the basic building blocks of data centers.

The key distinguishing features of this work are as follows:

We implement the proposed runtime techniques on state-of-the-art commodity

multi-core servers and show that their energy efficiency can be significantly improved

by (1) taking multi-threaded application specific characteristics into account while

making resource allocation decisions, (2) accurately tracking dynamically changing

power constraints by using low-overhead application-aware runtime techniques, and

(3) coordinating dynamic adaptive decisions at various layers of the computing stack,

specifically at system and application levels. Our results show that efficient resource

distribution under power constraints yields energy savings of up to 24% compared to

existing approaches, along with the ability to meet power constraints 98% of the time

for a diverse set of multi-threaded applications.

viii

Contents

1 Introduction 1

1.1 Challenges for Multi-threaded Application Management 4

1.2 Node-level Analysis and Management 4

1.3 Thesis Contributions . 7

2 Background and Related Work 10

2.1 Workload and VM Placement . 10

2.2 Resource Allocation . 13

2.3 Power Management . 15

2.4 Distinguishing Aspects . 17

3 Instrumenting Multi-core Servers 19

3.1 Overview of the Experimental Setup 19

3.2 Systems Under Test . 20

3.3 Hardware Event Measurements . 20

3.4 Application-specific Performance Measurement 23

3.5 Virtualized Environment Setup . 23

3.6 Benchmarking Methodology . 24

3.7 Summary of Experimental Methodology 28

4 Resource Allocation and Consolidation for Energy Efficiency 29

4.1 Co-scheduling Analysis on Native Environments 29

4.1.1 Multi-level Co-scheduling Policy 33

4.1.2 Experimental Results . 35

ix

4.2 Co-scheduling Analysis in Virtualized Environments 38

4.2.1 Application Selection Based Co-scheduling 38

4.2.2 Performance Isolation on Consolidated Environments 41

4.3 Adaptive Resource Sharing for Multi-threaded

Workloads . 44

4.3.1 Predicting Application Energy Efficiency 45

4.3.2 Autonomous Resource Sharing 50

4.3.3 Runtime Implementation . 52

4.3.4 Consolidation with Throughput Constraints 53

4.4 Experimental Results . 55

4.4.1 Runtime Behavior . 55

4.4.2 Evaluation for Various Cluster Workload Sets 57

4.4.3 Consolidation with a Higher Number of VMs 60

4.5 Chapter Summary . 61

5 Dynamic Power Capping 62

5.1 Power Capping on Native Environments 63

5.1.1 Pack & Cap Methodology . 63

5.1.2 Experimental Results . 64

5.2 Power Capping on Virtualized Environments 66

5.2.1 Adaptive Power Capping on Virtualized Environments 71

5.2.2 Estimating QoS Degradation Under Power Caps 74

5.2.3 Consolidation Based On Performance Scalability 76

5.2.4 Experimental Results . 77

5.3 Scale & Cap: Scaling-Aware Resource Management for Consolidated

Multi-threaded Applications . 80

5.3.1 LP Solution to Resource Distribution 85

x

5.3.2 Maximizing Server-QoS with Power Constraints 87

5.3.3 Runtime Implementation of Scale & Cap 90

5.3.4 Evaluating Resource Allocation Techniques 91

5.3.5 The Impact of VM Density on Placement Techniques 95

5.4 Coordinating System and Application-level Adaptations for Power Con-

strained Systems . 99

5.4.1 Benefits of Coordinating System and Application-level

Adaptation . 100

5.4.2 Adapt & Cap: Unifying System and Application-level Adaptation102

5.4.3 Power Tracking Performance 107

5.5 Chapter Summary . 110

6 Conclusions 112

6.1 Summary of Major Contributions . 112

6.2 Open Problems . 114

6.2.1 Improving Boosting Algorithms 114

6.2.2 Cluster-level Management . 115

References 116

Curriculum Vitae 125

xi

List of Tables

3.1 Our experimental infrastructure consists of three state-of-the-art servers

with AMD and Intel multi-core processors. This table summarizes the

specifications of the processors. 21

3.2 Summary of characteristics of PARSEC Benchmarks (Bienia et al., 2008). 26

5.1 Definitions of the abbreviations used in the LP solution. 90

xii

List of Figures

1·1 Historical data and future projections for power & cooling expenses,

management cost, server costs (left axis) and number of physical and

logical servers installed on data centers (right axis). The significant

increase in number of logical servers creates the virtualization man-

agement gap, which refers to the increasing management complexity

(IDC, 2011). 3

3·1 Experimental Setup . 20

3·2 ROI-Synchronization flow. 27

4·1 Minimum and maximum change in E/w for 6 thread consolidated

PARSEC benchmarks w.r.t 12 thread execution on a native environment. 30

4·2 First two principal component coefficients for various performance met-

rics when running PARSEC benchmarks. 31

4·3 Performance characteristics of randomly generated workload sets and

the optimum policy for each workload set. 35

4·4 IPC * CPU Utilization for PARSEC benchmarks running 12 threads. 36

4·5 Average E/w saving improvements for 4 policies w.r.t 12 thread exe-

cution on a single node. 37

4·6 Maximum E/w saving improvements due multi-level policy w.r.t pre-

viously proposed policies. 37

xiii

4·7 Performance comparison when canneal is co-scheduled with the other

PARSEC benchmarks shown on the x axis. Figure demonstrates canneal’s

throughput (per core) when each of the two co-scheduled applications

runs with 2 threads and when each has 6 threads. Performance impact

of co-scheduling is higher at 2 threads due to higher resource contention

at the shared caches. 39

4·8 Throughput-per-watt for various benchmark sets that are co-scheduled

with various policies. On average, randomly co-scheduling applications

provides comparable energy efficiency in comparison to previously pro-

posed based policies. 40

4·9 In this experiment, a PARSEC benchmark is co-scheduled with an-

other benchmark (only two benchmarks at a time) under various CPU

binding and NUMA balancing settings. The experiment is repeated

to cover all possible application pairings. Figure shows the perfor-

mance variation (standard deviation/mean) of each benchmark across

its co-scheduled runs with the other benchmarks. Smaller bars indicate

better performance isolation. 43

4·10 Maximum, minimum and average throughput across all co-scheduled

pairs for the native and virtual system. Figure shows the effect of CPU

binding and NUMA balancer on the performance. 44

4·11 Maximum, minimum and average errors for predicting energy efficiency

of PARSEC benchmarks for candidate metrics. 46

4·12 Correlation between IPC*CPU Utilization (right axis) and application

energy efficiency (left axis). 47

xiv

4·13 Benchmark classification through density based clustering. Class-4 rep-

resents the highest level of energy efficiency, where as Class-1 represents

the lowest level. 49

4·14 Runtime implementation of the resource allocation technique (Hank-

endi and Coskun, 2013). 52

4·15 Throughput degradation of 4 PARSEC benchmarks as a function of

CPU resource limits. 55

4·16 Runtime behavior of the resource allocation routine for 3 applications

pairs. CPU resources are adjusted according to power efficiency classes

of the applications to improve the overall efficiency of the server. . . . 57

4·17 Runtime behavior of the resource allocation routine with performance

guarantees. 57

4·18 Normalized throughput-per-watt with respect to the baseline case,

where each VM is given the maximum resources, for randomly gen-

erated 50 workload sets. 58

4·19 Average throughput-per-watt, throughput, power and energy compar-

ison normalized w.r.t baseline case. 59

4·20 Normalized throughput-per-watt with respect to the baseline case,

where each VM is given the maximum resources, for varying number

of co-scheduled applications. Energy efficiency improvements decrease

with increasing number of applications. 61

5·1 Demonstration of DVFS and thread-packing control for bodytrack

under changing power caps (Cochran et al., 2011). 65

5·2 Performance scaling of some of the PARSEC and benchmarks and

hadoop as a function of CPU resource limits. 67

xv

5·3 Overall normalized QoS of two distinct co-scheduling cases under var-

ious power caps. QoS range for the scaling VMs is much smaller than

the non-scaling VMs. Thus, selecting non-scaling VMs to co-schedule

have high potential for energy efficiency improvement. 68

5·4 Memory-boundedness (last level cache misses per cycle) vs. scalability

of PARSEC and CloudSuite applications. Scalability is measured as

the ability to utilize the 12-core system when running with 12 threads.

This experiment shows that memory-boundedness does not capture the

scalability characteristics of the applications. 69

5·5 QoS of the VM running canneal when consolidating with all the other

VMs in pairs of two. Performance of canneal is not significantly af-

fected by any of the co-runners. 71

5·6 Performance overhead for running higher number of threads under

power caps. Running applications with 12 threads and applying re-

source limits introduces large overheads for some of the applications.

Packing the threads onto smaller number of vCPUs reduces the over-

head up to 45%. 73

5·7 QoS as a function of CPU resource limits for blackscholes and dedup.

Degradation estimations are derived by using Equation 5.1. Equation

5.1 provides better QoS prediction without requiring any offline/training

phase when compared to polynomial models. 75

5·8 Comparison of QoS, QoS/watt and power consumption of the server

with various consolidation techniques. The proposed technique im-

proves the overall QoS by 17% when compared to the baseline case,

where VMs have no CPU resource limitations. 78

xvi

5·9 Runtime behavior of vCap under power caps and QoS constraints for

the VM group running dedup and hadoop. vCap adheres to the power

cap and ensures that the QoS guarantees are met. 79

5·10 Peak power (left axis, red) and power weight (right axis, blue) values

for 4 PARSEC benchmarks and the PARSEC average measured on

AMD Opteron 6172. 81

5·11 Total QoS comparison for consolidating two application pairs, canneal-

facesim (a) and blackscholes-swaptions (b) on AMD Opteron 6172

with various power caps for utilization-based approach (baseline), naive

approach (only scaling-aware) and power-aware (scaling and power-

aware) approach. Power-awareness brings up to 18% and 11% QoS

improvements over the scaling-only approach. 84

5·12 LP-solution for resource distribution across two applications (m = 2)

with various lower and upper bounds for a given amount of resources

Rk. 88

5·13 Performance variation for all applications for various VM density cases.

Higher VM-density leads to higher variation, and the memory-bounded

applications have the highest variation due to higher cache sensitivity. 93

5·14 Performance variation for all applications for various VM density cases.

Higher VM-density leads to higher variation, and the memory-bounded

applications have the highest variation due to higher cache sensitivity. 93

5·15 Performance variation for all applications for various VM density cases.

Higher VM-density leads to higher variation, and the memory-bounded

applications have the highest variation due to higher cache sensitivity. 96

5·16 Comparison of placement techniques in terms of performance degrada-

tion (i.e., lower is better). 97

xvii

5·17 Best performing placement technique for various VM-density and ac-

tive memory size. Memory-based technique is superior to other tech-

niques with increasing number of VMs consolidated at the same time,

which also leads to higher active memory size. 98

5·18 Power and performance tradeoff space for various adaptive techniques

on Intel Xeon E5 multicore server when running x264. Proposed co-

ordinated management extends the Pareto-optimal curve to a more

efficient operating point. 101

5·19 Adapt & Cap reads heartbeat rates and power measurements, and

chooses the amount of CPU resources required and the optimum ap-

plication state. 104

5·20 Pseudo-code for Adapt & Cap control modules. Adapt &Cap first

discovers the higher performance application state (blue box), then

periodically checks power (green box) and performance (red box) re-

quirements to adjusts its decisions. 105

5·21 Uncoordinated approach shows oscillatory behavior, as system and ap-

plication adaptation controls are not aware of other decisions that im-

pact the performance of the system significantly. 107

5·22 Comparison of power consumption for Adapt & Cap and only adap-

tive application under dynamically changing performance constraints.

Adapt & Cap reduces the power consumption up to 27% compared to

only application-level adaptation. 109

5·23 Performance results for Adapt & Cap under dynamically changing

power constraints. Adapt & Cap improves the performance up to 2.7x

compared to vCap under the same power constraints. 110

xviii

List of Abbreviations

CRM Customer Relationship Management
DBSCAN Density-based Spatial Clustering of Applications with

Noise
DPM Distributed Power Manager
DRS Dynamic Resource Scheduler
DVFS Dynamic Voltage-Frequency Scaling
ED Energy-delay
EDP Energy-delay-product
HPC High-performance Computing
IPC Instructions-per-cycle
ISO Independent Service Operator
KVM Kernel Virtual Machine
LUT Lookup Table
MPC Memory Access-per-cycle
MPI Message-passing Interface
NUMA Non-uniform Memory Access
PCA Principal Component Analysis
QoS Quality-of-Service
RAPL Runtime-average Power Limiter
ROI Region-of-interest
SLA Service-level Agreement
SMP Simultaneous Multiprocessing Processors
VM Virtual Machine

xix

1

Chapter 1

Introduction

Computer systems have evolved from room-sized machines to single-chip many-core

systems throughout the last 60 years. In the last decade, cloud computing has become

the new computing paradigm that enables sharing computing resources to provide a

variety of services to many users. The user demand on the cloud has inevitably

increased in recent years, as vast amount of services are provided through cloud

resources (IDC, 2011). It is predicted that 78% of all workloads will be executed on

cloud resources by 2018 (Cisco, 2013).

Data centers are the main facilitators of the cloud services. In order to meet the

increasing user demand on cloud services, the number of servers in data centers has

been tripled in the last decade (IDC, 2009). However, the achievable maximum per-

formance of a data center is determined by not only the amount of available hardware

resources (e.g., CPU, memory, I/O), but also by the infrastructural limitations (e.g.,

power delivery, cooling capacity) and operational costs. In fact, energy-related costs

and challenges are the major limiting factors for today’s data centers (IDC, 2011).

Optimizing the performance under power and cost constraints is critically important

to provide reliable operation and reduce the cost of computing in data centers. There-

fore, future data centers are required to be energy-efficient to meet the continuously

increasing computational demand.

As a result of the power delivery and cost limitations, constraining the power

consumption of the servers (i.e., power capping) in data centers has become a common

2

practice (Nathuji and Schwan, 2008). In addition to traditional motivations for power

capping, recent trends in energy markets provide significant opportunities in cost

savings by offering new pricing mechanisms and advanced power market features for

electricity (Chen et al., 2013). For example, in the regulation service reserves program

(Chen et al., 2013), independent service operators (ISOs) require the participant data

center to closely track the dynamically changing power constraints and offer cost

reduction based on power tracking performance of the data center. Aforementioned

reasons provide a strong motivation to develop accurate power capping techniques for

modern data centers.

In tandem with the growth of data centers, virtualization has become one of

the main enablers for designing cost-efficient data centers, as it allows to reduce the

number of active servers by enabling consolidation of multiple workloads on a single

physical server. In other words, virtualization makes it possible to enclose multiple

isolated execution environments called virtual machines (VMs) on a single physical

server. Through VMs, virtual environments provide isolated and secure execution

for multiple users on the same underlying physical environment (i.e., physical server

or host). Therefore, in recent years, virtualizing the data center resources has also

become another common practice.

Virtualization not only simplifies the sharing of the physical resources, but also

enables flexible management of the VMs through control knobs (e.g., using resource

allocation reserves/limits or VM migration) (Vecchiola, C. and Pandey, S. and Buyya,

R., 2009). As a result, the number of virtualized servers started to outnumber the

native (not virtualized) servers in recent years (IDC, 2009). Although data center vir-

tualization brings many benefits, it also introduces new challenges to energy-efficient

management of power and compute resources. For example, Figure 1·1 shows the

financial trends (left axis) and the number of servers (right axis) from 1996 to 2013

4

1.1 Challenges for Multi-threaded Application Management

Many modern data centers running enterprise workloads (e.g., transactional work-

loads, batch processing, mail servers, customer relationship management (CRM)

softwares, etc.) successfully implement energy and resource management techniques

today. However, many computing domains employ multi-threaded applications to

efficiently utilize the underlying hardware parallelism. Although traditionally private

clouds and grids used to be preferable than cloud resources for highly computa-

tional loads, advanced virtualization techniques and hardware support for virtualiza-

tion make it possible to provide comparable performance to native (not virtualized)

systems for computationally intensive multi-threaded workloads (Macdonell and Lu,

2008). As a result, cloud providers (e.g., Amazon, SGI) have already started providing

high performance computing resources for their customers. However, the nature of

multi-threaded applications brings additional design and management challenges. For

example, multi-threaded applications exhibit varying power and performance require-

ments with changing amount of resources due to application-specific characteristics

(e.g., synchronization/communication overheads), and/or architectural bottlenecks

(e.g., bus bandwidth). Therefore, optimizing the performance of consolidated multi-

threaded applications under power constraints require a deeper understanding of the

interactions between the applications and the underlying hardware nodes.

1.2 Node-level Analysis and Management

Achieving energy efficiency on data centers have been extensively studied through

cluster-level management techniques (Anderson and Tucek, 2010) (Jennings and Stadler,

2015). Although cluster-level management techniques can bring significant energy ef-

ficiency benefits (Wang and Chen, 2008) (Fan et al., 2007) (Barroso and Hölzle,

2007), cluster or rack-level optimizations lack the ability to pinpoint the underlying

5

reasons for inefficient use of the individual server-nodes. It is shown that the individ-

ual nodes in data centers mostly run below their peak performance, which leads to

inefficient data center operation (Rasmussen et al., 2011). Node-level techniques

(i.e., server-level) provide more visibility into workload characteristics and this visi-

bility can be used to further improve the overall energy efficiency of the data centers

(Orgerie et al., 2014). In the era of multi-threaded applications, workload visibility

and understanding become even more critical, due to the complex behavior of multi-

threaded applications with varying number of threads and/or amount of resources.

Furthermore, node-level approaches allow using finer granularity control knobs (e.g.,

dynamic voltage-frequency scaling (DVFS), core power gating). On the other hand,

rack or cluster-level approaches view the server-nodes as black boxes and mainly use

coarse granularity control knobs (e.g., turning on/off servers). In fact, finer granu-

larity control knobs at the server-level, such as the ability to turn on/off individual

cores, are shown to be critical for energy-efficient execution of multi-threaded work-

loads (Pusukuri et al., 2011). As a result, processor vendors have already started

to develop node-level managers that can be integrated to a larger-scale management

scheme (HP-Intel Dynamic Power Capping, 2009) (Intel, 2013). However, most of

the existing node-level managers (i) operate based on predefined thresholds, (ii) do

not capture the multi-threaded application characteristics and (iii) lack the ability

to utilize multi-threaded application specific control knobs to improve the energy

efficiency.

Node-level analysis is also needed for better understanding of the challenges that

arise from consolidation. In order to operate data centers efficiently, many appli-

cations are executed side-by-side with unknown applications (i.e., they are consoli-

dated). However, resource sharing across applications might create additional con-

tention on the CPU, memory, bus and other shared resources. Therefore, it is impor-

6

tant to take into account the resource requirements of the consolidated applications

while making resource management or VM placement decisions. Although there are

studies on analyzing the interference impact across consolidated applications (Isci

et al., 2010), these studies do not consider the dynamic nature of multi-threaded ap-

plications, and assume constant resource allocations. However, changing the amount

of resources allocated to each multi-threaded application can also change the inter-

ference impact (Bhadauria and McKee, 2010).

Consolidation related challenges, such as performance interference, are even more

significant under power constraints. For power constrained environments, distribut-

ing the limited amount of resources across the VMs that are consolidated is another

important problem, which cannot be solved solely through intelligent VM placement.

Resource distribution/allocation techniques target efficiently distributing the total

available resources across consolidated VMs. Although there is a significant amount of

work in the literature to address the consolidation and resource distribution problem

under power constraints (Jerger et al., 2007) (Delimitrou and Kozyrakis, 2013), multi-

threaded applications exhibit distinct power/performance requirements with changing

amount of resources (or threads) that impacts the efficiency of the resource distri-

bution decisions. Therefore, capturing the distinct power/performance trade-offs of

the multi-threaded applications under dynamically changing power and performance

constraints is an important problem when consolidating multi-threaded applications.

Finally, single node analysis also enables evaluating adaptive approaches at vari-

ous layers of the computing stack. Adaptive approaches and techniques are becoming

more commonly adopted by cloud administrators to tackle the administration com-

plexity problem and to comply with dynamically changing constraints. However, the

lack of coordination across various adaptation techniques makes it even more chal-

lenging to accurately meet these varying constraints. Traditional adaptive solutions

7

employ system-level management knobs to comply with the power and performance

requirements. These system-level adaptive solutions use control knobs such as DVFS

or turning on/off cores (Reda et al., 2012). However, system-level solutions lack the

ability to optimize the performance of the application running on the system depend-

ing on the architectural characteristics of the underlying platform. Adaptive appli-

cations address the performance optimization problem by dynamically configuring

application parameters depending on the hardware properties and the performance

goals (Hoffmann, 2014). As application and system-level decisions impact both the

performance and the power consumption, uncoordinated decisions at these two lev-

els may lead to unstable and inefficient control (Hankendi et al., 2015). Therefore,

coordination across multiple adaptive techniques is a major challenge to overcome,

when simultaneously employing adaptive techniques at various levels of the computing

stack.

1.3 Thesis Contributions

In this work, we focus on node-level techniques to improve the energy efficiency of

data center resources. Our hypothesis is that future power and resource management

techniques should take into account the distinct characteristics of multi-threaded ap-

plications (i.e., performance scalability) at the node-level to substantially improve the

energy efficiency. Based on our hypothesis, we focus on multi-threaded applications

that are designed for shared-memory architectures (Bienia et al., 2008) and the multi-

threaded slave nodes of the scale-out applications (Ferdman et al., 2012) (Wang et al.,

2014). Our specific contributions in this work are as follows:

• We provide detailed analyses on consolidation techniques on both virtual and

native environments. On native environment, we show that the best performing

consolidation strategy is dependent on the overall characteristics of the work-

8

load sets (Sec. 4.1) (Hankendi and Coskun, 2012). On virtual environments,

we present a technique to classify the applications according to their energy

efficiency levels (Sec. 4.3) (Hankendi and Coskun, 2013). We demonstrate that

allocating resources proportional to the energy efficiency levels of the consoli-

dated applications can significantly improve the energy efficiency.

• We present Pack & Cap (Sec. 5.1), a power capping technique to optimize

specifically the performance of multi-threaded applications under power con-

straints (Cochran et al., 2011). Pack & Cap achieves accurate power tracking

and maximizes the performance by packing the active threads onto a variable

number of cores (i.e., thread packing), in addition to using DVFS, through a

machine learning based mechanism.

• As most servers in data centers are virtualized today, we introduce vCap, a vir-

tualized system management framework that can be used with other resource

distribution policies depending on the user scenarios and requirements to max-

imize performance under power constraints (Sec. 5.2) (Hankendi et al., 2013).

vCap (i) meets the dynamically changing power caps by using virtual environ-

ment specific control knobs (i.e., limits on CPU usage), (ii) guides the placement

decisions based on the multi-threaded application specific characteristics and

(iii) makes resource allocation decisions to distribute a limited amount of com-

pute resources across multiple VMs, each of which is running multi-threaded

applications.

