
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 1

MAESTRO: Autonomous QoS Management for
Mobile Applications under Thermal Constraints

Onur Sahin, Student Member, IEEE, Lothar Thiele, Member, IEEE, Ayse K. Coskun, Senior Member, IEEE

Abstract— Power densities of modern mobile system-on-a-
chip (SoC) designs can quickly exceed the thermal design limits
during typical application use such as gaming or web browsing.
Resulting high temperatures lead to frequent thermal throttling
and significant loss in quality-of-service (QoS) delivered to users.
Thus, a joint consideration of thermal constraints and QoS
requirements is essential to maximize the overall user experience.
Prior techniques either rely on users to determine the best
tradeoff point between QoS and temperature, or greedily utilize
the thermal headroom to maximize performance, causing QoS to
drop below user tolerable levels over extended durations of use.

This paper introduces the MAESTRO framework to auto-
matically manage QoS at runtime depending on application
characteristics and thermal constraints. MAESTRO builds on the
observation that increased temperatures can be tolerated for
applications with bursty compute patterns due to idle periods
between activities, while causing large QoS degradations for long-
running applications with continuous computations. MAESTRO
(1) detects such continuous computations that are susceptible
to throttling; (2) proactively finds a QoS level to balance user
experience and temperature; (3) performs closed-loop DVFS and
thermally-efficient thread mapping to meet the target QoS on a
heterogeneous multi-core CPU. Such application-adaptive control
of QoS-temperature tradeoffs allows MAESTRO to sustain a
target QoS level within a user tolerable range for longer durations
without sacrificing the performance of latency-sensitive bursty
computations. Evaluations on a real system prototype validates
MAESTRO’s ability to accurately detect potential throttling-
induced QoS degradations and demonstrates 41% to 6.7x longer
durations of sustained QoS compared to state-of-the-art for a set
of mobile applications.

Index Terms—Mobile devices, thermal management, power
management, heterogeneous multi-core.

I. INTRODUCTION

State-of-the-art mobile system-on-chips (SoC) integrate
high-performance CPUs and GPUs to enhance user expe-
rience. As the applications grow in complexity and utilize
the peak processing capabilities of the underlying hardware,
power dissipations can easily reach above the thermal design
limits. For instance, recent SoCs can consume up to 3x
higher power than their thermal design power (TDP) and
chip temperatures can quickly reach critical thresholds while
executing typical mobile applications [23], [41], [43]. Thermal
limitations present a major roadblock for increasing the com-
pute capabilities of mobile CPU and GPUs towards providing
higher quality-of-service (QoS)1 for mobile applications. In

O. Sahin and A. K. Coskun are with Boston University, Boston, MA 02215
USA (email: sahin@bu.edu; acoskun@bu.edu)

L. Thiele is with the Computer Engineering and Networks Laboratory, ETH
Zurich, Zurich 8092, Switzerland (e-mail:thiele@tik.ee.ethz.ch)

1QoS, in this work, refers to a metric used to quantify the performance
experienced by the user (i.e., user experience). We use various QoS metrics
such as frames-per-second (FPS) and response latency (Section II).

fact, frequent invocations of thermal throttling mechanisms
triggered by temperature violations can significantly degrade
QoS and cause user dissatisfaction [8], [9].

Built-in policies in modern mobile systems (e.g., DVFS
governor, task scheduler, etc.) greedily maximize performance
under increased computational demand by selecting higher
DVFS states or higher performance CPU cores. Such an
approach of always maximizing performance has various
drawbacks that can substantially hurt user experience. First,
performance can exceed human perceptible levels when QoS
requirements for an application are not considered, caus-
ing unnecessarily high power consumption levels that will
accumulate more heat on system components and increase
throttling. Second, thermal headroom will be prematurely
exhausted, further magnifying the performance loss due to
thermal throttling over extended durations of application use
(e.g., as in gaming, streaming). Therefore, there exists a need
for QoS-centric thermal management approaches that can, as
opposed to greedily increasing performance, proactively find
a good tradeoff between QoS and temperature to a sustain
satisfactory user experience over time.

We face fundamental challenges when deploying such a
scheme for managing QoS-temperature tradeoffs in mobile
platforms: how should one determine when to apply such
a tradeoff and the appropriate amount of QoS scaling?
While completely neglecting QoS tradeoffs can result in
large throttling-induced QoS degradation over a long term,
prematurely enforcing a tradeoff can result in undesirable
performance losses on applications where throttling would
have little/no effect or where the maximum QoS is demanded
by the users. Ideally, the policies should tradeoff QoS only
on cases where large QoS degradations are expected over
the extended use. In addition, the scaling of QoS should still
occur within a user tolerable range in order not to deem the
application unusable. Currently, there exists no mechanism to
address these objectives all together. Existing methods incur
practical limitations as they rely solely on users to manage
QoS [43], [44] or seek to achieve sustained performance with
low-power operation modes in a QoS- and application-agnostic
manner, which can result in unacceptably low QoS (e.g.,
Android’s Sustained Performance API [6]).

This paper introduces the MAESTRO framework for achiev-
ing autonomous and application-aware QoS tradeoffs. MAE-
STRO builds upon a novel insight on the relation between
the computation characteristics of mobile applications (i.e.,
bursty vs. throughput-oriented) and the QoS impact of ther-
mal throttling. While throughput-oriented mobile applications
(e.g., gaming, video processing) may suffer from long-term



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 2

throttling due to continuous computations and require QoS
tradeoffs to sustain an acceptable throughput (e.g., frames-per-
second, FPS), some applications only generate short bursts of
computations in response to user interactions. Web browsing
and many interactive Android apps (e.g., news reading, social
networking, messaging, document reading) are examples of
such bursty applications, where latency of the computations
is the main factor that impacts the user perceived QoS [17].
Despite high power densities and increased temperatures, such
applications can tolerate increased temperatures due to rela-
tively short duration of activities and idle periods between user
interactions. MAESTRO classifies the applications at runtime
according to their computation characteristics to distinguish
throttling-susceptible continuous computations from latency-
sensitive bursty tasks, and manages QoS accordingly.

MAESTRO tracks the statistical features of an application’s
power profile at runtime to infer when large thermally-induced
QoS degradations on continuous computations are likely to
occur (Section IV-A). Upon detecting such a computation
phase, MAESTRO proactively scales the QoS down from the
maximum to a level that can be sustained for a longer time
(Section IV-B). Otherwise, MAESTRO uses the existing CPU
governors to maximize QoS. To maintain the QoS at a just
enough level to meet the determined QoS targets, MAESTRO
incorporates a closed-loop and thermally-efficient QoS control
strategy (QScale) proposed in our earlier work [43] (Section
IV-C). While QScale [43] relies on external sources (e.g.,
users) to manage QoS decisions, this paper introduces a novel
runtime framework for thermally-aware and autonomous QoS
tradeoffs to achieve sustainable performance.

Overall, our contributions can be summarized as follows:

• Application-specific Thermal Management: We show
that taking into account the bursty or throughput-oriented
nature of computations in mobile applications is neces-
sary to project throttling-induced QoS degradations that
can significantly impact user experience.

• MAESTRO for Sustainable QoS: We design MAESTRO,
which automatically reasons about the susceptibility of an
application to thermal throttling and proactively manages
QoS to increase durations of sustained performance.

• Evaluations on real systems: We implement and evaluate
MAESTRO on a real-life mobile platform. MAESTRO can
accurately identify when throttling-susceptible long com-
putations occur during runtime. Our experiments indicate
41% to 6.7x longer durations of sustainable QoS.

The rest of this paper starts with a description of our
experimental setup and methodology in Section II. In Section
III, we explain and experimentally demonstrate the motivation
for MAESTRO by illustrating the need for an application-aware
QoS management strategy. Section IV presents the MAESTRO
policy as well as providing an overview of the core concepts
of QScale [43] proposed in our earlier work. In Section V, we
evaluate MAESTRO via implementation on a real-life mobile
development board. Section VI provides a summary of relevant
work in the field and highlights the key distinguishing aspects
of our paper. Section VII concludes the paper.

TABLE I: Summary of applications.

Application Description QoS Metric
PDF Viewer Open a PDF, read, zoom in/out figures Latency
Google Maps Search location, move across the map Latency
Caman.js [3] Apply different filters on an image Latency

Bodytrack Process image files Heartbeats/sec
Edge of Tomorrow Loading, menu selection and gaming FPS

Aquarium [1] Watch online animation FPS
Rain [7] Watch online animation FPS

Rock Player Open and play a video file FPS

II. EXPERIMENTAL SETUP

This section presents the hardware testbed and applications
we use in our experimental evaluation and describes our data
monitoring/collection methodology.

Experimental Platform: All of our measurements and eval-
uations are based on real-life experiments on a contemporary
mobile hardware. We use an Odroid-XU3 mobile development
platform that comprises of the Samsung Exynos 5422 SoC
(which powers Samsung Galaxy S5 smartphone), implement-
ing a big.LITTLE heterogeneous CPU architecture [2] with
quad-core big (A15) and little (A7) CPU clusters. The A15 is
a high performance/power multi-issue out-of-order processor
and A7 is a low performance/power core with simple 8-stage
in-order pipeline [2]. The A15 core supports 9 frequency levels
from 1.2 GHz to 2 GHz while the A7 core operates on 5
frequency levels between 1 GHz and 1.4 GHz. All the cores
within a cluster share the same voltage/frequency domain.
The Exynos 5422 SoC also integrates Mali-T628 GPU, which
supports 6 frequency levels ranging from 177 MHz to 543
MHz. A built-in mechanism scales the GPU frequency based
on utilization. The board runs Android 4.4 KitKat as the
OS. While we cannot use recent Android versions due to
unavailability of system images for our system, we incorporate
the Sustained Performance API feature [6] of Android 7 for
evaluation (Section V) due to its direct relevance to our work.