• On top of the vCap framework, we design Scale & Cap, which incorporates

not only the performance scalability characteristics of the multi-threaded ap-

plications, but also the power efficiency characteristics while making resource

allocation decisions to improve the performance while meeting the power caps

9

(Sec. 5.3). Scale & Cap achieves up to 24% performance improvements by

employing a formal linear programming-based solution. We also show that

resource distribution techniques provide superior benefits for tight power con-

straints when compared to placement techniques.

• As adaptive applications that can adjust their parameters at runtime are be-

coming more common, we introduce the Adapt & Cap technique, which co-

ordinates adaptation decisions at application and system-level to improve the

performance under power constraints, while providing stable and efficient power

and performance control (Sec. 5.4) (Hankendi et al., 2015). We implement

Adapt & Cap on two state-of-the-art multi-core servers and achieve power

savings up to 25% and performance improvements up to 1.7x for a set of adap-

tive applications.

The rest of the thesis is organized as follows. In Section II, we discuss the signifi-

cance of our approach to power capping and consolidation in comparison to state-of-

the-art techniques. In Section III, we present our experimental setup, instrumentation

techniques and benchmarking methodology. In Section IV, we present our consoli-

dation and resource management techniques. In Section V, we present our adaptive

power capping techniques on both virtual and native environments and our results

based on experiments on real-life multi-core servers. Section VI discusses our future

research directions and Section VI concludes the thesis.

10

Chapter 2

Background and Related Work

In this section, we summarize the prior work in resource and power management

techniques on multi-core systems. We mainly focus on three main categories: place-

ment techniques, resource allocation techniques, and power management/capping

techniques.

2.1 Workload and VM Placement

Placement techniques mainly target reducing the performance degradation due to in-

terference across consolidated applications and VMs that are sharing the same phys-

ical resources. In order to reduce the performance degradation on consolidated en-

vironments, placement techniques find the best matching applications to consolidate

together.

One of the main sources of contention is the rate of cache accesses (Dhiman

and Rosing, 2007). For instance, co-locating (i.e., placing) multiple memory-bound

applications together degrades the performance due to increased amount of cache

contention. In order to tackle the increased contention problem, Bhadauria et al.

(Bhadauria and McKee, 2010) propose co-scheduling techniques for multi-core sys-

tems to improve energy-delay (ED) by making scheduling decisions based on bus

contention, last level cache miss rates, and thread counts. Proposed co-schedulers

use offline lookup tables for these three metrics to guide the co-scheduling decisions.

Dhiman et al. propose a VM scheduling technique that estimates VM-level CPU and

11

memory usage based on system-level metrics to guide co-scheduling and migration de-

cisions (Dhiman et al., 2009). Their proposed technique consolidates the applications

that have complementary resource usage characteristics to reduce the performance

degradation. Dey et al. propose a methodology to characterize the shared-resource

contention of parallel applications (Dey et al., 2011). They provide experimental anal-

ysis on inter and intra-thread dependencies for PARSEC benchmarks. Meng et al.

propose a joint VM provisioning technique based on workload pattern analysis (Meng

et al., 2010). Their technique selects VM combinations with complementary workload

patterns (e.g., high vs. low cache-miss) to improve the energy efficiency. Zhang et

al. propose a methodology to predict performance degradation due to interference on

both memory and CPU by offline characterization (Zhang et al., 2014).

Another line of work uses statistical techniques to capture the interference impact

of consolidation (Eyerman and Eeckhout, 2010) (Kim et al., 2013). Delimitrou et

al. propose machine-learning-based recommendation strategy that identifies the best

VM groups to minimize the interference across consolidated applications (Delimitrou

and Kozyrakis, 2013). The proposed technique improves the utilization of the system

and prevents wasting idle power on underutilized nodes.

There are works that target improving the performance of consolidated environ-

ments through OS/hypervisor or microarchitectural modifications (Gupta et al., 2006)

(Porterfield et al., 2008) (Sanchez and Kozyrakis, 2011). One line of work focuses on

improving performance isolation through memory scheduling on virtualized environ-

ments to reduce the performance degradation and to provide predictable performance

for consolidated applications (Fedorova et al., 2007). For fair resource distribution,

Kim et al. propose cache sharing techniques to provide fair performance across con-

solidated threads through dynamic cache partitioning (Kim et al., 2004).

At the cluster-level, VM placement techniques target to solve a global optimization

12

problem through control knobs, such as VM migration, which refers moving VMs

from one server to another (Ahmad et al., 2015) (Zhu et al., 2014). Hermenier et al.

propose a framework to find a globally optimal solution for VM scheduling by using

constraint programming (Hermenier et al., 2009). In order to improve the data center

utilization, Liu et al. propose a consolidation framework that schedules VMs based

on the CPU utilization (Liu et al., 2009).

For data intensive workloads, contention at the disk is another important factor

that determines the efficiency (Korupolu et al., 2009) (Srikantaiah et al., 2008). Ro-

mosan et al. propose algorithms for co-scheduling computation and data on clusters

by load balancing frequently used files across multiple cluster nodes (Romosan et al.,

2005). For distributed parallel applications, Frachtenberg et al. (Frachtenberg et al.,

2005) propose a co-scheduling technique through monitoring message-passing inter-

face (MPI) calls of the parallel applications. Their proposed co-scheduler identifies

processes that communicate frequently through an MPI monitoring layer to make co-

scheduling decisions. McGregor et al. (McGregor and Antonopoulos, 2005) present

scheduling algorithms to improve performance by determining the best thread mixes.

They monitor workload behavior through performance counters and propose schedul-

ing policies to reduce the resource contention by using bus transaction rate, stall cycle

rate and last level cache miss rate.

Although placement techniques are reported to significantly improve the perfor-

mance of consolidated applications, their benefits are limited with reducing the con-

tention on shared resources and do not optimize the resource distribution across

consolidated applications.

13

2.2 Resource Allocation

Resource allocation is distributing the available amount of resources across multiple

entities (i.e., across applications or VMs). The common goal of resource allocation

techniques is improving the performance of the servers through efficiently distributing

the available resources (i.e., compute and/or power resources).

For determining the amount of resources to allocate to consolidated VMs, Kusic et

al. propose a dynamic resource provisioning framework based on look-ahead control

(Kusic et al., 2008). Vasic et al. propose a framework that makes resource allocation

decisions based on the history of the VMs to reduce the resource management over-

head (Vasić et al., 2012). Zheng et al. present an empirical infrastructure for data

center management (Zheng et al., 2009). Their proposed infrastructure allocates a

server node (i.e., sandbox) to experimentally derive the energy/performance tradeoffs.

Modern virtualization environments such as Xen, KVM and vSphere provide re-

source management mechanisms to improve the efficiency of the server nodes. Xen

and KVM mainly rely on the default Linux credit scheduler to minimize the num-

ber of idle cycles (KVM, 2008) (Xen, 2009). The credit scheduler automatically

load balances the processes (i.e., vCPUs) across all available physical cores. As vC-

PUs take time on the physical cores, they consume their credits, and the hypervisor

keeps track of the consumed credits to provide fair resource allocation across all vC-

PUs/VMs. Xen and KVM also provides additional control knobs, such as resource

reserves, shares and limits, to guide the scheduler decisions depending on the ap-

plication requirements. However, the resource allocation decisions through VM-level

control knobs are mostly left to the user, and the default managers are agnostic to the

dynamically changing application and user requirements. Therefore, Xen and KVM

managers are not workload-optimized to improve the energy efficiency.

vSphere’s Distributed Resource Scheduler (DRS) provides balanced load distribu-

14

tion across server nodes based on user-selected policies (VMware DRS, 2009). On

vSphere, user can request five levels of automation policies, which determines the

frequency of VM migrations (e.g., aggressive or naive). Automated load balancing

monitors the activity on CPU and memory and uses static thresholds (e.g., minimum

of 81% CPU utilization to consider migration) to make migration decisions. However,

using the same static thresholds for dynamic and/or unknown applications leads to

inefficient resource management decisions (Beloglazov and Buyya, 2010). In addition

to DRS, VMware’s Distributed Power Management (DPM) tool aims to dynamically

reduce the number of active server nodes through aggressive consolidation (VMware

DPM, 2010). In case of changes in user demand, DPM can turn on/off server nodes,

and migrate VMs to reduce the power consumption without compromising the per-

formance. However, both DPM and DRS lack the ability to adapt their decisions for

dynamically changing performance and power requirements.

Providing performance and availability guarantees to the users is an important

feature for users and cloud providers. One line of work targets providing service-

level agreement (SLA) guarantees for consolidated applications (Van et al., 2009)

(Wu et al., 2011). Beloglazov et al. propose an adaptive threshold-based dynamic

consolidation technique, which provides SLA guarantees by selecting VMs to migrate

to different physical nodes based on the resource utilization (Beloglazov and Buyya,

2010). In order to satisfy the changing user requirements and SLAs, adjusting the

size/type of the VMs (e.g., right-sizing) is also a crucial mechanism (AWS, 2013) (Lin

et al., 2013). It is possible to meet the SLA and availability guarantees by removing

or adding resources (i.e., allocation of cores or entire new server nodes) (Bonvin et al.,

2011). There are also works that allow user-specified workload provisioning policies

to optimize energy efficiency on clusters (Wang et al., 2012).

15

2.3 Power Management

As power is one of the main limiting factors of the data center performance, power

management techniques have been extensively studied in the context of data center

management to improve the energy efficiency. Dynamic power and energy manage-

ment techniques such as controlling idle-power modes and voltage-frequency scaling

are well studied research areas (Meisner et al., 2009) (Benini et al., 2000). For power

management at the cluster-level, Fan et al. study power provisioning strategies to

improve the overall utilization of data center and to reduce the power consumption

by turning off the underutilized servers (Fan et al., 2007). Other techniques aim

to coordinate node-level managers with global manager through iterative feedback-

based techniques (Wang and Chen, 2008) (Kumar et al., 2009) (Raghavendra et al.,

2008) (Wang et al., 2009). Some of the prior work focus on the total wait time of

the workloads (i.e., queue wait time + completion time) to optimize the cluster-level

performance (Gandhi et al., 2009) (Urgaonkar et al., 2010).

At the node-level, both software and hardware-level power management strategies

have been proposed in recent years. Most of the modern processor cores support

DVFS and power gating capabilities. Therefore, DVFS and core power gating are

commonly used power management knobs for node-level techniques (Li and Martinez,

2006). Kim et al. study on-chip regulators to achieve DVFS at a finer granularity

reaching nanosecond range (Kim et al., 2008). Shin et al. propose intra-task voltage

scheduling through compiler level static timing analysis (Shin et al., 2001). For multi-

threaded applications, Rangan et al. propose a thread scheduling policy that maps the

threads to various voltage domains to optimize performance under power constraints

(Rangan et al., 2009). For a mixture of single and multi-threaded application, Ma

et al. propose a power capping technique by power-gating the cores and applying

per-core DVFS through application monitoring (Ma and Wang, 2012).

16

Recent commercial servers also provide power capping capabilities (Intel, 2013).

AMD processors are equipped with internal power estimation capabilities at the

firmware-level and allow power capping based on predetermined threshold values

(Samson, 2009). Starting with the Sandybridge architecture, Intel started to pro-

vide a power consumption estimator and a runtime average power limiter (RAPL)

(David et al., 2010). RAPL allows fine-grained power control at various component

levels, including package, DRAM controller, CPU and graphics processor. Using the

internal power estimation, RAPL enables capping the average power over a predefined

measurement window, but lacks the ability to cap the peak power.

For capping the power in virtualized environments, Kansal et al. propose a VM-

level power estimation technique that correlates the system-level power measurements

with VM-level resource usage. They use the VM-level power estimation to show that

accurate VM-level power information can be used to improve the performance un-

der power caps (Kansal et al., 2010). As efficiently distributing the available power

capacity heavily depend on the workload characteristics, Govindan et al. propose a

statistical technique to predict the power efficiency of the workloads to make efficient

power allocation across consolidated VMs. Nathuji et al. design a power allocation

technique for VMs to improve the performance for a given power budget by allo-

cating power budgets proportionally across VMs according to the SLA requirements

of the VMs (Nathuji and Schwan, 2008). Their technique uses CPU utilization to

proportionally distribute the available power budget. Hwang et al. study the im-

pact of consolidation in virtualized multi-core environments (Hwang et al., 2012).

Their study investigates finding the optimum VM-density for multi-core processors

for single-threaded applications that have distinct characteristics (i.e., memory/CPU-

bounded) and they propose a consolidation policy that uses DVFS and power gating.

17

2.4 Distinguishing Aspects

The key distinguishing aspects of this thesis compared to related work are:

• Our proposed solutions exclusively consider multi-threaded application charac-

teristics and make use of multi-threaded specific control dimensions (i.e., per-

formance and power scalability) while making resource distribution decisions.

• We implement the proposed resource and power management techniques on

state-of-the-art real-systems and demonstrate the benefits through an extensive

set of experiments, which show the practical value of the proposed solutions in

this thesis.

• We propose an online workload demand estimation technique (integrated in

vCap) to identify the applications that benefit substantially from increasing

their CPU resources. In contrast to previous work, our technique dynamically

makes resource allocation decisions without requiring offline analysis.

• We show that our resource allocation and power capping techniques can be

jointly used with existing placement policies to further improve the energy ef-

ficiency of multi-core servers (Hankendi and Coskun, 2013) (Hankendi et al.,

2015).

• We propose power capping techniques on virtualized environments and show

that our proposed technique achieves finer granularity power tracking com-

pared to existing DVFS or clock gating based methods, making it a promising

technique for future data centers with dynamic power regulation capabilities

(Hankendi et al., 2013).

• We show that coordinating dynamic adaptations at different layers (i.e., system

and application-level adaptations) improves the power tracking accuracy and

18

overall system efficiency significantly (Hankendi et al., 2015).

• We demonstrate that performing application and QoS-aware power and resource

provisioning brings significant energy efficiency benefits under user-defined QoS

requirements and power constraints.

19

Chapter 3

Instrumenting Multi-core Servers

In this work, we evaluate and test our power and resource management techniques on

multiple state-of-the-art commodity servers, which we explain in-depth in this section.

Our instrumentation infrastructure includes both power and performance measure-

ment capabilities, as well as a workload execution framework to emulate real use-case

scenarios. Although simulation techniques provide valuable information when eval-

uating a new idea, it is essential to demonstrate the benefits and shortcomings of a

proposed idea on real-system as a proof-of-concept.

3.1 Overview of the Experimental Setup

Our experimental setup includes system and processor-level power measurements, as

well as performance measurements on both native and virtualized environments. We

store and utilize the collected data on a separate logger machine in real-time to make

management decisions, as well as for offline benchmark analysis. We measure the

system-level power by using a Wattsup PRO power meter. In order to identify the

chip power, we measure the current flow on 12V inputs of the voltage regulator with

an Agilent 31134A hall-effect clamp ammeter. We use the Agilent 34410A digital

multimeter to log the current measurements from the ammeter. Figure 3·1 shows the

overall experimental setup. Performance measurement includes both polling hardware

performance counters and other system-level metrics, as explained in Section 3.3.

21

AMD Opteron 6172 Intel Xeon E5 Intel i7

of Cores 12 8 4

Frequency Range 2.1 - 0.8 GHz 1.8 - 0.8 GHz 1.6 - 2.67 GHz

I-cache 64 KB 32 KB 32 KB

D-cache 64 KB 32 KB 32 KB

L2-cache (Private) 512 KB 256 KB 256 KB

L3-cache (Shared) 12 MB 10 MB 8 MB

RAM 16 GB 32 GB 8 GB

Table 3.1: Our experimental infrastructure consists of three state-of-
the-art servers with AMD and Intel multi-core processors. This table
summarizes the specifications of the processors.

accesses, etc. Although the naming conventions for performance counters vary across

different processor vendors, we choose similar sets of counters for all processors. We

use the perf utility tool to collect the following core-level performance counters at

a 100ms sampling interval: μ-OPs retired, unhalted CPU cycles, data cache misses,

L2-cache misses, executed lock operations, mispredicted branch instructions, dispatch

stalls, dispatched FP operations on the native system. In addition to per-core mea-

surements, we collect system-level L3-cache misses.

Performance counters provide a wealth of data on the interaction of the workload

with the processor and the memory hierarchy. In this subsection, we provide the

details of the collected hardware event: data cache misses, instruction cache misses,

resource stalls, load-lock operations, and IPC.

• Data cache misses: Data cache misses are commonly used to measure the mem-

ory dependency of the applications. Applications that have frequent data cache

misses are expected to benefit less from increasing the number of active threads

and/or the frequency setting. Therefore, analyzing the data cache miss events is

crucial to understand the performance and power tradeoffs. We analyze all levels

of data caches because depending on the application and the cache sizes, each level

of cache can potentially introduce performance limitations to the application.

22

• Instruction cache misses: Instruction cache misses are among the sources of

performance degradation as each instruction miss causes extra stall cycles. For

memory-bounded applications, effect of instruction misses is minor as the primary

bottleneck is the data cache misses that occur at the higher level of the cache

hierarchy. On the other hand, for CPU-bounded applications instruction misses

might be a significant factor in performance degradation.

• Resource stalls: In our analysis, we also investigate the effects of resource stalls

on performance. There are various sources for stalls. Some of the most impor-

tant causes for resource stalls are full load-store buffer, full reorder buffer, branch

misprediction recovery. We measure all resource stalls through the corresponding

performance counter.

• Load-lock operations: For parallel workloads, thread synchronization and resolv-

ing data dependencies impact the performance. There are a number of mechanisms

to handle communication across threads, depending on the parallelization model of

the application (i.e., locks, barriers, or semaphores). Load-locks ensure that only

one thread can modify the shared data to maintain the data consistency across

threads. Therefore, number of locks in an application provides information on the

inter-thread communication characteristics of workloads.

• IPC: While IPC is a common metric for performance evaluation of single-threaded

workloads, note that it is not a robust metric to evaluate the performance of multi-

threaded workloads (Alameldeen and Wood, 2006). We compute application IPC

here as the total number of instructions executed by all threads divided by the

number of maximum cycles among threads because the longest thread determines

the length of execution.

23

3.4 Application-specific Performance Measurement

As each application performs a different task, the application-specific performance

metric varies depending on the application type. Therefore, we measure the perfor-

mance with runtime, throughput, as well as application-specific metrics. We track

the application-specific performance metrics for the PARSEC benchmarks by uti-

lizing the Application Heartbeats framework (Hoffmann et al., 2011). CloudSuite

applications report application-specific performance without requiring a modification

to the source code. We derive the quality-of-service (QoS) of the applications us-

ing the application-specific metrics. For instance, for image processing applications

(e.g., bodytrack) the QoS metric is frames-per-second (FPS), whereas the QoS met-

ric for the option trading application (e.g., blackscholes) is the number of options.

Instead of such metrics, application-specific performance (e.g., frames per second, re-

quests serviced per second, etc.) can be tracked at the cost of minimal modifications

to the application source code. We report the relative QoS for each application, where

we define the maximum QoS of an application (i.e., QoS=1) as the case where the

application is running alone with the maximum amount of available CPU resources

(e.g., maximum number of cores).

3.5 Virtualized Environment Setup

As most data centers are virtualized, we conduct experiments on virtualized environ-

ments in part of the work in this thesis. We virtualize our systems by the VMware

vSphere 5.1 ESXi hypervisor. We create VMs with multiple vCPUs (SMP VMs), such

that each VM accommodates a multi-threaded application. Each VM runs Ubuntu

Server 12.04 or 14.04 as the guest OS.

We use the default vmkperf utility to poll the following performance counter data

from the physical CPUs at every 2 seconds: CPU cycles, retired instructions, and L3-

24

cache misses. These metrics determine the performance and power characteristics of

the applications, as shown in previous work (Khan et al., 2011). Each vCPU runs as

a process (i.e., world in ESXi) on the hypervisor, thus it is possible to derive VM-level

performance measurements through configuring vmkperf to poll performance counter

readings for vCPUs. In addition to vmkperf, we use the recently introduced virtualized

performance counters (VPC) for some of our experiments. Based on our analysis

and reported numbers from other work, VPCs provide accurate measurements of the

hardware events that we focus on in this work (Serebrin and Hecht, 2009). vmkperf

and VPC measurements show between 2-4% difference when running the same set of

applications. We also use esxtop utility to collect VM-level metrics, such as CPU

utilization, READY%, RUN% at every 2 seconds. These metrics provide additional

insight into resource usage.

3.6 Benchmarking Methodology

Target workload type in this thesis is multi-threaded applications. We run appli-

cations from the Princeton Application Repository for Shared-Memory Computers

(PARSEC) (Bienia et al., 2008) multi-threaded benchmark suite (Bienia et al., 2008),

CloudSuite (Ferdman et al., 2012), and BigDataBench benchmark suite (Wang et al.,

2014) in our experiments as a representative set of multi-threaded workloads on the

cloud resources.

PARSEC (Bienia et al., 2008) is a benchmark suite consisting of multi-threaded

applications targeting future general purpose architectures and data centers as well

as the HPC domain. On the other hand, CloudSuite and BigDataBench benchmark

suites include scale-out applications, which are already occupying significant amount

of resources on the cloud resources today. As our techniques target node-level op-

timizations, we evaluate the slave-nodes of the scale-out applications, rather than

25

evaluating the cluster-level challenges that arise from the data-intensive nature of the

scale-out applications.

Bienia et al. provide various categories and characteristics for the PARSEC bench-

marks such as parallelization model, data usage/sharing, and working set size (Bienia

et al., 2008). Although these categories provide important insights about the software

structure, they do not quantify the application performance bottlenecks. Table 3.2

summarizes the main characteristics of the PARSEC benchmarks based on our cat-

egorization. Data sharing and data exchange characteristics are expected to impact

the performance of the parallel workloads. However, some benchmarks with high data

sharing/exchange do not have any notable bottleneck according to our measurements.

For example, freqmine is reported to have high data sharing and medium data ex-

change; however, our analysis shows that freqmine has no significant performance

bottlenecks. This implies that having high data exchange or high data sharing do not

always cause performance bottlenecks in practice, and motivates a closer look at the

performance counter data.

In order to accurately measure the multi-threaded specific characteristics through

the performance counters and power measurements, we only evaluate the parallel

phases (i.e., region-of-interest (ROI)) of the applications. The parallel phase of multi-

threaded applications dominate the application execution time in real-life clusters.

Therefore, we collect performance and power data only for the parallel phases (Han-

kendi and Coskun, 2012).

As time-spent in ROI and serial phases show significant variation depending on

the workload type, we implement a consolidation management interface, consolmgmt,

on top of the default PARSEC benchmark management interface parsecmgmt to align

the parallel phases of the consolidated applications. consolmgmt interface manages

thread affinity settings to assign each thread to one core and the ROI-Synchronization

26

B
ie
n
ia

et
a
l.
(B

ie
n
ia

et
a
l.
,
2
0
0
8
)

M
ea
su
re
d

W
o
rk

in
g

S
e
t

D
a
ta

S
h
a
ri
n
g

D
a
ta

E
x
-

ch
a
n
g
e

D
-c
a
ch

e
M

is
se
s

I-
c
a
ch

e
M

is
se
s

L
o
ck

s
B
o
tt
le
n
e
ck

IP
C

b
la
ck
sc
h
o
le
s

sm
a
ll

lo
w

lo
w

lo
w

lo
w

lo
w

n
o
n
e

lo
w

b
o
d
y
tr
a
ck

m
ed

iu
m

h
ig
h

m
ed

iu
m

lo
w

m
ed

iu
m

lo
w

i-
ca
ch
e

h
ig
h

ca
n
n
ea
l

u
n
b
ou

n
d
ed

h
ig
h

h
ig
h

h
ig
h

lo
w

h
ig
h

d
-c
a
ch
e

lo
w

d
ed

u
p

u
n
b
ou

n
d
ed

h
ig
h

h
ig
h

lo
w

lo
w

m
ed

iu
m

lo
ck
s

m
ed

iu
m

fa
ce
si
m

la
rg
e

lo
w

m
ed

iu
m

lo
w

m
ed

iu
m

lo
w

i-
ca
ch
e

m
ed

iu
m

fe
rr
et

u
n
b
ou

n
d
ed

h
ig
h

h
ig
h

lo
w

lo
w

lo
w

n
o
n
e

m
ed

iu
m

fl
u
id
a
n
im

a
te

la
rg
e

lo
w

m
ed

iu
m

lo
w

lo
w

m
ed

iu
m

lo
ck
s

m
ed

iu
m

fr
eq
m
in
e

u
n
b
ou

n
d
ed

h
ig
h

m
ed

iu
m

lo
w

lo
w

lo
w

n
o
n
e

h
ig
h

ra
y
tr
a
ce

u
n
b
ou

n
d
ed

h
ig
h

lo
w

lo
w

lo
w

lo
w

n
o
n
e

m
ed

iu
m

st
re
a
m
cl
u
st
er

m
ed

iu
m

lo
w

m
ed

iu
m

h
ig
h

lo
w

lo
w

d
-c
a
ch
e

lo
w

sw
a
p
ti
o
n
s

m
ed

iu
m

lo
w

lo
w

lo
w

lo
w

lo
w

n
o
n
e

m
ed

iu
m

v
ip
s

m
ed

iu
m

lo
w

m
ed

iu
m

lo
w

lo
w

lo
w

n
o
n
e

h
ig
h

x
2
6
4

m
ed

iu
m

h
ig
h

h
ig
h

m
ed

iu
m

h
ig
h

lo
w

d
-c
a
ch
e

m
ed

iu
m

T
a
b
le

3
.2
:
S
u
m
m
ar
y
of

ch
ar
ac
te
ri
st
ic
s
of

P
A
R
S
E
C

B
en
ch
m
ar
k
s
(B

ie
n
ia

et
al
.,
20
08
).

27

Benchmark A
Benchmark B

ROIA ROIB

sleep roi-Trigger()

start-Logging()

S
ys

te
m

 U
ti

liz
at

io
n

time

Parallel Phase

Figure 3·2: ROI-Synchronization flow.

routine (ROI-Synch) to synchronize the ROI of multiple workloads. We implemented

the ROI-Synch inside the HOOKS library routines of the default PARSEC package. In

Figure 3·2, we depict the synchronization flow for a hypothetical 2 benchmark con-

solidation case. ROI-Synch ensures that all benchmarks wait at the ROI checkpoints

(ROIA, ROIB) for other benchmarks to reach their own ROI checkpoints. After

all benchmarks reach the ROI checkpoint, ROI-Synch calls roi-Trigger() function to

synchronously trigger the benchmarks to continue their execution. ROI-Synch also

synchronizes power and performance measurement infrastructure with the applica-

tion ROI via communicating with the logger computer. After an initial cold start

phase, data loggers are triggered by the start-Logging() function to collect the ROI

performance and power characteristics.

28

3.7 Summary of Experimental Methodology

We design an infrastructure to conduct experiments on real-life systems. Our exper-

imental infrastructure consists of system and processor-level power measurements,

as well as performance counter measurements together with system and application-

level performance measurements. In order to accurately evaluate the multi-threaded

characteristics of the consolidated applications, we also develop a framework called

consolmgmt that synchronizes the parallel phases of the multi-threaded applications.

29

Chapter 4

Resource Allocation and Consolidation for

Energy Efficiency

Resource management on consolidated environments is a major challenge, as it strongly

impacts resource contention, workload interference, and performance scalability of the

multi-threaded applications. In this work, our goal is to optimally manage available

hardware resources to improve energy efficiency, while satisfying user requirements.

In this section, we first present analysis on co-scheduling on native environments

and evaluate previously proposed co-scheduling policies. Second, we analyze per-

formance isolation on virtual environments and based on our analysis, we develop

an autonomous resource management technique on consolidated VMs. The proposed

technique first classifies applications according to their energy efficiency levels through

runtime monitoring. Based on the energy efficiency levels of the co-scheduled appli-

cations, our technique adaptively adjusts the resources allocated for each application

at runtime.

4.1 Co-scheduling Analysis on Native Environments

Co-scheduling of parallel applications is a promising method to improve the en-

ergy efficiency of computing systems by taking advantage of contrasting resource

requirements of different parallel applications. Nonetheless, energy savings due to

co-scheduling varies significantly depending on the characteristics of the applications

that are being consolidated. In Figure 4·1, we evaluate the range of energy-per-

30

work (E/w) savings due to consolidation of PARSEC parallel benchmarks (Bienia,

2011). We show minimum and maximum savings when 2 PARSEC benchmarks are

co-scheduled with 6 threads on the same node, with respect to 12 thread execution

on separate nodes. Although maximum E/w savings reach up to 40%, majority of

the benchmarks exhibit increased E/w due to increased resource contention when

co-scheduled with other benchmarks. This implies that, to improve the energy ef-

ficiency through co-scheduling, it is important to consider characteristics of parallel

applications. This analysis also shows that depending on the set of workloads that

are co-scheduled, E/w savings show significant variations.

Energy consumption of a multi-core system varies as a function of the charac-

teristics of the parallel workloads running on the system. As a result, the range of

potential E/w savings show significant variations across workloads. To understand

20

10

0

10

20

30

40

50
Min & Max E/w Savings w/ Consolidation

E
/w

 S
av

in
g

 (
%

)

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p
fe

rre
t

fre
qm

ine

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

Max E/w saving
Min E/w saving

Figure 4·1: Minimum and maximum change in E/w for 6 thread con-
solidated PARSEC benchmarks w.r.t 12 thread execution on a native
environment.

31

these variations, we analyze the energy tradeoffs for a set of performance events for

the PARSEC benchmarks.

0.6 0.4 0.2 0 0.2 0.4 0.6

0.6

0.4

0.2

0

0.2

0.4

0.6

Ret. UOP

BUS

CPU Util.

Mem.Util.

IPC

CacheMiss

Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

Principal Component Coefficients for Performance Counters

Figure 4·2: First two principal component coefficients for various per-
formance metrics when running PARSEC benchmarks.

We use Principal Component Analysis (PCA) to determine which performance

events vary considerably across the benchmark suite. Figure 4·2 shows the coeffi-

cients for various performance events for their first two principal components (PCs).

First two PCs together explain more than 85% of the overall variations. Figure 4·2
demonstrates that performance events cover the PC space in four distinct directions.

Cache misses and bus accesses almost have the same coefficients. Similarly, retired

μOPs and IPC are closely related. These two groups of events cover distinctive fea-

tures on the x axis of the PC space. On the other hand, CPU and memory utilization

cover other distinct features of the applications on the y-axis of the PC space. Note

32

that memory utilization is located at a different quadrant than the cache misses, mo-

tivating investigating the impact of both cache misses and memory utilization metrics

separately.

Memory utilization exhibits a distinctive variation in comparison to cache misses

and bus accesses. This implies that, using memory utilization as a metric would help

to identify another dimension of bottlenecks that is different than cache misses and

bus accesses. This is due to varying workings set sizes of the applications in PARSEC

suite. On the other hand CPU utilization have positive coefficients on both x and y

axis unlike the memory utilization, cache misses and bus accesses. Thus, in order to

identify the distinctive features of workloads, we focus on the following performance

events:

CPU utilization: CPU utilization measures percentage of time-spent for doing

useful work by CPU as opposed to being idle. Performance scaling of the applications

that fully utilize the CPU resources can be categorized as CPU-bounded as their

performance improvement is only limited by the CPU resources. Thus, CPU-bounded

applications are expected to benefit less from co-scheduling as they already spent

most of their execution time doing useful work. On the contrary, applications that

are not CPU-bounded are expected to benefit most from co-scheduling. Applications

such as dedup and bodytrack poorly utilize the CPU resources and they are the

only PARSEC benchmarks that consistently benefit from consolidation as Figure 4·1
implies.

Cache misses: Cache miss rates measure the memory dependencies of the ap-

plications. Since different levels of cache cause different performance penalties, we

evaluate the weighted cache misses by using the miss penalty for each level of cache.

As cache misses cause extra stall cycles, they can become the main reason for lower

performance scaling of the applications. Thus, applications that have high cache miss

33

rates would benefit more from co-scheduling in comparison to running with higher

number threads.

Memory utilization: Memory utilization percentage shows the utilization of the

DRAM modules. Memory and CPU are two of the main bottlenecks that affect the

performance of applications. When consolidating multiple benchmarks on a multi-

core system with shared resources, it is important to consider the degree of memory

utilization, as memory is a shared resource across applications. canneal, dedup and

freqmine utilize the memory significantly higher than the rest of the benchmarks.

Despite having low cache miss rates, freqmine and dedup utilizes the memory heavily.

On the other hand, streamcluster does not utilize the memory heavily, although it

generates high cache miss rates.

This analysis on performance events show that, considering only one performance

event would not be sufficient to make the optimum decisions to improve energy-

efficiency when consolidating multiple workloads. As shown above, there is not a

single trend across benchmarks in terms of different performance events. In order

to make optimum decisions for co-scheduling, it is important to consider various

performance events interchangeably according to the overall characteristics of the

workload sets.

4.1.1 Multi-level Co-scheduling Policy

Following our analysis on the factors that affect the overall energy-efficiency of the

multi-core systems, we propose a novel multi-level co-scheduling policy to improve

the energy-efficiency. Our multi-level co-scheduling policy utilizes two previously

proposed co-scheduling policies: (1) Cache Miss based (Bhadauria and McKee, 2010),

(2) IPC*CPU-utilization based (Dhiman et al., 2009). Our proposed policy comprises

the following two main steps:

1) Computation-to-communication ratio of the benchmarks is an important met-

34

ric to identify the CPU and bus requirements of the benchmarks. Main resource

limitation for workload sets that have higher computation-to-communication ratio is

the cache misses. We experimentally derived a threshold (Th1) of 5000 and classify

the workload sets according to their sum of IPC ∗ CPUUtil/BUSacc values. Workload

sets that are computationally intensive and have high bus accesses are co-scheduled

using the IPC ∗ CPUUtil metric to balance the computation-to-communication ratio

of the benchmarks. We use cache misses as the co-scheduling policy to balance the

applications’ memory requirements if they don’t require heavy communication.

2) Benchmarks that are computationally intensive might suffer from high memory

utilization or bus accesses. This step can be called as a fine-tuning step, as it iden-

tifies whether there is stronger bottleneck than the cache misses for computationally

intensive benchmarks. We evaluate the memory utilization (MEMUtil) and BUSacc

for the computationally intensive benchmarks. Computationally intensive workload

sets that have high memory utilization (Th2 = 25) or high bus accesses (Th3 = 0.1)

are co-scheduled to balance IPC ∗ CPUUtil values, rather than the cache misses. Rest

of the workload sets would have only cache misses as their major bottlenecks. Thus

we co-schedule them through the cache miss based policy. Algorithm 1 demonstrates

the details of the policy selection algorithm.

ALGORITHM 1: Policy Selection

if IPC ∗ CPUUtil/BUSacc > Th1 then
Balance: CacheMiss
if IPC ∗ CPUUtil > Th2 and (BUSacc > Th3 or MEMUtil > Th4) then
Balance: IPC ∗ CPUUtil

end if
else
Balance: IPC ∗ CPUUtil

end if

35

4.1.2 Experimental Results

We implemented bus access, cache miss and IPC*CPU-Utilization based policies that

are previously proposed. We compare our multi-level co-scheduling policy with previ-

ously proposed approaches and demonstrate E/w saving improvements over randomly

generated 50 workload sets that are shown in 4·3. We also show the optimum policies

for each workload set. Proposed multi-level policy chooses the best performing policy

with an accuracy of 86%.

In order to compare our experimental results with previous co-scheduling tech-

niques, we implement three naive co-scheduling algorithms that are based on pre-

vious approaches (Dhiman et al., 2009) (Bhadauria and McKee, 2010). These two

approaches focus on stalls based on memory and bus accesses as well as computa-

500 600 700 800 900 1000 1100 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

IPC*CPU Utilization

B
us

 A
cc

es
s

R
at

e

Optimum Policies for Randomly Generated Workload Sets

IPC*CPU Util Policy
Cache Miss Policy

Figure 4·3: Performance characteristics of randomly generated work-
load sets and the optimum policy for each workload set.

36

0

50

100

150

bla
ck
sc
ho
les

bo
dy
tra
ck

ca
nn
ea
l

de
du
p
fe
rre
t

fre
qm
ine

str
ea
m
clu
ste
r

sw
ap
tio
ns vip

s
x2
64

IP
C

 *
 C

P
U

 U
ti

liz
at

io
n

IPC * CPU Utilization

Figure 4·4: IPC * CPU Utilization for PARSEC benchmarks running
12 threads.

tional intensity of the benchmarks to make co-scheduling decisions to achieve better

energy efficiency.

We use the cache-miss rate measurements to balance the cache misses across

various consolidation combinations. As a naive implementation, we co-schedule the

benchmarks starting from the benchmarks that has the highest and the lowest cache

misses. Figure 4·4 shows IPC∗CPUUtil values of 10 PARSEC benchmarks. Similar to

cache miss balancing approach, this time we balance bus accesses and IPC ∗CPUUtil

values across benchmarks as the co-scheduling policy.

In Figure 4·5, we show average E/w savings for 50 workload sets with respect to 12

thread execution of the workloads running on a single node. Bus access based policy

performs worst among all policies. Our proposed multi-level co-scheduling policy

provides 31.8% savings, which is 9.1% higher than the best performing previous co-

scheduling policy.

In Figure 4·6, we show maximum E/w saving improvements due to multi-level

38

4.2 Co-scheduling Analysis in Virtualized Environments

This section investigates the impact of co-scheduling on application performance un-

der various system settings and policies. The goal is to develop an understanding of

the tradeoffs and constraints in virtualized environments to enable better policy de-

sign for runtime management. We first evaluate whether selecting which applications

to co-schedule together on the same resources changes the overall energy efficiency.

We then evaluate the effect of CPU binding and NUMA scheduling on virtualized

and native environments in terms of throughput and performance isolation.

4.2.1 Application Selection Based Co-scheduling

Co-scheduling the application pairs that have contrasting performance characteristics,

such as high IPC and low IPC, is expected to improve the energy efficiency signifi-

cantly, as it leads to more balanced resource usage (Dhiman et al., 2009; Bhadauria

and McKee, 2010).

We first investigate the performance impact of co-scheduling as the number of

cores/threads per application changes. In the first case, we run each application with

2 threads and bind both applications on the same chip. In the second case, each

application runs with 6 threads and the applications are located on separate dies.

Two applications share an L3 cache in the first case and have their own L3-cache

in the second case. Figure 4·7 shows the per-core throughput for canneal when it

is co-scheduled with the other benchmarks (2 application at a time). We choose

canneal as it has the highest amount of L2 and L3 cache misses. As we have ex-

perimentally determined that throughput is a meaningful indicator of the application

progress in PARSEC, we use throughput as our performance metric. For a system

with low performance isolation, the performance of canneal is expected to vary sig-

nificantly depending on the co-runner application (x-axis). On contrary, for a system

39

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

8

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

flu
ida

nim
at

e
fe

rre
t

fre
qm

ine

ra
ytr

ac
e

str
ea

m
clu

ste
r

sw
ap

tio
ns vip

s
x2

64

R
et

ire
d

In
st

ru
ct

io
ns

/S
ec

on
d

canneal Throughput with Co scheduling

2T 2T
6T 6T

Figure 4·7: Performance comparison when canneal is co-scheduled
with the other PARSEC benchmarks shown on the x axis. Figure
demonstrates canneal’s throughput (per core) when each of the two
co-scheduled applications runs with 2 threads and when each has 6
threads. Performance impact of co-scheduling is higher at 2 threads
due to higher resource contention at the shared caches.

with higher performance isolation, the performance of canneal is expected to show

little variation regardless of the co-runner application. Co-scheduling canneal with

another instance of canneal significantly affects the throughput due to high resource

contention on the last level cache. As Figure 4·7 shows, maximum throughput degra-

dation (canneal - canneal pair) with respect to the average throughput is 18% for

the 2 thread case and 6% for the 6 thread case. In other words, increasing the thread

count and separating the last level caches reduce the performance impact resulting

from the specific characteristics of the co-runner application.

In order to further quantify our observation, we evaluate the throughput-per-watt

of for three distinct workload sets (i.e., memory-bound, cpu-bound, mixed) under var-

40

High CPU Medium
Memory/CPU

High Memory Average
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

8 Throughput/Watt for Various Application Selection Policies

T
hr

ou
gh

pu
t/W

at
t

MPC*Utilization
IPC*Utilization
Random

Figure 4·8: Throughput-per-watt for various benchmark sets that are
co-scheduled with various policies. On average, randomly co-scheduling
applications provides comparable energy efficiency in comparison to
previously proposed based policies.

ious co-scheduling (i.e., application selection) policies. We use throughput-per-watt

as a metric of energy efficiency, as it captures the useful work done per watt consumed

(Bhadauria and McKee, 2010). We implement co-scheduling policies that are based

on determining the best application pairs to co-schedule together (Dhiman et al.,

2009; Bhadauria and McKee, 2010). These techniques first rank the applications

according to a selected metric and then co-schedule the highest ranked benchmark

with the lowest one, and proceed through the ranked list in a similar fashion. In

this way, these policies try to balance the resource usage by co-scheduling applica-

tions that have contrasting characteristics. We evaluate MPC*CPU Utilization and

IPC*CPU Utilization as the metrics used while ranking the applications’ resource

usage. These metrics are proposed previously to derive vCPU-level IPC and MPC by

using the CPU utilization of each vCPU as the weight factor (Dhiman et al., 2009).

We also evaluate the throughput-per-watt of the workload sets when applications to

be co-scheduled are selected randomly.

Figure 4·8 compares the energy efficiency of three distinct benchmark sets under

41

various co-scheduling policies. IPC* Utilization performs best for medium and high

CPU benchmark sets, whereas MPC*Utilization is the best policy for highly memory

intensive benchmark set. However, on average, best performing policy improves the

energy efficiency by 4% in comparison to the random policy.

This observation implies that the benefits from application policies are limited

for a system with high performance isolation. Thus, we need other mechanisms

in addition to application selection to continue to improve the energy efficiency of

virtualized servers. Next, we investigate the system configuration that provides the

best performance isolation.

4.2.2 Performance Isolation on Consolidated Environments

In this section, our goal is to find the optimum system configuration that provides

the highest performance isolation. We investigate the effect of CPU binding and

NUMA scheduling on the performance in virtualized (ESXi) and native OS environ-

ments (Ubuntu Server 12.04). We use CPU binding and NUMA scheduling as they

are inexpensive, commonly available, yet powerful knobs for improving performance

isolation.

CPU Binding: For multi-threaded workloads, CPU binding refers to pinning threads

of applications to a specific set of cores (i.e., affinities). CPU binding prevents OS

to migrate threads outside the defined affinity set. Binding typically reduces the

contention on NUMA nodes by prioritizing the use of local NUMA nodes. Perfor-

mance of the NUMA systems is sensitive to memory layout and thread affinities as

access latency depends on the distance to remote and local nodes. For instance, AMD

Magny Cours has two NUMA nodes and each NUMA node is a local node to one of

the 6-core dies, while the other is a remote NUMA node. Binding applications to

one of the 6-core dies ensures that threads will prioritize their local NUMA node for

42

data accesses. For co-scheduling two applications, binding each application to one of

the 6-core dies reduces the contention on the NUMA nodes. Therefore, CPU binding

improves the performance isolation by ensuring data locality.

NUMA Balancing: Balancing the accesses across the NUMA nodes reduces the

performance cost of resource contention on the NUMA nodes. ESXi hypervisor in-

cludes a NUMA balancer to reduce the data access latency by monitoring the data

access patterns of the VMs. NUMA balancing across VMs reduces the contention by

assigning a different NUMA node to each VM.

Figure 4·9 shows the performance variation for all the PARSEC benchmarks dur-

ing co-scheduled execution under both virtualized and native environments on our

server. Higher performance variation implies that the application performance is af-

fected more significantly by the co-runner application, which means poor performance

isolation. For all experiments on the native OS, we co-schedule 2 applications at a

time, each of them running with 6 threads. We test the native OS with and without

CPU binding. For the virtual system, we test 3 different cases. We create 12 vCPUs

(12 threads) per VM for the “VM w/o binding w/ NUMA Bal.” configuration, and

6 vCPUs (6 threads) per VM for the other configurations.

As Figure 4·9 shows, both virtual and native environments have significantly

higher performance variations in absence of CPU affinities. Also, disabling the NUMA

balancer on the virtual system results in higher performance variation for the virtual

environment. This is because NUMA balancer assigns each VM to a specific NUMA

node, even when we do not set CPU affinities. As a result, virtual systems with

NUMA balancing consistently provide lower performance variation. The VM with

12 vCPUs, where only NUMA balancer is enabled, has slightly worse performance

isolation compared to the VM with 6 vCPUs with both CPU binding and NUMA

balancer enabled.

43

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
S

ta
nd

ar
d

D
ev

ia
tio

n
/ M

ea
n

Performance Variation Due to Co scheduling

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

flu
ida

nim
at

e
fe

rre
t

fre
qm

ine

ra
ytr

ac
e

str
ea

m
clu

ste
r

sw
ap

tio
ns vip

s
x2

64

Ave
ra

ge

Native
VM w/o NUMA Bal.
Native
VM w/ NUMA Bal.
VM w/o binding w/ NUMA Bal.

 w/o Binding

 w/ Binding

Figure 4·9: In this experiment, a PARSEC benchmark is co-scheduled
with another benchmark (only two benchmarks at a time) under var-
ious CPU binding and NUMA balancing settings. The experiment is
repeated to cover all possible application pairings. Figure shows the
performance variation (standard deviation/mean) of each benchmark
across its co-scheduled runs with the other benchmarks. Smaller bars
indicate better performance isolation.