Measurement Methodology: The Odroid-XU3 platform is
equipped with on-board sense resistors and a Texas Instru-
ments INA231 power monitoring unit that allows for measur-
ing power consumptions of the A15 and A7 clusters, the GPU,
and the memory individually over the I2C bus. Temperatures
of each of the 4 big cores and the GPU can be sampled at
a 1◦C resolution through the sysfs entries provided for on-
chip thermal sensors. We collect power and temperature data
in 5 ms intervals. Frames-per-second (FPS) is measured by
querying the logs generated by the SurfaceFlinger Android
system service. We measure the latency of bursty computations
by the length of time between the rising and falling edge of
the burst observable in a given power profile.

Applications: We braodly classify mobile applications into
two classes as latency-sensitive bursty (e.g., browsing, inter-
active apps) and throughput-oriented workloads (e.g., games,
streaming) according to their computation characteristics [45],
[53]. Our experimental setup covers applications with both
throughput-oriented and latency-sensitive bursty computations.
Table I summarizes these applications along with brief descrip-
tions of the tasks performed within each application.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 3

Adobe PDF Viewer and Google Maps represent two im-
portant classes of mobile applications, document reading and
navigation. Caman.js [3] is an online image editing application
that we execute within Chrome web browser. These latency-
sensitive applications generate bursts of CPU loads upon user
inputs from the GUI. The latency of a processing event is the
main factor impacting user experience [17], [51] and is chosen
as the QoS metric. While there is not always a strict deadline
for processing such computations, the longer latencies increase
user dissatisfaction.

The rest of the applications are dominated by continuous
computations. We run Aquarium [1] and Rain [7] applications
within Chrome browser to play online WebGL animations.
Edge of Tomorrow gaming application is also representative
of throughput-oriented mobile workloads. We also use Rock
Player video player application to continuously play a 1-
minute HD video and loop the video to experiment with longer
durations. In such applications that generate a stream of com-
putations, user experience is manifested in event throughput
and commonly measured using FPS [41], [53] as in our work.
The FPS metric captures the number of frames that meet
the the frame processing deadline (i.e., 18 ms at 60 FPS).
Finally, we run the bodytrack computer vision application
from the PARSEC suite [12] where we monitor the frame-
rate (or heartbeats/sec) by instrumenting the application with
the Heartbeats framework [27]. We configure bodytrack to run
with the same number of threads with the number of CPU
cores in our system (i.e., 8 cores). In order to automate the
execution of interactive applications and achieve reproducible
results, we use RERAN, which is a GUI-based and timing-
sensitive record and replay tool [20].

We also write custom CPU and GPU microbenchmarks for
the offline thermal coupling characterization. Our GPU mi-
crobenchmark is an OpenCL program that repeatedly offloads
a matrix multiplication kernel to GPU. Our CPU microbench-
mark continuously performs floating-point multiplications.

During evaluation, we run each throughput-oriented applica-
tion for a sufficiently long duration (i.e., 12 min) to eventually
cause throttling and quantify the exact duration of sustained
QoS. Bursty applications are run for 60-70 seconds, which is
a typical duration for interactive sessions [18].

Power Management and Throttling: Our platform uses an
external fan for temperature control, which is not a viable
solution for commercial devices. Thus, we implement a ther-
mal throttling policy that reactively increments/decrements the
maximum allowed DVFS state2 of big cores every second if
the maximum temperature is lower/higher than 80◦C. 80◦C is
a typical thermal setpoint used in commercial platforms [41],
[50]. By changing the maximum DVFS levels, this throttling
mechanism forces the DVFS policies to use lower frequencies
without disabling their operation. In case a thermal emergency
still exists at the lowest big core frequency, the workload is
migrated to little cores using the sched setaffinity interface in
the Linux scheduler.

2Maximum allowed DVFS state can be altered by modifying the
scaling_max_freq sysfs entry provided by the cpufreq interface [5].

The default DVFS policy in our platform is the Interactive
governor [5], which is also used in most Android devices. This
governor scales the CPU frequency to the maximum allowed
level if the utilization is higher than a threshold. Once scaled
to the highest, CPU frequency is not scaled down for at least
20 ms to maximize responsiveness. The baseline heteroge-
neous multi-processing (HMP) scheduler [4] migrates an ac-
tive task to a big core if its weighted average CPU load exceeds
an up threshold. Migration to little cores occurs similarly
when the load is less than a down threshold. We collectively
refer to Interactive governor and HMP scheduler pair as “de-
fault” Android management throughout this text. MAESTRO
uses cpufreq and sched setaffinity interfaces to control the
frequency and the thread mappings for an application. We bind
the policy to a dedicated little core using the taskset utility.

III. MOTIVATION: APPLICATION-AWARE
QOS VS. TEMPERATURE TRADEOFFS

This section describes the problem we focus on in this
paper and illustrates the main insight and motivation behind
the proposed MAESTRO approach.

(Un)sustainable performance: Many mobile applications,
such as video playing and gaming, perform a contin-
uous stream of computations (e.g., in form of frames)
and can be run for durations in the order of minutes.
Thus, user-perceived QoS is manifested in terms of frame
throughput [13]. For such applications, greedily boost-
ing QoS can lead to increasingly aggressive throttling

0 100 200 300 400 500
Time (secs)

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 Q

o
S

Aquarium

Rain

Edge of
Tomorrow

Real
Racing

Bodytrack

Rock
Player

Fig. 1: QoS degradation due to
thermal throttling over time.

over time, causing high QoS to
be maintained only for a brief
duration at the cost of severe QoS
losses over the application use.
Figure 1 illustrates this problem
as we run various throughput-
oriented applications for an 8-
10 minute duration using default
scheduling and DVFS policies on
our experimental platform. Sig-
nificant QoS degradations occur
due thermal throttling over ex-
tended durations, reaching up to
as much as 48% QoS loss.

Trading off short-term QoS for temperature: For the
applications where maximum QoS cannot be maintained due
to increased thermal throttling over time, trading off short-term
QoS helps increase the duration that a target just enough QoS
level is sustained. Figure 2 illustrates this insight. We run a
graphics animation application (Aquarium) for 8 minutes using
both Android’s default Interactive DVFS governor as well
as when the maximum frequency of big cores are statically
fixed to 1.2 GHz from the default 2.0 GHz setting. It should
be noted that, in both cases, the throttling policy (Section
II) is intact and forces the use of lower frequencies when
the maximum temperature exceeds 80◦C. With the baseline
Interactive governor, the maximum QoS (i.e., FPS) can be
maintained for a brief 40 seconds duration, after which the
CPU is set to operate at lower DVFS levels by the throttling



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 4

Fig. 2: QoS-temperature tradeoff for sustainable QoS while running Aquar-
ium application with default Interactive governor and with static 1.2GHz
frequency. Using the 1.2GHz setting allows to sustain a target QoS level (e.g.,
30FPS) for longer durations. Migrated duration (%) corresponds to percentage
of time the workload was migrated to little cluster due to thermal throttling.

policy as higher frequencies incur thermal violations. Frequent
migrations to the little cluster occur eventually as the 1.2 GHz
setting becomes insufficient to reduce the temperature. Trading
off short-term QoS with the 1.2 GHz setting slows down the
heating and maintains a minimum FPS of 30, which is pointed
by prior work as the lowest user tolerable FPS for gaming
applications [13], for 5 minutes (∼2x longer as compared to
default Interactive) until the thermal headroom is exhausted.

Need for application awareness: While QoS-temperature
tradeoffs are beneficial in terms of extended sustained QoS
durations, it is non-trivial to decide when applying such a
tradeoff would bring benefits. This is because of several
reasons. First, a computation initiated for an activity may
exhaust thermal headroom but may be short-lived and cause
only a brief duration of throttling (e.g., a few seconds).
For such short and bursty computations, minimizing latency
would be more desirable from the user’s perspective than
maintaining a sustainable throughput [53]. Naively switching
to a lower performance setting (e.g., upon thermal violation)
for sustainable QoS will lead to unnecessary QoS loss and
increase user-perceived latency for bursty tasks. Second, even
for the applications that do perform long-running computa-
tions (e.g., minutes), throttling mechanisms may have little
or no impact on QoS for relatively low power applications.
Thus, conservatively applying a QoS tradeoff will cause an
unnecessary performance loss.