Figure 4·10 evaluates the maximum, minimum and average throughput across all

application pairs that are co-scheduled, comparing various binding and NUMA bal-

ancing configurations. Ideally, we would like to choose the configuration that provides

high performance isolation and comparable performance to the native system. Native

and virtual systems with CPU binding provide higher average throughput compared

to the systems without CPU binding or NUMA balancing. As expected, native sys-

tem provides slightly higher throughput compared to the virtual system because of

the virtualization overhead, which is limited to 2%.

We choose the VM without binding, with NUMA balancer, as our co-scheduling

environment due to its comparable performance to VM with binding, high perfor-

mance isolation and its advantages in practical implementation. For clarity purposes,

we leave further reasoning of this design choice to Section 4.3.1.

Our analysis on performance isolation shows that application performance can be

affected by the co-runner application, especially when the performance isolation is

44

Native VM w/o NB Native VM w/ NB VM w/ NB
6

7

8

9

10

11

12

13x 10
9 Throughput Across All PARSEC Benchmarks

R
et

ire
d

In
st

ru
ct

io
ns

/S
ec

on
d

Maximum
Mean
Minimum

w/o Binding w/ Binding w/o Binding

Figure 4·10: Maximum, minimum and average throughput across all
co-scheduled pairs for the native and virtual system. Figure shows the
effect of CPU binding and NUMA balancer on the performance.

poorer. Although application selection policies improves the energy efficiency of the

consolidated servers, these improvements are limited for a system with high perfor-

mance isolation. We observe that it is possible to reduce the performance variation

resulting from co-runner application selection by optimizing CPU and NUMA node

affinities. We next describe our autonomous resource allocation policy for multi-

threaded workloads, which aims to improve the energy efficiency through energy

proportional resource allocation.

4.3 Adaptive Resource Sharing for Multi-threaded

Workloads

This section presents our adaptive resource sharing technique for multi-threaded work-

loads. Our technique maximizes the energy efficiency of a server node by allocating

45

resources to VMs based on application-specific power and performance characteris-

tics. The goal is to provide more resources to energy-proportional applications. We

first present a clustering-based application classification technique that identifies the

energy proportionality of the applications. Our resource sharing technique then uses

this classification for dynamically changing the CPU resources allocated for each VM

on the server.

4.3.1 Predicting Application Energy Efficiency

To improve the energy efficiency of the system, we aim to proportionally allocate the

resources depending on the energy efficiency levels of each co-scheduled application.

Therefore, the first step is to identify a metric that reflects the energy efficiency of

the applications accurately.

IPC and CPU utilization are commonly used metrics to evaluate the performance

and power characteristics of applications (Dhiman et al., 2009) (Isci et al., 2006).

CPU utilization measures the busy cycles of a processor and reports the percentage

of the time that the CPU is actually processing instructions (i.e., CPU is not idle).

However, none of these two metrics alone capture the overall energy efficiency char-

acteristics of the application. A high-IPC application might still utilize the CPU at

lower rates and similarly, an application that highly utilizes the CPU might have lower

IPC rates due to factors such as cycle stalls, data access latencies and communication.

While CPU utilization is measuring how often the CPU is busy (i.e., % of unhalted

state), IPC measures the activity only when the CPU is in the unhalted state. Thus,

combining these two metrics provides a good estimate of the activity of the CPU over

time. Moreover, for cases such as spin-loops or high cache misses evaluating only

IPC or utilization would likely be misleading. We measure the IPC and utilization

for the spin loop example on our system. Although IPC for the spin-loop example is

around 1, utilization goes down to 1-2%. Therefore, we observe that combining IPC

46

0%

15%

30%

45%

60%

75%

90%

IPC*CPU Utilization IPC CPU Utilization

Prediction Error

Max Error
Min Error
Average Error

Figure 4·11: Maximum, minimum and average errors for predicting
energy efficiency of PARSEC benchmarks for candidate metrics.

and utilization captures the real performance more accurately compared to observing

solely the IPC or utilization.

In order to quantify the accuracy of each metric (i.e., IPC and CPU utilization),

we perform linear regression analysis. Figure 4·11 shows the average error for each

metric to predict the energy efficiency of all the 13 PARSEC benchmarks. IPC*CPU

Utilization outperforms both IPC and CPU utilization metrics with only a 6% average

error rate in predicting the energy efficiency of the applications.

Figure 4·12 demonstrates the correlation between the application energy efficiency

and the IPC*CPU Utilization metric across the PARSEC suite. Pearson correlation

coefficient between IPC*CPU Utilization and throughput-per-watt is 0.95 and the

p-value (significance test) of the correlation is less than 0.01, demonstrating high

relevance. These values quantify the strong correlation between IPC*CPU Utilization

and throughput-per-watt. As a result, we use IPC*CPU Utilization as an accurate

measure of application energy efficiency while characterizing applications.

We design an application classification scheme that applies density-based cluster-

ing (DBSCAN) (Ester et al., 1996) using the chosen metric, IPC * CPU Utilization.

Clustering here refers to separating applications of different power/performance char-

47

acteristics into different classes. We use DBSCAN clustering algorithm to classify

benchmarks, which does not require a priori knowledge of number of clusters. DB-

SCAN discovers the clusters automatically based on a density reachability threshold,

ε. Let us assume each data point on an IPC vs. utilization plot (e.g., see Figure

4·13) is a node. Thus, each node represents a benchmark. A neighbor node, q, is

density reachable from node p, if the distance between q and p is less than the density

reachability threshold, ε. Density reachability test essentially determines whether two

nodes belong to the same cluster based on their distance.

DBSCAN starts from an arbitrary point, p, and discovers all neighbor nodes that

are density-reachable. Distance between clusters S1 and S2 (i.e., set of points) is given

as the minimum distance across all member points, p, q, where ∀p ∈ S1, ∀q ∈ S2.

0

2

4

6

8

10

12

14
x 10

6 Power Efficiency/IPC*Utilization Correlation

T
hr

ou
gh

pu
t

pe
r

W
at

t

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

flu
ida

nim
at

e
fe

rre
t

fre
qm

ine

ra
ytr

ac
e

str
ea

m
clu

ste
r

sw
ap

tio
ns vip

s
x2

64

0

20

40

60

80

100

120

140

IP
C

*U
til

iz
at

io
n

Throughput per watt
IPC*CPU Utilization

Figure 4·12: Correlation between IPC*CPU Utilization (right axis)
and application energy efficiency (left axis).

48

Clusters are expanded or merged only if: ∀p, q : dist(p, q) < ε

Based on our experimental analysis, we choose ε=20 as the minimum distance be-

tween two clusters. We set the ε value such that it is close to the standard deviation

of the IPC*CPU utilization of the PARSEC benchmarks, which is 19.2. Therefore,

we aim to capture the energy efficiency deviations across benchmarks. Choosing a

smaller ε will result in a higher number of clusters, which creates a finer granularity

classification at the cost of a larger runtime for running DBSCAN. On the other hand,

choosing a larger ε will reduce the number of clusters, and therefore may not have a

granularity that is sufficient to capture the various energy efficiency classes. In Fig-

ure 4·13, we show the cluster classes (i.e., Class-1 to Class-4) and the members (i.e.,

benchmarks) of each cluster class. Benchmarks that belong to Class-4 are the most

energy-efficient benchmarks, where as the Class-1 corresponds to the lowest energy

efficiency class. Although the clustering algorithm utilizes a single metric (IPC*CPU

utilization), in Figure 4·13 we show applications on a 2D plot in order to illustrate the

distribution of applications more clearly. We use the average IPC*CPU utilization

data for each application to create a representative training data set for our model.

Therefore, each benchmark in Figure 4·13 basically represents the center data point

among all phases of the application, as it is the mean of all phase data points. We

empirically observe that using average benchmark characteristics during classifica-

tion is sufficient for our purposes. It is also possible to sample phase data and use

a larger number of input data points in DBSCAN. However, using average charac-

teristics provide a more light-weight implementation. As long as the initial training

set covers a representative set of application characteristics, the offline classification

scheme will work for unknown applications. For applications that do not fit within

the current classification scheme (i.e., outliers), we compute a new ε for the new data

set and rerun the classification. As the DBSCAN algorithm has O(nlogn) average

49

complexity, runtime overhead for re-classification is low (Ester et al., 1996). Running

the DBSCAN classifier adds a 0.1 to 0.2 second latency to the resource allocation

decisions without affecting the application performances.

VM Reconfiguration

For server-level resource management, modern hypervisors provide resource control

knobs to the administrators to manage the resources allocated for VMs (KVM, 2008)

(Xen, 2009). These resources (e.g., CPU, memory, disk) can be reconfigured through

the hypervisor during the runtime, without any need for restarting the VMs. ESXi

hypervisor provides various resource control knobs such as vCPUs hot plugging, and

adjusting resource reservations, limits and shares.

Hot plugging feature of the ESXi hypervisor enables adding vCPUs or increasing

the size of the virtual memory of the VMs during runtime. However, these features

require support from the guest OS and some of the OSes today do not support

80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

CPU Utilization

In
st

ru
ct

io
n

pe
r

C
yc

le

Density Based Clustering

Class 4
Class 3
Class 2
Class 1

freqmine

dedup
streamcluster

canneal

vips

x264

blackscholes, bodytrack, facesim, ferret,
fluidanimate, raytrace, swaptions

Figure 4·13: Benchmark classification through density based cluster-
ing. Class-4 represents the highest level of energy efficiency, where as
Class-1 represents the lowest level.

50

unplugging of the resources. An alternate technique for resource management on ESXi

is adjusting the limits of the allocated resources (i.e., CPU and memory). Resource

limits restrict the resource usage of the VMs. By adjusting the limits, it is possible to

control the resource usage of individual VMs to optimize the performance and power

tradeoffs. In this work, we propose running each VM with 12 vCPUs and using the

limits settings for resource allocation.

Running a larger number of vCPUs might introduce higher overhead on the hyper-

visor side, as the hypervisor needs to handle higher number of vCPUs and multiplex

them to run on the physical CPUs(pCPUs). In order to quantify the overhead of

running a higher number vCPUs on the performance of the applications, we compare

two scenarios. In the first scenario we create 2 VMs with 6 vCPUs each with CPU

binding and the NUMA balancer. In the second scenario we create 2 VMs with 12

vCPUs each and we limit the resource allocation of each VM to the level equal to

running 6 vCPUs. The overhead of 12-vCPU case is less than 2% with respect to

6-vCPU case.

On the other hand, applications such as bodytrack, dedup do not exhibit perfor-

mance benefits from increasing amount of resources, due to software characteristics

(Khan et al., 2011). We see similar performance scaling behavior on both native and

virtual environments (Hankendi and Coskun, 2013). We use the default ESXi sched-

uler tick (30ms), which provides comparable performance to the native environment.

4.3.2 Autonomous Resource Sharing

By utilizing the benchmark classes that are derived from the DBSCAN algorithm

(Ester et al., 1996), we allocate CPU resources to each benchmark by assigning more

resources to the more energy-efficient ones. Based on the benchmarks classes, we

compute a weight, wi, for each class, where
∑n

i=1 wi = 1 for all the n applications.

We use average IPC*CPU utilization of each class, ui, to distribute the resources

51

proportionally with the energy efficiency classes of the applications. We compute the

weight of each class as wi = ui/U , where U =
∑n

i=1 ui. We then use wi to compute

the amount to resources allocated (ri) to each application, as ri = wi ∗ R, where

R is the total amount of available resources. On the ESXi environment, available

resources are represented in units of frequency, f (MHz). We allocate CPU resources

(ri) for VMs, such that
∑n

i=1 ri = 23940MHz, where 23940 MHz (12 pCPUs) is the

maximum available CPU resources (R) for the VMs on our system. For the rest of

the section, we will represent CPU resources in terms of the number of pCPUs rather

than MHz.

We adjust the resources in a granularity that is equal to the compute resources of a

single pCPU. Initially each co-scheduled application is executed with equal resources,

and we start monitoring the IPC and CPU utilization. We dynamically store the ap-

plication throughput, when both applications have equal resources, as the reference

throughput to later calculate the gains and loss due to changing resource allocations.

We then utilize the benchmark classification and allocate resources (ri) to VMs pro-

portional to the energy efficiency classes by using the weight of each class, wi, as

explained in Section 4.3.1. While tracking application phases, we also monitor the

throughput gain and losses. If the throughput gains for the higher class benchmark

is higher than the throughput loss for the lower class benchmark, we continue to

increase the resources for the higher class benchmark and decrease resources for the

lower class. If the classes change due to application variation, we restart the algorithm

with equal resources.

Offline benchmark classification is used as a lookup table (LUT) to adaptively

adjust the resource sharing across VMs during runtime. LUT stores the IPC and

CPU utilization values and the corresponding energy efficiency classes, and the maxi-

mum, minimum and mean IPC*CPU utilization values and the weight for each class.

52

After we sample the IPC and CPU utilization of the applications, we access the LUT

to determine the class of the current phase of the application. Thus, our runtime

implementation is able to capture the potential phases that might occur during the

execution of an application. If IPC*CPU utilization reading falls beyond the max-

imum threshold of the highest class, or falls below the minimum threshold of the

lowest class, we rerun the DBSCAN to include the outlier workload phases.

4.3.3 Runtime Implementation

We implement our autonomous resource sharing technique on a real-life multi-core

server. Our architecture consists of a management node (vCenter terminal) and

virtualized server(s). Figure 5·9 shows the architecture of our implementation. Uti-

lizing a centralized management node is a common practice on VM environments

(e.g., VMware‘s DRS (VMware DRS, 2009)). DRS can be utilized to manage the

resources through a centralized controller (e.g., vCenter). The default VM manage-

ment framework of VMware uses SDKs and APIs, some of which are leveraged in our

implementation. In general, data center administrators do not always have access

to the hypervisor code and management through a centralized node brings ease of

implementation. Our technique, however, could be implemented within the hyper-

AMD 12-core Magny Cours Server

ESXi

VM-0 VM-1

vmkperf esxtop

vSphere SDK API

vCenter Terminal

LUTRuntime
Monitor

DBSCAN
Classifier

Resource Allocation Routine

Throughput Constraint

Figure 4·14: Runtime implementation of the resource allocation tech-
nique (Hankendi and Coskun, 2013).

53

visor as well for open-source hypervisors. In a multiple node scenario, management

node still serves as the centralized resource manager. Each host (server node) is then

interfaced to the management node through the default vSphere SDK. Thus, exten-

sion to multiple nodes and/or to multi-socket chips requires no major modification

to the implementation. In this work, we demonstrate the capabilities of our runtime

implementation for a single server node.

We use an Intel i3 dual-core processor based machine as our management node,

which runs Ubuntu 12.04 as its OS. In the training phase, we collect IPC and CPU

utilization for each PARSEC benchmark and run the DBSCAN classifier, which we

implement as a Python script. Management node periodically collects runtime per-

formance statistics from the ESXi hypervisor then utilizes the LUT to classify each

sampling phase. The runtime monitor polls VM-level performance counter readings

(i.e., retired instructions, clock cycles) and CPU utilization from the ESXi every 2.5

seconds, which is the minimum achievable sampling period. Data processing/polling

VM-level performance counter readings adds 0.3 to 0.4 second additional latency to

the sampling process. The resource allocation routine communicates with the ESXi

through the vSphere SDK that performs administrative tasks (i.e., VM reconfigu-

ration) on the ESXi host and makes the resource allocation decisions based on the

energy efficiency class of the co-scheduled applications

4.3.4 Consolidation with Throughput Constraints

Allocating fewer resources to the applications that are not energy-efficient may have

negative impact on the throughput of some workloads. To provide the capability

of controlling the maximum throughput degradation arising from resource sharing

decisions, we implement a feedback mechanism into the resource allocation routine.

The routine continuously monitors the throughput changes on each application. The

feedback mechanism takes maximum performance degradation as a user input, and

54

compares the current performance of the application with respect to the baseline

case, in which all VMs are allocated equal resources. If the maximum performance

degradation limit is exceeded, feedback mechanism asserts a signal to the resource

allocation routine. Feedback mechanism can send signals specific to each VM (i.e.,

VM0-alert, VM1-alert). When the resource allocation routine receives a feedback

signal, it increases the resources for the VM that has the throughput violation and

decreases the resources for the other VM by one step (1 pCPU). Implementing a

feedback mechanism extends the capabilities of our system in two ways:

(1) Throughput degradation of the applications varies depending on the applica-

tion performance characteristics. Figure 4·15 shows the throughput degradation as a

function of CPU resource limits of 4 PARSEC benchmarks. The throughput of each

application in the figure is normalized with respect to the highest CPU resource limit

of 12 pCPUs. Throughput of dedup is minimally affected up to 6-pCPU resource

limit. However, throughput of blackscholes shows almost linear correlation with

the CPU resource limits. As blackscholes highly utilizes the CPU resources, it is

more sensitive to the changes in the CPU resource limits. On the contrary, dedup has

the lowest CPU utilization rate, thus the throughput is consistent between 12 and 6-

pCPU resource limits. Our feedback mechanism allows us to capture such application

characteristics and tune the resource allocation decisions.

(2) By utilizing the feedback mechanism, we can provide the user an option to

limit the maximum throughput degradation on a specific application. Our resource al-

location routine takes the maximum performance degradation as an input and makes

resource allocation decisions accordingly. Users can also set application-specific per-

formance limits (e.g., minimum frames per second in bodytrack) by utilizing frame-

works such as Heartbeats (Hoffmann et al., 2011).

55

11

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

12 10 8 6 4 2

Throughput Degradation for Various CPU Resource Limits

CPU Resource Limit (pCPU)

blackscholes
bodytrack
dedup
swaptions

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Figure 4·15: Throughput degradation of 4 PARSEC benchmarks as
a function of CPU resource limits.

4.4 Experimental Results

In this section, we first present the runtime behavior of the resource allocation tech-

nique on a real-life server. We then show the capabilities of the feedback mechanism

that enables user to enforce throughput guarantees to selected applications. Finally,

we report average throughput-per-watt improvements over the existing co-scheduling

policies.

4.4.1 Runtime Behavior

Figure 4·16 demonstrates the runtime behavior of our technique for 3 application

pairs without any throughput constraints from the user. We show the throughput

of each VM after both applications reach their parallel phases (at the top), and the

CPU resource limits (at the bottom), which are imposed by our method. We first co-

schedule blackscholes and swaptions, which are both in the same power-efficiency

class (Class-3). Although they are in the same class, our resource allocation routine

can adapt to application variations and allocate more resources to blackscholes at

56

the 20th second. For the canneal-freq-mine pair, resource allocations are adjusted

4 times, at t=50, 65, 70 and 75s, due to application variations. Between t=87.5s

and t=102.5s, bodytrack is allowed to use CPU resources that is equal to 8 pCPUs,

and dedup is allowed 4 pCPUs. After t=100, our technique favors bodytrack and

increases its pCPU resources to 9 pCPUs, and reduces the resource limits for dedup

to 3 pCPUs.

In Figure 4·17, we demonstrate the runtime behavior under user-defined through-

put constraints for the same application pairs. For 3 application pairs, we choose

20%,15%, and 10% maximum throughput degradation limit as examples to demon-

strate the runtime behavior when there is a performance constraint on individual

applications. We show the throughput constraints with the horizontal dash lines.

As soon as the throughput constraints are violated, feedback mechanism forces the

resource allocation routine to increase the resources for the application that falls

below the minimum throughput limit. In the figure, both applications have equal

resources until t=22.5s. At t=22.5s, throughput for swaptions (VM1), falls below

the maximum throughput degradation limit due to the resource allocation decision.

Therefore, feedback mechanism signals the resource allocation routine to increase the

resources of VM0, and to reduce the resource of VM1. Similarly at t=45s, throughput

constraints are violated and resource allocation routine performs similar actions.

In the results presented so far, we synchronize the parallel phases of the appli-

cations through the consolmgmt interface as explained in Section 3.6. However, our

implementation works seamlessly as applications go in and out of parallel phases and

does not disrupt the default scheduler decisions. If we consider the entire execution

of the applications, throughput-per-watt gains are expected to be much higher in

comparison to the ROI execution, as there will be higher gains when one application

is in serial and the other is in its parallel phase. For instance, throughput-per-watt

57

0

1

2

3
x 10

10

T
hr

ou
gh

pu
t

0 20 40 60 80 100 120
0
2
4
6
8

10

Time (s)C
P

U
 R

es
ou

rc
e

Li
m

it
(p

C
P

U
)

VM0 Limit

VM1 Limit

VM0

VM1

VM0: blackscholes
VM1: swaptions

VM0: dedup
VM1: bodytrack

VM0: canneal
VM1: freqmine

Figure 4·16: Runtime behavior of the resource allocation routine for
3 applications pairs. CPU resources are adjusted according to power
efficiency classes of the applications to improve the overall efficiency of
the server.

0

1

2

3
x 10

10

T
hr

ou
gh

pu
t

0 20 40 60 80 100 120
0

5

10

Time (s)C
P

U
 R

es
ou

rc
e

Li
m

it
(p

C
P

U
)

VM0 Limit
VM1 Limit

VM0

VM1

VM0: dedup
VM1: bodytrack

VM0: blackscholes
VM1: swaptions

Minimum
Throughput Constraint

VM0: canneal
VM1: freqmine

Figure 4·17: Runtime behavior of the resource allocation routine with
performance guarantees.

improvements for blackscholes-raytrace pair reaches to 22% for the entire execu-

tion and 9% for the ROI execution. For all of the other results, we report energy

efficiency improvements for the ROI only, as energy gains during parallel phases are

more valuable in real-life settings.

4.4.2 Evaluation for Various Cluster Workload Sets

In order to evaluate impact of our technique on the overall energy efficiency of a

cluster in a real-life scenario, we generate 50 random workload sets, each with 10

benchmarks as in the three workload sets described in Section 4.2. For each work-

load set, we evaluate the application selection based co-scheduling policies (i.e., us-

58

ing memory-per-cycle (MPC)*Utilization and IPC*Utilization metrics), the proposed

technique and the combination of application selection policies and the proposed ap-

proach (i.e., Proposed+IPC, Proposed+MPC). Figure 5·1 compares the throughput-

per-watt of each technique with respect to the baseline case, where each VM is given

maximum resources of 12 pCPUs (Base). We report maximum, minimum and av-

erage improvements of the 50 workload sets. The proposed technique together with

MPC*Utilization application selection policy improves the energy efficiency by 21%

on average, whereas MPC*Utilization policy alone improves the energy efficiency by

only 4% with respect to the baseline.