Consider the Adobe PDF reader and Rain graphics anima-
tion applications that present disparate computation patterns.
Figure 3 shows the power and thermal profiles for these two
applications as they run under default Android management.
We leave the thermal control policy enabled to prevent thermal

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90

Time (secs)

50
55
60
65
70
75
80
85
90

T
e
m

p
e
ra

tu
re

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (secs)

0
1
2
3
4
5
6

P
o
w

e
r 

(W
)

(a)

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Time (secs)

50
55
60
65
70
75
80
85
90

T
e
m

p
e
ra

tu
re

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Time (secs)

0

1

2

3

4

5

P
o
w

e
r 

(W
)

(b)

Fig. 3: Distinct power and thermal profiles of a bursty application and a
throughput-oriented graphics application. (a) Adobe PDF Reader application
(b) Rain WebGL animation running in Chrome web browser. Adobe PDF
application consists of bursts of computations such as zoom-in/out or text
search as generated upon user input from GUI. Such intermittent nature of
computations is widely observable in the power profile as well. On the other
hand, continuous frame-based computations after the browser launch (t =
18s) in Rain application causes a relatively more steady power profile.

runaway. PDF reader application (Figure 3(a)) generates short
bursts of intense computations upon user input (e.g., opening
a PDF, text search). Initiation and ending of computations
can be inferred from the power profile. Due to short-lived
nature of computations and idleness between the user inputs,
temperature can quickly decrease from the critical level. For
such applications, it is tolerable to allow the application
to exhaust thermal headroom and achieve maximum QoS.
Rain application, on the other hand, performs continuous
computations for frame processing after being launched in
the browser at t = 15s. This continuous load causes a
relatively stable power consumption (∼3W ) and consistent
increase in temperature. As shown in Figure 1, throttling incurs
significant QoS loss due to continuous thermal violations and
more aggressive throttling. Thus, we argue that, to be able
to effectively apply QoS management for sustainable user
experience only when it would be desirable by a user, policies
should be cognizant of both application behavior and system
thermal constraints.

IV. MAESTRO: AUTONOMOUS QOS TRADEOFFS
FOR SUSTAINABLE PERFORMANCE

This section describes the proposed MAESTRO framework
for dynamically managing QoS levels in mobile applications.
Figure 4 gives an overview of our proposed technique that
is comprised of 3 main components. The online detection
policy (Section IV-A) identifies long-running CPU intensive
phases that are prone to throttling and QoS degradation, and



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 5

Detect Throttling-Susceptible 
Continuous Activity

Default 
Management

Section
IV.A

1

3

2 Section
IV.B

YesNo

Determine QoS Target

QScale

Platform

QoS
PowerGPU
Utilization

GPU

Freq

Section
IV.C

QoS

Fig. 4: Overview of MAESTRO.

selectively activates QScale for sustainable performance or
uses default Android management for high QoS. If activated,
depending on how much the application is likely to suffer from
throttling, target QoS level is scaled accordingly and given
as an input to QScale [43] (Section IV-B). QScale (Section
IV-C) uses the offline generated criticality information on
various applications and monitors CPU-GPU thermal coupling
dynamics to determine how to map threads on a heterogeneous
CPU with the aim of minimizing temperature. Closed-loop
DVFS control within QScale ensures dynamic adaptation to
changes in workload as well as QoS requirements.

A. Proactive Detection of Throttling-Induced QoS Loss

The goal of our online detection policy is to identify long
and continuous computations that are likely to cause severe
QoS degradations due to throttling (e.g., Rain application in
Figure 3(b)). Such detection allows us to take proactive actions
before the system heats up aggressively over time.

We devise a simple yet effective online policy (Figure 5)
that infers the thermal behavior of a mobile application based
on inherently distinct patterns in the power profiles of bursty
and throughput-oriented computation phases. We use power
due to its direct relevance to temperature. Due to continuous
computations in the throughput-oriented periods, their power
will have a relatively more stable profile as compared to bursty
compute phases that exhibit intermittent power profile due
to idle periods in between the computations (see example in
Figure 3). We track mean (µ) and standard deviation (σ) using
a sliding window of recent power samples (big+LITTLE+GPU
power) to capture characteristics of the power profile. As
we seek to identify the phases with stably high power that

sliding window
N

QScale
Default

Management

Power Trace

Mean (μ)
StdDev (σ)

μ - α*σ < Thr2

μ - α*σ > Thr1 

Fig. 5: Sliding window based online detection policy.

are likely to suffer from QoS loss, we combine mean and
deviation into an activation function (fact) as µ− α ∗ σ (α is
a constant scaling factor) to quantifiably identify such phases.
Our policy checks whether the value of fact is greater than a
certain threshold and, if true, actives QScale for sustained per-
formance. Disabling QScale and resorting to default Android
policy for high QoS occurs similarly by comparing the value
of fact to a lower threshold. Higher deviation in the power
profile of bursty phases reduces the value of fact and allows
to prevent false positives (i.e., activating QScale during bursty
periods). By giving a different weight to mean and deviation
via the scaling factor (α), we are able to tune our policy to
distinguish bursty computations while accounting for potential
variations that can occur during continuous computations (e.g.,
differences in the subsequent frames being processed).

Tuning Policy Parameters: Since the behavior of
the proposed policy would depend on its parameters (i.e,
N,Thr1, Thr2, α), we describe our intuition behind selection
of these parameters to make effective use of our technique.
The length of the sliding windows needs to be sufficiently
long to capture the idleness following the compute bursts.
This is necessary to distinguish continuous computations from
intermittent activity bursts. Thus, we use 10 seconds window
size as vast majority of bursty activities finish within 10 sec-
onds [52], [53]. While the window size can be conservatively
increased, that will add unnecessary delay into the detection.
We experiment at different DVFS levels to determine power
levels that cannot be sustained over extended durations (i.e.,
violates 80◦C thermal limit), and use this level to set Thr1
(i.e., 2 W). Higher mean power values signal potential future
throttling and QoS loss. Once Thr1 and N is set, we use our
bursty workloads to tune the value of α (i.e., 0.8) by giving
higher weight to deviation in fact until the false positive cases
are eliminated. We set Thr2 to 1.2 W, which is sufficiently
lower than Thr1 to avoid oscillatory behavior.

B. Determining QoS Targets

Once MAESTRO detects a continuous intensive computa-
tion, it activates QScale and supplies a target QoS level to be
maintained. Many heuristics can be applied for making this
QoS tradeoff but no golden rule exists as the suitability of a
particular QoS level is subject to preferences of a particular
user in terms of the performance needs [51] as well as the
duration of application use. In our implementation, once the
QScale is activated to increase sustained durations, we tradeoff
QoS by scaling down from its maximum level in accordance
with application’s mean power level over the sliding window
described in Section IV-A. This mechanism is illustrated in
Figure 6. Our intuitive rationale is that, as the power increases,
choosing high QoS settings will quickly exhaust the thermal
headroom and bring limited or no benefit in terms of extended
sustained QoS. Thus, a larger QoS tradeoff within a tolerable
range is needed for applications with higher power profile.
To determine the ratio in which QoS is scaled down from
the 100% when mean power exceeds the 2 W activation
threshold of QScale, we consider the QoS level needed (i.e.,
70%) for ensuring at least 2 minutes of duration without



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 6

throttling for a typical possible high power application (i.e.,
>3.3W by Bodytrack in our example application set). We
simply proportionally scale QoS within the 2W-3.3W range
by choosing a 10% lower target QoS rate for every 600
mW as illustrated in Figure 6. Aiming for longer/shorter
than 2 minutes minimum target sustained duration translates
into larger/smaller steps in the tradeoff, approaching/distancing
from the undesirable QoS region illustrated in Figure 6. We
considered 30 FPS and 24 FPS as the minimum desirable QoS
for 3D graphics and video playing scenarios, respectively.

U
se

r
E
x
p
e
ri

e
n
ce

tolerable too low

QoS
Max QoS Min Desirable QoS

P>2.0W

P>2.6W

P>3.2W

90% 80% 70% Target QoS

Power

3.2W

2.6W

2.0W

90%80%70% 100%

Fig. 6: QoS tradeoff and determining QoS targets for QScale.

While we consider the problem of autonomously managing
QoS without requiring user intervention, user feedback can
still be integrated with MAESTRO to provide user-specific
hints. Specifically, if the user requires a higher QoS than
provided, the minimum desirable QoS can be raised. This will
shift the target QoS upwards. If the user provides a hint that
current QoS is too high, the maximum QoS parameter can be
lowered which will cause MAESTRO to choose a lower QoS.

C. Online Thermally-Efficient QoS Control

In order to meet the target QoS levels, we adopt QScale
from our earlier work [43]. This section serves as an overview
of the core components of QScale, which comprises an of-
fline characterization phase and an online feedback control
policy. In the offline phase, we (1) characterize the CPU-GPU
thermal coupling via a set of microbenchmarks and derive a
lightweight heuristic for runtime thermal coupling aware core
allocation; (2) identify the few number of critical threads
within each application that determine overall QoS. Online
policy identifies and reserves thermally-efficient big cores dur-
ing runtime for executing the critical threads while leveraging
low-power little cores for other threads, and performs a closed-
loop DVFS control to precisely meet QoS targets.

CPU-GPU Thermal Coupling Aware Thread Mapping:
Due to tight integration of power-hungry CPUs and GPUs on a
single-chip, thermal coupling is inevitable. Our measurements
indicate as much as 25◦C increase in CPU temperature due to
GPU activity. A major novel aspect of our work is to show
the application dependence of the cores that provide the most
thermally-efficient operation under thermal coupling.