Figure 4·19 compares the average throughput-per-watt, throughput, power and

energy consumption of the workload sets for various techniques. We normalize the

values with respect to the baseline case. As Figure 4·19 shows, throughput-per-

watt improvements are due to achieving increased throughput for a marginal power

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Bas
e

(M
ax

 L
im

its
)

M
PC*U

tili
za

tio
n

IP
C*U

tili
za

tio
n

Pro
po

se
d

+
M

PC

Pro
po

se
d

+
IP

C

Pro
po

se
d

N
or

m
al

iz
ed

 w
.r

.t
ba

se
lin

e

Normalized Throughput per watt for Various Policies

Min

Mean
Max

Figure 4·18: Normalized throughput-per-watt with respect to the
baseline case, where each VM is given the maximum resources, for
randomly generated 50 workload sets.

59

increase. The proposed technique alone improves the throughput by 21% with 3%

increase in power consumption, which leads to 16% lower energy consumption with

respect to the baseline case.

We also test our research allocation technique for co-scheduling 3 applications on

3 VMs on the same server. As a case study, we randomly select 12 applications (i.e.,

4 application triples) and co-schedule 3 of them at a time. We compare the energy

efficiency improvements with the baseline case and the 2-VM case, where we co-

schedule 2 applications at a time (i.e., 6 application pairs). 2-VM case achieves 19%

energy efficiency improvements on average with respect to the baseline case, whereas

3-VM case improves the energy efficiency by 11%. Increasing the VM density for

CPU-bounded multi-threaded applications limits the potential improvements, as the

system is expected to be already fully utilized, which leaves less room for tradeoff

management through resource adjustments. Our method works with an arbitrary

number of VMs and server nodes; however, in an HPC environment each application

should be allocated sufficient CPU resources to ensure high performance.

0.6

0.7

0.8

0.9

1

1.1

1.2

Bas
e

(M
ax

 L
im

its
)

M
PC*U

tili
za

tio
n

IP
C*U

tili
za

tio
n

Pro
po

se
d

+
M

PC

Pro
po

se
d

+
IP

C

Pro
po

se
d

N
or

m
al

iz
ed

 w
.r

.t
ba

se
lin

e

Performance/Power/Energy Comparison for Various Policies

Throughput/Watt
Throughput
Power
Energy

Figure 4·19: Average throughput-per-watt, throughput, power and
energy comparison normalized w.r.t baseline case.

60

4.4.3 Consolidation with a Higher Number of VMs

We test our research allocation technique for co-scheduling 3, 4 and 6 applications

(i.e., each application on a separate VM) on the same server. As a case study, we first

create a set of 12 applications (2x blackscholes, 2x dedup, 2x vips, bodytrack,

canneal, facesim, swaptions, streamcluster, x264). In each experiment, we co-

schedule the applications in groups of 2, 3, 4 or 6 applications at a time. We evaluate

our resource sharing policy with various numbers of VMs by allocating the CPU re-

sources proportionally to the throughput of the applications. We compare the energy

efficiency improvements with respect to the baseline case (i.e., without any limits on

CPU resources). Figure 5·1 shows that the 2-VM case achieves 16% energy efficiency

improvements on average with respect to the baseline case, whereas the 3-VM case

improves the energy efficiency by 9%. The energy efficiency improvements decrease

with increasing the number of applications co-scheduled at a time. As CPU-bounded

multi-threaded applications already utilize the resources at high levels, increasing the

VM density diminishes the energy efficiency improvements, while leaving less room for

managing the performance/energy tradeoffs. Moreover, resource contention at lower

levels of the memory and cache is expected to be higher, since larger number of VMs

(i.e., vCPUs) will be sharing the hardware resources. In our experiments, we test

our technique under fixed amount of CPU resources (i.e., single-node). Therefore, it

is expected to have lower gains with increasing VM number, as the performance of

the PARSEC applications already scale well up to 4 threads. Although our method

works with an arbitrary number of VMs and server nodes, in an HPC environment

each application should be allocated a sufficient amount of CPU resources to ensure

high performance.

61

2 Apps 3 Apps 4 Apps 6 Apps
0.6

0.7

0.8

0.9

1

1.1

1.2
Throughput per watt Improvements for Various Number Co scheduled Applications

Baseline
Proposed

Figure 4·20: Normalized throughput-per-watt with respect to the
baseline case, where each VM is given the maximum resources, for
varying number of co-scheduled applications. Energy efficiency im-
provements decrease with increasing number of applications.

4.5 Chapter Summary

In this chapter, we focus on consolidation and resource management techniques for

multi-threaded workloads running on multi-core servers. We first show that the best

performing consolidation policy varies depending on the overall characteristics of the

workload set and propose a selection algorithm that finds the best performing con-

solidation policy. Second, we propose resource allocation technique on virtualized

environment. Our proposed technique classifies the multi-threaded applications de-

pending on their energy efficiency levels, and favors the more energy-efficient ones

while making resource allocation decisions. We show that our techniques improve the

energy efficiency by 16% to 24% on real-life experiments.

62

Chapter 5

Dynamic Power Capping

Power capping is the ability to control the power consumption of the server nodes, in

order to comply with power delivery limitations and control the energy costs. In this

section, we present various dynamic power capping techniques targeting native and

virtualized environments. We first introduce the details of our power capping tech-

nique on a native environment (i.e., Pack & Cap) for multi-threaded applications.

Pack & Cap controls DVFS choices and number of active cores to optimize perfor-

mance under power constraints. Secondly, we introduce a management framework

for virtualized systems (i.e., vCap, where multiple multi-threaded applications are

consolidated on a single multi-core server. vCap achieves fine-granularity power cap-

ping on virtualized systems, which optimizes the overall performance of the multi-core

server by dynamically allocating resources for consolidated VMs. Third, we introduce

Scale & Cap, which considers the power and performance scaling characteristics of

multi-threaded applications when distributing the available resources through a linear

programming-based solution to distribute the available resources. Finally, we present

Adapt & Cap, a framework to coordinate and unify application and system-level

adaptations to (1) improve the performance under power constraints and (2) reduce

the power consumption under performance constraints. We implement and evaluate

all of our techniques on real-life commercial servers with multi-core processors.

63

5.1 Power Capping on Native Environments

5.1.1 Pack & Cap Methodology

Our approach for runtime thread packing and DVFS control requires an offline step

to train the logistic regression model. In the offline step, we use an extensive set of

performance data collected for the parallel workloads in the PARSEC benchmark suite

(Bienia et al., 2008) to train the classifiers. Each classifier takes performance counter

and per-core temperature measurements as inputs, and outputs the system operating

point with the highest probability of maximizing performance within a given power

constraint. A classifier instance is trained for each desired power constraint. During

runtime, we recall the model associated with the desired power constraint using a

lookup table. Then, the control unit sets the system operating point with the highest

probability of being optimal. In this way, our model is able to constrain the system

power under a power cap at runtime without using expensive power measurement

devices.

The offline characterization step makes use of an L1-regularized multinomial logis-

tic regression (MLR) classifier (Alpaydin, 2004). While previous techniques require

manual inputs to select the performance metrics that are most relevant to energy,

power and delay optimization, we use L1-regularization to systematically find the

relevant inputs and mask irrelevant ones. In the offline characterization step, we use

an extensive set of power, temperature and performance counter data collected for

each PARSEC benchmark at all feasible system operating points (V-F and thread

packing combinations). For each workload’s parallel phase (region of interest, ROI),

we divide the data into 100 billion μ-op execution intervals. We then train an MLR

classifier for each desired power constraint.

Previous modeling techniques (Lee and Brooks, 2006) rely on linear regression

for estimating power and performance. Regression models predict continuous values

64

representing power and performance as a function of performance counter inputs. By

modeling the boundaries between the discrete decision outputs directly, we observe

the MLR classifier to be a more stable predictor of optimal outcomes compared to

linear regression techniques, particularly when the test data differs considerably from

the training data.

The inputs to the MLR classifier include a set of workload metrics, which are func-

tions of the system performance-counter values (e.g., μ-ops retired, load locks, cache

misses, resource stalls, etc.), per-core temperatures, and the current operating point.

Given the inputs during runtime, the logistic regression calculates the probability of

each candidate operating point being optimal under power caps. The output with

the highest probability is then chosen as the current operating point. At runtime,

the system logs performance counter and temperature data, and calculates the prob-

ability of each operating point being optimal using the set of weights derived from

the MLR classifier corresponding to the current power constraint pc. The runtime

overhead of the proposed technique is minimal, as the model weights are accessed in

the form of a lookup table.

5.1.2 Experimental Results

All experiments are performed on a server including an Intel Core i7 940 45nm quad-

core processor, running the 2.6.10.8 Linux kernel OS. We control the system oper-

ating points (V-F settings and thread-packing combinations) using Linux C library

interfaces. To implement data collection and runtime control, we interface our data

measurement and control apparatus to a MATLAB module compiled as a C-shared

library. This module is configured to read lookup tables generated offline, buffer in-

coming performance counter and temperature data, and periodically output control

decisions to a control unit. The runtime overhead for each runtime activation of the

control algorithm is in the range of 10-50ms.

65

0 10 20 30 40 50 60 70 80 90
100

150

200

P
ow

er
 (

W
)

bodytrack

0 10 20 30 40 50 60 70 80 90
1.5

2

2.5

3

F
re

qu
en

cy
 (

G
H

z)

0 10 20 30 40 50 60 70 80 90
1

2

3

4

Time (s)

A
ct

iv
e

C
or

es

Figure 5·1: Demonstration of DVFS and thread-packing control for
bodytrack under changing power caps (Cochran et al., 2011).

We demonstrate that our adaptive runtime policy, Pack & Cap consistently

obeys a wide range of power constraints, regardless of workload behavior or physical

operating conditions. During the execution of each parallel workload, we periodically

change the power constraint to a random value in the 110W - 180W range, and

measure the percentage of the execution time for which the power is within a tolerance

of the cap value. We do not utilize any power measurements during runtime control.

Overall, we are able to constrain the power consumption within the given cap 96% of

the time within a 5W margin beyond the power cap. In Figure 5·1, we demonstrate

the adaptive power capping capabilities of our approach. We also compare thread

packing with using a fixed smaller number of threads, i.e., thread reduction. While

1-thread fixed or 2-thread fixed corresponds to running 1 or 2 threads, thread packing

corresponds to executing applications with 4 threads packed on 1 or 2 cores on a quad-

core machine. Thread packing is capable of matching the lower bound on the power

cap associated with the 1-thread case, but achieves an average of 51.6% reduction

in energy. When compared to the 2-thread case, thread packing is able to achieve a

better power range, and an average of 15.6% reduction in energy.

66

5.2 Power Capping on Virtualized Environments

As virtualized cloud environments provide comparable performance to native execu-

tion, multi-threaded workloads from various applications domains (e.g., high perfor-

mance computing and scale-out applications) are commonly deployed in virtualized

data centers. VMs that run multi-threaded workloads (Symmetric Multi-Processing

(SMP) VMs) exhibit significantly different power-performance tradeoffs compared to

the VMs that run traditional enterprise loads with low system utilization. In addi-

tion, the energy efficiency of SMP VMs varies because of multi-threaded application

characteristics (i.e., inter-thread communication and performance scaling). There-

fore, optimizing the performance of the virtualized servers under power constraints

requires sufficient understanding of the multi-threaded application characteristics.

The proposed technique, vCap, adheres to the power caps by dynamically adjust-

ing the total amount of CPU resources that is utilized by the SMP VMs. At runtime,

vCap monitors the performance characteristics of the VMs adjusts the resource allo-

cation decisions to improve the energy efficiency of the virtualized server nodes. Our

specific contributions are as follows:

• We propose a co-scheduling technique that finds the best VM groups to consolidate

together based on the scalability of the multi-threaded applications to maximize the

achievable performance. We show that scalability-based co-scheduling outperforms

prior co-scheduling methods that solely consider application resource use.

• We propose a fine-grained power capping technique, vCap, that is able to meet the

performance objectives such as maximizing total QoS or achieving a minimum QoS

level for specific VMs. We also propose a fast and accurate runtime QoS estimation

methodology for VMs that does not require any offline training phase. Based on

the QoS estimations, vCap distributes the resources among VMs to optimize the

energy efficiency of the server node.

67

0 0.5 1 1.5 2 2.5
x 104

0.2

0.4

0.6

0.8

1

CPU Resource Limits (MHz)

Q
ua

lit
y

of
S

er
vi

ce

Performance Scaling as a Function of CPU Resources

canneal
hadoop
bodytrack
dedup

Figure 5·2: Performance scaling of some of the PARSEC and bench-
marks and hadoop as a function of CPU resource limits.

• We demonstrate the benefits of vCap on a real-life multi-core server. vCap is able to

meet dynamically changing power constraints with high accuracy while improving

the overall QoS provided to the user by 17% and the QoS/watt by 12% for workload

sets created out of PARSEC (Bienia et al., 2008) and CloudSuite (Ferdman et al.,

2012) benchmarks.

Performance Scalability of Multi-threaded Applications

Ideally, multi-threaded applications are designed to efficiently utilize an arbitrary

number of cores. However, application characteristics such as inter-thread communi-

cation and architectural bottlenecks such as the off-chip bus bandwidth cause sub-

linear performance improvements when the amount of CPU resources are increased.

SMP VMs that run poorly scaling applications are not able to utilize all the available

CPU resources of a multi-core system; hence, such VMs are good candidates for con-

solidation. Although consolidation might degrade the performance of the individual

VMs, the aggregate performance of the server node and the energy efficiency improve

significantly.

On the ESXi hypervisor, the total available computational capacity of a server

68

node is represented in MHz, where the total amount of CPU resources, R, is equal to

the number of physical CPUs multiplied by the maximum core frequency. CPU re-

source usage of a VM can be constrained by adjusting the CPU resource limits on the

ESXi hypervisor. CPU resource limits put upper-bounds on the time, that VM gets

scheduled. If the total CPU usage exceeds the limit, ESXi de-schedules the vCPUs.

Figure 5·2 shows the QoS scaling of 4 applications from PARSEC and CloudSuite as

a function of the CPU resources (in MHz). As Figure 5·2 shows, bodytrack cannot

utilize all the available hardware resources, due to increased amount of data depen-

dencies and communication overhead with increased number of threads. Therefore

the QoS does not improve beyond a certain amount of CPU resources (i.e., 15970

MHz). In addition, reducing the CPU resources has a larger performance impact on

the poorly scaling VMs (e.g., canneal, bodytrack) at lower CPU resource limits.

Total QoS of a consolidated server depends on the specific VMs that are co-

scheduled. Figure 5·3 shows the QoS breakdown of two systems, each of which are

running two distinct VMs under various power caps. We observe that the overall

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

140W 150W 160W

System0 - VM0 - dedup
System0 - VM1 - bodytrack
System1 - VM0 - blackscholes
System1 - VM1 - canneal

 }Poorly scaling pair

Power Caps

0.4

1

1.6

Q
ua

lit
y

of
 S

er
vi

ce
 (Q

oS
)

Figure 5·3: Overall normalized QoS of two distinct co-scheduling cases
under various power caps. QoS range for the scaling VMs is much
smaller than the non-scaling VMs. Thus, selecting non-scaling VMs to
co-schedule have high potential for energy efficiency improvement.

69

Performance Scalability
Miss-per-cycle

S
ca

la
bi

lit
y

0

0.2

0.4

0.6

0.8

1.0

0

0.005

0.010

0.015

M
em

ory-boundedness

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

str
ea

m
clu

ste
r

x2
64

ha
do

op
fa

ba
n

ca
ss

an
dr

a

Performance Scalability vs. Memory-boundedness

Figure 5·4: Memory-boundedness (last level cache misses per cycle)
vs. scalability of PARSEC and CloudSuite applications. Scalability is
measured as the ability to utilize the 12-core system when running with
12 threads. This experiment shows that memory-boundedness does not
capture the scalability characteristics of the applications.

QoS improvement of consolidation is much larger for the VMs running poorly scaling

applications (i.e., blue bars), as these VMs are not able to fully utilize the system

when running alone. For the VMs running dedup and bodytrack, consolidation

improves the overall QoS by 73% and QoS/watt by 68%. Consolidating the SMP

VMs that have near-linear performance improvements as the amount of resources

grow (i.e., VMs running blackscholes and canneal) provides 7% higher total QoS

and only 4% higher QoS/watt compared to running them alone. This observation

motivates the design of a co-scheduling policy that takes the scalability characteristics

of the applications into account while making co-scheduling and resource allocation

decisions.

Consolidating VMs that have complementary resource usage characteristics is ex-

70

pected to reduce contention. For example, memory-boundedness can be used as a

metric to choose which VMs to co-schedule (Dhiman et al., 2009). Depending on

the requirements of the applications, it is known that consolidation causes perfor-

mance degradation due to increased contention on bus and caches (Dhiman et al.,

2009). However, on virtual environments it is possible to minimize the impact of the

co-runner application through isolating and balancing the memory accesses. In or-

der demonstrate that, we evaluate the impact of the co-runner VMs on performance

of the most memory-intensive application (i.e., canneal. Figure 5·5 shows the QoS

of the VM running canneal alone and consolidating with all other VMs in pairs of

two VMs at a time. Consolidating two instances of canneal has the highest nega-

tive impact on the performance. However, in all other cases co-runner applications

does not introduce significant performance degradation. Our experimental results

discussed above imply that for multi-threaded applications, performance scalability

has a more dominant impact on the energy efficiency of the server. Figure 5·4 shows

the scalability and the memory-boundedness metrics (i.e., cache miss-per-cycle) for

a selection of PARSEC and CloudSuite. We use cache miss-per-cycle rather than

cache miss-per-instructions, as miss-per-cycle reflects the cache-miss rate over time.

As Figure 5·4 shows, memory-boundedness and scalability have significantly different

trends (i.e., 0.34 Pearson coefficient with 0.26 confidence level) across benchmarks.

Therefore, co-scheduling decisions based on memory-boundedness would differ from

decisions that are based on the application scalability. Based on our analysis, we

make the following observations:

• When consolidating multiple VMs, it is beneficial to allocate only the necessary re-

sources to poorly scaling VMs that reach nearly their maximal QoS with a relatively

smaller amount of resources (e.g., dedup), and reserve the remaining resources for

the co-runner VMs.

71

0 0.5 1 1.5 2 2.5
x 104

0

0.2

0.4

0.6

0.8

1

CPU Resource Limit (MHz)

Q
oS

QoS of the VM running canneal with Various Co runners

Alone canneal
blackscholes

bodytrack
canneal

dedup
facesim

fluidanimate
ferret

freqmine
raytrace

streamcluster
swaptions

vips
x264

Figure 5·5: QoS of the VM running canneal when consolidating with
all the other VMs in pairs of two. Performance of canneal is not
significantly affected by any of the co-runners.

• As the performance of the VMs is minimally affected by the co-runner VMs, con-

solidation decisions based on resource usage (e.g., memory-boundedness) are not

sufficient to improve the energy efficiency. Scalability of a VM is a more impor-

tant factor while making consolidation decision when compared to resource usage

metrics. The energy efficiency of a server node, QoS/watt, can be maximized by

co-scheduling poorly scaling VMs together (e.g., bodytrack-dedup).

5.2.1 Adaptive Power Capping on Virtualized Environments

Virtual environments provide additional control knobs to manage the amount of re-

sources allocated for each VMs. ESXi hypervisor allows administrator to limit the

maximum amount of CPU resources allocated to a specific VM by adjusting the CPU

resource limit knob, which restricts the resource usage of the VMs. By adjusting the

CPU resource limits, it is possible to cap the peak power consumption of the server

node. In this section, we discuss the design of vCap and provide an overview of our

72

implementation. We first discuss our methodology to track the power caps using

the CPU resource limits and our VM-level QoS estimation technique under power

caps. We then present our consolidation and the resource distribution algorithms

that maximize the energy efficiency under power constraints.

Tracking Power Caps

By utilizing the CPU resource limits, it is possible to adjust resources with a MHz

granularity, instead of adjusting the number of active cores (i.e., core power gating

(CPG)) and/or DVFS. Therefore, CPU resource limit knob enables us to control

the performance/power tradeoffs with a finer granularity, which provides up to 14%

higher QoS in comparison to power capping with DVFS+CPG granularity.

Thread Packing Overhead

In this work, we propose to execute applications with the maximum number of threads

(i.e., number of threads = number of cores) and then applying CPU resource lim-

its, as dynamically changing the thread number requires modification to the original

code. However, running higher number of threads may introduce performance over-

heads due to increased contention and communication among threads. In order to

quantify the negative impact of running a higher number of threads when running at

CPU resources that is equal to 4 cores, we compare the normalized runtime of the

applications in three cases. In the baseline case, we execute the applications with 4

threads, no that there is no overhead due to higher number of threads. We then test

two techniques: (1) Resource Limits represents the case of running the application

with 12 threads and limiting CPU resources that will be equal to compute power of

4 cores, (2) GuestPacking represents the case where VMs run with 12 threads, which

are packed onto 4 vCPUs at the guest OS level. Figure 5·6 shows the normalized

runtime for running the applications with the configurations explained above. Guest-

73

Packing reduces the number of vCPUs that simultaneously access the pCPUs. As

a result, GuestPacking allows us to reduce the overhead by 45% for dedup. There-

fore, we implement GuestPacking together with CPU resource limit adjustments to

minimize the negative impact of running higher number of threads under power caps.

In order to meet the power caps, our proposed technique utilizes runtime power

monitoring as the feedback. We separate the total power consumption Ptot as the

sum of the dynamic (Pdyn) and idle (Pidle) power. At runtime, vCap estimates

the total amount of available CPU resources (Rcap), that meets the given power

cap. For n number of VMs consolidated, Rcap(MHz) = Utilization ∗ Pcap/Pdyn.

Based on the calculated Rcap, we first derive the number of active vCPUs, such that

Baseline (Unlimited resources, 4 Threads)
Resource Limits (4*1995 0 MHz Limits, 12 Threads, No Packing)
GuestPacking (No limit, 12 Threads, Packing at GuestOS level)

N
or

m
al

iz
ed

 R
un

tim
e

0

0.5

1.0

1.5

2.0

2.5

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim

str
ea

m
clu

ste
r

x2
64

ha
do

op
fa

ba
n

ca
ss

an
dr

a

Normalized Runtime for Various Execution Settings (4 Threads)

Figure 5·6: Performance overhead for running higher number of
threads under power caps. Running applications with 12 threads and
applying resource limits introduces large overheads for some of the ap-
plications. Packing the threads onto smaller number of vCPUs reduces
the overhead up to 45%.

74

#ofvCPUs∗CoreFreq > Rcap. We then fine tune the CPU resource limits to match

the Rcap value.

5.2.2 Estimating QoS Degradation Under Power Caps

ESXi hypervisor provides VM-level metrics to pinpoint the CPU resource usage

and bottlenecks. The sum of these 4 performance metrics is equal to the total

amount of available CPU resources of a system with, which is 100% ∗#ofvCPUs =

(RUN% + READY% + COSTOP% + WAIT%). In this work, we focus on READY and RUN to

identify the scalability and the QoS of the application at various CPU resource limits.

RUN: The percentage of total schedule time of the VM, which excludes the system time

(%UTIL = %RUN + %SYS).

READY: The percentage of time that the VM is ready to run, but not scheduled. This

metric implies that the application will be able to utilize the CPU, if more resources

were allocated to the VM. Therefore, READY metric can be utilized to estimate maxi-

mum utilization level, which reflects the performance scalability characteristics of the

applications.

COSTOP: The percentage of time the VM spent in a rescheduled state, where ESX

CPU scheduler deliberately puts the vCPU into a sleep mode, if a certain vCPU

advances much farther than other vCPUs. COSTOP is expected to high for multi-

threaded workloads that have load-balancing issues that originate at the input distri-

bution/preparation stage (i.e., input/start phase) of the application.

WAIT: The total wait time where the VM is waiting for some VMKernel resource.

WAIT includes I/O wait time, idle time and among other resources of stalls.

By using the above metrics, it is possible to estimate the total CPU requirements of

a VM by using the RUN and READY metrics. Although RUN metric is similar to the CPU

utilization metric, the additional READY metric captures the potential performance

improvements of the VM, if more CPU resources were allocated. For instance, when

76

estimation reflects the QoS estimations using Equation 5.1, while we use second order

polynomial fit as the baseline estimation technique that requires an offline training

phase for each application. We evaluate our proposed QoS estimation methodology

that is explained in Equation 5.1 for all PARSEC applications when running with

n−cores, where 0 ≤ n ≤ 12, on a 12-core system. Our proposed technique can

estimate the QoS of all PARSEC applications with an average error of 3%, while

polynomial fit provides 5% error on average. These results show that the proposed

QoS estimation technique provides better accuracy even without any training phase,

which eliminates the workload characterization overhead.

Providing QoS Guarantees: As decreasing the amount CPU resources allo-

cated to a VM causes degradation on the application performance, it is essential to

provide lower-bounds for the QoS of the individual VMs. In a real-life scenario, users

might request minimum QoS guarantees (QoSreq) for time-sensitive applications. In

order to provide QoS guarantees for VMs, we can use the Equation 5.1 to estimate

the Clim, such that 1− (Creq−Clim)

Creq
= QoSreq.

5.2.3 Consolidation Based On Performance Scalability

Consolidating applications that do not scale linearly improves the energy efficiency

by improving the overall utilization of the system, while consolidating scaling appli-

cations do not bring significant improvements as the system is already utilized by

the application. Therefore, we run VMs that have Creq > 11 ∗ CoreFreq alone, as

those VMs already utilize the hardware resources. In order to choose the VMs to

consolidate together, we rank the VMs according to their Creq values and pair the

VMs starting from the bottom of the list, with the constraint
∑n

i=1 Creqi < Rcap. In

our experiments, the maximum value of n (i.e., number of VMs) that do not exceed

the Rcap is 2 for our 12 core system. This observation shows that consolidating more

than two VMs is not feasible for the system under test.

77

In order further improve the energy efficiency, we propose to distribute the CPU

resources to VMs by prioritizing the ones that reaches to its maximum QoS with the

smallest amount of CPU resources (i.e., poor scaling VMs). Therefore, the aggregate

QoS of the system can be maximized by allocating the rest of the CPU resources

to the co-runner VM. We set the Clim=Creq for the VMs that have lower Creq than

its co-runner and allocate the rest of the CPU resources (i.e., Rcap − Clim) to the

co-runner VM which has a higher Creq.

5.2.4 Experimental Results

We implement the vCap on an AMD Magny Cours multi-core server. We deploy

a management node to perform administrative tasks on VMs. Management node

collects runtime performance statistics from the ESXi hypervisor and power readings

from the power meter. QoS guarantees and the power constraints are implemented

user-defined input parameters of the runtime routine. We keep the track of power

estimation errors and the runtime routine continue to adjust the CPU resource limits

by recalculating the Rcap, till the tracking error is smaller than 2W. QoS and Rcap

estimation modules are implemented as Phyton modules on the management node. In

order to adjust the CPU resource limits, we created Perl modules using the vSphere

SDK for Perl. Perl module communicates with the ESXi and reconfigures the VMs

CPU resource limits based on the input from the estimation modules in every 2

seconds, which is equal to the minimum sampling rate of the performance monitoring

tool (i.e., esxtop). To implement the GuestPacking technique, we use the default

taskset tool at the guest OS level to pack the threads onto smaller number of vCPUs.

As vCap modules are implemented on a separate management node, the overhead on

the server side is negligible.

In order to evaluate the success of our technique, we randomly generate 10 work-

load sets, each of which consists of 10 applications selected among PARSEC and

78

QoS
QoS/Watt
Power

N
or

m
al

iz
ed

 w
.r.

t B
as

el
in

e
C

as
e

0.8

0.9

1.0

1.1

1.2

MPC Utilization vCap

Qos, Power and Energy Efficiency Comparison for Various Policies

Figure 5·8: Comparison of QoS, QoS/watt and power consumption of
the server with various consolidation techniques. The proposed tech-
nique improves the overall QoS by 17% when compared to the baseline
case, where VMs have no CPU resource limitations.

CloudSuite applications. In Figure 5·8, we evaluate both the overall QoS of the sys-

tem, as well as the QoS/watt metric to measure the energy efficiency. We compare

our technique with previously proposed consolidation techniques that are based on

CPU utilization and MPC metrics. For CPU utilization and MPC based policies, we

first rank the applications according to the selected metric. We then pair the high-

est ranked VM with the lowest ranked one and progress through the list and allocate

equal resources to all VMs. We normalize each value with respect to the baseline case,

where we pair the VMs randomly and do not impose any CPU resource limits. The

proposed technique improves the QoS by 11% on average in comparison to the best

performing previous policy. The energy efficiency of the server node also improves by

9% in comparison to the most energy efficient previous policy.

We also test our technique under dynamically changing power caps to evaluate the

power cap tracking accuracy. We change the power caps in every 8 seconds between

100W and 150W, similar to the real-life power regulation signals that are sent in

every 4/8 seconds. We compare the overall QoS for the proposed technique and the

79

baseline case. vCap is able to adhere to the power cap 92% of the time within the

2W error margin, and 98% of the time within the 5W error margin.

Figure 5·9 shows the runtime behavior of vCap for the VM pair that is running

dedup and hadoop. We test our technique under the minimum QoS requirement of

70% for VM0 (i.e., dedup) and dynamically change the power caps between 130W and

160W. vCap accurately tracks the power cap accurately and satisfies the minimum

QoS requirement that is required for VM0 by adaptively adjusting the resources in

case of a QoS violation (e.g., t=10).

Figure 5·9: Runtime behavior of vCap under power caps and QoS
constraints for the VM group running dedup and hadoop. vCap adheres
to the power cap and ensures that the QoS guarantees are met.

80

5.3 Scale & Cap: Scaling-Aware Resource Management for

Consolidated Multi-threaded Applications

The total amount of available compute resources on a server varies over time due to

the power cap given to the server, thermal emergencies, user demands and application

types. Traditionally, CPU utilization has been used as the metric to determine the

resource distribution ratio across single-threaded applications (Nathuji et al., 2009).

By using the CPU utilization metric to distribute the resources proportionally, these

techniques aim to minimize the performance degradation, while maximizing the server

utilization. However, with the emergence of multi-threaded applications, using a sin-

gle dimensional metric, such as CPU utilization, become inefficient to capture the

multi-threaded specific characteristics. In this section, we first present two motiva-

tional examples to show the need for a novel approach to the resource allocation

problem for multi-threaded applications. We then introduce our dynamic resource

allocation technique that jointly uses the power and performance characteristics to

capture the multi-threaded characteristics.

Is CPU Utilization Enough?

CPU utilization metric measures the percentage of busy cycles of a specific period

of time. Traditional resource allocation techniques distribute the available compute

resources proportional to the CPU utilization levels of the consolidated applications

(Xen, 2009) (VMware DRS, 2009). Although for single-threaded applications, CPU

utilization can capture all CPU requirements of an application; for multi-threaded

applications we need to incorporate an additional dimension, which is the perfor-

mance scalability. Performance scalability can be defined as the characteristics of a

multi-threaded application that reflects how the performance of the application is in-

creasing (i.e., scaling) with increased amount of resources. Ideally, all multi-threaded

applications are designed to scale perfectly with increasing amount of resources (i.e.,

81

Peak Power (max pi)
Power Weight (wi)

P
ea

k
P

ow
er

 (
W

)

120

130

140

150

160

170

180

P
ow

er W
eight (W

/M
H

z)

0

0.002

0.004

0.006

0.008

0.010

bla
ck

sc
ho

les

bo
dy

tra
ck

de
du

p

sw
ap

tio
ns

ca
nn

ea
l

Dat
aC

ac
hin

g

str
ea

m
clu

ste
r

M
ed

iaS
tre

am

Sof
tw

ar
eT

es
tin

g

fa
ce

sim

Goo
gle

Que
ry

W
iki

Clas
sifi

er

Dat
aA

na
lyt

ics vip
s

Ave
ra

ge

Figure 5·10: Peak power (left axis, red) and power weight (right axis,
blue) values for 4 PARSEC benchmarks and the PARSEC average mea-
sured on AMD Opteron 6172.

2x performance improvement for 2x increase in allocated resources). However, due

to various multi-threaded application bottlenecks, such as communication, synchro-

nization, serial code, etc. most of the multi-threaded applications do not scale lin-

early with increasing amount of resources. Therefore, each multi-threaded application

has a specific performance/resource curve that reflects its performance scalability.

ALGORITHM 2: Utilization-aware Resource Distribution
Inputs:

U [n] // Utilization Array

Rk // Total amount of available resources

Output: ri

W = sum(U [n]);

for i = 1 to n ;

wi = U [i]/W

ri = Rk ∗ wi

end

82

ALGORITHM 3: Scalability-aware Resource Distribution

Inputs:

C[n] // CPU Demand Array

Rk // Total amount of available resources

Output: ri

sort: C[n] for i = 1 to n ;

if Rk > 0 then

ri = C[i];

Rk = Rk − ri;

else
return

end

end

Similar to the performance scalability characteristics, each application has a dis-

tinct peak power consumption and a power weight, wi, which represents the power

consumed at one unit of computing capacity (i.e., MHz in the virtual environment),

while running application i. In Figure 5·10, we show the peak power consumption

and the power weights of 14 applications. In order to obtain the peak power values,

we run the applications alone with maximum amount of thread count that is equal to

the total core count for each server (i.e., 12 threads for the AMD-based and 8 threads

for the Intel-based server) with the default resource manager. As figure shows, both

peak power and power weight values show significant variation, due to the software

characteristics. For instance, vips heavily utilizes the floating point units, which is a

more power hungry component than integer units. Therefore, the peak power con-

sumption of vips is much higher when compared to blackscholes, which mostly utilizes

the integer units. Similar to our argument for performance scalability, resource dis-

tribution without considering the power weights of the individual applications can

83

lead to inefficient resource distribution by not being able to favor the more power-

efficient applications. In order to better illustrate our observations, we present two

case studies that demonstrate the benefits of considering performance scalability and

power weights while making resource distribution decisions.

Case Study #1: Applications with Distinct Performance and Power

Scaling

In this example, we compare the benefits of various resource distribution ap-

proaches on two applications that do not exhibit only distinct resource require-

ments (i.e., performance scaling), but also distinct power characteristics. Such an

application-pair from PARSEC suite is canneal and facesim. The performance of

canneal can scale almost up to 12-threads, while facesim’s performance increase

saturates beyond 8-threads. On the contrary, facesim is a more power hungry ap-

plication when compared to canneal due to its higher IPC (Hankendi and Coskun,

2012). These contradicting properties play a significant role while making resource

distribution decisions. In order to illustrate this, we compare three algorithms: (1)

utilization-aware (Nathuji and Schwan, 2008), (2) only performance scalability-aware

(Hankendi et al., 2013) and (3) power and performance scalability-aware in Fig-

ure 5·11a. Utilization-aware approach proportionally distributes the total available

amount of resources based on the CPU utilization of each VM by calculating a weight

value (wi) as shown in Algorithm 2. Scaling-aware resource distribution first estimates

the CPU requirements of each VM, and then prioritizes the ones with smaller require-

ments to maximize the overall QoS of the server, as shown in Algorithm 3. On the

other hand, power and performance scaling-aware approach maximizes the QoS for

given power weights, CPU demands, power constraints and total amount of available

resources using a linear programming-based solver, which is explained in detail in

Section 4. As power-aware approach uses power weights as an additional metric, it

85

only scaling-aware resource distribution will be equally favoring these two applica-

tions, as they have similar performance scaling capacity). On the other hand, power

and scaling-aware approach will favor the one with lower power weight value. Power

and scaling-aware approach improves the total QoS up to 11% in comparison to only

scaling-aware and utilization-based approaches. As blackscholes and swaptions

have very similar performance scaling behavior, scaling-awareness does not bring any

benefits over the utilization-based approach. This also demonstrates that the 11%

performance improvement is solely due to power-awareness.

5.3.1 LP Solution to Resource Distribution

Based on our observations in the previous section, we conclude that the power effi-

ciency and performance scaling characteristics of parallel applications play a signifi-

cant role. In order to incorporate our findings in a formal solution, we formulate the

problem as a linear programming problem. The main goal of the solution provided

here is to maximize the total QoS of consolidated applications without violating the

individual QoS requirements of the applications under power constraints through re-

source allocation. We first formulate the problem of maximizing QoS for n number

of VMs, then explain how to incorporate power efficiencies of individual applications

into our linear programming solution.

We define the maximum QoS as the performance (i.e., runtime) of an application

when running alone on the target system. This measurement gives us the upper-bound

for the performance of each application, which we use as the maximum QoS of 1. Any

performance loss is reflected as the percentage of the maximum QoS performance. The

problem of maximizing QoS of a server when consolidating m applications with QoS

values on a single physical server can be represented as follows.

86

maximize
m∑

i=1

qi

subject to 0 ≤ qi ≤ 1, i = 1, . . . ,m.

(5.2)

For an application i, the achievable maximum QoS (qi) is a function of the resource

demand, (di), and the total amount of resources allocated,(si). In order to achieve

the maximum QoS, the amount of supplied resources (si) should not be lower than

the resource demand of the application (di). Therefore, we can define the QoS of

an application, i, as a function of resource demand (di) and the allocated/supplied

resources (si). For the case, where di ≤ si, QoS is 1, as the demand is met by

the supply. Therefore, our focus is to solve the resource distribution problem, where

resources are limited (di ≥ si). For such cases, QoS of the application i, qi is described

as follows:

qi = si/di

subject to 0 ≤ si ≤ di ≤ Rk.
(5.3)

Rk is the total resource capacity of a server, k. For consolidating i = 1, . . . ,m

number of applications on a server, k, Equation (5.2) becomes

maximize
m∑

i=1

si/di

subject to 0 ≤ si ≤ di ≤ Rk.

(5.4)

In order to be able to guarantee certain performance requirements, we need to be able

to enforce lower bounds for the QoS of each application. We can use lower-bound for

minimum performance guarantees and upper-bound for maximum performance limi-

tations, as data centers may provide incentives to users for bounding the maximum

87

performance. Therefore, our problem becomes a constrained QoS maximization prob-

lem, which can be represented by putting lower and upper bound constraints on qi

(i.e., si/di) of the applications, such that

maximize
m∑

i=1

si/di

subject to 0 ≤ si ≤ di ≤ Rk

li ≤ qi ≤ ui.

(5.5)

Based on the Equations above, we can convert the problem into a linear-programming

problem as follows:

Find q that maximizes

f(q) = q1 + q2 + . . . qm

subject to
m∑

i=1

diqi ≤ Rmax

li ≤ qi ≤ ui.

(5.6)

Solution of this LP-problem provides us the q vector, which consists of set of

possible qn values, q1, q2, . . . qm to assign for each application, i, to maximize the f(q)

(i.e., total QoS) under a total resource capacity constraint, Rmax. For an unlimited

amount of resources, Rmax, the maximum value of f(q) would bem, as q1, q2, . . . , qm =

1. For an application, i, with a total resource demand di, the total amount of resources

required to provide a QoS of qi is, si = diqi. From the LP solution, we can derive the

necessary amount of resources, si that maximizes the total QoS of the system.

5.3.2 Maximizing Server-QoS with Power Constraints

For the case where there are power constraints, the amount of resources need to be

reduced to Rk, where Rk ≤ Rmax. In order to determine the value of Rk, our run-

88

bodytrack (i1)
blackscholes (i2)

l1=l2=0
u1=u2=1
Rk=24000

l1=0.50, l2=0.25
u1=u2=1
Rk=24000

l1=0, l2=0.40
u1=u2=1
Rk=24000

l1=0.50, l2=0.25
u1=0.80, u2=1
Rk=24000

Q
oS

0.2

0.4

0.6

0.8

1.0

Q
oS

0

0.2

0.4

0.6

0.8

1.0

Resources (Rk)

0 10000 20000

Resources (Rk)

10000 20000

Figure 5·12: LP-solution for resource distribution across two applica-
tions (m = 2) with various lower and upper bounds for a given amount
of resources Rk.

time system utilizes the power feedback, Pt, and the system utilization measurement

window, R(t), which is the running average of the last 4 resource demand estimates,

R[tn−3,...,tn]. For a given time, t, and power constraint at time t, Pcap(t), it is possible

to derive the Rk(t), by using the linear correlation between R(t) and P (t). Based on

our experimental results and reported results from prior work, we assume that power

constraints on the system are linear and can be derived at runtime through power

measurement feedback. As a straightforward approach that meets power constraints

through modifying Rk, we simply compute Rk(t) based on the P (t) for a given power

constraint, Pcap(t) by

Rk(t) = Pc,k(t)/Pk(t− 1) ∗Rk(t− 1) (5.7)

By using the most recent power weight Wk(t − 1), it is possible to find an Rk(t)

that consumes Pk(t) ≤ Pc,k(t). After deriving the Rk(t) value to be enforced on the

server, QoS maximization problem can be solved by solving the problem represented

89

in (5.6). However, this approach simply uses a lumped value, Wk, for modeling the

power/performance relation of a set of applications, where each individual application

has a distinct power weight value, wi. Therefore, any change on ri has a different

impact on pi, and therefore Pk, where, Pk =
∑m

i=1 pi. Ignoring the power weight

differences across applications lead to inefficient resource distribution as illustrated

in Section 3.3. In order to derive the power weights of the applications, we use VM-

level power estimations on the Intel-based server. As VM-level power estimations

are not available for the AMD-based server, we use offline data for the AMD-based

server. For the Intel-based server, power weights (wi) values can be derived at runtime

by PVMi
(t)/RVMi

. We incorporate the power weight (wi) information into the LP

solution as shown in Equation (5.8).

f(q) = q1 + q2 + . . . qm

subject to
m∑

i=1

si ≤ Rk

m∑

i=1

si ∗ wi ≤ Pcap

li ≤ qi ≤ ui.

(5.8)

As the power weight value (wi) represents the power consumed-per-MHz compu-

tation, we estimate the power consumption by summing up the si ∗wi multiplication

in Equation (5.8). By enforcing an additional constraint in the form of power con-

straints, we target to use the available resources and power as efficiently as possible.

We list all variables and their definitions in Table 5.1.

90

Table 5.1: Definitions of the abbreviations used in the LP solution.
Abbreviation Definition

Pk Power consumption of a server, k.

pi Power consumption estimation of an application, i.

Rk Total amount of resources allocated to a server.

ri Total amount of resources allocated to an application, i.

Wk Power weight of a consolidated application set, i.

wi Power weight of an individual application, i.

ui Performance upper bound for application, i.

li Performance lower bound for application, i.

k Server index

i Workload index

5.3.3 Runtime Implementation of Scale & Cap

We implement the LP solution in MATLAB and compile it as an executable file.

In order to simplify the implementation, we convert the QoS maximization problem

(maxf(n)) to a minimization problem (minf(−n)). We then use linprog MATLAB

routine to solve the minimization problem to find the q. The inputs to the MATLAB

routine are the user constraints for upper and lower-bounds, respectively ui and li,

power constraints (Pcap), power measurements from the power meter (Pk) and VM-

level metrics from the hypervisor to derive wi and ri values.

We compiled the MATLAB module as a C library to call at runtime on a seperate

management node that communicates with the host through the VMware vCLI Perl

API to change the allocated resources for each VM. The main control loop of the

implementation runs every 2 seconds, which is the same as the esxtop sampling rate.

Changing resource limits at this granularity imposes a negligible performance over-

head on the applications. The LP solution routine takes between 0.2 to 0.4 seconds

to return the updated ri values. The API-based communication with the hypervi-

sor completes its function within the range of 0.1 to 0.3 seconds. Therefore, within

2 seconds window, the runtime implementation can finalize its decision and action.

91

For faster control, it is also possible to implement the LP solution with alternative

libraries and/or languages. However, note that for large scale systems, monitoring

period is reported to be over 20 seconds (VMware DRS, 2009).

5.3.4 Evaluating Resource Allocation Techniques

In this section, we quantify the benefits of power and performance scaling-aware

resource distribution across multiple VMs. We compare our technique with previously

proposed resource distribution policies and present the performance improvements

under various power caps. In addition to comparison among resource distribution

techniques, we also compare the benefits from placement and resource distribution

techniques to gain insights about the interaction as well as to provide quantitative

comparisons between two resource management schemes.

In order to quantify the benefits of our resource distribution technique, we choose

three approaches that are already implemented or proposed in prior work, namely

the default ESXi manager, demand proportional distribution (Isci et al., 2010) and

performance scaling proportional resource distribution (Hankendi et al., 2013). We

briefly explain each approach as follows:

Baseline: Our baseline case for all experiments is the policy where we allocate equal

number of cores to number of threads requested by the user. We set hard limits

across VMs by using CPU resource limits, which prevents dynamic adjustment of

underutilized resources.

Default Manager (ESXi): The default manager allocates CPU resources based

on the requested resource limits or reservations. Resource limits are hard constraints

that can not be modified by the manager. On the other hand, resource reservations

are soft constraints, such that the resources that are not utilized can be lended to

other VMs by the ESXi manager. Therefore, we reserve n number of vCPUs for n

number of threads requested for each VM. In this scenario, the default manager can

92

borrow any unused CPU resources to other VMs, but never limits the VM the usage.

Demand proportional: Demand metric for a workload has been defined as the

maximum amount of utilization of the system for a given number of threads. De-

mand proportional policy distributes the available resources across VMs proportional

to their demand estimations.

Scaling priority: Similar to the demand proportional approach, scaling priority ap-

proach uses the demand metric for all VMs to make resouce distribution decisions.

However, this technique favors the higher demand workloads (i.e., better scaling ones)

over the low demand ones, rather than proportionally distributing the available re-

sources.