In order to infer the most thermally efficient cores to
allocate under varying thermal coupling scenarios, we derive
an offline characterization step as highlighted in Figure 7.
By stressing the GPU at varying levels and running the
CPU microbenchmark on each core (e.g., for 1 minute), we
determine the ordering in which the cores heat from the
highest to the lowest. We use the microbenchmarks described
in Section II. Combining the GPU power levels that provide
the same ordering, we obtain the simple threshold based

Tune GPU 
Power

Look-up Table

TC1>TC0>TC2>TC3

Run CPU uBench 
on each core (e.g., C0-C4)

TC1>TC0>TC2>TC3

Ordering w.r.t Temp.PGPU

P0

P0

P += 0.1W

Fig. 7: Offline CPU-GPU thermal coupling characterization to derive a runtime
thermally-aware core allocation method.

policy shown in Table II. During runtime, the policy allocates
the cores that will provide the lowest temperature based on
application’s GPU usage. In our experimental platform, Core-
33 always provides the lowest temperature while the thermal-
efficiency of the other cores depend on the GPU power. Due
to close proximity to GPU, Core-0 results in the worst peak
temperature when the GPU power is high (i.e., Thr2 ≤ PGPU )
and is allocated as the last resort. On the other hand, GPU acts
as a heat spreader when its power is low (i.e., PGPU < Thr1)
and Core-0 achieves the lowest temperature. Our methodology
is black-box, not requiring any floorplan or packaging details.

TABLE II: Our threshold-based policy for allocating thermally efficient cores
under CPU-GPU thermal coupling. Thr1 = 0.25W ,Thr2 = 1.2W .

Condition Order of Big Core Allocation
Thr2 ≤ PGPU Core3, Core1, Core2, Core0

Thr1 ≤ PGPU < Thr2 Core3, Core1, Core0, Core2
PGPU < Thr1 Core3, Core0, Core1, Core2

Criticality Aware big.LITTLE Scheduling: Current sched-
ulers for big.LITTLE systems [4] use the short-term load
history of each thread to determine the core type. Instead,
we propose to guide scheduling by leveraging power-hungry
big cores only for the threads that are critical for the user
experience. Our novel observation is that there exist relatively
(as compared to number of cores) few number of QoS-critical
threads that determine overall QoS, which is in alignment with
the prior work that has shown limited parallelism in mobile
applications [19], [45]. We determine such critical threads via
a simple offline characterization process.

During the offline characterization, in our earlier work [43],
we have exhaustively explored the QoS contribution of each
thread when executed on a high-performance big core by
assigning all threads to little cluster first and moving to the big
cores one at a time. A few threads provide distinct increase in
QoS once assigned to big cores. On a per-application basis,
we record several identifier information (i.e., thread name,
relative order of the thread id in parent’s process list) for each
of these critical threads to be used by the runtime control
policy. Exhaustively exploring QoS contribution of all threads,
however, increases the characterization time as the number
of threads can be large (e.g., 50-100). Indeed, vast majority
of the threads are short lived and largely stay in sleep
state after the application launch [24]. For instance, Figure
8 shows the time each thread is actively utilizing CPU for
the PDF Reader application during a typical usage session of
70 seconds [18]. Overall active CPU time of the application

3Core0 to Core3 correspond to cpu4 to cpu7 under the
/sys/devices/system/cpu/ path in the Odroid-XU3 filesystem.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 7

Fig. 8: CPU time distribution across the threads of the Adobe PDF Reader
application demonstrating that most threads have little active time on the CPU.
Dashed line corresponds to 1% of the overall execution time.

is dominated by a small number of threads. We exploit this
observation to reduce the characterization time by excluding
such mostly-idle threads from the characterization step. We
empirically determined to exclude the threads that are active
for less than 1% of the overall execution time. Since energy
and thermal footprint of such threads would be small, we do
not investigate any further gains that could be realized by
choosing the right core type for these threads. Overall, the
number of critical threads per application are identified as 5
for bodytrack, 2 for Aquarium and Rain, 1 for Caman.js and
Adobe PDF Reader, and 0 for the Google Maps. We leave
the comparative evaluation of criticality-aware scheduling and
baseline HMP scheduler to Section V and proceed with a brief
description of our closed-loop runtime control policy.

Closed-loop Runtime Control: QScale’s runtime policy,
which is invoked when MAESTRO detects a long running
throttling-prone phase, consumes the offline generated thread-
criticality and thermal coupling information to meet the target
QoS levels while minimizing temperature. During runtime, the
policy monitors GPU power and uses the policy described in
Table II to determine thermally-efficient cores for executing
critical threads. To precisely meet the target QoS levels, a
feedback DVFS controller is designed.

QScale’s runtime controller initially assigns the threads to
little cluster and, at every 1 second intervals, allocates the
threads across big and LITTLE. When the number of critical
threads is less than 4 (which is the case for all applications
except bodytrack), there exists opportunity to lower tempera-
ture by making thermally-aware core allocation. In this case,
we sequentially bind the critical thread with the highest CPU
usage to the next most thermally-efficient core available by
querying Table II. Otherwise, the critical threads are allocated
to the whole big cluster and default Linux load balancer is
used for task mappings within the cluster.

Once the threads are allocated, the closed-loop controller
determines the DVFS state for the next interval that will meet
the target QoS. The formulation of our proportional integral
(PI) controller is shown in Equation 1.

u[k] = u[k − 1] +
e[k](1− p)

Qmax
(1)

The error term (e[k]) is simply the current offset from
the target QoS. The controller output ([0, 1]) is scaled pro-
portionally to the DVFS range. The value of the pole (p)
value should be in range [0, 1) to ensure stability and avoid
oscillatory behaviour [25]. This parameter also allows to

Application QScale Enabled?
Aquarium 3

Rain 3

Rock Player 3

Edge of Tomorrow 3

Bodytrack 3

Maps 7

Adobe PDF 7

Caman 7

Fig. 9: Policy selection (left) and QoS targets (right) determined by MAESTRO
for the applications where MAESTRO detects a continuous throttling-prone
computation. Policy selection and QoS setting are based on the methods
described in Sections IV-A and IV-B, respectively. MAESTRO assigns lower
QoS targets for the applications that exhibit high power profile and that are
likely to suffer from larger QoS loss. Maximum QoS is 1 HB/s for Bodytrack
and 45, 30, 53 and 55 FPS for Aquarium, RockPlayer, Rain and Edge of
Tomorrow, respectively.

tradeoff controller’s robustness for responsiveness [25] and a
smaller value increases the controller’s response to workload
variations. We empirically determine the value of p to be 0.4
on our system.

V. EVALUATION

This section provides a detailed real-system evaluation of
the proposed MAESTRO policy. Our main objective is to assess
MAESTRO’s ability to provide extended durations of sustained
QoS by proactively identifying the throttling-susceptible con-
tinuous computations and autonomously making QoS trade-
offs. We also craft specific experiments to evaluate the adaptive
runtime behavior of MAESTRO and carefully study any over-
head that could lead to performance degradations to assess
MAESTRO’s suitability as a runtime management solution.
We refer to the built-in Interactive governor and HMP sched-
uler pair simply as default Android management throughout
this section and provide comparisons against MAESTRO that
employs closed-loop DVFS and criticality-driven scheduling.
The runtime policy within MAESTRO, which performs the
QoS control via DVFS and criticality-driven scheduling, is
codenamed and referred to as QScale.

Evaluation Methodology: This section states the methodol-
ogy adopted while conducting the experiments and evaluating
the outcomes. We exercise the bursty-dominated Adobe PDF,
Caman and Google Maps applications for 60-70 seconds,
which is the typical length of a user session for many in-
teractive mobile applications [18]. We run each throughput-
oriented Aquarium, Rain, Edge of Tomorrow, Rock Player
and Bodytrack applications for 10 minutes. This duration is
sufficiently large for each application to trigger throttling and
allows us to quantify the exact sustained duration before the
thermal headroom is fully exhausted. The sustained duration
for MAESTRO is the duration before thermal throttling starts
to force lower DVFS settings, beyond which QScale can no
longer deliver target QoS. For the default Android manage-
ment, we simply report the execution time that QoS was
above the target level as the sustained QoS duration. To ensure
fidelity during temperature measurements, we cool the SoC to
the initial idle temperature level (i.e., 59◦C) using an integrated
fan mounted on top of the chip package and leave the platform
idle for 12 minutes before each experiment.

Extending Sustained QoS with MAESTRO: This section
evaluates MAESTRO’s selective QoS tradeoff mechanism (Sec-



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 8

tions IV-B and IV-A) as well as quantifying potential improve-
ments in sustained QoS durations achieved on CPU intensive
throughput-oriented applications. The table given in Figure
9 shows the policy selection of MAESTRO across different
applications. MAESTRO successfully detects the continuous
and throttling-prone computations in Aquarium, Rain, Edge
of Tomorrow, Rock Player and Bodytrack applications and
activates QScale in all cases with the target QoS levels shown
also in Figure 9. Once activated, QScale maintains the QoS
at these target levels during the sustained duration. Aquarium
and Bodytrack are two applications with distinctly high power
consumption (>3.5W) during the throughput-oriented phase
and, thus, are assigned a lower target QoS (i.e., 70% of the
maximum). MAESTRO recognizes the latency-sensitive bursty
computation patterns in Pdf, Caman and Maps applications
and does not interfere with the default Android management,
allowing users to enjoy high QoS without sacrificing latency.
Such adaptive policy selection capability allows MAESTRO to
make QoS tradeoffs and sustained performance optimization
only when necessary.