Proposed: The proposed technique incorporates both the scalability estimations

through demand metric and the power efficiency through MHz/W metric. The pro-

posed approach utilizes these two measurements to solve a maximization problem

using linear programming, as explained in Section 5.3.1.

In order to compare and evaluate the aforementioned resource distribution tech-

niques, we create workload sets out of the benchmarks explained in Section 3. Each

workload set consists of applications with various thread counts. We generate 100

workload sets such that the each workload set consists of total of 12 threads or 8

threads for AMD and Intel-based servers respectively. Therefore, we aim to create

a data center scenario, in which the servers are not overutilized. To fairly compare

the resource distribution policies, we use the same default placement scenario for all

policies. The default placement policy is a first-fit bin packing algorithm run on the

list of applications with thread numbers requested.

Placement Algorithms

We focus on three different placement techniques that are previously proposed to im-

prove performance of consolidated environments, namely memory-based, similarity-

94

multiple workloads, thus improving the performance. Each of these algorithms use a

different metric as a proxy to evaluate the potential contention. The goal is to create

a balanced resource consumption across all VMs to improve the overall performance.

For evaluating the placement algorithms, we first collect the necessary measure-

ments for each benchmark when they are executed alone and use offline data while

making placement decisions. In Algorithm 4, we show the pseudo-code for the

memory-based placement algorithm. Algorithm 4 first sorts all the benchmarks in

the workload queue based on the last-level cache miss rates, which can be used as an

indicator of the memory accesses. As a next step, Algorithm 4 starts grouping the

benchmarks starting from top then the bottom of the list and progresses through the

list, until the total number of threads or the total utilization of the benchmark group

do not exceed predetermined threshold values.

ALGORITHM 4: Balanced Memory Placement

Input: Wij // Workload Matrix

Output: VM mapping

initialization;

k = 1;

sort(Wij.memaccess) // Sort based on memory accesses

for each vm in sorted.Wij ;

if Si.util < Umax and Si.thread < Tmax then

add sorted.Wij(k) to Si ;

k = i - j - 1; // Reverse list index to continue from bottom

else

k = k +1; // Continue from the list

end

Similarly, demand-based algorithm applies the same idea using the demand metric,

which is a virtualized environment specific metric. ESXi hypervisor provides VM-level

95

metrics to pinpoint the CPU resource usage and bottlenecks. Resource demand of a

VM can be estimated by adding these two metrics from esxtop.

RUN: The percentage of total schedule time of the VM, which excludes the system

time (%UTIL = %RUN + %SYS).

READY: The percentage of time that the VM is ready to run, but not scheduled.

This metric implies that the application will utilize the CPU, if more resources were

allocated to the VM. Therefore, READY metric can be utilized to estimate maximum

utilization level, which reflects the performance scalability of the applications.

By balancing the demand across VM group, it is possible to reduce performance

degradation due to CPU contention. These two placement techniques, memory and

demand-based, focus on either memory or the CPU as the main source of contention.

In order to be able to capture characteristics in other dimensions, similarity-based

approaches are recently proposed. Similarity-based techniques evaluate a set of per-

formance counters and derive a euclidean distance based on the similarities of bench-

mark in each dimension. The final result of this evaluation a single score of similarity,

which is then used as the main metric for sorting and grouping the applications.

5.3.5 The Impact of VM Density on Placement Techniques

In order to evaluate the impact of VM density of the benefits due to placement tech-

niques, we create three workload set scenarios with various average utilization values.

Low Load represents a case where the majority of the workloads are utilizing the

system around 20%. We call this case as the Low Load, since the average utilization

of the server will be low when there is no consolidation. Consolidating a Low Load

workload set lead to higher number of VMs to be consolidated. This is expected to

have implications when choosing a placement algorithm.

The benefit of choosing a good placement algorithm is due to reducing the po-

tential resource interference across multiple applications (or VMs). In Figure 5·15,

96

High Density (8-12VM)
Medium Density (4-8VM)
Low Density (1-4VM)

S
ta

nd
ar

d
D

ev
ia

tio
n

0

0.05

0.10

0.15

ca
nn

ea
l

Dat
aC

ac
hin

g

str
ea

m
clu

ste
r

W
eb

Sea
rc

h

Dat
aA

na
lyt

ics
x2

64

bo
dy

tra
ck

W
iki

Clas
sifi

er

fa
ce

sim

W
eb

Ser
vin

g

Fac
eb

oo
kG

ra
ph

Goo
gle

Que
ry

de
du

p

M
ed

iaS
tre

am

Sof
tw

ar
eT

es
tin

g
vip

s

bla
ck

sc
ho

les

sw
ap

tio
ns

Performance Variation at Different VM Densities

Figure 5·15: Performance variation for all applications for various
VM density cases. Higher VM-density leads to higher variation, and
the memory-bounded applications have the highest variation due to
higher cache sensitivity.

we show the performance degradation due to consolidation for various placement al-

gorithms at three different VM density scenarios. High VM Density represents the

case that has the highest number of VMs consolidated at a particular time period.

By using the Low Load workload set, we can create consolidation cases where higher

number of VMs are consolidated at the same time. Similarly, by using the High Load

set, we end up with consolidation cases with low VM densities. As the placement

algorithms become more critical when there is more contention, High VM Density

case is expected to have the most benefits from placement algorithms.

In Figure 5·16, we show the performance degradation at different VM densities

for 4 different placement algorithms. Depending on the placement algorithm, the

degradation ranges from 24% to 1%, where the High VM Density case causes the

highest degradation. For Medium and Low VM densities, there is minimal differences

across different placement algorithms. However, at High VM densities, choosing

97

High VM Density
Medium VM Density
Low VM Density

Max

Min

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

w
.r.

t A
lo

ne
 E

xe
cu

tio
n

0

0.05

0.10

0.15

0.20

0.25

Memory-based Similarity-based Demand-based Regression-based

Comparison of Various Placement Techniques

Figure 5·16: Comparison of placement techniques in terms of perfor-
mance degradation (i.e., lower is better).

a memory-based placement algorithm reduces the degradation by up to 11%. For

higher VM densities, the memory overhead for VM creation causes additional memory

contention. Therefore, memory-sensitive approach brings up to 7% with respect to

other placement techniques.

In order to look at the impact of increased VM density and the higher memory

stress, we compared 3 placement techniques for the same 100 consolidation sets and

report the best performing placement techniques for each of these distinct workload

sets. In Figure 5·17, we color code the best performing placement technique for

varying VM densities and active memory sizes. As Figure shows, memory-based

placement needs to be favored for high memory and high VM density consolidation

scenarios, due to the aforementioned reasons. On the other hand, similarity-based

placement technique starts to perform better for lower VM density and lower memory

sizes, as the CPU resources become more critical for CPU-heavy workload sets and

similarity-based favors the CPU resource demand metric when making placement

decisions, as also explained in Section 5.3.

98

Memory-based

Similarity-based

Demand-based
N

um
be

r
of

 V
M

s
C

on
so

lid
at

ed

2

4

6

8

10

12

14

Active Memory Size (MB)
0 2000 4000 6000 8000 10000 12000

Best Performing Placement Technique

Figure 5·17: Best performing placement technique for various VM-
density and active memory size. Memory-based technique is superior
to other techniques with increasing number of VMs consolidated at the
same time, which also leads to higher active memory size.

To summarize, in this work, we present a resource allocation technique that in-

corporates the multi-threaded specific performance scalability and power efficiency

characteristics to distribute the available resources across multiple VMs running het-

erogeneous applications. We formulate our solution as linear programming-based al-

gorithm and implement our technique on two multi-core servers. We evaluate various

resource allocation and placement techniques together and provide in-sights regard-

ing the interaction between placement and resource allocation techniques. Our results

show that for tight power budgets, resource allocation brings up to 22% performance

improvements in comparison to only using a placement algorithm.

99

5.4 Coordinating System and Application-level Adaptations

for Power Constrained Systems

The aforementioned interplay between power and performance requirements and con-

straints adds to the complexity of data center management. In order to reduce the

administration and management costs, designing adaptive solutions has become nec-

essary. Traditional adaptive solutions employ system-level management knobs to

comply with the power and performance requirements. These system-level adap-

tive solutions use control knobs such as DVFS or turning on/off cores. However,

system-level solutions lack the ability to optimize the performance of the application.

Adaptive applications address the performance optimization problem by dynamically

configuring application parameters depending on the hardware properties and the

performance goals (Hoffmann, 2014). As application and system-level decisions im-

pact both the performance and the power consumption, uncoordinated decisions at

these two levels can significantly hurt the overall energy efficiency of the system.

In this work, we propose a unified framework that takes advantage of both system

and application-level adaptability to (1) improve performance under power caps, and

(2) reduce power consumption under performance constraints. Adapt & Cap priorities

improving the energy efficiency through maximizing the performance first, then using

the system-level adaptations to reduce the power while meeting the user requirements.

Our specific contributions in this work are as follows:

• We first demonstrate how to improve the power/performance trade-off space by

unifying system and application-level adaptation.

• We propose a unified framework, Adapt & Cap, which combines system and

application-level adaptations to improve performance while reducing the power

consumption.

100

• We implement Adapt & Cap on real servers and demonstrate up to 27 %

power reduction and 2.7x performance improvement compared to system or

application-level only adaptation.

5.4.1 Benefits of Coordinating System and Application-level

Adaptation

Controlling the tradeoff between an the accuracy and performance of an application

is a widely studied area (Hoffmann et al., 2011). Therefore, design of applications

that can expose various control knobs to provide control over accuracy and perfor-

mance targets has become an emerging area of study. Adaptive applications enable

dynamic reconfiguration of execution parameters to meet user-defined performance

and accuracy constraints.

On a cloud environment, where resources are limited, power, performance and

accuracy constraints are expected to be dynamically changing due to changing user

requirements, energy pricing and cost management policies. Adaptive applications

can meet these dynamically changing performance or accuracy targets by modify-

ing a set of selected application parameters at runtime. Application parameters vary

depending on the type of the application. For instance, for an image processing appli-

cation, these parameters can be block sizes, motion search ranges, or color matrices.

An adaptive application iteratively modifies its parameters (i.e., application control

knobs) until the user-defined constraints are met.

Although adjusting application parameters can be utilized to meet the perfor-

mance and accuracy constraints, the impact of modifying the application parameters

on the power consumption is limited. In order to meet the power constraints, system-

level management techniques are necessary. Various system-level power management

techniques have been proposed that utilize control knobs such as DVFS or adjust-

ing the number of active cores. However, these power management techniques are

102

to the adaptive application. Unifying the system and application level adaptability

provides the most efficient trade-off curve for the power and performance space. This

result in Figure 5·18 motivates the idea of using adaptive capabilities of applications

to push the performance while reducing the power consumption through system-level

control.

5.4.2 Adapt & Cap: Unifying System and Application-level Adaptation

In this section, we present the details of the proposed adaptive framework, Adapt &

Cap. Adapt & Cap combines an application-level adaptive framework (i.e., Heart-

beats) with a system-level adaptive power management framework to (1) maximize

the performance under power constraints and (2) minimize the power consumption

under performance constraints. We first discuss the details of the application-level

framework for adapting to changing performance and accuracy targets. We then

introduce the system-level adaptation framework that adjusts the level of resource

usage to closely follow the power constraints.

In order to create adaptive applications, we use the previously proposed PowerDial

framework (Hoffmann et al., 2011). PowerDial first identifies the application param-

eters, then uses these parameters as runtime control knobs to adjust the tradeoffs

between performance and accuracy. In order to find the control variables, Powerdial

employs influence tracing for the configuration parameters. PowerDial executes the

application with varying configuration parameters, and records their influence on the

application performance. In order to determine the control variables for the param-

eters, PowerDial generates a state table that stores various configuration parameters

to create the adaptive version of a statically configured application. PowerDial gen-

erates the state table at compile time by profiling the applications on representative

inputs provided by the user. For each combination of parameter settings, PowerDial

profiles all representative inputs and records the speedup and accuracy loss. It then

103

computes the average speedup and accuracy loss across all inputs, and sorts these

average values into the set of Pareto optimal states. By convention, PowerDial stores

configurations so that the slowest configuration is the first entry in the state table

and the fastest configuration is the last.

In this work, we use two types of adaptive applications that are created with

PowerDial and with a loop-perforation technique (Sidiroglou-Douskos et al., 2011) to

show the applicability of our technique to virtually any software that has adjustable

parameters. Other application domains that rely on iterative algorithms, such as

graph applications are also good candidates to create adaptive versions.

Adapt & Cap maximizes performance through utilizing adaptive applications and

minimizes the power consumption by employing system-level adaptations (i.e., man-

agement). Adapt & Cap is built on top of the vCap framework and extends the

capabilities of vCap by taking advantage of the performance optimization capabili-

ties of the adaptive-applications. In Figure 5·19, we illustrate the overall flow of the

Adapt & Cap framework. Our framework accepts two types of constraints either from

the user for performance (i.e., heartbeat rate) or the system administrator for power

(i.e., power cap). Both power consumption and the heartbeat rates are periodically

fed to the closed-loop controller to adjust and tune its decisions.

Figure 5·20 provides the pseudo-code for the Adapt & Cap framework that consists

of three major steps, which are: (1) configuring the adaptive application (Configure),

(2) controlling the power consumption (PowerControl) and (3) meeting performance

constraints (HBControl). Each adaptive application comes with built-in state tables,

which include various combinations of the application parameters. As a first step,

Adapt & Cap discovers the adaptive states of the application within the code and

chooses the state that achieves the highest performance. It then measures the perfor-

mance and power consumption at the highest state (i.e., n). Based on these measure-

106

estimation, Adapt & Cap performs fine-tuning on its decisions. In case of a tracking

error that is larger than ε, Adapt & Cap iteratively adjusts the CPUlimit. We start

with a granularity of 1-core (i.e., resource limits corresponding to 1-core) to increase

or decrease the CPU resources allocated. Until the tracking error is within the range,

we increase the granularity of fine-tuning by dividing the adjustment range with the

number of iterations. We use ε = 2W in our experiments. As a result, in each

iteration, we achieve a finer control on the power consumption. Similarly, for the

performance control, Adapt & Cap gets the performance requirement as an input

(HBtarget), and computes the necessary amount of CPU resources that will meet the

performance constraints. The overhead of monitoring and management is around %1.

The power and performance control mechanism of Adapt & Cap is implemented

to prioritize the hard constraints (i.e., power) over soft constraints (i.e., performance).

Therefore, decisions to improve the performance are overwritten in case of a power

violation to obey the power constraints. As oppose to disjoint management schemes,

Adapt & Cap is an opportunistic approach that does not solely meet the require-

ments in one dimension, but also targets to improve the efficiency in both power and

performance dimensions.

In this section, we present the benefits of the Adapt & Cap framework on real-life

servers. We test our framework under two scenarios that are (1) dynamically changing

performance constraints and (2) dynamically changing power caps. First, we show

that Adapt & Cap provides lower power under dynamically changing performance

constraints. We then show that Adapt & Cap can provide higher performance under

the same power constraints when compared to algorithms that do not leverage the

adaptive features of the applications (i.e., vCap).

108

figuration together with system-level control. As Figure 5·21 shows, uncoordinated

approach creates oscillatory behavior, as system and application-level adaptation con-

tinuously adjusts their decisions for satisfying the same goal, whereas Adapt & Cap

control stabilizes after a few iterations. Overall, for 161 experiments with various

power and performance constraints, Adapt & Cap reaches to a stable control point

after the third iteration 91% of the time. Coordinating system and application-level

adaptation also achieves better power tracking accuracy due to reduced oscillation.

Uncoordinated approach increases the power tracking error by 3.7W when compared

to the coordinated approach.

We next test Adapt & Cap under dynamically changing performance constraints.

We compare the benefits of Adapt & Cap with the adaptive versions of the applica-

tions that can track the performance requirements with its internal control through

parameter adjustments (i.e., AdaptiveOnly). We only evaluate the parallel portions

(regions of interest) of the PARSEC benchmarks (i.e., x264, bodytrack, swaptions,

streamcluster) and the whole execution of jacobi. The range between maximum and

minimum performance varies among applications; therefore we randomly change the

performance requirements within the predetermined maximum and minimum ranges

for each application. We dynamically change the performance requirement of the

applications in every 8 seconds. We use the same performance traces for both tech-

niques.

In Figure 5·22, we report the average system-level power consumption of two real

servers. Both approaches (i.e., AdaptiveOnly and Adapt & Cap) meet the perfor-

mance requirements within 2%. However, in both systems, Adapt & Cap significantly

reduces the power consumption by utilizing system-level control knobs. Although

adaptive capabilities of the applications are useful to meet the performance require-

ments, AdaptiveOnly consumes more or less the same amount of power regardless

111

capping framework for virtualized environments. vCap accurately tracks dynamically

changing power constraints, while optimizing the overall QoS through intelligent VM

placement and resource distribution across consolidated VMs. On top of the vCap

framework, we design Scale & Cap, which improves the QoS by considering the

power and performance scalability characteristics of multi-threaded applications. We

introduce a formal LP-based solution to make resource distribution decisions based on

the varying power and performance behavior of the consolidated applications. Finally,

we present Adapt & Cap, which coordinates adaptive decisions at various layers

of the computing stack, specifically system and application-level adaptations. Our

techniques can improve the performance by 9% to 24% while meeting the dynamically

changing power constraints.

112

Chapter 6

Conclusions

6.1 Summary of Major Contributions

This thesis has presented resource and power management techniques that target

multi-threaded applications to improve the energy efficiency of multi-core server

nodes. In this thesis, we targeted multi-threaded applications that are fundamen-

tally different than single-threaded applications, and developed energy efficiency ap-

proaches that consider multi-threaded specific characteristics to make adaptive run-

time power and resource management decisions.

As a part of this thesis, we have evaluated existing co-scheduling techniques that

are based on co-runner application selection. Our work shows that in the case of

multi-threaded loads running on multi-core systems, it is more important to adjust the

allocated resources depending on the power efficiency of the applications compared

to solely selecting which applications to co-schedule. This result is mainly due to

the performance isolation advantages of the virtualized environments. Following our

analysis, we have presented a novel policy for autonomous resource allocation for

multi-threaded loads. Our policy proportionally allocates the resources according

to energy efficiency of the applications to efficiently utilize the server node. Our

technique includes a feedback mechanism to set user-defined performance targets per

application. Based on our experiments on a real-life server, our policy achieves 17%

higher throughput-per-watt on average compared to the state-of-the-art co-scheduling

techniques.

113

Second, we have proposed power capping techniques on native and virtualized

environments. Our power capping technique on native environments, Pack & Cap,

is a novel technique for maximizing the performance of multi-threaded workloads on

a multi-core processor within an arbitrary power cap. We introduce thread pack-

ing as a control knob that can be used in conjunction with DVFS to manage the

power-performance tradeoff. We demonstrate that thread packing expands the range

of feasible power caps, and it enables fine-grained dynamic control of power consump-

tion. In devising a MLR classifier approach to identifying optimal operating points,

we demonstrate that it is possible to automatically select Pareto-optimal DVFS and

thread packing combinations during runtime. For virtualized environments, we de-

velop and implement the vCap, a virtualized system management framework for

multi-core servers that improves the energy efficiency of the server node by taking

the applications characteristics into account. vCap identifies the VMs that exhibits

poor performance scalability and consolidates them together. At runtime, vCap first

estimates the total amount of CPU resources that meet the power caps. vCap then

distributes the CPU resources among VMs according to the performance scalability

of the VMs. We implemented vCap on a real-life multi-core server and show that it

provides 12% higher energy efficiency in comparison to the state-of-the-art policies.

On top of the vCap implementation, we present Scale & Cap that incorporates

the multi-threaded specific performance scalability and power efficiency characteris-

tics to distribute the available resources across multiple VMs running heterogeneous

applications. We formulate our solution as a linear programming-based algorithm

and implement our technique on two multi-core servers. We evaluate various resource

allocation and placement techniques together and provide insights regarding the inter-

action between placement and resource allocation techniques. Our results show that

for tight power budgets, Scale & Cap brings up to 24% performance improvements

114

in comparison to only using a placement algorithm.

In order to improve the efficiency adaptations at multiple layers of the computing

systems, we developed Adapt & Cap, which combines application and system-level

adaptation to improve the energy efficiency. We implementAdapt & Cap on two real

multi-core servers and show that unifying system and application-level adaptations

improves the performance by 1.68x and reduces the power by 22% on average, when

compared to system-only or application-only adaptations.

6.2 Open Problems

6.2.1 Improving Boosting Algorithms

The state-of-the-art performance boosting algorithms are built to opportunistically

utilize the available thermal headroom whenever possible (Intel Turboboost, 2012)

(AMD BAPM, 2013). Greedy approaches of performance boosting algorithms provide

burst of computation for a short amount of time, therefore processor temperature

quickly hits to the thermal limits. It is possible to utilize the thermal time constant

phenomena to increase the amount of time spent at the highest performance state

(i.e., boost state) by deploying a P-state switching algorithm. The main idea relies

on the observation that the faster we switch between high and low P-states, the lower

the peak temperature is due to the thermal time constant impact. Therefore, faster

switching creates additional thermal headroom that can be utilized to improve the

performance or to provide a sustainable boost performance.

On the other hand, the benefits due to boosting algorithms heavily depend on

the application execution time. For short execution durations, existing boosting al-

gorithms provide significant performance improvements. However, as the execution

time gets longer, thermal throttling mechanism is activated to keep the processor

running at a safe and reliable temperature. Throttling mechanisms diminish the

115

performance benefits of the boosting algorithms. Therefore, designing boosting al-

gorithms that is aware of the execution time of the application might allow us to

improve the performance even for long-running applications.

6.2.2 Cluster-level Management

Most of the power and resource management strategies are agnostic about the het-

erogeneous structure of the data center. Due to significant differences in the dynamic

power range of the servers, the impact of the power constraints on these two servers

will have different performance costs. In order to be able to optimize the performance

of a cluster, it is critical to distribute the available power based on the individual

power dynamics of the servers that constitutes the cluster. Therefore, future power

and resource management techniques need to be aware of the heterogeneity and adapt

its decisions accordingly.

Our presented work on energy efficiency has utilized various control knobs, such

as DVFS, number of threads, consolidation, and resource allocation strategies at the

single-node level. It is essential to consider various execution parameters to optimally

manage limited amount of computational and power resources. However, the inter-

play across various control knobs increases the complexity of the problem to find the

optimum operating point for multi-threaded workloads. Although there are many

efforts to address energy efficiency challenges from various design perspectives, incor-

porating extensive workload analyses and runtime techniques to efficiently manage

multi-threaded workload execution strategies through utilizing various control knobs

might bring additional benefits to energy-efficient control strategies.

References

Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Xia, F., and Madani, S. A.
(2015). Virtual Machine Migration in Cloud Data Centers: A Review, Taxonomy,
and Open Research Issues. The Journal of Supercomputing, 71(7):2473–2515.

Alameldeen, A. R. and Wood, D. A. (2006). IPC Considered Harmful for Multipro-
cessor Workloads. IEEE Micro, 26(4):8–17.

Alpaydin, E. (2004). Introduction to Machine Learning. The MIT Press.

AMD BAPM (2013). Bios and kernel developers guide (bkdg) for amd family 15h.
http://support.amd.com/TechDocs/.

Anderson, E. and Tucek, J. (2010). Efficiency Matters! SIGOPS Operating Systems
Review, 44(1):40–45.

AWS (2013). AWS Auto Scaling. https://aws.amazon.com/autoscaling/.

Barroso, L. A. and Hölzle, U. (2007). The Case for Energy-Proportional Computing.
IEEE Computer, 40(12):33–37.

Beloglazov, A. and Buyya, R. (2010). Adaptive Threshold-based Approach for
Energy-efficient Consolidation of Virtual Machines in Cloud Data Centers. In
International Workshop on Middleware for Grids, Clouds and e-Science, pages 1–
6.

Benini, L., Bogliolo, A., and De Micheli, G. (2000). A Survey of Design Techniques
for System-level Dynamic Power Management. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(3):299 –316.

Bhadauria, M. and McKee, S. A. (2010). An Approach to Resource-aware Co-
scheduling for CMPs. In ACM International Conference on Supercomputing, pages
189–199.

Bienia, C. (2011). Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University.

Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT).

116

117

Bonvin, N., Papaioannou, T., and Aberer, K. (2011). Autonomic SLA-Driven Provi-
sioning for Cloud Applications. In Cluster, Cloud and Grid Computing (CCGrid),
pages 434 –443.

Chen, H., Hankendi, C., Caramanis, M. C., and Coskun, A. K. (2013). Dynamic
Server Power Capping for Enabling Data Center Participation in Power Markets.
In Proceedings of the International Conference on Computer-Aided Design, ICCAD
’13, pages 122–129.

Cisco (2013). Cisco Global Cloud Index: Forecast and Methodology 2013-2018.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

global-cloud-index-gci/Cloud_Index_White_Paper.pdf.

Cochran, R., Hankendi, C., Coskun, A. K., and Reda, S. (2011). Pack & Cap: Adap-
tive DVFS and Thread Packing Under Power Caps. In International Symposium
on Microarchitecture (MICRO), pages 175–185.

David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., and Le, C. (2010). RAPL:
Memory Power Estimation and Capping. In Proceedings of International Sympo-
sium on Low Power Electronics and Design (ISLPED), pages 189–194.

Delimitrou, C. and Kozyrakis, C. (2013). Paragon: QoS-aware Scheduling for Het-
erogeneous Datacenters. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 77–88.

Dey, T., Wang, W., Davidson, J. W., and Soffa, M. L. (2011). Characterizing multi-
threaded applications based on shared-resource contention. In IEEE International
Symposium on Performance Analysis of Systems and Software, pages 76–86.

Dhiman, G., Marchetti, G., and Rosing, T. (2009). vGreen: A System for Energy-
efficient Computing in Virtualized Environments. In Proceedings of International
Symposium on Low PowerElectronics and Design (ISLPED), pages 243–248.

Dhiman, G. and Rosing, T. S. (2007). Dynamic Voltage Frequency Scaling for
Multi-tasking Systems Using Online Learning. In Proceedings of International
Symposium on Low PowerElectronics and Design (ISLPED), pages 207–212.

Ester, M., peter Kriegel, H., S, J., and Xu, X. (1996). A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. In International
Conference on Knowledge Discovery and Data Mining, pages 226–231.

Eyerman, S. and Eeckhout, L. (2010). Probabilistic job symbiosis modeling for smt
processor scheduling. In Proceedings of the Fifteenth Edition of ASPLOS on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
XV, pages 91–102.

118

Fan, X., dietrich Weber, W., and Barroso, L. A. (2007). Power Provisioning for
a Warehouse-sized Computer. In In Proceedings of International Symposium on
Computer Architecture (ISCA), pages 13–23.

Fedorova, A., Seltzer, M., and Smith, M. D. (2007). Improving Performance Iso-
lation on Chip Multiprocessors via an Operating System Scheduler. In Parallel
Architecture and Compilation Techniques (PACT), pages 25–38.

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., Kaynak,
C., Popescu, A. D., Ailamaki, A., and Falsafi, B. (2012). Clearing the clouds: a
study of emerging scale-out workloads on modern hardware. In Proceedings of
the seventeenth international conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages 37–48.

Frachtenberg, E., Feitelson, D. G., Petrini, F., and Fern, J. (2005). Adaptive Parallel
Job Scheduling with Flexible Coscheduling. Parallel and Distributed Systems,
pages 1066–1077.

Gandhi, A., Harchol-Balter, M., Das, R., and Lefurgy, C. (2009). Optimal power
allocation in server farms. In Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
’09, pages 157–168.

Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A. (2006). Enforcing Per-
formance Isolation Across Virtual Machines in Xen. In Proceedings of the ACM
International Conference on Middleware, Middleware ’06, pages 342–362.

Hankendi, C. and Coskun, A. (2012). Reducing the energy cost of computing through
efficient co-scheduling of parallel workloads. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 994–999. IEEE.

Hankendi, C. and Coskun, A. (2013). Energy-efficient Server Consolidation for Multi-
threaded Applications In the Cloud. In International Green Computing Conference
(IGCC), pages 1–8.

Hankendi, C., Hoffmann, H., and Coskun, A. (2015). Adapt & Cap: Coordinating
System and Application-level Adaptation for Power Constrained Systems. Ac-
cepted for publication in IEEE Design & Test.

Hankendi, C., Reda, S., and Coskun, A. K. (2013). vCap: Adaptive Power Capping
for Virtualized Servers. In Proceedings of the 2013 International Symposium on
Low Power Electronics and Design, ISLPED ’13, pages 415–420.

Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., and Lawall, J. (2009). En-
tropy: A consolidation manager for clusters. In Proceedings of the 2009 ACM

119

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE ’09, pages 41–50.

Hoffmann, H. (2014). CoAdapt: Predictable Behavior for Accuracy-Aware Appli-
cations Running on Power-Aware Systems. In 2014 26th Euromicro Conference
onReal-Time Systems (ECRTS), pages 223–232. IEEE.

Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., and Rinard, M.
(2011). Dynamic Knobs for Responsive Power-aware Computing. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 199–
212.

HP-Intel Dynamic Power Capping (2009). Hp-intel dynamic power capping.
http://www.hpintelco.net/pdf/solutions/SB HP Intel Dynamic
Power Capping.pdf.

Hwang, I., Kam, T., and Pedram, M. (2012). A Study of the Effectiveness of CPU
Consolidation in a Virtualized Multi-core Server System. In Proceedings of Interna-
tional Symposium on Low PowerElectronics and Design (ISLPED), pages 339–344.

IDC (2009). The Economics of Virtualization: Moving Toward an
Application-Based Cost Model. http://www.vmware.com/files/pdf/

Virtualization-application-based-cost-model-WP-EN.pdf.

IDC (2011). The Benefits of a Virtualized Approach to Advanced-Level
Network Services. http://www.cisco.com/c/dam/en/us/solutions/

collateral/data-center-virtualization/unified-network-services-uns/

IDC-UNS-Feb11.pdf.

Intel (2013). Intel Node Manager. http://www.intel.com/content/www/us/en/

data-center/data-center-management/node-manager-general.html.

Intel Turboboost (2012). Intel turbo boost technology 2.0.
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-
boost/turbo-boost-technology.html.

Isci, C., Buyuktosunoglu, A., Cher, C.-Y., Bose, P., and Martonosi, M. (2006). An
Analysis of Efficient Multi-Core Global Power Management Policies: Maximizing
Performance for a Given Power Budget. In Proceedings of the 39th International
Symposium on Microarchitecture, pages 347–358.

Isci, C., Hanson, J., Whalley, I., Steinder, M., and Kephart, J. (2010). Runtime
demand estimation for effective dynamic resource management. In Network Oper-
ations and Management Symposium (NOMS), 2010 IEEE, pages 381–388.

120

Jennings, B. and Stadler, R. (2015). Resource Management in Clouds: Survey and
Research Challenges. Journal of Network and Systems Management, 23(3):567–
619.

Jerger, N. E., Vantrease, D., and Lipasti, M. (2007). An evaluation of server consol-
idation workloads for multi-core designs. In IEEE 10th International Symposium
on Workload Characterization (IISWC), 2007., pages 47–56.

Kansal, A., Zhao, F., Liu, J., Kothari, N., and Bhattacharya, A. A. (2010). Vir-
tual machine power metering and provisioning. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, pages 39–50.

Khan, M., Hankendi, C., Coskun, A., and Herbordt, M. (2011). Software Optimiza-
tion for Performance, Energy, and Thermal Distribution: Initial Case Studies. In
Green Computing Conference and Workshops (IGCC), pages 1 –6.

Kim, J., Ruggiero, M., Atienza, D., and Lederberger, M. (2013). Correlation-aware
virtual machine allocation for energy-efficient datacenters. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’13, pages 1345–
1350.

Kim, S., Chandra, D., and Solihin, Y. (2004). Fair Cache Sharing and Partitioning
in a Chip Multiprocessor Architecture. In Parallel Architecture and Compilation
Techniques (PACT), pages 111–122.

Kim, W., Gupta, M. S., Wei, G. Y., and Brooks, D. (2008). System level analysis of
fast, per-core dvfs using on-chip switching regulators. In International Symposium
on High-Performance Computer Architecture.

Korupolu, M., Singh, A., and Bamba, B. (2009). Coupled placement in modern data
centers. In IEEE International Symposium on Parallel Distributed Processing,
pages 1–12.

Kumar, S., Talwar, V., Kumar, V., Ranganathan, P., and Schwan, K. (2009). vman-
age: Loosely coupled platform and virtualization management in data centers. In
Proceedings of the 6th International Conference on Autonomic Computing, ICAC
’09, pages 127–136.

Kusic, D., Kephart, J., Hanson, J., Kandasamy, N., and Jiang, G. (2008). Power and
Performance Management of Virtualized Computing Environments Via Lookahead
Control. In International Conference on Autonomic Computing (ICAC), pages 3
–12.

KVM (2008). Kernel-based Virtual Machine Management Tools. http://www.

linux-kvm.org/page/Management_Tools.

121

Lee, B. and Brooks, D. (2006). Accurate and Efficient Regression Modeling for
Microarchitectural Performance and Power Prediction. In Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 185–194.

Li and Martinez, J. (2006). Dynamic power-performance adaptation of paral-
lel computation on chip multiprocessors. In International Symposium on High-
Performance Computer Architecture.

Lin, M., Wierman, A., Andrew, L. L. H., and Thereska, E. (2013). Dynamic right-
sizing for power-proportional data centers. IEEE/ACM Transactions on Network-
ing, 21(5):1378–1391.

Liu, L., Wang, H., Liu, X., Jin, X., He, W. B., Wang, Q. B., and Chen, Y. (2009).
Greencloud: a new architecture for green data center. In Proceedings of the 6th
international conference industry session on Autonomic computing and communi-
cations industry session, pages 29–38. ACM.

Ma, K. and Wang, X. (2012). PGCapping: Exploiting Power Gating for Power
Capping and Core Lifetime Balancing in CMPs. In International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 13–22.

Macdonell, C. and Lu, P. (2008). Pragmatics of Virtual Machines for High-
performance Computing: A Quantitative Study of Basic Overheads. In Interna-
tional ACM Symposium on High-Performance Parallel and Distributed Computing
(HPDC), pages 141–152.

McGregor, R. L. and Antonopoulos, C. D. (2005). Scheduling Algorithms for Ef-
fective Thread Pairing on Hybrid Multiprocessors. In International Parallel and
Distributed Processing Symposium (IPDPS), page 28.

Meisner, D., Gold, B. T., and Wenisch, T. F. (2009). Powernap: eliminating server
idle power. In Proceeding of the 14th international conference on Architectural
support for programming languages and operating systems, ASPLOS ’09.

Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., and Pendarakis, D. (2010).
Efficient Resource Provisioning in Compute Clouds via VM Multiplexing. In In-
ternational Conference on Autonomic Computing (ICAC), pages 11–20.

Nathuji, R. and Schwan, K. (2008). VPM Tokens: Virtual Machine-aware Power
Budgeting in Datacenters. In International symposium on High Performance Dis-
tributed Computing (HPDC), pages 119–128.

Nathuji, R., Schwan, K., Somani, A., and Joshi, Y. (2009). VPM Tokens: Virtual
Machine-aware Power Budgeting in Datacenters. Cluster Computing, pages 189–
203.

122

Orgerie, A.-C., Assuncao, M. D. d., and Lefevre, L. (2014). A Survey on Techniques
for Improving the Energy Efficiency of Large-scale Distributed Systems. ACM
Computing Surveys, 46(4):47:1–47:31.

Porterfield, A., Fowler, R., Anirban, M., and Yeol Lim, M. (2008). Performance
Consistency on Multi-socket AMD Opteron Systems. In RENCI Technical Report
TR-08-07.

Pusukuri, K. K., Gupta, R., and Bhuyan, L. N. (2011). Thread reinforcer: Dy-
namically determining number of threads via os level monitoring. In 2011 IEEE
International Symposium on Workload Characterization (IISWC), pages 116–125.

Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., and Zhu, X. (2008). No
”power” struggles: coordinated multi-level power management for the data cen-
ter. In Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 48–59.

Rangan, K. K., Wei, G.-Y., and Brooks, D. (2009). Thread motion: fine-grained
power management for multi-core systems. In ACM SIGARCH Computer Archi-
tecture News, volume 37, pages 302–313. ACM.

Rasmussen, E., Porter, G., Conley, M., Madhyastha, H. V., Mysore, R. N., Pucher,
E., and Vahdat, A. (2011). Tritonsort: A balanced large-scale sorting system. In
In USENIX NSDI11.

Reda, S., Cochran, R., and Coskun, A. (2012). Adaptive power capping for servers
with multithreaded workloads. IEEE Micro, 32(5):64–75.

Romosan, R., Rotem, D., Shoshani, A., and Wright, D. (2005). Co-scheduling of
Computation and Data on Computer Clusters. In Proceedings of the 17th Inter-
national Conference on Scientific and Statistical Database Management (SSDBM),
pages 103–112.

Samson, T. (2009). AMD Brings Power Capping to New 45nm Opteron
Line. http://www.infoworld.com/d/green-it/amd-brings-power-capping-new-
45nm-opteron-line-906.

Sanchez, D. and Kozyrakis, C. (2011). Vantage: Scalable and efficient fine-grain
cache partitioning. In Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, pages 57–68.

Serebrin, B. and Hecht, D. (2009). Virtualizing performance counters.
https://labs.vmware.com/download/143/.

Shin, D., Kim, J., and Lee, S. (2001). Low-energy intra-task voltage scheduling
using static timing analysis. In Proceedings of the 38th Conference on Design
Automation.

123

Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., and Rinard, M. (2011). Man-
aging performance vs. accuracy trade-offs with loop perforation. In Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foun-
dations of Software Engineering, pages 124–134.

Srikantaiah, S., the, A., and Zhao, F. (2008). Energy aware consolidation for cloud
computing. In Proceedings of the 2008 conference on Power aware computing and
systems, HotPower’08, pages 10–10.

Urgaonkar, R., Kozat, U., Igarashi, K., and Neely, M. (2010). Dynamic resource
allocation and power management in virtualized data centers. In IEEE Network
Operations and Management Symposium (NOMS), pages 479–486.

Van, H. N., Tran, F., and Menaud, J.-M. (2009). Sla-aware virtual resource man-
agement for cloud infrastructures. In Ninth IEEE International Conference on
Computer and Information Technology, pages 357–362.

Vasić, N., Novaković, D., Miučin, S., Kostić, D., and Bianchini, R. (2012). Dejavu:
Accelerating resource allocation in virtualized environments. In Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages 423–
436.

Vecchiola, C. and Pandey, S. and Buyya, R. (2009). High-performance Cloud Com-
puting: A View of Scientific Applications. In International Symposium on Perva-
sive Systems, Algorithms, and Networks (ISPAN), pages 4–16. IEEE.

VMware DPM (2010). VMware Distributed Power Management
Concepts and Use. http : / / www . vmware . com / files / pdf /

Distributed-Power-Management-vSphere.pdf.

VMware DRS (2009). Resource Management with VMware DRS. http://www.

vmware.com/pdf/vmware_drs_wp.pdf.

Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y.,
Zhang, S., Zheng, C., Lu, G., Zhan, K., Li, X., and Qiu, B. (2014). Bigdatabench:
A big data benchmark suite from internet services. In IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), pages 488–499.

Wang, W., Dey, T., Moore, R. W., Aktasoglu, M., Childers, B. R., Davidson, J. W.,
Irwin, M. J., Kandemir, M., and Soffa, M. L. (2012). Reeact: A customizable
virtual execution manager for multicore platforms. In Virtual Execution Environ-
ments, pages 27–38.

Wang, X. and Chen, M. (2008). Cluster-level Feedback Power Control for Perfor-
mance Optimization. In International Symposium on High Performance Computer
Architecture (HPCA), pages 101–110.

124

Wang, X., Chen, M., Lefurgy, C., and Keller, T. (2009). SHIP: Scalable Hierarchical
Power Control for Large-Scale Data Centers. In 18th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 91–100.

Wu, L., Garg, S., and Buyya, R. (2011). Sla-based resource allocation for software
as a service provider (saas) in cloud computing environments. In 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages
195–204.

Xen (2009). Xen Management Tools. http://wiki.xen.org/wiki/Xen_

Management_Tools.

Zhang, Y., Laurenzano, M., Mars, J., and Tang, L. (2014). SMiTe: Precise QoS
Prediction on Real-System SMT Processors to Improve Utilization in Warehouse
Scale Computers. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 406–418.

Zheng, W., Bianchini, R., Janakiraman, G. J., Santos, J. R., and Turner, Y. (2009).
JustRunIt: Experiment-based Management of Virtualized Data Centers. In
USENIX Annual Technical Conference, pages 18–18.

Zhu, X., Yang, L., Chen, H., Wang, J., Yin, S., and Liu, X. (2014). Real-Time Tasks
Oriented Energy-Aware Scheduling in Virtualized Clouds. IEEE Transactions on
Cloud Computing, 2(2):168–180.

CURRICULUM VITAE

Can Hankendi

Education

Ph.D., Computer Engineering, Boston University, 09/2015

Electrical and Computer Engineering Department
Advisor: Professor Ayse K. Coskun
Dissertation Title: “Adaptive Runtime Techniques for Power and Resource Manage-
ment on Multi-core Systems”

M.Sc., Electrical Engineering, University of Southern California, 05/2010

Electrical and Computer Engineering Department

B.S., Electronics Engineering, Sabanci University, 06/2008

Faculty of Engineering and Natural Sciences

Professional Experience

AMD Research, 07/2014 to 12/2014

Graduate Intern, Supervisor : Dr. Wei Huang
Developed and implemented firmware-level monitoring framework to enable finer-
granularity power management for AMD mobile SoCs.

AMD Research, 06/2013 to 06/2014

Graduate Intern, Supervisor : Manish Arora
Developed and implemented component-level CPU and network power models for
exascale processors.

126

Research Experience

Performance and Energy-Aware Computing Laboratory (PEACLab)

Research Assistant at Boston University, 09/2010 to 09/2015
Conducted research on power and resource management techniques for multi-threaded
workloads on multi-core servers.

Refereed Journal Publications

1. C. Hankendi, A. Coskun. “Scale & Cap: Scaling-aware Resource Management
for Consolidated Multi-threaded Applications”. Submitted to ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), July, 2015.

2. C. Hankendi, H. Hoffmann, A. Coskun. “Adapt & Cap: Coordinating System
and Application-level Adaptation for Power Constrained Systems”. Accepted
for publication in IEEE Design and Test Magazine, 2015.

3. A. Bartoloni, C. Hankendi, A. Coskun, L. Benini. “MPI-aware Power Man-
agement on the Single-Chip Cloud Computer”. In Journal of Low Power Elec-
tronics (JOLPE), Volume 10, Number 4, December 2014, pp. 531-549.

4. C. Hankendi, H. Hoffmann, A. Coskun. “Autonomous Resource Sharing For
Multi-threaded Workloads In Virtualized Servers”. In VMware Technical Jour-
nal, Volume 2, 2013, pp. 54-59.

Refereed Conference Publications

1. H. Chen, C. Hankendi, M. Caramanis, A. Coskun. “Dynamic Server Power
Capping for Enabling Data Center Participation in Power Markets”. In Proceed-
ings of International Conference on Computer-Aided Design (ICCAD), 2013,
pp. 122-129.

2. C. Hankendi, S. Reda, A. Coskun. “vCap: Adaptive Power Capping for
Virtualized Servers”. In Proceedings of International Symposium on Low Power
Electronics and Design (ISLPED), 2013, pp. 415-420.

3. C. Hankendi, A. Coskun. “Energy-efficient Server Consolidation for Multi-
threaded Applications in the Cloud”. In Proceedings of International Green
Computing Conference (IGCC), 2013, pp. 1-8.

4. C. Hankendi, A. Coskun. “Reducing the Energy Cost of Computing through
Efficient Co-Scheduling of Parallel Workloads”. In Proceedings of ACM Design
Automation and Test in Europe (DATE), 2012, pp. 994-999.

127

5. R. Cochran, C. Hankendi, A. Coskun, S. Reda. “Pack & Cap: Adaptive
DVFS and Thread Packing Under Power Caps”. In Proceedings of ACM/IEEE
International Symposium on Microarchitecture (MICRO), 2011, pp. 175-185.

6. R. Cochran, C. Hankendi, A. Coskun, S. Reda. “Identifying the Optimal
Energy-Efficient Operating Points of Parallel Workloads”. In Proceedings of
International Conference on Computer-Aided Design (ICCAD), 2011, pp. 608-
615.

Refereed Workshop Publications

1. C. Hankendi, A. Coskun. “Adaptive Power and Resource Management Tech-
niques for Multi-threaded Workloads”. In Proceedings of International Parallel
& Distributed Processing Symposium (IPDPS) Ph.D Forum, 2013, pp. 2302-
2305.

2. C. Hankendi, A. Coskun. “Adaptive Energy-Efficient Resource Sharing for
Multi-threaded Workloads in Virtualized Systems”. In DAC Workshops
(CHANGE-DAC), 2012.

3. M. A. Khan, C. Hankendi, A. Coskun, M. Herbordt “Application Level Op-
timizations for Energy Efficiency and Thermal Stability”. In Fifteenth Annual
Workshop on High Performance Embedded Computing (HPEC), 2011.

4. M. A. Khan, C. Hankendi, A. Coskun, M. Herbordt “Software Optimizations
for Performance, Energy and Thermal Distribution: Initial Case Studies”. In
TEMM workshop of International Green Computing Conference (IGCC), 2011,
pp. 1-6.