Figure 10 provides an evaluation of the sustained QoS dura-
tions achieved by using MAESTRO and default Android man-
agement for the QoS targets described in Figure 9. Bodytrack
and Aquarium are the cases with the lowest duration where
target QoS levels are met, using both MAESTRO and baseline.
Despite the selection of a low QoS target by MAESTRO (i.e.,
70% of the maximum) for these two applications, temperatures
still quickly elevate to critical 80◦C level due to high CPU
activity and power. Target QoS is violated as throttling forces
CPU to operate at lower DVFS levels, shrinking the duration
of sustained QoS in these two cases.

MAESTRO provides 41%, 53% and 54% longer durations
where QoS targets are met for Edge of Tomorrow, Rain and
Aquarium applications, respectively. Such an improvement
is achieved by both thermal coupling aware assignment of
threads as well as by proactively identifying the throttling-
induced large QoS degradations to make the necessary QoS-
temperature tradeoffs. The benefit of such a proactive tradeoff
is illustrated with the motivational example given in Figure
2 in Section III. We achieve distinctly longer extensions in
sustained QoS for Rock Player and Bodytrack applications
(i.e., 96% and 6.7x, respectively). In these two cases, our
criticality-driven scheduling technique reduces the power on
power-hungry big cores by exploiting the heterogeneity across
the threads in terms of their criticality to overall QoS and

Aquarium
0

50

100

150

200

250

300

350

S
u
st

a
in

e
d
 D

u
ra

ti
o
n
 (

se
c)

Default MAESTRO

Rain
0

50

100

150

200

250

300

350

RockPlayer
0

50

100

150

200

250

300

350

E.o.T
0

50

100

150

200

250

300

350

Bodytrack
0

50

100

150

200

250

300

350

Fig. 10: Sustained durations achieved by MAESTRO and default Android
management for the QoS targets specified in Figure 9.

Fig. 11: Thermal profiles under MAESTRO and default Android management.

reserving the big cores only for the threads that bring the most
QoS gains. We detail our discussion on criticality awareness
separately later in this section.

Figure 11 illustrates the thermal profiles of applications
with MAESTRO and default Android management. MAESTRO
achieves lower temperature during the sustained duration. This
extra thermal headroom (as high as 15oC) allows MAESTRO
to sustain the target QoS before thermal throttling starts to de-
grade performance. Such extra thermal headroom is achieved
via proactive QoS tradeoff mechanism of MAESTRO (Section
IV-B) as well as through the thermally-efficient QoS control
provided by QScale (Section IV-C).

Adaptive Runtime Behavior of MAESTRO: MAESTRO mon-
itors the executing applications to detect throttling-prone con-
tinuous computations and can seamlessly adapt to changing
workload patterns during runtime. Such changes can occur
during typical daily usage scenarios. This section evaluates
MAESTRO’s ability to adapt to both inter- and intra-application
changes in the computation patterns. To show inter-application
adaptation, we design an experiment where a user session con-
sists of both throughput-oriented CPU intensive computations
as well as durations dominated by bursty computations.

Figure 12 illustrates the runtime behavior of MAESTRO
during a session where the user first launches Aquarium
animation on the web browser, followed by bursty image fil-
tering operations (Caman) and concluded by opening the Rain
animation. Aquarium and Rain correspond to applications with
throughput-oriented and throttling-susceptible phases where
we expect MAESTRO to activate QScale for enabling sustained
performance. Based on the statistical properties estimated
over the recent history of power profile, MAESTRO correctly
identifies the continuous CPU-intensive computation phase in
Aquarium and activates QScale with the normalized target



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 9

Fig. 12: Adaptive runtime behavior of MAESTRO. The user session consists of two throughput-oriented applications with heavy continuous workloads (i.e.,
Aquarium and Rain) interleaved by various UI-triggered bursty computations (app launches and image filtering operation in Caman.js). MAESTRO can
succesfully distinguish the continuous heavy computations in Aquarium and Rain that are prone to large throttling-induced QoS loss, and selectively activate
QScale. Lower target QoS (i.e., 70% of the max) is selected for the Aquarium due to its high power profile with the goal of enabling a larger duration of
sustained QoS. Bursty computations have distinguishably larger deviation (yellow area on second plot) within the power sampling window of 10s.

Fig. 13: Runtime behavior of MAESTRO for the RockPlayer video application.
MAESTRO detects the heavy continuous computation once the video starts
after the initial application launch and the user’s menu traversals for video
selection. Due to reduced CPU load on big cores with criticality-aware
assignment of threads, the QoS degradation is substantially more gradual after
the throttling starts when using MAESTRO.

QoS level of 0.7 after 30 seconds. After 70 seconds, as the
user closes the Aquarium and launches Caman to perform
various image editings online, MAESTRO switches off QScale
and hands the control over to default Android management.
The bursty nature of the computation with idle periods in
between the events is manifested as the large deviation (yellow
bars in second plot in Figure 12) in the recent history of
power samples. Finally, as the user launches another throttling-
susceptible CPU intensive workload (i.e., Rain), MAESTRO
once again activates QScale but with the 0.8 target QoS level.

Figure 13 provides a detailed look into the RockPlayer
video player application’s runtime profile under MAESTRO
and default Android management. After the application launch
and several UI interactions across the application’s menu
options, the video starts to play and creates a continuously
high computation pattern. MAESTRO detects such pattern and

activates QScale after 20 seconds to stabilize the QoS around
a 80% target QoS level. Temperature reduces abruptly and
throttling does not occur until around 320 seconds, providing
almost double the sustained duration for 80% QoS compared
to default Android management. As we explain in detail in the
next part, criticality-aware utilization of power-hungry cores
brings substantial power reduction on the big cluster for this
application, further enabling longer sustained durations.

Criticality-aware Scheduling vs. HMP: In this section,
we verify that the few critical threads identified per appli-
cation (Section IV-C) determine the overall QoS and evaluate
the power savings achievable via the criticality-aware thread
assignment strategy within QScale where the power-hungry
cores are restricted for critical threads of an application. Figure
14(a) shows the power and average QoS for the throughput
oriented applications when running with the baseline HMP
scheduler and criticality-aware assignment of threads across
big/LITTLE clusters. The DVFS policy in both settings is
the Interactive governor. To avoid interference from thermal
throttling, we set the fan to operate at the highest speed for
these set of experiments. Criticality-aware assignment reduces
the overall power by 20% for the Rock Player application by
restricting the non-critical threads from operating on power-
hungry big cores. For the case of bodytrack application,
criticality-aware assignment of threads achieves 10% higher
QoS than HMP. Thus, QScale is able to achieve the same
QoS with HMP at a lower power by reducing the frequency.
For bodytrack, HMP scheduler utilizes the big cluster for
the worker threads that show high CPU load while leaving
the initial main thread on the low-performance LITTLE core,
limiting the performance gain. MAESTRO achieves higher



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 10

Aquarium Bodytrack E.o.T. Rain Rock Player

Applications

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
o
rm

. 
Q

o
S
 &

 P
o
w

e
r

QoS Power

(a)

Different Computations

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
o
rm

. 
La

te
n
cy

 &
 P

o
w

e
r

Latency Power

Averaged

(b)

Different Computations

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
o
rm

. 
La

te
n
cy

 &
 P

o
w

e
r

Latency Power

Averaged

(c)

Different Computations

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
o
rm

. 
La

te
n
cy

 &
 P

o
w

e
r

Latency Power

Averaged

(d)

Fig. 14: QoS, latency and power consumption achieved using criticality-aware scheduling. Data is normalized to HMP scheduling case. (a) QoS and average
power consumption for various throughput-oriented applications. (b) Latency and average power consumption for various computational activities within
Caman.js. (c) Latency and average power consumption for various computational activities within Adobe PDF Reader. (d) Latency/power for various
computational activities within Google Maps.

QoS at a marginal power cost by, along with 4 other worker
threads, moving this critical thread onto big cluster as well. We
observe that baseline HMP and criticality-aware scheduling
achieve similar power and QoS for the other throughput-
oriented applications. Both policies perform the same actions
as QoS is dictated by a few threads that also exhibit distinctly
high CPU utilization.

Similar to Figure 14(a), Figures 14(b),14(c),14(d) show the
power and latency for different computational activities within
Caman, Pdf and Maps applications (e.g., swipe, zoom, search
etc.), respectively. Criticality-aware scheduling achieves simi-
lar latency with the HMP scheduler for all applications while
also achieving the similar power consumption for Caman and
Pdf cases. For the Google Maps application, 30% lower power
consumption is achieved using the criticality-aware assignment
of threads as averaged across all computations. Figure 15 plots
the power profiles of big and LITTLE CPU clusters for the
Google Maps application and demonstrates the reduced power
on the power-hungry big cores without incurring increased
latencies. Start and ending of the computational activities are
captured by detecting the transitions from idle power level as
annotated in the figure.

Drawbacks of Temperature-triggered QScale Activation:
One naive approach to dynamically controlling application
QoS for sustained performance would be to switch to a
lower QoS level when the critical temperature threshold is
reached. This section evaluates the limitations and drawbacks
of relying on such an approach for detecting the throttling-

Location Search

Pan Zoom-in Zoom-in

Fig. 15: CPU power profiles for various computational activities of Google
Maps application showing the similar computational latencies at lower power
with criticality-aware thread mapping.

50
55
60
65
70
75
80
85
90

T
e
m

p
. 

(C
)

Maestro T-triggered

0 10 20 30 40 50 60 70 80
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

P
o
w

e
r 

(W
) 9.06% 77.15% 48.5%

0 10 20 30 40 50 60 70 80

Time (secs)

OFF

ON
Q

S
ca

le
O

N
/O

FF

Fig. 16: Runtime behavior of Adobe PDF reader application while operating
under MAESTRO and Temperature-triggered sustained performance control
policy. Temperature-triggered policy activates QScale when a critical thermal
threshold is hit, and reverts back to default Android management when
temperature is below 60◦C.

susceptible QoS degradations (i.e., 1st block in Figure 4). We
consider a policy that activates QScale when the maximum
SoC temperature limit (80◦C) is reached and switches back
to default Android management when the temperature falls
below 60◦C. Such a history-unaware and reactive temperature-
triggered policy would suffer from various limitations. First,
as the actions will be delayed until temperature limit is
reached, system will heat up prematurely, which could have
been avoided by tracking the high continuous computation
patterns as we perform with MAESTRO. Second, volatile
thermal violations can occur during bursty computations for
short durations. Such volatile thermal peaks do not lead to
large QoS loss as in continuous computation cases. A purely
reactive temperature-triggered policy would incur frequent
false alarms and cause premature switching to sustainable
performance settings (i.e., activating QScale). We illustrate
such a case for the Adobe PDF Reader application in Figure
16. While MAESTRO can detect the bursty compute behav-
ior and allows to maximize QoS with the default Android
management, temperature-triggered (i.e., T-triggered) policy
switches QScale on (bottom plot) at various points during
runtime where temperature exceeds the maximum threshold
(top plot). As annotated by arrows on the power profile (middle
plot), falsely triggered switches to lower QoS settings leads
to undesirable delays in the computation, impairing QoS by
means of increased latency.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 11

Aqu
ar

iu
m

Rai
n

Roc
kP

la
ye

r

E.
o.

T.
0

10

20

30

40

50

60
FP

S
QScale Max. Android Sust. Perf. Mode

Bod
yt

ra
ck

0.0

0.2

0.4

0.6

0.8

1.0

H
B

/s
e
c

Fig. 17: A comparison of the maximum attainable QoS for our throughput-
oriented applications to QoS levels obtained when operating under Android’s
sustained performance configuration. Selecting lower power operating modes
for CPU and GPU to improve sustained performance with Android sustained
performance mode configuration, without any QoS consideration, leads to
substantially low QoS for such applications with high computation demand.

Android’s Sustained Performance Mode: As an example
sustained performance management scheme in real world, we
study Android’s sustained performance mode and demonstrate
practical limitations due to its lack of application and QoS
consideration. Our examination on Android’s sustained perfor-
mance API on a reference device (i.e., Nexus 6) indicates that
the applications that request this mode of operation are forced
to execute on thermally-safe LITTLE cores with the maximum
GPU frequency reduced to a medium level. While sustained
durations can be extended with the reduced CPU and GPU
power, such application and QoS oblivious scheme can provide
drastically low QoS on applications where LITTLE cores are
unable to provide the necessary computational capability. We
illustrate this case in Figure 17. We measure the maximum
QoS attainable by QScale and by the reference implementation
of Android’s sustained performance configuration. The QoS
levels in Android’s sustained performance mode are at least
50% lower than the maximum QoS achievable for an appli-
cation. For the frame-based applications, frame-rate (FPS) is
consistently lower than 30 FPS, reaching as low as 10 FPS,
which would likely deem application unusable from a user
experience perspective. Thus, we argue the necessity of QoS
consideration for sustained performance management policies.

Overhead Evaluation: In this part, we evaluate any perfor-
mance overhead that could have been caused by MAESTRO’s
continuous operation in the background. We select applica-
tions from diverse sources to experiment using applications
with varying CPU demand and parallelism requirements. We
incorporate a set of CPU-intensive and throughput-oriented
applications as well as selected websites with diverse com-
putational needs from the BBench [22] browsing benchmark
suite. We use the BBench suite as it provides precise timing of
the webpage loading latency, which is the main performance
metric. As illustrated in Figure 18, the performance of the
applications are not effected by the presence of MAESTRO.
Overall CPU utilization of a single LITTLE core, which runs
MAESTRO, is only 2.92% (0.82% in usr, 2.10% in sys
mode). Our circular buffer implementation for sliding window
also provides good locality of reference to minimize the energy
and performance cost of memory accesses. Two core routines
of MAESTRO which update the sliding window and estimate

the value of the activation function based on mean/deviation
(Section IV.A) take 1.86 and 476.7 µsecs (<0.05% of the
1 sec invocation period), respectively. We measure execution
time and CPU utilization at the lowest 1.0 Ghz frequency of a
low-performance LITTLE core to illustrate that even the worst
case execution overhead of MAESTRO is minimal. The overall
storage overhead of 2000 power samples in our 10 sec sliding
window would be 2000*4 bytes (float C type) which occupies
only 0.3% of the cache space (2MB) in our platform.

VI. RELATED WORK

Thermally-Aware Runtime Management: Elevated power
densities in mobile SoCs have led to an increased effort
towards thermal management of mobile devices in particular.
Prakash et al. [41] perform coordinated CPU-GPU DVFS
to balance the sharing of thermal headroom between these
two entities and maximize FPS. Similarly, ARM’s Intelligent
Power Allocation [50] shifts power across CPU and GPU
based on expected performance return to improve perfor-
mance under a temperature constraint. For conventional com-
puter systems, control-theoretic [49] and predictive thermal
management [48] techniques are widely studied to improve
performance and energy efficiency while achieving smooth
temperature control. MAESTRO builds upon a fundamentally
different approach where, as opposed to greedily maximiz-
ing performance under thermal limits, we treat the thermal
headroom as a resource that we seek to utilize for maximum
durations while maintaining just enough QoS.

For multi/many core systems, various work present
thermally-efficient spatial allocation of threads in homoge-
neous [31], [46] and heterogeneous [32] systems. In fact, the
intuition behind thermal-coupling aware mapping in our QS-
cale policy [43] is similar to prior work. However, QScale [43]
demonstrates, for the first time, the opportunities for thermally-
efficient core allocation on a mobile SoC by considering the
application-specific CPU-GPU thermal couplings.

Application-Specific Optimizations for Mobile Applica-
tions: MAESTRO takes the computation behavior of an
application into account to manage thermal headroom and
QoS. Several prior studies also consider similar application
characteristics to tailor energy optimization policies. Hashemi
et al. [24] investigate the bursty compute behavior in web ap-
plications for dynamic power management (DPM) and derive

CNN Craigslist Amazon Google

Website

0

200

400

600

800

1000

1200

1400

P
a
g
e
 R

e
n
d
e
ri

n
g

T
im

e
 (

m
s)

Maestro OFF Maestro ON

(a)

Aquarium Edge of
Tomorrow

Rock
Player

Application

0

10

20

30

40

50

60

FP
S

Maestro OFF Maestro ON

(b)

Fig. 18: Real system measurements to identify whether MAESTRO policy
introduces an overhead that can cause performance degradation on (a) latency-
sensitive (b) throughput-oriented applications.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 12

a heuristic that sets the number of active cores based on per-
thread instruction counts. For throughput-oriented applications
such as gaming and video conversion, Rao et al. [42] profile
each application offline to determine the performance sensitiv-
ity of an application to CPU and memory DVFS and performs
an application-specific control to minimize energy under a
performance target. Zhu et al. [53] propose a framework to
distinguish bursty and throughput-oriented events in a web
browser and allows to manage QoS and energy tradeoffs
accordingly. While our focus is to, in addition to detecting the
bursty vs throughput-oriented nature of computations, manage
QoS-temperature tradeoff autonomously for sustainable QoS,
the framework by Zhu et al. [53] could be complementary
when crafting MAESTRO specifically for web applications.

QoS Metrics and User Experience: Accurately defining
QoS metrics is a challenging and open-ended task in computer
systems research. In multi-core memory system studies, QoS
is manifested in terms of fairness [16]. Tail latency has
been used as a measure of QoS for datacenter tasks [40].
For mobile systems, latency of user-triggered computations
(e.g., application launch, GUI inputs etc.) [17] and FPS in
throughput-oriented applications (e.g., gaming, streaming) are
found to be relevant proxies for user perceived QoS [13]. In
this paper, we build upon the insights from prior work [13],
[17] to determine relevant QoS metrics and requirements but
provide a thermally-aware way to dynamically manage QoS.

QoS-Centric Runtime Management: Various prior work has
studied managing accuracy or QoS tradeoffs with power and
energy considerations. PowerDial [28] automatically extracts
application parameters to perform dynamic accuracy trade-
offs under a power cap. JouleGuard [26] provides a bandit-
based learning solution to tune accuracy for meeting energy
budgets. Such techniques rely on source-level instrumentation
and approximate nature of specific applications (e.g., video
encoding), which makes them hard to generalize to off-
the-shelf mobile applications. Pricopi et al. [36] propose a
budgeting framework on a big.LITTLE system where QoS
levels of multiple single-threaded self-adaptive applications
[27] are adjusted reactively upon power budget violations.

Majority of prior work on QoS-aware energy and ther-
mal optimization for mobile applications target systems with
homogeneous CPUs. Kadjo et al. [30] propose a queueing
model of CPU-GPU interactions in mobile games and design
a CPU-GPU DVFS policy to meet maximum FPS targets
while minimizing energy. Das et al. [15] control number
of cores and DVFS levels simultaneously to optimize peak
temperature and thermal cycling. Despite considering QoS
targets in the learning approach, long convergence delays (i.e.,
minutes) pose practical limitations. Sahin et al. [44] propose
a thermally-aware closed-loop DVFS scheduling policy to
increase durations of sustained QoS. To guide a reinforcement
learning based thermal optimization policy, another work [14]
proposes an online workload change detection technique.
Their detection technique, however, does not identify workload
patterns that are prone to thermally-induced performance loss
to make proactive decisions as we perform with MAESTRO.

For systems with heterogeneous CPUs, some other work tar-

get specific domains of mobile applications and consider QoS
targets. Zhu et al. [54] exploit web-page characteristics to drive
scheduling and DVFS decisions on a big.LITTLE system.
Pathania et al. [38] use offline generated heuristics to guide
big/LITTLE core allocation for multi-threaded mobile games
and achieve energy savings without any impact on maximum
FPS. For server systems, Octopus-Man [40] reactively moves
latency-critical web applications to big or little CPUs while
meeting a QoS constraint. Our prior QScale work [43], which
is the basis of this paper, enables thermally-efficient QoS trade-
offs by (1) mapping threads on a big.LITTLE system by con-
sidering the QoS-criticality as well as the application-specific
CPU-GPU thermal interactions; (2) performing closed-loop
DVFS to precisely track QoS targets. However, QScale is
agnostic to application-specific computation patterns and relies
on users/programmers to specify QoS goals.

Different from these QoS-aware power/thermal optimiza-
tion techniques, MAESTRO manages QoS proactively and
autonomously in an application-aware manner. This allows
MAESTRO to hit the sweet spot for autonomous QoS manage-
ment of mobile applications by reclaiming sustainable perfor-
mance in throttling-susceptible continuous computations (e.g.,
games) without sacrificing the latency in bursty applications.

Scheduling and Thermal Management in Heterogeneous
CPUs: Some prior work aim at improving overall throughput
in multi-program workloads by guiding scheduling across
heterogeneous CPUs based on hardware performance counters
[33] and performance profiling on different cores [34]. For
systems with cluster-level DVFS such as our platform, Pagani
et al. [37] present an efficient energy-optimization algorithm to
compute V/F and core assignments for a set of independently
running tasks with performance constraints. For mobile plat-
forms, Hsiu et al. [29] prioritize foreground applications for
execution on big cores over background applications. In our
work, we guide scheduling decisions based on the impact of
individual threads on QoS based upon our novel observation
on the heterogeneity of threads within an application. Prior
work exploits varying criticality of threads to guide DVFS on
homogeneous multi-core systems (e.g., [11]).

Some other work targets thermal balancing through job
allocation [47] and propose predictive thermal management
methods [10], [48] for heterogeneous multi-core CPUs. Other
work [32] allocates available jobs across a set of heterogeneous
processing elements to maximize throughput using a novel
power density constraint. Our work focuses on effectively uti-
lizing the available thermal headroom for maximum durations.
Similar to ours, Paul et al. [39] has considered the CPU-GPU
thermal coupling effects in modern SoCs in a runtime policy.
Their work uses this insight to limit CPU frequency and allow
for higher GPU performance while we present a thermally-
efficient and coupling aware thread mapping strategy.

Our work distinguishes from prior work in the following key
aspects: (1) We show that greedily maximizing performance
under thermal constraints can adversely impact user experience
due to increased throttling over time. Thus, we aim at pro-
viding thermally-efficient QoS tradeoffs to achieve sustained
performance. (2) We demonstrate the profound impact of com-



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 13

putation characteristics (i.e., bursty or throughput-oriented) on
the throttling-induced QoS loss and QoS-temperature tradeoff
decisions. (3) We design a thermal management technique
that is application-specific. Our runtime management solu-
tion distinguishes long and continuous computations that are
susceptible to throttling-induced QoS loss, and proactively
manages QoS tradeoffs to utilize the thermal headroom for
longer durations. (4) We observe that QoS is dominated by
a few number of threads, which we exploit for scheduling
on big.LITTLE to reduce the load on power-hungry cores. (5)
Our policy dynamically guides core allocation decisions based
on application-specific CPU-GPU thermal couplings. (6) We
perform all experiments on real-life systems.

VII. CONCLUSION AND FUTURE WORK

Mobile applications exhibit fundamentally distinct computa-
tion patters across throughput-oriented workloads (e.g., video,
gaming) and UI-driven bursty applications. These diverse cate-
gories of workloads not only have different QoS requirements
but also exhibit largely disparate thermal profiles. Greedily
improving performance brings diminishing returns in QoS
due to throttling during continuous computations, making it
challenging to achieve a sustainable QoS level. This paper
proposed MAESTRO to identify application’s compute behav-
ior in runtime and manage QoS accordingly. For applications
dominated by bursty tasks, MAESTRO allows to maximize QoS
(i.e., to reduce latency) as the durations of thermal throttling is
relatively short (i.e., less than a few seconds) and the idleness
between the bursts allows to reduce temperature. On the other
hand, MAESTRO proactively trades off QoS for the cases of
continuous throughput-oriented computations with high power
to enable sustained QoS over the use. We evaluate MAESTRO
using real-life Android applications on a heterogeneous multi-
core platform. We demonstrate MAESTRO’s ability to adapt
to application behavior and autonomously manage QoS to
improve durations of sustained performance by 41% to 6.7x.

We also see several exciting future directions for MAESTRO.
One can alleviate the parameter tuning process by exploiting
repetitive application runs [35] to gradually learn parameters
online and by using recursive computations (e.g., exponential
smoothing) to track statistical features. The non-linear relation
between FPS and frequency [21] can also be exploited to
provide a more power-efficient QoS tradeoff. We believe
exploring such further application-specific QoS tradeoffs (e.g.,
considering user requirements, frequency sensitivity of QoS
and power) and evaluating the additional benefits on real users,
to be a significant future research objective.

REFERENCES

[1] Aquarium. http://webglsamples.org/aquarium/aquarium.html.
[2] big.LITTLE Technology. https://www.arm.com/files/pdf/big LITTLE

Technology the Futue of Mobile.pdf.
[3] Camanjs image editor. http://camanjs.com/.
[4] Heterogeneous multi-processing. https://www.arm.com/files/pdf/

Heterogeneous Multi Processing Solution of Exynos 5 Octa with
ARM bigLITTLE Technology.pdf.

[5] Linux cpufreq. [online] https://www.kernel.org/doc/Documentation/
cpu-freq/governors.txt.

[6] Performance management. [online] https://source.android.com/devices/
tech/power/performance.

[7] Rain. https://codepen.io/Sheepeuh/pen/cFazd.
[8] Revisiting SHIELD Tablet: Gaming Battery Life and Temper-

atures. [online] Available: http://www.anandtech.com/show/8329/
revisiting-shield-tablet-gaming-ux-and-battery-life.

[9] When benchmarks aren’t enough: Cpu performance in the
nexus 5. [online] http://arstechnica.com/gadgets/2013/11/
when-benchmarks-arent-enough-cpu-performance-in-the-nexus-5/.

[10] G. Bhat, G. Singla, A. K. Unver, and U. Y. Ogras. Algorithmic
optimization of thermal and power management for heterogeneous
mobile platforms. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, PP(99):1–14, 2017.

[11] A. Bhattacharjee and M. Martonosi. Thread criticality predictors
for dynamic performance, power, and resource management in chip
multiprocessors. In International Symposium on Computer Architecture
(ISCA), 2009.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:
Characterization and architectural implications. In International Conf.
on Parallel Architectures and Compilation Techniques (PACT), 2008.

[13] M. Claypool, K. Claypool, and F. Damaa. The effects of frame rate and
resolution on users playing first person shooter games. In Proceedings
of ACM/SPIE Multimedia Computing and Networking (MMCN), 2006.

[14] A. Das, G. V. Merrett, M. Tribastone, and B. M. Al-Hashimi. Workload
change point detection for runtime thermal management of embedded
systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 35(8):1358–1371, Aug 2016.

[15] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and
B. Veeravalli. Reinforcement learning-based inter- and intra-application
thermal optimization for lifetime improvement of multicore systems. In
51st ACM/EDAC/IEEE Design Automation Conference (DAC), 2014.

[16] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via source
throttling: A configurable and high-performance fairness substrate for
multi-core memory systems. In Proceedings of the Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2010.

[17] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using latency to evaluate
interactive system performance. SIGOPS Oper. Syst. Rev., Oct. 1996.

[18] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin. Diversity in smartphone usage. In Proceedings of the 8th
International Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 179–194, New York, NY, USA, 2010. ACM.

[19] C. Gao, A. Gutierrez, M. Rajan, R. Dreslinski, T. Mudge, and C.-J. Wu.
A study of mobile device utilization. In IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2015.

[20] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing- and
touch-sensitive record and replay for android. In 35th International
Conference on Software Engineering (ICSE), pages 72–81, 2013.

[21] U. Gupta, J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky,
F. Paterna, and S. Gumussoy. Adaptive performance prediction for
integrated gpus. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8, Nov 2016.

[22] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver. Full-system analysis and characterization of
interactive smartphone applications. In IEEE International Symposium
on Workload Characterization (IISWC), pages 81–90, Nov 2011.

[23] M. Halpern, Y. Zhu, and V. Reddi. Mobile cpu‘s rise to power:
Quantifying the impact of generational mobile cpu design trends on
performance, energy, and user satisfaction. In IEEE 22th International
Symposium on High Performance Computer Architecture (HPCA), 2016.

[24] M. Hashemi, D. Marr, D. Carmean, and Y. N. Patt. Efficient execution
of bursty applications. IEEE Computer Architecture Letters, 2016.

[25] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
control of computing systems. John Wiley & Sons, 2004.

[26] H. Hoffmann. Jouleguard: Energy guarantees for approximate appli-
cations. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP), pages 198–214, New York, NY, USA, 2015. ACM.

[27] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal. Application heartbeats: A generic interface for specifying program
performance and goals in autonomous computing environments. In Pro-
ceedings of the 7th International Conference on Autonomic Computing
(ICAC), pages 79–88, New York, NY, USA, 2010. ACM.

[28] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard. Dynamic knobs for responsive power-aware computing.
In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 199–212, 2011.

[29] P.-C. Hsiu, P.-H. Tseng, W.-M. Chen, C.-C. Pan, and T.-W. Kuo.
User-centric scheduling and governing on mobile devices with big.little
processors. ACM Trans. Embed. Comput. Syst., 15(1):17:1–17:22, 2016.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. X, NO. X, DECEMBER 2017 14

[30] D. Kadjo, R. Ayoub, M. Kishinevsky, and P. V. Gratz. A control-theoretic
approach for energy efficient cpu-gpu subsystem in mobile platforms.
In Design Automation Conference (DAC), 2015.

[31] H. Khdr, S. Pagani, M. Shafique, and J. Henkel. Thermal constrained
resource management for mixed ilp-tlp workloads in dark silicon chips.
In ACM/EDAC/IEEE Design Automation Conference (DAC), 2015.

[32] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig,
M. Shafique, J. Teich, and J. Henkel. Power density-aware resource
management for heterogeneous tiled multicores. IEEE Transactions on
Computers, 66(3):488–501, March 2017.

[33] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous
multi-core architectures. In Proceedings of the European Conference on
Computer Systems (EuroSys), 2010.

[34] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-isa heterogeneous multi-core architectures for multi-
threaded workload performance. In Proceedings of the 31st Annual
International Symposium on Computer Architecture (ISCA)., 2004.

[35] X. Li, G. Chen, and W. Wen. Energy-efficient execution for repetitive
app usages on big.little architectures. In 54th Annual Design Automation
Conference, DAC, pages 44:1–44:6, New York, NY, USA, 2017. ACM.

[36] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin. Hierarchical power management for asymmetric multi-core
in dark silicon era. In Design Automation Conference (DAC), 2013.

[37] S. Pagani, A. Pathania, M. Shafique, J. J. Chen, and J. Henkel. Energy
efficiency for clustered heterogeneous multicores. IEEE Transactions
on Parallel and Distributed Systems, 28(5):1315–1330, May 2017.

[38] A. Pathania, S. Pagani, M. Shafique, and J. Henkel. Power management
for mobile games on asymmetric multi-cores. In nternational Symposium
on Low Power Electronics and Design (ISLPED), July 2015.

[39] I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalamanchili.
Cooperative boosting: Needy versus greedy power management. In
Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA), pages 285–296, New York, NY, USA, 2013. ACM.

[40] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Moss, J. Mars,
and L. Tang. Octopus-man: Qos-driven task management for het-
erogeneous multicores in warehouse-scale computers. In IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pages 246–258, Feb 2015.

[41] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel. Improv-
ing mobile gaming performance through cooperative cpu-gpu thermal
management. In Annual Design Automation Conference (DAC), 2016.

[42] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and H. Ye. Application-
specifc performance-aware energy optimization on android mobile de-
vices. 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017.

[43] O. Sahin and A. Coskun. QScale: Thermally-efficient QoS management
on heterogeneous mobile platforms. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD). ACM, 2016.

[44] O. Sahin, P. Varghese, and A. Coskun. Just enough is more: Achieving
sustainable performance in mobile devices under thermal limitations. In
Proceedings of the International Conference on Computer-Aided Design
(ICCAD). ACM, 2015.

[45] W. Seo, D. Im, J. Choi, and J. Huh. Big or little: A study of mobile
interactive applications on an asymmetric multi-core platform. In IEEE
International Symposium on Workload Characterization (IISWC), 2015.

[46] M. Shafique, D. Gnad, S. Garg, and J. Henkel. Variability-aware
dark silicon management in on-chip many-core systems. In Design,
Automation and Test in Europe (DATE), pages 387–392, 2015.

[47] S. Sharifi, A. Coskun, and T. Rosing. Hybrid dynamic energy and
thermal management in heterogeneous embedded multiprocessor socs.
In Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 873–878, 2010.

[48] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras. Predictive dynamic
thermal and power management for heterogeneous mobile platforms. In
Design, Automation Test in Europe (DATE), pages 960–965, 2015.

[49] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theoretic techniques
and thermal-rc modeling for accurate and localized dynamic thermal
management. In Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), pages 17–, 2002.

[50] X. Wang. Intelligent power allocation. [online] http:
//infocenter.arm.com/help/topic/com.arm.doc.dto0052a/DTO0052A
intelligent power allocation white paper.pdf.

[51] K. Yan, X. Zhang, J. Tan, and X. Fu. Redefining qos and customizing
the power management policy to satisfy individual mobile users. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–12, Oct 2016.

[52] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda. Panappticon:
Event-based tracing to measure mobile application and platform perfor-
mance. In International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pages 1–10, Sept 2013.

[53] Y. Zhu, M. Halpern, and V. J. Reddi. Event-based scheduling for
energy-efficient qos (eqos) in mobile web applications. In IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pages 137–149, Feb 2015.

[54] Y. Zhu and V. J. Reddi. High-performance and energy-efficient mobile
web browsing on big/little systems. In IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2013.

Onur Sahin received BSc degrees in Electronics En-
gineering and Computer Engineering from Istanbul
Technical University in 2012 and 2013, respectively.

He is currently a fifth year student at Boston
University and working toward the PhD degree in
Computer Engineering. His interests cover various
aspects of system software, computer architecture
and mobile computing. His active research focus is
on power/thermal efficiency and security of mobile
platforms. He is a student member of IEEE.

Lothar Thiele (M’86) received the Diplomingenieur
and the Dr.-Ing. degrees in electrical engineering
from the Technical University of Munich, Munich,
Germany, in 1981 and 1985, respectively.

He joined the Information Systems Laboratory at
Stanford University, Stanford, CA, USA, in 1987.
In 1988, he was the Chair of Microelectronics at the
Faculty of Engineering, University of Saarland, Saar-
brucken, Germany. He joined ETH Zurich, Zurich,
Switzerland, as a Full Professor of Computer En-
gineering, in 1994. His current research interests

include models, methods, and software tools for the design of embedded
systems, embedded software, and bioinspired optimization techniques.

Mr. Thiele was the recipient of the Dissertation Award of the Technical
University of Munich, in 1986, the Outstanding Young Author Award of
the IEEE Circuits and Systems Society, in 1987, the Browder J. Thompson
Memorial Award of the IEEE, in 1988, and the IBM Faculty Partnership
Award in 2000-2001. In 2004, he joined the German Academy of Sciences
Leopoldina. He was also the recipient of the Honorary Blaise Pascal Chair of
University Leiden, The Netherlands, in 2005. He is an Associate Editor of the
ACM Transactions on Sensor Networks, ACM Transactions on Cyberphysical
Systems, IEEE Transaction on Industrial Informatics,the IEEE Transactions on
Evolutionary Computation, Journal of Real-Time Systems, Journal of Signal
Processing Systems, Journal of Systems Architecture, and Integration, the
VLSI Journal. Since 2009, he has been a member of the Foundation Board
of Hasler Foundation, Switzerland. Since 2010, he has been a member of the
Academia Europaea. He joined the National Research Council of the Swiss
National Science Foundation, in 2013. Lothar Thiele received the “EDAA
Lifetime Achievement Award” in 2015. Since 2017, Lothar Thiele is Associate
Vice President of ETH for Digital Transformation.

Ayse K. Coskun (M’06) is an Associate Professor
in the Electrical and Computer Engineering Depart-
ment at Boston University. She received her MS and
PhD degrees in Computer Science and Engineering
from University of California, San Diego. Coskun’s
research interests broadly span energy and temper-
ature awareness in computing systems, including
novel architectures such as 3D-stacked systems,
cloud and HPC data centers, and mobile/embedded
systems. Prof. Coskun worked at Sun Microsystems
(now Oracle), San Diego prior to her current position

at BU. Coskun is a recipient of the NSF CAREER award and the IEEE CEDA
Early Career Award, and currently serves as an associate editor for IEEE
Transactions on CAD.


